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A B S T R A C T   

Most of research has been discovered with lower temperature differential and constant density between the 
ambient fluid and the surface. The density is assumed as exponential function of temperature due to larger 
temperature difference with radiation. The magnetohydrodynamics (MHD) acts like a coating material to protect 
technological devices from excessive heating. Main focus of this mechanism is the variable density, MHD and 
radiation effects on heat and mass characteristics of nanofluid across stretching sheet with thermophoresis and 
Brownian motion to reduce excessive heating in high temperature systems. This is first temperature-dependent 
density problem of nanofluid across the stretching surface. The coupled (PDEs) partial differential equations of 
the present nanofluid mechanism are changed in nonlinear coupled ordinary differential equations (ODEs) with 
defined stream functions and similarity variables for smooth algorithm and integration. The changed ODEs are 
again converted in similar form for numerical outcomes by applying Keller Box approach. The numerical out-
comes are deduced in graphs and tabular form with the help of MATLAB program. In this phenomenon, the 
velocity, temperature, and concentration profile along with their slopes has been plotted for various parameters 
for current issue. The range of parameters has selected according as Prandtl number 0.07 ≤ Pr ≤ 70.0, buoyancy 
parameter 0 < ξ < ∞ and the choice of magnetic force parameter set the effects of magnetic diffusion and 
magnetic energy respectively. The novelty of the current work is to compute radiation, MHD and temperature 
dependent density effects along the stretching sheet due to high temperature difference between the surface and 
ambient fluid. By the encountering the radiation fluid becomes optically dense gray fluids. So, the thermal ra-
diation is just used as a supporting agent for heat transfer assessment due to exponentially temperature 
dependent density.   

1. Introduction 

The heat, mass, and momentum transfer in the laminar MHD 
boundary layer nanofluid flow over a stretching sheet is very important 
in theoretical and practical point of view in metallurgy and polymer 
technology, nanotechnologies, micro-technologies and nonmaterial. 
This type of flows appears in various engineering applications such as 
polymer extrusion, continuous casting, glass fiber and paper production, 
food manufacturing, stretching of plastic films and several other pro-
cesses. In recent years, the nanofluids in the presence of a magnetic field 

find increasing applications in many areas such as chemical engineering, 
electromagnetic propulsion, nuclear reactors, etc. Nanotechnology plays 
an important role in many electronic devices, vehicles, space craft, de-
fense, biomedical science, solar water heating, rolling sheet drawn from 
a die, cooling and/or drying of paper and textile, manufacturing of 
polymeric sheets, sheet glass, crystalline materials and cooling appli-
cations, etc. The cooling of a sizable metallic plate across a stretching 
surface presents a significant problem in a number of engineering pro-
cesses, including extrusion, melt-spinning, micro chips, micro-machines, 
hot rolling, wire drawing, the production of fiber, and the production of 
plastic/rubber sheets. The simultaneous effects of heat transfer and 
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magnetohydrodynamic (MHD) are useful in order to achieve the final 
product of desire characteristics. Such considerations are very important 
especially in the metallurgical processes including the cooling of 
continuous strips and filaments drawn through a quiescent fluid and 
purification of molten metal from nonmetallic inclusions. In the 
manufacturing process, the production of polymer sheets and filaments 
are more important factors. This kind of flow is used in many engi-
neering processes, including plastic film stretching, continuous casting, 
paper production, food manufacturing, and the extrusion of polymers. It 
is helpful to influence the combined effects of heat transmission and 
variable density to produce a refined product with the desired proper-
ties. Such factors are crucial, particularly in the metallurgical processes 
that include the purifying of molten metal from nonmetallic impurities 
and the cooling of continuous strips and filaments dragged through a 
quiescent fluid. There’s no denying that the typical heat transfer fluids, 
such as water, mineral oils, and ethylene glycol, have low thermal 
conductivities. Therefore, a variety of approaches are used to increase 
the thermal conductivity of such fluids by suspending components in 
liquids that are micro sized. Developed by Maxwell for electromagne-
tism, magnetohydrodynamics is the dynamic study of electrically con-
ducting fluid. A magnetic field has the capacity to induce currents in 
moving conducting fluid and some buoyancy forces to change the 
electromagnetic fields. This is the basic concept underlying an electri-
cally conducting fluid. 

Most of the research has been discovered with lower temperature 
difference and constant density between the ambient fluid and surface. 
But some problems are found with maximum temperature difference 
due to radiation. In this situation, the density is assumed as exponential 
function of temperature and fluid is assumed to be electromagnetic in 
the sense of ionized fluid due to the high operating temperature. Radi-
ation effects on MHD nanofluid flow are very useful in the context of 
process involving high temperatures. In actuality, many processes in 
cutting edge engineering field takes place at high temperatures with the 
knowledge of radiation heat transfer for the design of the necessary 
machinery. The examples of such engineering field are nuclear power 
plants, gas turbines, and various propulsion systems for aircraft, mis-
siles, satellites, and spacecraft. Due to the challenges involved to study 
these issues, relatively little is actually understood about how radiation 
affects the boundary layer flow of a nanofluid for radiating body. There 

are three significant challenges to the study of nanofluid radiation. First, 
it is highly challenging to estimate fluid absorption when radiating heat 
transfer occurs in a system. The radiation is absorbed and emitted not 
only at the system boundaries but also inside the system. Secondly, the 
wave length has a substantial influence on the absorption coefficients of 
the absorbing and emitting fluids in general. To calculate the radiating 
flux, a daunting amount of integration with respect to wavelength and 
other independent variables must be done. Third, adding the radiation 
factor to the energy equation creates a difficult to solve partial differ-
ential equation that is very nonlinear. In addition, important examples 
of fluid flows in the induced magnetic field include the flow of helium in 
pebble-bed nuclear reactors, underground disposal of nuclear or 
nonnuclear waste, food processing and storage, crude oil extraction, 
flow in the eyes of glaucoma patients, and flow through filtering media. 
Due to the difference in viscosity between a nanofluid and a magnetic 
field, the Lorentz force effects provide resistance to the nanofluid flow. 
Furthermore, the current issues have significant implications for the 
polymer industries, including paper production, glass-fiber production, 
liquid crystal solidification, petroleum production, production of un-
usual lubricants, suspension solutions, wire drawing, continuous cool-
ing, fiber spinning, plastic film production, polymer sheet extraction, 
heat exchangers, petroleum resource recovery, fault zones, catalytic 
reactors, and the production of electronic devices. 

