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ABSTRACT In recent years the number of security incidents affecting control systems has increased. These
incidents have shown the need to develop strategies to improve system resilience to cyber-attacks. This
paper presents a practical implementation of a strategy to detect cyber-attacks and mitigate their effects on
sensors of a multi-agent system. The proposed approach computes, in real-time, a convex combination of
measurements from main and redundant sensors, producing a trust value of the measurement and feeding it
to the controller. We implemented this approach on a testbed of ground robots in formation. Experimental
results to various kinds of attacks and a key performance index show that the proposed strategy reduces the
effects of attacks not only on the affected agent, but also prevents the propagation of the attack over the
remaining agents.

INDEX TERMS Cyber-physical systems, multi-agent systems, resilience to sensor attacks, sensor attacks.

NOMENCLATURE
α(i,j) Confidence value for sensor i of measured

variable j.
R Set of real numbers.
R+ Set of the strictly positive quadrant of R.
z̄(i)j Measurement reported by the ith sensor (pos-

sibly compromised) for the jth agent.
ž Output vector for a differential drive robot

used to implement the feedback linearization
control.

x̂ Estimated state.
x̂− Prediction of the state.
a(i)j Attack on sensor i of the agent j.
dij Relative distance between agents i and j.
e Difference between the predicted ẑ and read

output z̄.
F Jacobian of fd evaluated at the estimated state.

The associate editor coordinating the review of this manuscript and

approving it for publication was Aijun Yang .

H Jacobian of hd evaluated at the estimated
state.

K Kalman Gain.
P Sensor error covariance matrix.
Q Process noise covariance matrix.
R Measurement noise covariance matrix.
r Residue (difference between the measure-

ment and its estimation).
u Control action of a differential drive robot.
uFL1 Control law for the leader robot.
uFLi Control law for the ith follower robot.
uFL Tangential velocities in the direction of the

first and second component of ž.
v Measurement noise.
w Multivariate process noise.
x Discrete-time nonlinear state.
z Discrete-time nonlinear output.
E Edges set of a communication graph.
G Model of a communication graph.
H Hybrid system.
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K(i)
j Attack duration on the ith sensor for the jth agent.

Ni Neighbors of the node i.
Sj List of ns redundant sensors for the j agent.
V Vertices set of a communication graph.
ωl Angular velocity of the left wheel.
ωr Angular velocity of the right wheel.
θ Orientation angle of the agent with respect to the x

axis (unicycle).
z̃(j) Trust value of the jth measured variable.
CH Flow set of a hybrid system.
DH Jump set of a hybrid system.
dFL Look-ahead distance used to compute the feedback

linearization.
fH Flow map of a hybrid system.
gH Jump map of a hybrid system.
L Distance between wheels.
m Number of outputs for the nonlinear discrete-time

system.
N Cardinality of the set V , and the number of agents

in the formation.
nu Number of inputs for the nonlinear discrete-time

system.
nx Number of state variables for the nonlinear

discrete-time system.
r Wheel radius.
S(i,j) CUSUM for the jth measurement of the ith sensor.
T Total number of iterations in the simulation and

experiments.
Ts Sampling time.
v Tangential velocity of a robot.
w Angular velocity of a robot.
x Horizontal position of the agent (unicycle) in a

two-dimensional plane.
y Vertical position of the agent (unicycle) in a two-

dimensional plane.
ν(i,j) CUSUM discount parameter for the jth measure-

ment of the ith sensor.
τ (i,j) CUSUM threshold for the jth measurement of the

ith sensor.
z(i)j Actual reading of the ith sensor for the jth agent.

I. INTRODUCTION
Recently, attackers have deployed different malicious actions
with targets that range from industrial systems, such as the
Stuxnet attack deployed in an Iranian uranium enrichment
plant in 2010 [1], to robotic systems where attacks can
affect civil global position systems (GPS) [2]. These mali-
cious actions have shown the necessity of developing secu-
rity strategies to increase system resilience against attacks.
When an attack has been deployed, those strategies should
not only ensure system and users safety, but also present a
performance similar to a scenario without attacks.

The number of works that make automated decisions to
mitigate attack impacts have increased in the last years [3].
Regarding attacks on sensors and actuators of ground robots,

most of the works focus on detection. These works implement
a monitor to verify that the system is properly working.
For that purpose, some works use analytical redundancy to
verify that the behavior of a system is similar to the behavior
generated with a mathematical model. For instance, a linear
monitor that accumulates the quadratic error in a timewindow
is proposed in [4].

As vehicles present nonlinear dynamics, a monitor with
a nonlinear model is used in [5]. A hardware-based redun-
dancy strategy that uses multiple sensors to identify an attack
is presented in [6]. This strategy is based on a modified
principal component analysis (PCA) to find the envelopes
where the system is working without attacks. Then, an attack
can be identified if a sensor is outside such an envelope.

