
PSYC278: Analysis of Behavioural Data
Lab 06 - Sampling Distributions & Z-Test

Raymond MacNeil & Ke Zhang

March 17th, 2023

1 / 33

Information on Final Lab Assignment

• Take home
• Due: Friday, April 10th, 11:59 PM (PDT)
• Part 1: an array of different questions encompassing the

broad range of content we covered in labs
• Part 2: will focus on a larger dataset and will likely involve

an ANOVA analysis
• Assignment for week of March 31st substituted with in-lab

activity to be completed on Canvas

2 / 33

Goals of Lab

• By the end of this lab, you will learn how you can use R to:
1. Generate and plot sampling distributions from a defined

population
2. Test hypotheses using the normal deviate (z) test
3. Compute the power of the z-test given a real effect

3 / 33

Required Libraries

library(psych)
library(pracma)
library(ggplot2)
library(latex2exp)

4 / 33

Review: Null Hypothesis Significance Testing

State of Reality
Decision H0 is true H0 is false
Reject 𝐻0 Type I Error (𝛼) Power (1 − 𝛽)
Retain 𝐻0 Correct Retention (1 − 𝛼) Type II Error (𝛽)

5 / 33

Sampling Distributions & Null-Hypothesis Population

A statistic’s sampling distribution provides all possible values
that the statistic can take on, as well as the probability of
obtaining each value under the assumption that it resulted from
chance alone.

As stated by Pagano (2013), “the null-hypothesis population
is an actual or theoretical set of population scores that would result
if the experiment were done on the entire population and the
independent variable had no effect (p. 300; emphasis original).”

6 / 33

Generating Hypothetical Populations and Samples:
Binomial

The rbinom() function allows you to generate random samples of
scores with a binary outcome. This could be heads/tails, win/loss,
etc.

The arguments taken are n (e.g., number of coins per trial), size
(e.g., number of trials or tosses), and prob, which is the
probability associated with a ‘success’ – shorthand for, “outcome x
when an outcome of either x or y is possible.”

7 / 33

Generating Hypothetical Populations and Samples:
Binomial

By way of example, let’s simulate the results of tossing four coins
four times. The coins are all fair (prob = 0.50). We will consider
a head to be a success.

set.seed(333) # for reproduceability
rbinom(n = 4, size = 4, prob = .50)

[1] 2 1 4 2

In this example, the output of the code can be translated to, “of
the four coin tosses, we observed two heads for coin 1, one head
for coin 2, four heads for coin 3, and two heads for coin 4.”

8 / 33

Sampling Distributions: Pagano’s Binomial Example

9 / 33

Sampling Distributions: Pagano’s Binomial Example

In several lines of code, we can programatically replicate Pagano’s
empirical demonstration of generating a sign-test 𝐻0 sampling
distribution (with N = 2) given a population comprised of three
pluses (IDs 1–3) and three minuses (IDs 4–6).

ID <- c(1,2,3,4,5,6) # Identifier for each score
1 = plus, 0 = minus, for our purposes
scores <- c(1,1,1,0,0,0)

Create N lists of the IDs to prepare for
getting permuations, we use the rep() function
introduced in lab one.
print(ID <- rep(list(ID), 2)) # NOTE. 2, because N = 2

[[1]]
[1] 1 2 3 4 5 6
##
[[2]]
[1] 1 2 3 4 5 6

10 / 33

Sampling Distributions: Pagano’s Binomial Example

Do the same for the scores assocaited with
the element IDs
print(scores <- rep(list(scores), 2))

[[1]]
[1] 1 1 1 0 0 0
##
[[2]]
[1] 1 1 1 0 0 0

11 / 33

Sampling Distributions: Pagano’s Binomial Example

The expand.grid() function can be used to generate
permutations (with replacement) of size N when the desired object
to permute is a list of size N.

head(expand.grid(ID), 10)