The purpose of radiation effects in the thermal equation to enhance 
the temperature of the fluid flow domain in which heat transfer rate rises 
and the nanofluid serves the same purposes instead of using the trans-
parent fluids like water simply. By the encountering the radiation, fluid 
becomes optically dense gray fluid. Here, the thermal radiation is used 
to enhance the surface temperature and nanofluid preserve the tem-
perature of the fluid. So, the thermal radiation is just used as supporting 
agent due to exponentially temperature dependent density. Pourrajab 
and Noghrehabadi [1] illustrated bio convective mechanism of visco-
elastic fluid across a stretching surface in a permeable material using 
kinetic temperature in the presence of microorganism. They found that 
the conductivity and Reynolds ratio increases the temperature profile 
with decreasing behavior. Sarkar and Endalew [2] elaborated the im-
pacts of the crystallization on viscoelastic small fluid particles with MHD 
flow in a porous material. They observed that as the Nusselt number 
increases, the thickness of the temperature field decreases. 

Nomenclature 

a Constant 
C Nanoparticle volume fraction 
Cw Nanoparticle volume fraction at surface 
C∞ Ambient nanoparticle volume fraction 
DB Brownian diffusion coefficient 
DT Thermophoretic diffusion coefficient 
f(η) Dimensionless stream function 
κ Thermal conductivity 
Le Lewis number 
Nb Brownian motion parameter 
Nt Thermophoresis parameter 
Nu Nusselt number 
Pr Prandtl number 
p Pressure 
qm Wall mass flux 
qw Wall heat flux 
Rex Local Reynolds number 
Shx Local Sherwood number 
T Fluid temperature 
Tw Temperature at the stretching surface 
Rd Radiation parameter 

T∞ Ambient temperature 
u,v Velocity components along x- and y-axes 
uw Velocity of the stretching sheet 
x,y Cartesian coordinates 

Greek symbols 
α Thermal diffusivity 
ϕ(η) Rescaled nanoparticle volume fraction 
η Similarity variable 
θ(η) Dimensionless temperature 
ν Kinematic viscosity of the fluid 
ρf Fluid density 
ρp Nanoparticle mass density 
(ρc)f Heat capacity of the fluid 
(ρc)p Effective heat capacity of the nanoparticle material 
τ Ratio of heat capacity of nanoparticle and fluid 
ψ Stream function 
λ Buoyancy parameter 
ξ Magnetic force parameter 
n Density parameter 
σ Stephen Boltzmann constant 
κ* Absorption constant  
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Kalavathamma and Lakshmi [3] studied the impact of various charac-
teristics on mass and heat transfer of viscous fluid particles across a 
horizontal cylinder saturated in a permeable material. They found that 
the temperature profile distribution of the fluid decreases as the value of 
the Brownian motion parameter rises. Dero et al. [4] depicted the im-
pacts of Darcy Forchheimer in a permeable material on the flow of ra-
diation and magnetism over a decreasing hybrid shape. They deduced 
that the variable of copper volume concentration increases the thermal 
flow behavior. Srinivasacharya and Surender [5] analyzed the impacts 
of doubly stratification on free/forced convective boundary flow of 
viscous fluid particles across a vertical surface in a porous material. They 
obtained that the ratio of temperature and energy decreases significantly 
by increasing the Darcy number. Ayodeji et al. [6] developed flow 
separation impacts of mass particles of slip flow of fluid passing through 
a porous stretching material. They obtained that surface tension rises as 
the slip velocity increases as well as the mass slip falls. Khan and Pop [7] 
performed a tubular analysis on a laminar nanofluid problem form a 
stretching geometry. They observed that the Sherwood number is 
reduced by increasing the Pr. 

Ghalambaz et al. [8] determined the physical flow of nanoparticle 
across a porous stretching surface. James et al. [9] developed a dynamic 
thickness of fluid particles through a conductive cylinder inserted in a 
porous material with heat energy. They observed that the thermal ra-
diation parameter increases the Nusselt and Sherwood number across 
the stretching surface. The researcher [10] analyzed the effects of baffles 
on nanofluid-filled enclosures used in convective heat transfer. Entropy 
analysis on circular pseudo plastic flow with MHD by utilizing the Keller 
box approach is carried out numerically in [11]. The researcher [12] 
performed a numerical analysis of the effects of Reynolds on micropolar 
flow in a channel. 