Although the mentioned works detect various attacks, they
do not propose any automated mitigation strategy. Regard-
ing strategies to mitigate attack effects on ground robotic
systems, we found works that either focus on single robot
systems or multi-robot systems. In the first group, a linear
model is used to estimate the system output and detect an
attack in [7]. Once an attack is revealed, the controller is
fed with the estimated output. Additionally, a modification
of the linear Kalman filter such that the influence of the
attacked sensor is decreased is proposed in [8]. Regarding
the works in multi-agent systems, authors in [9] propose a
moving target defense (MTD) strategy to decrease the effects
of attacks on the communication network. The work shows
that randomly changing the communication graph can reduce
the deviation produced by the attack. This strategy is finally
extended to attacks on system’s sensors and controllers.
A formalization of the strategy to face attacks is developed
in [10]. The strategy presented in [11] mitigates attacks by
isolating communication links and nodes in unmanned aerial
vehicles (UAV) formations. To detect such attacks, each agent
implements an unknown input observer (UIO) bank. Once
the attacked agent has been identified, it is removed from the
UAV formation [12].

To sum up, attacks on multi-agent systems sensors are a
real concern for the system safety. In such a scenario, agents
make wrong decisions based on false data, decreasing the
system performance and producing other adverse effects such
as collisions in multi-vehicle applications. Those collisions
might damage the vehicles, and, therefore, a strategy that
maintains the integrity of the agents and the system perfor-
mance is required. Several strategies presented above show
a method to detect attacks acting on the system. However,
this is insufficient since it does not necessarily prevent colli-
sions or unsafe scenarios. Additionally, even if a mitigation
strategy is presented, the techniques presented above do not
maintain the performance (e.g., the formation shape is mod-
ified). Consequently, a strategy to mitigate sensor attacks in
multi-agent systems, preserving formation geometry and the
system performance, is needed.

Themain contribution of this paper is to design such a strat-
egy to increase system resiliency to attacks. Our approach
dynamically detects and mitigates attacks in real time by
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FIGURE 1. Complete strategy proposed to mitigate attack effects on
agent sensors.

computing control actions that compensate deviations from
expected behavior. It uses a convex combination among
redundant sensors to compute trust values for all physical
variables that are being measured in the system. These trust
values are used to compute a control action to mitigate the
impact on the attacked agent and on the entire system. The
strategy is not only simulated, but it is also implemented in a
system of multiple differential drive robots. Our results show
that the proposed strategy reduces the effects on the attacked
agent and, additionally, it prevents the attack propagation to
the whole system through the communication network. Thus,
the strategy preserves the geometry of the formation when the
system is facing an attack on its sensors.

The remaining of the paper is organized as follows.
Section II describes the differential drive robot model, the for-
mationmodel, and the controller for every agent. It also shows
attacks definitions and capabilities and limitations of attack-
ers (see the blue dotted box in Figure 1). Section III presents
detection and mitigation strategies (see the red dotted box
in Figure 1). Section IV presents the simulations and exper-
imental results. Those results are discussed in Section V.
Finally, Section VI presents conclusions and future work.

II. SYSTEM DESCRIPTION
In robotic formations, one of the main objectives is to main-
tain relative distances between the involved robots. One
approach to achieve a particular formation is to use a leader-
follower structure. While the leader robot moves in the space
tracking a reference without depending on the neighbors
position, the follower robots must modify their positions to
maintain formation. Therefore, to accomplish the objective,
each agent must implement a controller to achieve a position
and each robot must share its position with a set of local
robots (neighbors in a graph). Such formation and controller
can be affected by attacks on the agent This section presents
the controller and the threat model.

A. GRAPH THEORY
We model communications between pairs of robots with a
directed graph G = (V, E). This graph has a finite set of
vertices V = {1, 2, . . . ,N }, and a set of edges E ⊆ V × V .
In a directed graph an edge (vi, vj), denoted as (i, j), means
that node j can obtain information from node i (it represents
communication in only one direction). The neighbors of node
i will be denoted as Ni = {j ∈ V : (i, j) ∈ E}.
To implement the leader-follower structure, the leader does

not need information from other agents. Therefore, commu-
nications are directed; from the leader to the followers.

B. AGENT MODEL
Each agent in this work is a ground robot with differential
locomotion. A differential drive robot has two parallel wheels
attached to independent actuators. The left and right actuator
move the wheels at different angular velocities ωr , ωl . The
robot position in a two-dimensional space x, y, and the angle
θ with respect to the x axis may be modeled with the kine-
matics of an unicycle, which describes the robot as a particle
with tangential velocity v and angular velocity ω, i.e.,

x = v cos(θ )

y = v sin(θ )

θ = ω. (1)

The model shown in (1) is useful to design the system
controller. Although an agent’s tangential and angular veloc-
ities are not the actual inputs of the system, these values are
linearly related with wheel velocity:

v =
r
2
(ωr + ωl), ω =

r
L
(ωr − ωl), (2)

where r is wheel radius, and L is distance between wheels.