Var1 Var2
1 1 1
2 2 1
3 3 1
4 4 1
5 5 1
6 6 1
7 1 2
8 2 2
9 3 2
10 4 2

12 / 33

Sampling Distributions: Pagano’s Binomial Example

For additional information on the expand.grid() function for
getting all permutations of size n, refer to this post at R-bloggers.

expand.grid, permutations with replacement
samp.dist <- data.frame(expand.grid(ID),

expand.grid(scores))
#
Swap columns one and two for visualization purposes
samp.dist <- samp.dist[,c(2,1,4,3)]
colnames(samp.dist) <- c('IDn1', 'IDn2', 'IDn1.Score', 'IDn2.Score')

13 / 33

https://www.r-bloggers.com/2019/06/learning-r-permutations-and-combinations-with-base-r/

Sampling Distributions: Pagano’s Binomial Example

So, what do we have so far?

head(samp.dist)

IDn1 IDn2 IDn1.Score IDn2.Score
1 1 1 1 1
2 1 2 1 1
3 1 3 1 1
4 1 4 1 0
5 1 5 1 0
6 1 6 1 0
tail(samp.dist)

IDn1 IDn2 IDn1.Score IDn2.Score
31 6 1 0 1
32 6 2 0 1
33 6 3 0 1
34 6 4 0 0
35 6 5 0 0
36 6 6 0 0

14 / 33

Sampling Distributions: Pagano’s Binomial Example

Now we must create a variable representing the number of ‘pluses’
in each sample – the statistic in Pagano’s example. The
rowSums() function sums across rows in a matrix or dataframe.
Note that here I am indexing into columns three and four because
we don’t care about including the IDs in the result.

samp.dist$num.pluses <- rowSums(samp.dist[,c(3,4)])
Number of 0, 1, and 2 pluses
t <- table(samp.dist$num.pluses)
NOTE. Output is proportion of 0,1, and 2 pluses
rbind(t, t / sum(t))

0 1 2
t 9.00 18.0 9.00
0.25 0.5 0.25

15 / 33

Sampling Distribution of the Mean: Pagano Example

16 / 33

Sampling Distribution of the Mean: Pagano Example

Note the use of the rowMeans() function, which behaves like
rowSums() though instead of returning the sum(s) of the
dataframe’s rows (or specified subset), it returns the mean(s).

scores <- 2:6
expand.grid, permutations with replacement
samp.dist.m <- data.frame(expand.grid(rep(list(scores), 2)))
Swap columns one and two for visualization purposes
samp.dist.m <- samp.dist.m[,c(2,1)]
colnames(samp.dist.m) <- c('score.1', 'score.2')
samp.dist.m$mean <- rowMeans(samp.dist.m)
print(t <- table(samp.dist.m$mean))

##
2 2.5 3 3.5 4 4.5 5 5.5 6
1 2 3 4 5 4 3 2 1

17 / 33

Sampling Distribution of the Mean: Pagano Example
require(latex2exp) # You are NOT expected to know LaTeX
pct <- as.numeric(t) / sum(t)
xlab <- names(t)
df <- data.frame(xlab, pct)
p <- ggplot(data = df, aes(x = xlab, y = pct)) +
geom_bar(stat = "identity", fill = 'skyblue3') +
labs(x = TeX("$\\bar{\\textit{X}$"), # This weird stuff is LaTeX

y = TeX("$\\textit{p}(\\bar{\\textit{X}})$"),
title = TeX("Sampling distribution of $\\bar{\\textit{X}}$

with $\\textit{N} = 2$")) +
theme_classic() +
scale_y_continuous(breaks = seq(0, 0.24, .04)) +
theme(axis.title.x = element_text(margin = unit(c(3.5,0,0,0),

"mm"), size = 11),
axis.title.y = element_text(margin = unit(c(0,3.5,0,0),

"mm"), size = 11),
axis.text = element_text(size = 9.5))

p

ggsave(filename = "xdist.png", width = 5, height = 4,
units = "in", dpi = 400) 18 / 33