Rana and Bhargava [13] illustrated the mechanism of laminar fluid 
of nanoparticle across a quasi-stretched surface by using finite element 
method. Irfan et al. [14] constructed the MHD nanoliquid flow across a 
dynamic surface area by using numerical method having differ liquid 
properties. Ferdows et al. [15] studied free forced convective boundary 
flow of nanofluid particles across the porous material by using stretched 
shape. Mahabaleshwar et al. [18] presented an analytical approach on 
capturing the effect of incompressible, non-Newtonian, viscous, Casson 
nanofluid flow past a stretching/shrinking surface, under the influence 
of heat radiation and mass transfer parameter. Vishalakshi et al. [19] 
explained the 3-D MHD fluid flow under the impact of a magnetic field 
with an inclined angle. Maranna et al. [20] examined the impact of 
radiation and Marangoni convective boundary conditions on the flow of 
ternary hybrid nanofluid in a porous medium with mass transpiration 
effect. Again, Maranna et al. [21] investigated analytically a continuous 
stream of viscoelastic fluid and magnetohydrodynamic flow of second- 
grade fluids owing to protracted sheets in a permeable medium with 
the help of the Cattaneo–Christov pattern. Mahesh et al. [22] evaluated 
the single wall and multiwall carbon nanotube models to investigate the 
effect of suction and injection over a Marangoni boundary layer flow on 
magnetohydrodynamics (MHD) Casson fluid and thermal radiation on a 
permeable surface. Mahabaleshwar et al. [23] investigated the non- 
Newtonian MHD flow and heat transfer of copper-alumina/water hybrid 
nanofluid due to permeable stretching/shrinking surface with full slip 
model. 

Singh et al. [24] discusses the laminar boundary layer flow of an 
electrically conducting Casson fluid due to a horizontal perforated sheet 
undergoing linear shrinking/stretching with mass transpiration. Dessie 
and Fissha [25] studied free forced convective flow of Maxwell nano-
fluid particles across a horizontal porous surface. Gireesha et al. [26] 
studied a numerical simulation for fluid particle suspension and MHD 
flow for heat transmission across a stretch sheet contained in a quasi 
permeable medium. They observed that the size of the atmospheric 
boundary layer is decreased by floating small dust particles in pure so-
lution. Lakshmi et al. [27] investigated the solution of mass transfer of 
multiple particles produced by a continuously stretching surface by 

using RK-4 simulation. They concluded that the size of the energy, 
temperature, and chemical boundary regions reduces with higher 
nanoparticle concentration. In the numerical analysis with the effects of 
magnetohydrodynamics, reduce gravity, slip velocity and stratified 
medium on transient fluid over a non-conducting rotating geometry, the 
researchers [28–31] elaborated the fluctuations in the mass and heat 
characteristics. 

Krishnaan and Chamkha [32] analyzed the impacts of Maxwell and 
ion drift on mixed convective mechanism of nanofluid flow particles a-
cross a stretched surface enclosed in a permeable medium. Prasanna-
kumara et al. [33] investigated the Newtonian fluid solution with 
nanoparticle of MHD flow through a stretched surface placed in a 
permeable medium. Gireesha et al. [34] illustrated the viscoelastic fluid 
flow separation past a stretching surface filled with nanoparticles. They 
found that the temperature is enhanced with higher Prandtl number and 
the volumetric percentage of micro particles. The viscous dissipative, 
magnetohydrodynamics and radiations impacts on laminar fluid anal-
ysis along the stretching surface were examined by Maranna et al. [35]. 
For various engineering applications, Mabood et al. [36] carried out 
magnetohydrodynamics and entropy analysis for Jeffrey nanofluid 
phenomenon across the stretching surface. Rajesh et al. [37] analyzed 
the exact analytical solutions of hybrid nanofluid flow for heat transfer 
characteristics along the vertical infinite surface with ramped temper-
ature. Liosis et al. [38] studied the combined form of shear and elec-
tromagnetic mixing to compute optimization mixing strategies under 
various initial conditions. The Carreau nanofluid phenomenon for con-
centration and heat characteristics with variable properties effects along 
stretchable surface has been considered in [39]. Ullah et al. [40] 
examined the heat rate analysis on electromagnetic vertical surface with 
MHD and thermal slip effects numerically. Jamshed et al. [41] investi-
gated the transient magneto Williamson nanofluid flow along the plate 
with entropy generation effects numerically. Chamkha et al. [42–45] 
explored the solar radiation, heat generation/absorption, hydro- 
magnetic, and thermophoresis effects on free convection along the 
vertical surface embedded in a porous medium numerically. The heat 
and mass transfer characteristics of natural convection boundary layer 
flow along the porous vertical and inclined surface under magnetic field 
has been evaluated in [46–49]. Damseh et al. [50] explored the study of 
combined heat and mass transfer by natural convection of a micropolar, 
viscous and heat generating or absorbing fluid flow near a continuously 
moving vertical permeable infinitely long surface in the presence of a 
first-order chemical reaction. Takhar et al. [51] studied the non-similar 
boundary layer flow of a viscous incompressible electrically conducting 
fluid over a moving surface in a rotating fluid, in the presence of a 
magnetic field, Hall currents and the free stream velocity. Wakif et al. 
[52] evaluated the electro-magneto-hydrodynamic convective flow 
features of a viscous electrically conducting fluid over a horizontal Riga 
plate by considering the wall suction and Joule heating effects. Maghari 
and Chamkha [53] investigated the problem for an infinite vertical plate 
numerically using the fourth-order Runge–Kutta method. By following 
these authors, many people believe that the nanotechnology is most 
important factor for the next large industrial revolution of this century. 
The nanofluid particles have great interest to manipulate the matter of 
molecular structure in order to innovate in almost every sector of the 
economy and in government projects, including national security, 
transportation, the environment, the medical and physical sciences as 
well as electronic cooling. 