C. CONTROLLER
As shown in (1), a differential ground robot presents non-
linear dynamics. Various works have proposed different con-
trollers for these robotic systems (see [13] and the references
therein). This work implements a feedback linearization con-
troller. This technique linearizes the relationship between the
system input and output. Thus, a linear controller can be used
to achieve a formation shape. For the differential drive robot,
let us define the output as

ž =
[
x + dFL cos(θ)
y+ dFL sin(θ )

]
, (3)

with dFL > 0. The feedback linearization controller is given
by,

u =
[
v
ω

]
=

1
dFL

[
dFL cos θ dFL sin θ
− sin θ cos θ

]
uFL ,

where uFL ∈ R2 is the vector of the tangential velocities in the
direction of the first and second component of ž, respectively.
The zero dynamics are stable (see [14] and [15] for details).

We assume that the robot 1, denoted with the lower index 1,
is the leader, and also that the follower robots denotedwith the

31238 VOLUME 9, 2021



L. Burbano et al.: Dynamic Data Integration for Resilience to Sensor Attacks in Multi-Agent Systems

lower index i, share information via an unweighted directed
graph G = (V, E), where V is the set that represents the N
robots, and E is the set that represents the communication
links between robots. The leader robot uses a proportional
controller to follow a desired position ž1,d ∈ R2, hence

uFL1 = kp(ž1 − ž1,d ).

The ith follower robot has the control law

uFLi =
1
|Ni|

∑
j∈Ni

[
žj − ži − dij

]
, (4)

where dij ∈ R2 is the relative distance between agents i
and j and depends on the robot formation geometry. Under
conditions without attack, a system using this controller con-
verges if there is a directed path (a set of edges that connect a
sequence of different vertices) between the leader and all the
agents. Note that we can measure all the system variables,
and the output defined in (3) is only used to achieve system
formation.

Note also that the formation is achieved with the output (3),
instead of the position x and y. Then, the robot position will
converge to a neighborhood of the output (3). Consequently,
we have chosen the parameter dFL = 0.035m. Additionally,
the leader controller is determined to be kp = 1. These param-
eters have been selected independently of the reconfiguration
and mitigation strategy parameters, which will be presented
in Section III. The objective is that the strategy increases
the resiliency to attacks on sensors without changing the
controller parameters and, then, sacrificing the controller
performance.

D. THREAT MODEL
We assume that for every measured variable in the system,
there are redundant information sources (i.e., different sen-
sors). Let Sj =

{
s(1)j , . . . , s

(ns)
j

}
be the list of ns redundant

sensors for the j agent, whose measurements (possibly com-
promised) are

[
z̄(1)j , . . . , z̄

(ns)
j

]
, z̄(i)j ∈ Rm. The purpose of the

attacker is to modify sensors data to prevent the controllers
to compute the required control action. We assume that the
attacker has the actual systems’ output and can inject any
arbitrary value a(i)j ∈ Rm at any time to sensor i of agent j.
However, we assume that there is at least one sensor on each
agent that is not under attack, but the strategy does have
information about which sensors are not attacked.

Let K(i)
j = {k

(i)
j,f , . . . , k

(i)
j,l } represent the attack duration on

the ith sensor of the jth agent, between the first time step k (i)j,f
and the last time step k (i)j,l . The model of the attack is [16]:

z̄(i)j [k] =

{
z(i)j [k] for k /∈ K(i)

j

a(i)j [k] for k ∈ K(i)
j
, (5)

where z(i)j [k] is the actual reading of the ith sensor of jth agent,

z̄(i)j [k] is the measurement reported by the ith sensor of jth

agent, and a(i)j is the attack signal affecting the ith sensor of jth

agent. The attacker can also attack the pre-processing stage
implemented for the sensors (e.g., the position estimation
using robot encoders).

The threat model has some additional assumptions. First,
as we are focusing on attacks to the sensors, we assume that an
attacker only deploys attacks to those devices measurements.
By a similar reason, we assume that the integrity of the
information sent through the communication links is pre-
served and each agent trusts the information received from its
neighbors. As a consequence, if there is an attack to an agent’s
sensor, this agent will send false data to its neighbors, poten-
tially affecting the whole system. Finally, we also assume an
attacker knows the system model, controller, agent neighbors
state, detection strategy parameters, and that attacker can
deploy a stealthy attack with that information. We argue that
if the strategy can mitigate such a strong attacker, it can also
mitigate less intelligent attacks.

III. ATTACK DETECTION AND MITIGATION
This work proposes a model-based strategy to detect and
mitigate attacks on sensors of cyber-physical systems with
multiple agents. The strategy uses redundant sensors to mea-
sure the system output and every reading is monitored using
analytical redundancy. Such redundancy compares the sensor
measurements with the expected ones given by the system
model. Using this information, the redundant sensors infor-
mation is fused to estimate the system output without attack.
The overall strategy and the integration of both stages is
inside the red box in Figure 1, and a detailed procedure of
the strategy is presented in Algorithm 1. In the algorithm, 0m
is a vector of zeros with m rows. In this section, the agent
subindex is avoided for notation simplicity. However, all the
variables refer to only one agent.