Sampling Distribution of the Mean: Pagano Example

19 / 33

Hypothesis Testing with the Z-Test: Formulae

𝜎�̄� = 𝜎√
𝑁

𝑧crit = �̄�crit − 𝜇null
𝜎�̄�

�̄�crit = 𝜇null + 𝜎�̄�(𝑧crit)

𝑧obt = �̄�obt − 𝜇
𝜎�̄�

20 / 33

Hypothesis Testing with the Z-Test: Formulae

Formula for determining required N given a specified level of
power (1 − 𝛽).

Note that, 𝑁need = [𝜎 (|𝑧crit| + |𝑧obt.need|)
𝜇real − 𝜇null

]
2

21 / 33

Hypothesis Testing with the Z-Test

Pagano, practice problem 12.1 (p. 315): A university president
believes that, over the past few years, the average age of students
attending his university has changed. To test this hypothesis, an
experiment is conducted in which the age of 150 students who
have been randomly sampled from the student body is measured.
The mean age is 23.5 years. A complete census taken at the
university a few years before the experiment showed a mean age of
22.4 years, with a standard deviation of 7.6.

22 / 33

Hypothesis Testing with the Z-Test

Skipping Parts A & B… Part C: Using 𝛼 = 0.052-tail, what is the
conclusion?
N <- 150; Mu <- 22.4; Sigma <- 7.6
Xbar.Obt <- 23.5; alpha <- 0.05
Xbar.Obt.SE <- Sigma / sqrt(N)
Zobt <- (Xbar.Obt - Mu) / Xbar.Obt.SE
Zcrit <- qnorm(alpha/2)
What does the output from the below line tell us?
Why MIGHT it be necessary to compare the absolute values?
abs(Zobt) >= abs(Zcrit)
[1] FALSE
Can we just compare this result to alpha as is?
pnorm(Zobt, lower.tail = F)

[1] 0.03814278

23 / 33

Hypothesis Testing with the Z-Test

Going right to the money…

round(p <- 2*pnorm(q = Xbar.Obt, mean = Mu,
sd = Xbar.Obt.SE, lower.tail = FALSE), digits = 3)

[1] 0.076
Can be useful to check your computations by working backwards...
Verify it is correct by comparing quantile to Zobt
qnorm(p/2, lower.tail = FALSE)

[1] 1.772657
Zobt
[1] 1.772657
Conclusion: Retain 𝐻0. The data indicates that the average age
of students attending fictional university x has not changed over
the last few years.

24 / 33

Sidebar: Notes on using pnorm() for calculating
p-values

• If required to calculate p with pnorm(), pay careful attention
to your input (T or F) into the lower.tail argument and
whether you are performing a one or two-tailed test.

• If lower.tail = T (default), you need to subtract the
pnorm() output from one to get the proper value for
comparison with alpha

• Further, if it’s a two-tailed test, you need to either: (a)
compare the output from above to 𝛼/2; or (b) multiply the
output by two before comparing with 𝑎𝑙𝑝ℎ𝑎.

25 / 33

Hypothesis Testing with the Z-Test
Solution to Pagano, Chapter 12, Question 20: Part A. A set of
sample scores from an experiment has an N = 30 and an
�̄�obt = 19. Can we reject the null hypothesis that the sample is a
random sample from a normal population with 𝜇 = 22 and 𝜎 = 8?
Use 𝛼 = 0.011-tail and assume the sample mean is in the correct
direction.

n <- 30
xobt <- 19
mu <- 22
sigma <- 8
sem <- sigma / sqrt(n)
print(zcrit <- qnorm(p = .01, lower.tail = TRUE))
[1] -2.326348
print(zobt <- (xobt - mu) / sem)
[1] -2.05396
print(zobt <= zcrit)
[1] FALSE