For the purpose of numerical analysis, the current mechanism on the 
rate of heat transfer and the rate of mass transfer along a stretching sheet 
with MHD, variable density and radiation effects is examined. The ef-
fects of variable density, MHD and radiation on heat and mass transfer of 
nanoparticle fraction phenomena of nanofluid across a stretching sheet 
with thermophoresis and Brownian motion have been investigated 
numerically by using the concept of previous research [7]. The non- 
similar expressions are numerically integrated with the Keller Box 
method. The numerical outcomes are deduced in graphs and tabular 
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form with the help of MATLAB program. The physical characteristics of 
emergent variables in the flow model, such as velocity graph, temper-
ature field graph, and concentration graph, as well as their slopes, such 
as skin-friction rate, rate of heat transfer, and rate of mass transfer has 
been plotted. The novelty of the current work is to predict heat and mass 
transfer characteristics past a stretching sheet with MHD, thermal ra-
diation and variable density effects for two phase fluid under thermo-
phoresis and Brownian motion. Most of studies are found to deal with a 
small temperature difference between the surface and ambient fluid. 
However, the circumstances arise where this temperature difference is 
high due to radiation. In this situation, the density is assumed as expo-
nential function of temperature and fluid is assumed to be electrically 
conducting in the sense of ionized fluid due to the high operating tem-
perature. In the study of boundary layer theory several authors used 
finite difference scheme, implicit finite difference scheme. Sometimes 
differential equations are very difficult to solve analytically or models 
are needed for computer simulation. In these cases finite difference 
methods are used to solve these equations instead of analytical case. This 
is very accurate method and frequently used by researchers/scientists 
working in the field of boundary layer theory. So, finite difference 
method is very understandable and easiest when tackling the differential 
equations. Moreover, the performing of error analysis is very good 
through this method which is not trivially done via Taylor series ex-
pansions. The whole calculated mechanism is normal to the surface. The 
finite difference scheme is a valid, stable and frequently used technique 
to solve boundary value problems. By using Keller Box Scheme with 
standard Newton-Raphson technique, all appearance of powers of δ 
greater than the first power are neglected and difference equations are 
arranged in tri-diagonal matrix for algorithm. Here, we have taken 
ηmax = 10 and n = 401 were taken for the convergence of numerical 
results rounded to 6 decimal places. The numerical and graphical results 
of f ′

(η), θ(η) and ϕ(η) as well as skin friction, heat transfer and mass 
transfer is accurate by satisfying the given boundary conditions. The 
findings of this research, to the best of our knowledge, are original and 
have never been published. 

2. The flow geometry and mathematical formulation 

The current mechanism is computed for numerical outcomes of the 
MHD, variable density and radiation impact on heat and mass transfer of 
nanoparticle fraction phenomena of nanofluid across a stretching sheet 
in a porous material with thermophoresis and Brownian motion effects. 
Using stream function forms, the extended issue will be reduced to a set 
of partial differential conditions, which will subsequently be converted 
into ordinary conditions. By incorporating the Keller Box approach with 
finite difference method (FDM), the molding issue will be solved. 
Graphical and tabular interpretations of the simulation solution for the 
material properties under analysis will be used. 

By considering the incompressible, steady nanofluid in two di-
mensions in Fig. 1, u and v are the velocity fields in the x and y orders, 
respectively, where x and y are the axes parallel and perpendicular to the 
stretching porous sheet, temperature is denoted by T, free stream tem-
perature T∞, fluid thermal conductivity κ, and specific heat Cp respec-
tively. The fluid density is represented with ρ, the density of particles is 
ρp, the kinematic fluid viscosity is ν = μ/ρ, the fluid density is the ρf , and 
the gravitational acceleration is the g. The mathematical equations for 
the current physical model by following [7,41] are given below; 

∂(ρu)
∂x

+
∂(ρv)

∂y
= 0 (1)  

ρ
(

u
∂u
∂x

+ v
∂u
∂y

)

= −
∂p
∂x

+ μ
(

∂2u
∂x2 +

∂2u
∂y2

)

+ g(ρ∞ − ρ) − σ*B0
2u (2)  

ρ
(

u
∂v
∂x

+ v
∂v
∂y

)

= −
∂p
∂y

+ μ
(

∂2v
∂x2 +

∂2v
∂y2

)

+ g(ρ∞ − ρ) − σ*B0
2v (3)  

(
ρcp

)

f

(

u
∂T
∂x

+ v
∂T
∂y

)

= κ
(

∂2T
∂x2 +

∂2T
∂y2

)

−
∂qr

∂y
+
(
ρcp

)

p

{

DB

(
∂C
∂x

∂T
∂x

+
∂C
∂y

∂T
∂y

)

+

(
DT

T∞

)[(
∂T
∂x

)2

+

(
∂T
∂y

)2
]}

(4)  

u
∂C
∂x

+ v
∂C
∂y

= DB

(
∂2C
∂x2 +

∂2T
∂y2

)

+

(
DT

T∞

)(
∂2T
∂x2 +

∂2T
∂y2

)

(5) 

Boundary conditions of the present model by following [7,41] are, 

v = 0, u = uw(x) = ax,T = Tw, C = Cwaty = 0 (6) 

u = v→0,T→T∞,C→C∞as y→∞. 
The preceding description presents the appropriate boundary con-

ditions for the temperature and velocity components. The P represents 
fluid pressure, ρ represents the density of the base fluid, α represents 
thermal diffusivity, ν represents kinematic viscosity,a represents a pos-
itive constant, DB represents the Brownian diffusion coefficient, DT 
represents the thermophoretic diffusion coefficient, and τ = (ρc)p/(ρc)f 
represents fluid heat capacity and nanoparticle materials heat capacity 
ratio, where ρ represents density, the qr = − 16T3

∞σ∂T/3κ*∂y, σ being 
the Stephen Boltzmann constant, κ* is absorption constant, and c rep-
resents the coefficient of volume expansion. 