The detection stage is performed with an extended Kalman
filter (EKF). The filter estimates the system states integrating
the model with the input and sensor measurements, while
handling system uncertainties such as noise. As our strategy is
mainly based on the EKF, the error convergence and stability
of the extended Kalman filter is a crucial concern for the prac-
tical implementation. For these reason, the design of the filter
must guarantee its error convergence and stability. Several
works have been studying conditions to ensure those proper-
ties, see [17] and [18] for instance. Indeed, we follow [17],
and we verify that the initialization of P[0] is positive definite
and that the matrix that weights the noise in the state equation
is full rank, which in this case is the identity and therefore
satisfies the condition. Let a discrete-time nonlinear system
be given by,

x[k] = fd (x[k − 1],u[k])+ w[k]

z[k] = hd (x[k])+ v[k],

where fd : Rnx × Rnu → Rnx and hd : Rnx → Rm, w[k] ∈
Rnx is a multivariate zero-mean Gaussian process noise with
covariance matrix Q ∈ Rnx×nx , Q � 0, and measurement
noise v[k] ∈ Rm with covariance matrix R ∈ Rm×m, R � 0.

VOLUME 9, 2021 31239



L. Burbano et al.: Dynamic Data Integration for Resilience to Sensor Attacks in Multi-Agent Systems

Algorithm 1 Attack detection and mitigation strategy

Data: Sensor list, S = {s(1), . . . , s(ns)}. Sensor
measurement, z̄(i)[k]. Sensor error covariance
matrix, P(i)[k − 1]. Process noise covariance
Matrix, Q(i). Measurement noise covariance
matrix, R(i). Sensor CUSUM, S(i)[k − 1].
CUSUM thresholds, τ (i). CUSUM discount
parameter, ν(i). Sensor state estimation, x̂(i)[k− 1].
The input calculated for every sensor, u(i)[k].

Result: Trust value of output z[k], z̃[k]
6α ← 0m;
foreach sensor i in S do

x̂(i)[k]←
EKF(x̂(i)[k − 1],u(i)[k],P(i)[k − 1],Q(i),R(i));
r(i)[k]← |z̄(i)[k]− h(x̂(i)[k])|;
foreach measured variable j do

if S(i,j)[k − 1] > τ (i,j) then
S(i,j)[k]← 0;
Raise an alarm on sensor i;

else
S(i,j)[k]←
max (0; S(i,j)[k − 1]+ r (i,j)[k]− ν(i,j));

if an alarm has not been raised in sensor i then
α(i,j)[k]← 1− S(i,j)[k]/τ (i,j);

else
α(i,j)[k]← 0;

6
j
α ← 6

j
α + α

(i,j);

z̃[k]← 0m;
foreach sensor i in S do

foreach measured variable j do
if 6j

α > 0 then
b(i,j)← α(i,j)/(6j

α);
else

b(i,j)← 1/ns;

z̃(j)[k]← z̃(j)[k]+ b(i,j)z̄(i,j)[k];

The EKF is iteratively defined as follows. First, the predicted
state, x̂−[k] ∈ Rnx , is calculated evaluating the model on
the previous prediction, x̂[k − 1], and the current input,
u[k], i.e.,

x̂−[k] = fd (x̂[k − 1],u[k]).

Then, the system dynamics are approximated using the
Jacobian of fd evaluated at the previous prediction, x̂[k − 1],
and the current input, u[k], and the Jacobian of hd evaluated
at the predicted state x̂−[k], i.e.,

F[k] =
∂fd
∂x

∣∣∣∣
x̂[k−1],u[k]

, H[k] =
∂hd
∂x

∣∣∣∣
x̂−[k]

.

Using these matrices, the error covariance matrix
P ∈ Rnx×nx is predicted by,

P−[k] = F[k]P[k − 1]F>[k]+Q,

where x̂[0] and P[0] are the filter initial conditions.
Afterwards, the correction is performed by adding the pre-

diction with the error (i.e., difference between the predicted ẑ
and read output z̄) multiplied by the Kalman gainK. This gain
depends on the predicted error covariance P−, measure noise
covariance matrix R, and the Jacobian of the observation
function, i.e.,

e[k] = z̄[k]− hd (x̂−[k])

K[k] = P−[k]H>[k](H[k]P−[k]H>[k]+ R)−1

x̂[k] = x̂−[k]+K[k]e[k].

Finally, the error covariance matrix is updated using

P[k] = (I−K[k]H[k])P−[k].