26 / 33

Hypothesis Testing with the Z-Test: Power
Part B. What is the power of the experiment to detect a real
effect such that 𝜇real = 20?
mu_real <- 20
print(xcrit <- mu + zcrit*sem)
[1] 18.60215
Compute result by first calculating z-score
zobt_real <- (xcrit - mu_real) / sem
pnorm defaults: mean = 0, sd = 1, lower.tail = TRUE
round(pnorm(zobt_real, lower.tail = T), digits = 4)
[1] 0.1693
Compute result directly with pnorm()
round(pnorm(q = xcrit, mean = mu_real, sd = sem,

lower.tail = T), digits = 4)
[1] 0.1693

N.B. Pagano gives the answer as 0.1685, but this is assuming that
one is computing the answer using the textbook’s z-table, which
requires rounding 𝑧obt to two decimal places, i.e. 0.96.

27 / 33

Hypothesis Testing with the Z-Test: Power

Part C. What is the power of the experiment to detect 𝜇real = 20
if N is increased to 100?

n.new <- 100
sem.new <- sigma / sqrt(n.new)
xcrit.new <- mu + zcrit*sem.new
zobt_real <- (xcrit.new - mu_real) / sem.new
round(pnorm(zobt_real), digits = 4)

[1] 0.5689

28 / 33

Hypothesis Testing with the Z-Test: Power

Part D. What does N have to equal to achieve a power of 0.8000
to detect 𝜇real = 20?
Compute z-obtained that would yield .80 power
zcrit <- qnorm(p = 0.99, lower.tail = F)
zobt.need <- qnorm(p = 0.80, lower.tail = F)
Plug in values to formula
numer <- sigma * (abs(zcrit) + abs(zobt.need))
denom <- mu_real - mu
N <- (numer / denom)^2
Round with digits = 0
print(round(N, digits = 0))

[1] 161

29 / 33

Generating Normally Distributed Random Samples
• The rnorm() function can be used to generate random

samples from a theoretical population of normally distributed
scores.

• It takes arguments n (the number of scores to be sampled),
mean (the population mean), and sd (the population standard
deviation).

• Type ?rnorm into the console for more information on this
function.

• The sample() function can be used to simulate the process of
randomly sampling from another sample or a defined
population.

• It takes arguments x (the set of scores you want to sample
from, i.e. your ‘population’) and n (the size of the sample you
wish to generate).

30 / 33

Example: Simulation of Type-I Errors

Note: I encourage you to work through this example, and
attempt to understand what is happening, but you are not
responsible for knowing how to run statistical simulations in this
course.
Setup…

NSamples <- 1000 # Number random samples to draw
Mu <- 100 # Population Mean
Sigma <- 15 # Population SD
N <- 25 # Size of samples
SEM <- Sigma / sqrt(N) # Standard error of the mean
alpha <- 0.05 # Type-I Error Rate
Zcrit <- qnorm(alpha/2) # Z-critical, two-tailed
Pre-allocate memory for speed
type1.Z <- matrix(data = NaN, nrow = NSamples, ncol = 2,

dimnames = list(NULL, c("Z", "p<=.05")))

31 / 33

Example: Simulation of Type-I Errors

Run the simulation and get results…

set.seed(123) # Set the seed of the random number generator
for (ii in 1:NSamples) {

samp.ii <- rnorm(n = N, mean = Mu, sd = Sigma)
Xobt <- mean(samp.ii)
Zobt <- (Xobt - Mu) / SEM
type1.Z[ii,"Z"] <- Zobt
type1.Z[ii,"p<=.05"] <- abs(Zobt) >= abs(Zcrit)

}
print(NumTypeIError <- sum(type1.Z[,"p<=.05"]))

[1] 45
Should approximate alpha
print(RateTypeIError <- NumTypeIError / NSamples)

[1] 0.045

32 / 33

References

Pagano, R. R. (2013). Understanding Statistics in the Behavioral
Sciences (10th ed.). Belmont, CA: Cengage Learning.

33 / 33