3. Stream functions and similarity variables 

The appropriate unit less stream functions ψ and similarity variables 
to transform PDEs into ODEs by following [7] are given in Eqs. (7) and 
(8) with η and dimensionless temperature θ, 

u =
1
ρ

∂ψ
∂y

, v = −
1
ρ

∂ψ
∂x

,ϕ(η) = C − C∞

Cw − C∞
p = po(constant) (7)  

ψ = (av)
1
2xf (η), θ(η) = T − T∞

Tw − T∞
, η = (a/v)1/2y (8) 

The Eqs. (7) and (8) are used to turn the PDEs from Eqs. (1) to (6) into 
nonlinear ODEs; 

Fig. 1. Coordinate system and flow geometry.  
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(
f ′ 2

− ff ′′
)
= e− nθ(f ′′

′

− nθ
′

f ′′) − λ
(

1 − enθ

1 − e− n

)

− enθξf ′ (9)  

e− nθ

pr

((

1 +
4
3

Rd)θ′′ − nθ
′ 2
)

+ f θ
′

+
(
e− nθ)2

[NBϕ
′

θ
′

+ NT θ
′ 2
] = 0 (10)  

(
e− nθ)2

[(ϕ′′ − nϕ
′

θ
′

)+
NT

NB
(θ′′ − nθ

′ 2
)] +Lef ϕ

′

= 0 (11)  

where, Pr = ν
α is Prandtl parameter, Le = v

DB 
is Lewis parameter,NB =

(ρc)pDB(ϕw − ϕ∞)

(ρc)f v is a Brownian-motion number,ξ = σ*B0
2x

ρa is the magnetic 

number,n = β(Tw − T∞) is variable density number, λ = Gr/Re2 is 
buoyancy number, dimensionless temperature is denoted by θ, kine-
matic viscosity is denoted by ν =

μ
ρ, radiation is Rd = 4σT3

∞
κκ* and NT =

(ρc)pDT(Tw − T∞)

(ρc)f vT∞ 
is thermophoresis parameter. The boundary conditions in 

(6) then becomes, 

f (η) = 0, f ′

(η) = 1, θ(η) = 1, ϕ(η) = 1 at η = 0 (12) 

f ′

(∞) = 0, θ(∞) = 0,ϕ(∞) = 0 at η→∞. 

4. Computational scheme and solution methodology 

The connected mathematical nonlinear PDEs model is changed into 
similar ODEs model with similarity variables using an appropriate 
stream function formulation. In Eqs. (9) to (11), similar coupled ODEs 
model with given boundary conditions are solved using the iterative 
Keller Box approach (12). The additional independent quantities are 
introduced by p(η); q(η), u(η), v(η), l(η) and m(η) by using Eq. (13), 

f ′

= p′

, f ′′ = p′

= q, f ′′′ = q′

, φ′

= u, φ′′ = u′

= v, φ′′′ = v′

, θ
′

= l, θ′′ = l′

= m
(13) 

To overcome this issues, the Eqs. (9)–(12) becomes simple to solve 
with the straightforward forms, 

f ′

= p⇒f ′

− p = 0 (14)  

p′

= q⇒p′

− q = 0 (15)  

ϕ
′

= u⇒ϕ
′

− u = 0 (16)  

u′

= v⇒u′

− v = 0 (17)  

θ
′

= l⇒θ
′

− l = 0 (18)  

(
p2 − fq

)
= e− nθ(q

′

− nlq) − e− nθξp − λ
(

1 − enθ

1 − e− n

)

(19)  

1
pr

((1 +
4
3
Rd)m − nl2)+ fl+ e− nθ[NBul + NT l2] = 0 (20)  

(
e− nθ)2

[(v − nlu) +
NT

NB
(m − nl2)] +Lefu = 0 (21) 

The reduced boundary conditions are, 

f (0) = 0,P(0) = 1, θ(0) = 1,φ(0) = 1, atη = 0, (22)  

P(∞)→0, θ(∞)→0,φ(∞)→0, asη→∞,

Now consider the midpoint values by following [40] with segment 
ηn− 1, ηn with ηn− 1

2 
by using Eq. (23); 

η0 = 0, ηn = ηn− 1 + hn, ηn = η∞ (23) 

The above Eqs. (14) to (22) are transformed with average and central 

difference forms given in Eq. (24) by following [40], 

f
′

=
fn − fn− 1

hn
, f =

fn + fn− 1

2
= fn− 1

2
(24)  

and 

fn − fn− 1 −
1
2
hn
(
pn + pn− 1

)
= 0 (25)  

pn − pn− 1 −
1
2
hn
(
qn + qn− 1

)
= 0 (26)  

ϕn − ϕn− 1 −
1
2
hn(un + un− 1) = 0 (27)  

un − un− 1 −
1
2

hn(vn + vn− 1) = 0 (28)  

θn − θn− 1 −
1
2
hn(ln + ln− 1) = 0 (29)  

1
4
(pn + pn− 1)

2
−

1
4
(fn + fn− 1)(qn + qn− 1) =

1
2hn

(2 − nθn + nθn− 1)(qn − qn− 1)

−
n
8
(2 − nθn + nθn− 1)(ln + ln− 1)(qn + qn− 1)

−
ξ
4
(2 − nθn + nθn− 1)(pn + pn− 1) −

λ
2
(θn + θn− 1)

(30)  

1 + 4
3Rd

2Pr
(mn +mn− 1) −

n
4Pr

(ln + ln− 1)
2
+

1
4
(fn + fn− 1)(ln + ln− 1)

+
Nb

8
(2 − nθn − nθn− 1)(un + un− 1)(ln + ln− 1)

+
Nt

8
(2 − nθn − nθn− 1)(ln + ln− 1)

2
= 0

(31)  

1+
n2

2
(θn + θn− 1)

2
− n(θn + θn− 1)

[
1
2
(vn + vn− 1) −

n
4
(ln + ln− 1)(un

+ un− 1)

]
NT

Nb

(
1
2
(mn + mn− 1) −

n
4
(ln + ln− 1)