On a scenario without attacks, changes on the input and
output modify the estimation residues r[k] = |z̄[k] − ẑ[k]|,
where | · | is the element wise absolute value. However, when
a sensor information is maliciously modified, the magnitude
of the estimation residues increases. To determine such mod-
ification on the residues behavior produced by an attack,
the non-parametric cumulative sum (CUSUM) is used. Test
raises an alarm when the residues magnitude is big or it
presents a persistent deviation. CUSUM has shown to detect
more attacks and outperform other tests [19]. To mitigate
attacks on a system’s agent, multiple sensors information is
fused. For every sensor, a different EKF andCUSUMare used
to monitor the sensor measurement. The CUSUM for the jth

measurement of the ith sensor is iteratively defined by,

S(i,j)[k] = max{0, S(i,j)[k − 1]+ r (i,j)[k]− ν(i,j)},

S(i,j)[0] = 0,

where ν(i,j) ∈ R+ is a CUSUM parameter that prevents
the statistic to increase under normal operation, and r (i,j)

is the estimation residue for the jth measurement of ith

sensor.1 Every sensor has a discount parameter ν(i) =

[ν(i,1), . . . , ν(i,m)] and it is selected as the minimum value
such that, in a scenario without attack,

E[r (i,j)[k]− ν(i,j)] < 0, (6)

where E[·] is the expected value. This condition ensures that
CUSUM is bounded when there are no attacks in sensors,
and therefore false alarms due CUSUM unboundedness are
avoided. The CUSUM raises an alarm on sensor i when
the statistic of the measured variable j exceeds a threshold
S(i,j)[k] > τ (i,j), τ (i,j) ∈ R+. As the parameter ν(i), every
sensor has a threshold τ (i)

= [τ (i,1), . . . , τ (i,m)]>. These
parameters are determined based on a false alarm rate: the
bigger the threshold is, the lower the false rate is but detection

1R+ represents the strictly positive quadrant of R
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time increases. In this work, we tune the CUSUM parameters
as presented in [16].

It is important to clarify that the distribution of the
residues is affected by some parameters of the controller
(e.g., sampling time). Therefore, the CUSUM parameters
should be selected once the control strategy has been com-
pletely designed. In other words, the controller parameters
can be picked to accomplish some performance specifica-
tions, and then the CUSUM parameters are tuned. Conse-
quently, the performance of the controller is not affected in
order to increase the system security.

The previous paragraphs present a strategy to detect modi-
fications of sensor data. However, we also need an automated
response to maintain the system in a safe state and meet the
control system objective. The remaining of this subsection
shows the proposed mitigation strategy integrated with the
detection process.

In order to mitigate the attack effects on the robotic system,
a different EKF monitors every reading of each sensor to
obtain the residues. Using that information, redundant sen-
sors information is fused. A confidence value is computed in
each iteration for every sensor i and everymeasured variable j,
which is defined by,

α(i,j)[k] = 1−
S(i,j)[k]
τ (i,j)

,

where α(i,j) = 0, if an alarm has been raised in the jth

measured variable of ith sensor. Note that confidence value
is near to zero when CUSUM is near to the threshold,
i.e., when there is a difference between the expected and
actual behavior. In contrast, the confidence is near to one
when the CUSUM does not show a difference between the
actual and estimated measurements.

Finally, the sensors information is fused based on a convex
combination, i.e.,

z̃(j)[k] =
1∑

i∈S α
(i,j)[k]

∑
i∈S

α(i,j)[k]z̄(i,j)[k], (7)

where S is the sensor list and z̄(i,j) is the reading from the
ith with the jth variable, and z̃(j) is the trust value of the
jth measured variable. The calculated trust value z̃ is then
used to compute the control action and it is also sent to the
communication network to prevent attack propagation.

IV. RESULTS
This section presents the implementation of some attacks to
show the strategy usefulness. To apply the strategy, the dis-
count parameter is ν(i) ∈ R3

+ and threshold τ (i)
∈ R3

+.
We will denote the measurement of x, y, θ from sensor i by
z̄(i,1), z̄(i,2), z̄(i,3), respectively. The discount parameter of the
ith sensor will also be denoted by ν(i,1), ν(i,2), ν(i,3) for the
measurement of x, y, θ , respectively. Additionally, as we can
measure all the system variables, the output function hd (x) for
the EKF is,

z[k] = hd (x[k]) = C
[
x[k] y[k] θ [k]