2
)

+
Lef
2

(un + un− 1)

= 0 (32)  

along with boundary conditions 

f0 = 0, ϕ0 = 1, p0 = 0, θ0 = 1, u = 1, at η = 0 (33)  

pn→0, θn→0, ϕ0→0, asη→∞ 

Now by using the iterative Newton-Raphson method to convert the 
transformed ODEs for a smooth algorithm as described below in Eq. 
(34); 

f k+1
n = f k

n + δf k
n , p

k+1
n = pk

n + δpk
n, qk+1

n = qk
n + δqk

n, θ
k+1
n = θk

n + δθk
n, u

k+1
n

= uk
n + δuk

n,ϕ
k+1
n = ϕk

n + δϕk
n, v

k+1
n = vk

n + δvk
n, l

k+1
n = lk

n + δlk
n (34) 

Now by using the standard Newton-Raphson approach, the above 
converted equations are transformed into system of algebraic equations 
and then solved by generating the global matrix. The new transformed 
equations are, 

δfn − δfn− 1 −
1
2

hn(δpn + δpn− 1) = (r1)n (35)  

δpn − δpn− 1 −
1
2
hn(δqn + δqn− 1) = (r2)n (36)  

δϕn − δϕn− 1 −
1
2

hn(δvn + δvn− 1) = (r3)n (37)  

δun − δun− 1 −
1
2
hn(δvn + δvn− 1) = (r4)n (38) 
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δθn − δθn− 1 −
1
2
hn(δln + δln− 1) = (r5)n (39) 

The equations are given below in their condensed form, once more 
utilizing Eqs. (35) to (39) in Eqs. (30) to (33); 

(a1)nδpn +(a2)nδpn− 1 +(a3)nδfn +(a4)nδfn− 1 +(a5)nδqn +(a6)nδqn− 1

+(a7)nδθn +(a8)nδθn− 1 +(a9)nδln +(a6)nδln− 1 = (r6)n
(40)  

(b1)nδmn +(b2)nδmn− 1 +(b3)nδln +(b4)nδln− 1 +(b5)nδθn +(b6)nδθn− 1

+(b7)nδun +(b8)nδgn− 1 +(b9)nδfn +(b10)nδfn− 1 = (r7)n

(41)  

(c1)nδθn +(c2)nδθn− 1 +(c3)nδvn +(c4)nδvn− 1(c5)nδln +(c6)nδln− 1

+(c7)nδfn +(c8)nδfn− 1 +(c9)nδun +(c10)nδun− 1 = (r8)n
(42) 

Recalling the precise boundary conditions without iteration, we take 
steps to make sure that these correct values are preserved across all 
iterations. 

δf0 = 0, δϕ0 = 1, δp0 = 1, δθ0 = 1 (43)  

δpn = 0, δθn = 0, δϕn = 0  

5. Matrix form of vector equations 

The matrix based structure of the aforementioned difference equa-
tions is a crucial next step. If it’s done incorrectly, the strategy either 
becomes incredibly ineffective since the matrix has no visible structure 
or zero solutions due to a solitary matrix with zero determinant or sub- 
matrix. The matrix form of vector equations is given as; 

Aδ = r (44)  

[A] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[A1][C1]

[B2][A2][C2]
⋯ ⋯

⋮ ⋱ ⋮

⋮ ⋯
[Bn− 1][An− 1][Cn− 1]

[Bn][An]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, [δ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[δ1]

[δ2]

⋮

[δn− 1]

[δn]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, [r]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[r1]

[r2]

⋮

[rn− 1]

[rn]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(45)  

6. Quantitative and physical reasoning 

Due to excessive heating, various physical problems are less inter-
ested in modern technologies and industries. The current physical phe-
nomena addressed the variable density, MHD and radiation impact on 
heat and mass transfer of nanoparticle fraction phenomena of nanofluid 
across a stretching sheet with thermophoresis and Brownian motion 
effects has been explored numerically. The coupled partial differential 
equations of the present nanofluid mechanism are changed in nonlinear 
coupled ordinary differential equations with defined stream functions 
and similarity variables for smooth algorithm and integration. The 
changed ODEs are again converted in similar form for numerical out-
comes by applying Keller Box approach. The numerical outcomes are 
deduced in graphs and tabular form with the help of MATLAB program. 
It is examined how physical quantities like as velocity graphs, temper-
ature graphs, and concentration graphs behave together with their 
slopes, which represent the rates of mass transfer, heat transfer, and skin 
friction under the influence of various flow model parameters. The 
impact of physical parameters such as Prandtl parameter Pr, tempera-

ture density number n, Lewis parameter Le, thermophoresis parameter 
Nt, buoyancy number λ, Brownian-motion number Nb, radiation number 
Rd and magnetic number ξ are drafted in numerical and physical form. 

The Fig. 2a – c shows the impact of radiation number on the velocity 
graph, temperature graph and concentration graph respectively. The 
Fig. 2(a) shows the physical quantity of velocity graph for various values 
of Rd = 1.0, 3.0, 5.0, 7.0, 9.0. It is deduced that velocity graph is declined 
for minimum value of Rd = 1.0 and enhanced for higher value of Rd =

9.0 with λ = 6.1. This occurs because a rising buoyancy parameter value 
tends to increase temperature-dependent density variation and buoy-
ancy force. It is noted that temperature θ plot is increased for higher 
value of Rd = 9.0 and reduced for lowest value of Rd = 1.0 in Fig. 2b. The 
presence of radiation in the layer has a tendency to reduce the en-
thalpies, their slopes, and increase the thickness of the thermal boundary 
layer as compared to the non-radiating case. This is because the radia-
tion parameter’s bigger value which is correlated with boundary layer 
thickness provided more heat to the working fluid within the boundary 
layer region. The prominent variation is noted in temperature plot 
against Rd. In Fig. 2c, the fluid concentration profile is enhanced for 
minimum Rd = 1.0 and reduced for higher Rd = 9.0 for Pr = 7.0. 
Physically, this is feasible since a rise in Pr reduces the thermal con-
ductivity of nanofluid, which therefore reduces the amount of the shear 
stresses between the elastic regions. Fig. 3a – c illustrate the effect of 
different values of ξ = 2.0, 5.0, 7.0, 9.0, 12.0 on velocity U, temperature 
θ and concentration ϕ profile. In Fig. 3a it is seen that velocity U profile 
is increased at minimum of ξ = 2.0 and reduced for highest ξ = 12.0 with 
good response. The nanofluid flow is accelerated by an increasing value 
of the buoyancy parameter, acting as a supportive driving force that also 
greatly increases the movement within the flow separation. The Fig. 3b 
represents the effect of ξ on the θ(η) graph. It can be seen that temper-
ature profile is reduced for lower ξ = 2.0 but increased by increasing ξ =
12.0. This outcome was anticipated since a rise in the magnetic force 
parameter corresponds to a rise in the Friction force, which resists the 
flow and thus causes a fall in the nanofluid velocity. On the other hand, 
the nanofluid demonstrates resistance to the Lorentz force as the force 
grows by increasing resistance between its layers. Fig. 3c indicates the 
effect of ξ on various value of ϕ(η) plot. It is examined that the con-
centration profile increased by increasingξ = 12.0 but decreased by 
decreasing ξ = 1.0 in Fig. 3c. The prominent variation in every plot is 
noted for various choice of magnetic force number ξ. The Fig. 4a – c 
demonstrated the physical plots of velocity U, temperature θ and con-
centration ϕ plots for diverse n = 0.0,0.1,0.3,0.5,0.7. In Fig. 4(a), it is 
noted that velocity U plot is enhanced for minimum n = 0.0 and reduced 
for maximum n = 0.7. Fig. 4b illustrated the temperature profile along 
η. It should be observed that the density variation is insignificant as n 
approaches 0 except in the buoyant term, and it increases greatly as n 
takes values far higher than 0. It is deduced that θ(η) of fluid is decreased 
with the enhancement of n. Because of increased buoyancy forces, an 
increase in the density/temperature parameter n leads to a greater in the 
velocity of the nanofluid particles (the density variation with tempera-
ture increases). Fig. 4c displays the impact of density n on concentration 
graph which is decreased by increasing n = 0.7 but increased by 
decreasing n = 0.0. The prominent variation in every graph is noted for 
various choices of density n. Therefore, when n grows, two forces will be 
acting on the nanofluid velocity: the first force, caused by an increase in 
buoyancy forces, will cause the nanofluid velocity to increase, while the 
second force, caused by a reduction in temperature, will cause the 
nanofluid velocity to reduction. Fig. 5a and b presented the physical 
outcomes of heat transfer θ′(0) and mass transfer ϕ′(0) plots for Nb =

0.1,0.3,0.5,0.7. It is noted the heat transfer θ′(0) is enhanced for min-
imum Nb = 0.1 and reduced for higher Nb = 0.7 by keeping fixed other 
parameters in Fig. 5b. It is found that a decrease in the concentration of 
nanoparticle is caused by larger values of Lewis number Le. The heat 
transfer θ′(0) graph is enhanced for maximum Nb = 0.7 and other value 
of Nb the heat transfer θ′(0) plot is similar in Fig. 5a. The prominent 
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variation in every plot is noted for various porous number Nb. The heat 
rate is enhanced for maximum Nt = 1.0 with prominent variations and 
the lower heat rate is deduced for minimum Nt = 0.1. The temperature 
gradient in the inner region of thick boundary layer cannot be predicted 
correctly by the use of thick approximation alone except for thermal 
radiation parameter Rd≫1. It was expected because a bigger value of Nt 
causes a stronger thermophoresis force in the near-wall region, which 
raises the concentration of nanoparticle. It can be seen that the con-
centration rate is raised for higher Nt = 1.0 and the lower concentration 
rate is noticed for lower Nt = 0.1 with prominent variations. Fig. 6. 

From the Table.1, it can be seen that skin-friction f ′′(0) is enhanced 
for large n = 1.0 and the minimum skin-friction f ′′(0) is deduced for 
small n = 0.0 under the influence of buoyancy parameterλ = 1.5. The 
heat rate − θ

′

(0) is enhanced for larger n = 1.0 and the minimum heat 
transfer is computed for smaller n = 0.0 with buoyancy parameter λ 
=1.5. The mass transfer is maximum for larger n = 1.0 and the minimum 
mass transfer is noticed for smaller n = 0.0 with buoyancy parameterλ 
= 1.5. The Table 2 is indicated for the impact of ξ parameter for some 
choices ξ = 0.5, 1.5,2.0 and 3.5 past a stretching sheet for physical 
characteristics of f ′′(0), − ϕ

′

(0) and − θ
′

(0) past the stretching surface 
with some constant λ= 1.7, ξ = 3.5 and Pr = 7.0. The skin friction f ′′(0) is 
enhanced for lower ξ = 0.5 while the minimum value of skin-friction is 
examined for maximum ξ= 2.5. It is mentioned that heat rate is 
increased by decreasing ξ = 0.5 and reduced by increasing ξ= 2.5. The 
mass rate transfer is raised for lower choice of ξ= 0.5 while the lowest 
value of mass transfer is examined for larger value of ξ= 2.5. The 

Table 3 is presenting the comparison of heat transfer − θ
′

(0) with Wang 
[16], and Gorla and Sidawi [17] by reducing Nt and Nb effects for seven 
values of Prandtl number Pr = 0.07,0.20,0.70,2.0,7.0,20.0,70.0in the 
presence of temperature density impact past the stretchy heated sheet. It 
is deduced that the prominent heat transfer is obtained with tempera-
ture dependent density effects for each Pr. Therefore, the current heat 
transfer results are accurate with the previous results. 