]>
,

where C is the 3 × 3 identity. We also use a discrete-time
version of differential-drive robot model (1), i.e.,

x[k + 1] = x[k]+ v[k] cos
(
θ [k]+

ω[k]
2

Ts

)
Ts

y[k + 1] = y[k]+ v[k] sin
(
θ [k]+

ω[k]
2

Ts

)
Ts

θ [k + 1] = θ [k]+ ω[k]Ts,

where Ts is the sample time.
Note that the integration of the model presented in (1) with

the controller and the mitigation strategy can be modeled as
a hybrid system. A hybrid system H can be described with
four elements: the flow set CH, flow map fH, jump set DH
and jumpmap gH. The jump and flow set are the points where
the system flows or jumps, respectively. The behavior of the
system when it flows or jumps is described by the flow map
and the jumpmap. Then, to model the mitigation strategy as a
hybrid system, we add an additional state β which is a timer.
This timer is initialized at 0 and constantly grows at a rate of
one, i.e., β̇ = 1, when β ∈ [0,Ts]. When the timer is less than
the sampling time β ≤ Ts, the system is in the flow set and the
continuous states change. That is, the states of the robot are
updated according to equation (1). Once the timer increases
to β ≥ Ts the system is in the jump set and the discrete
states change. That is, the states of the robot remain constant
while the controller, states estimations, CUSUM, confidence
values and trust values are updated. Additionally, the timer is
reset to zero β = 0 and the system arrives again to the flow
set [20], [21].

A. EXPERIMENTAL SETUP
The strategy has been implemented in a system with 6 e-puck
version 2 robots [22]. The robot has a maximum velocity of
15.4 cm/s, radius r = 2.05 cm, and distance between wheels
L = 5 cm. Additionally, it has two stepper motors, a Wi-Fi
and Bluetooth module, and multiple sensors as the inertial
measurement unit.

To measure the robot states, odometry with the motor
step counting has been implemented. Every wheel revolu-
tion represents 1000 steps and the robot sends its informa-
tion every 0.05 s. Additionally, to perform the redundancy
strategy, a camera is used to measure the robot angle and
position. The camera can take up to 30 frames per second at
1080p. However, with such resolution the image recognition
is expensive. Therefore, the image size has been changed to
600 × 450 pixels and 25 frames per second. This results in
a resolution of 4 pixels per centimeter. Therefore, to ensure
that the sensors are updated at each step, the discretization
time has been set to 0.1 s.

A central processor runs image recognition, odometry,
robot communication, and attack detection. This central pro-
cessor is a laptop with 16 GB of RAM, with an Intel Core
i7-8750H (which is a six-cores), 2.2 GHz processor, run-
ning a program developed in Python 3. Every process (e.g.,
image processing) runs in parallel in a different core of the
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processor, and the communication with each robot is made in
a different thread. Additionally, each robot has a program pro-
vided by the robots’ developer that is used to implement the
communication between the robot and the central processor.

B. CUSUM PARAMETERS
A proper parameter selection ensures a fast attack detection
and low false alarm rate. In this work, we use the pro-
cedure presented in [16] to tune the CUSUM parameters.
To guarantee the CUSUM boundness condition of (6), 10000
simulations for fifty seconds without attack have been per-
formed to approximate the expected value. Every 1000 sim-
ulations, the maximum reference change rate is incremented
1 cm/s until a maximum velocity of 10 cm/s. For every sim-
ulation, the residues are calculated for the measured variable
(i.e., x, y, and θ ) and the mean is calculated to estimate the
expected value of the residues. Therefore, the parameters
found for both sensors for measurement in x is ν(i,1) =
0.0023, for measurement in y is ν(i,2) = 0.0024, and for
measurement of θ is ν(i,3) = 0.1103 for sensors i = {1, 2}.
Finally, the CUSUM is calculated for every simulationwith

different threshold values to find the number of false alarms.
High thresholds for x, y and θ have been selected to avoid
a large false alarm rate, i.e., τ (i,1) = 0.8, τ (i,2) = 0.8,
τ (i,3) = 4, for sensors i = {1, 2}.

C. NUMERICAL RESULTS
A six-robots system has been used to test the developed
strategy. To implement the formation controller and show
that the proposed strategy can work with different graphs,
two communication topologies are used. The first com-
munication graph, graph 1, used in this paper is defined
by G1 = {V1, E1}, where V1 = {1, . . . , 6} and E1 =
{(1, 2), (1, 6), (2, 3), (3, 2), (3, 4), (4, 3), (4, 5), (5, 4), (5, 6),
(6, 5)}. The second graph, graph 2, is a directed graph that
connects the leader and the follower robots with a directed
path. This graph is defined by G2 = {V2, E2}, where V2 =

{1, . . . , 6} and E2 = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}.
Figure 2 shows a photo of the system, graph 1 (represented

with red arrows) and graph 2 (represented with blue arrows).
Note that both graphs have a directed path between the leader
and the followers to ensure that robots can achieve the forma-
tion when there are no attacks. Additionally, Figure 3 presents
behavior for simulation and implementation of the system
with a triangular formation and communications defined by
graph 1. The simulations has been run in Matlab/Simulink
2018A.

The first attack is deployed on the leader robot odometry.
Specifically, between 3 and 12 sec., the right motor step
counting is stopped. The second attack is deployed on the
camera sensor, adding a sigmoidal signal to the measurement
of position x of the leader robot:

z̄(2,1)1 [k] = z(2,1)1 [k]+
0.2

1+ e−3(0.1k−3)
, K(2)

1 = {0, 1, . . .}.