7. Conclusion 

In the present mechanism, the MHD, variable density and radiation 
impact on heat-mass transfer and nanoparticle fraction phenomena of 
nanofluid across stretching sheet with thermophoresis and Brownian 
motion effects has been explored numerically. The coupled partial dif-
ferential equations of the present nanofluid mechanism are changed in 
nonlinear coupled ordinary differential equations with defined stream 
functions and similarity variables for smooth algorithm and integration. 
The changed ODEs are again converted in similar form for numerical 
outcomes by applying Keller Box approach. The numerical outcomes are 
deduced in graphs and tabular form with the help of MATLAB program. 
It is examined how physical quantities like as velocity graphs, temper-
ature graphs, and concentration graphs behave together with their 
slopes, which represent the rates of mass transfer, heat transfer, and skin 
friction under the influence of various flow model parameters. The range 
of parameters has selected according as Prandtl number 
0.07 ≤ Pr ≤ 70.0, buoyancy parameter 0 < ξ < ∞ and the choice of 
magnetic force parameter set the effects of magnetic diffusion and 

Fig. 2. (a)-2(c). Graphical plots of velocity f ′

(η), temperature θ and concentration ϕ for some choices of Rd = 1.0,3.0,5.0, 7.0,9.0 with some fixed parameters λ =

6.1, Nt = 0.1, Nb = 0.2, n = 1.6, Le = 1.1 and Pr = 7.0. 
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Fig. 3. (a)-3(c). Graphical plots of velocity f ′

(η), temperature θ and concentration ϕ for some choices of ξ = 2.0,5.0,7.0,9.0,12.0 with some fixed parameters λ =

6.1, Nt = 0.1, Nb = 0.2, n = 0.3, Le = 2.4 and Pr = 7.0. 

Fig. 4. (a)-4(c). Graphical plots of velocity f ′

(η), temperature θ and concentration ϕ for some choices of n = 0.0,0.1,0.3,0.5,0.7 with some fixed parameters λ = 5.1, 
Nt = 0.1, Nb = 0.2, Rd = 8.6, Le = 3.3 and Pr = 7.0. 
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magnetic energy respectively. It is deduced that velocity graph is 
declined for minimum Rd = 1.0 and enhanced for higher Rd = 9.0. It is 
noted that temperature θ plot is increased for highest Rd = 9.0 and 
reduced for lowest Rd = 1.0. The velocity within the flow separation 
dramatically increases as the buoyancy parameter’s value rises, acting as 
a supporting driving force to accelerate the nanofluid flow. Therefore, 

when n grows, two forces will be acting on the nanofluid velocity: the 
first force, caused by an increase in buoyancy forces, will cause the 
nanofluid velocity to increase, while the second force, caused by a 
reduction in temperature, will cause the nanofluid velocity to reduction. 
It is concluded that the maximum choice of Lewis parameter Le causes a 
reduction in the nanoparticle concentration. 
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Fig. 5. (a)-5(c). Graphical plots of heat transfer θ′

(0) and mass transfer ϕ
′

(0) for some choices of Nb = 0.1,0.3,0.5, 0.7 with some fixed parameters λ = 4.1, Nt =

0.9, Rd = 0.3, n = 0.6, Le = 0.3 and Pr = 7.0. 

Fig. 6. (a)-6(c). Graphical plots of heat transfer θ′

(0) and mass transfer ϕ
′

(0) for some choices of Nt = 0.1,0.4,0.7,1.0 with some fixed parameters λ = 4.3, Nb =

0.6, Rd = 0.4, n = 0.5, Le = 0.4 and Pr = 7.0. 

Table 1 
Numerical results for f

′ ′

(0), − θ
′

(0) and for − ϕ
′

(0) for various values of n =

0.0, 0.3,0.6,1.0, while other parameters are fixed.  

n = f’’(0) − θ′(0) − ϕ
′

(0)

0.0  4.879240614576633  0.174622809744148  1.514028648228383  
0.3  5.553517239574258  0.282093810281554  1.929879513656921  
0.6  7.128708418082393  0.451526060701176  2.503545641529655  
1.0  11.14056359516007  0.828854931906472  3.609754807395438  

Table 2 
The numerical outcomes of f

′ ′

(0), − θ
′

(0) and − ϕ
′

(0) with some choicΞes of ξ.=
0.5,1.5,2.0,3.5.

f ′′(0) − θ′(0) − ϕ
′

(0)

0.5  9.540455671088386  3.024123755289357  2.291019891109566  
1.5  8.487572033095056  2.944285424442383  2.085276681324071  
2.0  8.086105381985982  2.913421437893619  1.987179978853624  
3.5  7.737145446285837  2.886620197701986  1.890161615731341  

Table 3 
Comparison of numerical results for − θ′(0) heat transfer for various values of 
Pr = 0.07,0.20,0.70, 2.0,7.0,20.0,70.0 with temperature density effects past 
the stretching porous sheet.  

Pr Gorla and Sidawi [16] Wang [17] Present Analysis  

0.07 0. 0656 0.0656  0.0868  
0.20 0. 1691 0.1691  0.1835  
0.70 0. 5349 0.4539  0.5196  
2.0 0. 9114 0.9114  0.9632  
7.0 1. 8905 1.8954  1.9364  
20.0 3. 3539 3.3539  3.3905  
70.0 6. 4622 6.4622  6.4962  
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