FIGURE 2. Aerial photography of e-puck version 2 robots formation. The
red lines are a graphical representation of the communications graph.
The red arrows indicate the flow direction of the information exchange
in the graph G1, and the blue arrows represent the information exchange
in the graph G2.

FIGURE 3. Trajectories without attack on the experimental setup
(continuous lines) and simulation (dotted lines), using the graph 1.

It is important to clarify that we have also run two simulations
deploying the every attack in robots 1 (leader), 2, 4, and
6 simultaneously. In contrast, only the second attack has
been deployed in multiple robots in the physical system due
to safety reasons. Additionally, a stealthy attack has been
deployed on the camera sensor. For a detector that uses the
CUSUM statistic, an optimal attack is given by [19],

z̄(2,1)1 [k] = ẑ(2,1)1 [k]+ (τ (2,1) + ν(2,1) − S(2,1)1 [k]),

K(2)
1 = {20, 21, . . .}.

This attack implies that the attacker knows not only the
current state, but also the detection strategy and model
parameters, i.e., the functions fd , hd , robot parameters r , L,
CUSUM parameters τ , ν and EKF covariance matricesQ,R,
and P. Although this powerful attacker could be unrealistic,
we deploy this attack to evaluate strategy results.2

2Some videos of the presented attacks can be found at:
youtu.be/B0Vy33MbH4Q
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TABLE 1. Normalized key performance index for the different experiments.

To quantify the attack mitigation strategy efficiency, a key
performance index (KPI) is defined. Let ži[k] be the ith robot
output at instant k , and ži,d [k] be the ith robot desired output
when the formation is achieved.We accumulate the Euclidean
norm between the robot output at instant k , and the position
that the robot should arrive once the formation is achieved in
a scenario without attacks. Thus, the KPI is defined as:

KPI =
N∑
i=1

T∑
k=0

∥∥ži[k]− ži,d
∥∥2
2 Ts, (8)

where N is the number of robots, and T is the last instant
of the experiment. To compare the different scenarios (i.e.,
without an attack, and attacked with and without reconfigura-
tion), the KPI is normalized by the result obtained in the non-
attack scenario. Table 1 shows KPIs of the aforementioned
experiments and simulations.

Some KPIs constantly increase due to the attack character-
istics. The KPI in the table was taken at 30 s (i.e., K = 300)
when all scenarios have reached their steady-state. At this
instant, the KPIs of scenarios with attack and reconfiguration
have converged on all performed experiments.

Finally, we have run 1000 simulations, changing initial
conditions, time of attacks, attacked agents and communi-
cation topology (i.e., selecting either G1 or G2). We have
selected experiment conditions such that one sensor of every
agent may have been attacked at different times during the
simulation. We have also selected an intelligent attacker that
deploys a stealthy attack. For these simulations we present
the normalized KPI in function of time and not only the final
value. Figure 4 shows the average of the normalized KPI
together with the maximum and minimum KPI obtained in
the whole simulation set, for the attack scenarios with and
without the presented mitigation strategy. Note that, in order

FIGURE 4. Average (blue line), maximum and minimum (blue area plot)
normalized key performance index when a stealthy attack is deployed,
randomly changing initial conditions, communication graph, attack
instants and attacked agents. The KPI is presented when a) mitigation
strategy is not implemented, and b) implementing the strategy.

to obtain the normalized KPI, we require the simulation of
the scenario without an attack.

V. DISCUSSION
The attack on the leader robot odometry has an important
effect on the system behavior. At the second 30, the KPI of the
experimental setup is greater than the scenario without attack
when the graph 1 is used. The KPI shows that performance of
the system is similar before and after deploying themitigation
strategy. When an attack starts, it disturbs the system and the
KPI grows.

When this attack is deployed onmultiple agents, the effects
are amplified but the reconfiguration strategy can detect the
attack on agents and reduce its effects. Similarly, in our simu-
lations the strategy mitigates attack effects for both scenarios
(i.e., attack on leader and simultaneous robots).

The bias attack on the camera does not allow the system
to reach the desired formation. Although this attack presents
smaller effects than the attack on odometry, the KPI shows

VOLUME 9, 2021 31243



L. Burbano et al.: Dynamic Data Integration for Resilience to Sensor Attacks in Multi-Agent Systems

that the attack on the leader robot negatively affects system
performance.When the attack is deployed onmultiple robots,
the system performance without the reconfiguration strategy
is even worse. In contrast, the systemwith the reconfiguration
strategy can achieve the expected formation, although the
normalizedKPI is greater than one. In other words, the system
achieves the formation but the attack disturbs the system.

Note that the KPI of scenarios with attacks on multiple
agents remain near one, i.e., the system has a similar per-
formance to the scenario without attack. This shows that
the reconfiguration strategy can handle attacks on various
agents, without affecting the overall system performance. The
strategy prevents every agent from misbehaving due to false
information from one of its sensors or due to false information
sent by a neighbor.

When the graph 2 is used, the attacks effects increase
compared to the experiments using the graph 1. In the graph 1,
each agent communicates with two agents. Then, when an
agent is attacked, its neighbor makes decisions using the
information of an attacked and a not attacked robot. In con-
trast, with the graph 2, all agents receive information from
only one agent, which possibly is under attack. Then, with the
graph 2, agents could make decisions using only false infor-
mation even if just one robot is under attack. Nevertheless,
with the reconfiguration strategy, the system can achieve the
formation when attacks have been deployed on the system.
Thus, we conclude that graph topology does not affect the
reconfiguration strategy capacity to mitigate attack effects.

As expected, a stealthy attack cannot be detected by
the implemented monitor and the CUSUM statistic remains
below the threshold. The simulation of multiple scenarios
shows that the stealthy attack can produce an important
deviation compared to the non-attack scenario. However,
when the reconfiguration strategy is implemented, the aver-
age, together with the maximum and minimum KPI is near
one (i.e., near to the performance of the non-attack sce-
nario). A similar result is obtained when the stealthy attack
is deployed in the physical system. This shows that the
strategy can mitigate a powerful attacker that modifies an
attack to remain undetected, both in simulations and empiri-
cal experiments.

Remember that the parameter ν is selected greater than
the residues mean to prevent false alarms produced by
the CUSUM unboundedness. However, if the difference
between the residues mean and the parameter ν is too large,
the CUSUM would slowly increase and the time spent to
detect an attackwould also increase.Moreover, small changes
in the residues distribution produced by some attacks would
not change the CUSUM statistic, which could remain near
zero. Therefore, changes in the parameter ν change the
classifier sensitivity. When the parameter ν is incremented,
the detector becomes less sensible to attacks. As a conse-
quence, the system disturbance could becomemore notorious
or the reconfiguration could not be properly made because
the controller would be computed with the average between
the not attacked and attacked sensors. Thus, the estimated

output will be close to the actual output if the number of not
attacked sensors is larger than the attacked ones. Similarly,
if the parameter τ is increased, some attacks could become
undetectable or the time to detect could increase. However,
when the threshold decreases, the number of false alarms
could increase and, as a consequence, sensors could remain
unused even if there are no attacks.

The simulation and implementation results show that the
strategy can reduce attack effects on the system. Those attacks
can have similar characteristics to a fault. Additionally,
the strategy can identify the attacked sensor. However, it can-
not differentiate between attacks on the sensors or actuators.
Therefore, as the strategy only takes actions on the sensors,
an attack (or fault) on agent actuators cannot be mitigated.
Nevertheless, an alarm would be raised for all sensors and
the attack would be detected. In that scenario, as there is not
enough information to determine the attack, the trust value
is calculated as the average among sensors. The same action
would be taken if all sensors are attacked.

Although the simulation and implementation results are
similar, there are some differences. Such differences may be
explained by three main reasons. First, in the experimen-
tal setup, the attacks could be deployed in different time
instants by some fraction of seconds. Second, in simula-
tion, both sensors are assumed to be equal in the absence
of attacks. However, in the implementation there is an error
between measurements obtained from the camera and odom-
etry. Third, the actuator dynamics have not been considered
in the simulation. This results in a simpler strategy that
requires less physical parameters (e.g., motor inductances and
resistances), and less mathematical operations to monitor the
sensors because there are fewer state variables to estimate.
Nonetheless, the proposed strategy has shown to decrease the
effects of attacks applied to real robots using a simplified
model.

Finally, we have implemented the strategy in a six-robot
system, but it is important to clarify that the strategy can be
implemented in systems with more robots. Note that the strat-
egy only uses local information to detect attacks. That is, each
robot only uses the information of its sensors to determine the
trust value, and the information from its neighbors to compute
the control action. Therefore, the addition of more agents to
the formation will not translate into a higher computational
overhead to every agent.

VI. CONCLUSION
A model-based detection and reconfiguration strategy has
been implemented to mitigate attack effects on a multiple
robot system. The detection has been performed with an
extended Kalman filter and the non-parametric cumulative
sum. Measurements of the physical variables from redundant
sensors in each robot are dynamically integrated using a con-
vex combination to increase system resilience. The strategy
has been simulated and implemented in a formation of six
robots with one leader, using two different communication
graphs. Attacks with different characteristics on the leader
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robot and multiple robots have been deployed: one attack
similar to a fault, a softer bias attack, and a stealthy attack.
We have shown that the strategy can mitigate even intelligent
attacks, with different initial conditions and communication
topologies.

One of the redundant sensors, the camera, is not scalable
and it is not available in many real scenarios. Therefore,
the strategy could be tested with a different sensor as a global
positioning system (GPS). On multi-agent systems, the com-
munication links between the agents could be subject of
attacks. In that scenario, the information shared by each agent
can be modified and system safety would be compromised. In
the future, we would like to address such problem. A strategy
to mitigate those attacks may be integrated with the strategy
presented in this work.
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