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Abstract— One of the most significant difficulty in Wireless 
Sensors Network (WSN) is the development of  an effective 
topology control method that can support the quality of the  
network, respect the limited memory and at the same time 
increase the lifetime of the network. This paper introduces a new 
approach by mixing a non-cooperative Game Theory technique 
with a decentralized clustering algorithm to address the problem 
of maximizing the network lifetime. More precisely, this 
approach uses Game Theory techniques to control the activities 
of a sensor node and its neighbors to limit the number of the 
forwarding messages and to maximize the lifetime of the sensor's 
battery. In other words, the approach will decrease the energy 
consumed by the WSN by decreasing the number of forwarded 
packets and improve the network lifetime by harvesting energy 
from the environment. The simulations results show that the 
performances in terms of energy saving and increasing the 
number of data packets received by base station outperforms 
those with distributed based clustering algorithms without GT, 
such as low energy and location based clustering LELC and 
LEACH algorithms. 

Keywords—WSN; sensor lifetime; energy harvesting; 
clustering protocols; game theory; equilibrium  

1. INTRODUCTION 

The WSN has required an important attentiveness in these 
years. It is implicated widely in different domains, such as 
health care, ecosystem monitoring, environmental assessing, 
target tracking, maintaining control, and urban areas 
applications [1] [2] [3]. The major activities of a sensor node 
are capturing the data information in its urban environment, 
aggregate it and forward it to reach the sink using routing 
protocols. Moreover, the finite batteries capacity implies a 
limited lifetime of the sensor nodes and their applications. For 
this problem, several solution techniques have been proposed 
to prolong the network lifetime. Some of these solutions are 
based on topology control, routing protocols, data aggregation, 
forecasting approaches and others [4] [5] [6] [7] [8]. The main 
tasks of our study is to extend the network lifetime by 
decreasing the wasted energy during the sensor node activities, 
and compensate the loss of energy by harvesting 
environmental energy in the sleeping mode. Our proposed 
method is based on a non-cooperative MGET in a clustering 

hierarchical structure. This approach is divided in two phases. 
The first one consists to select dynamically the clusters and 
their clusters heads based on sensors energy and location [9]. 
In the second phase, the sensor node aggregates the sensing 
messages by a compression method to save sensor’s energy 
and memory and decided to stay out of the communication to 
charge its battery in the sleeping mode or to enter the market 
game and send the message to its neighbors. The suitable 
decision of the sensor node depends on the probability 
obtained by maximizing its utility. 

In this paper, the rest main contributions are structured as 
follows: 

Section � presents the categories of clustering protocols. In 
addition, it shows the different types of the GTs, their 
applications in WSN and the GT principle. In section �, we 
explain the energy consumed by the different activities of an 
arbitrary sensor node and the model of sensor’s rechargeable 
battery. In section �, we adapt a non-cooperative game theory 
in a decentralized clustering protocol to prolong the WSN 
lifetime, decrease the wasted energy in the network and 
increase the number of data information arrived to the BS. The 
simulation results are presented and investigated in �. Finally, 
we conclude the paper in section �. 

2. Related work 

2.1. Clustering 

Clustering protocols are one of the effective techniques 
of broadcasting for organizing the network and improving its 
lifetime and . Election of cluster heads (CHs) play a 
significant role in energy consumption management [10]. 
Clustering protocols can be categorized in two classes: 
Centralized [11] and distributed clustering algorithms [12]. 

2.1.1. Centralized clustering 

In centralized clustering, the BS is the organizer to form 
clusters. At the start of each round, sensors nodes have to 
transmit their location information and energy status to the 
BS. The BS will collect all information from all the sensors 
nodes in the network, select Cluster Heads (CH), and form 
clusters. This type of clustering is not a very suitable way to 
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wide. 

For example, BCDCP (Base-Station Controlled Dynamic 
Clustering Protocol) is a centralized clustering protocol with a 
unique BS that is capable of complex computation, the CHs 
are selected by the BS randomly and all the routes and paths 
for transmission and reception of data information are selected 
by the BS [13]. Each node needs to transmit data messages 
regarding its location and residual energy to the BS during the 
formation of clusters. Therefore, BCDCP increases the design 
complexity and the energy consumption of the nodes in the 
large-range networks. BCSP (Base station Centralized Simple 
Clustering Protocol) is a protocol where in the BS does not 
collect any information about location of the sensor nods but 
utilizes information about remaining energy of each sensor 
node and the number of CHs depending on the circumstance 
of the sensor network [14]. Each node should send its current 
energy information along with the sensing information, 
increasing the overhead. The drawback of this protocol is that 
due to its centralized implementation, it is not so appropriate 
for sensor networks with a large number of nodes. In addition, 
without any location information, BCSP cannot guarantee a 
uniform distribution of CHs nodes and their clusters. 

2.1.2. Distributed clustering 

Distributed clustering techniques eliminate the need of a 
centralized station to create CHs and clusters. The low energy 
and hierarchical structure models are generally used to create 
clusters and select CHs in two levels. At the first level, there is 
a selection of CHs and at the second level, the data messages 
are transferred by sensor nodes to BS via CHs. BS just 
receives messages and does not control the creation of 
clusters. EEMDC (Energy Efficient Multi level and Distance 
aware Clustering) is that extends the WSN lifetime while 
providing more stability and reliability to the network [15]. 
This routing protocol splits the network area into three logical 
layers. After the partition of the network area, the hotspot 
problem is fixed, the distance between the nodes and the CH 
and between the CH and the BS are taken into account when 
considering the hop-count value of the nodes. In addition, CHs 
are elected by acquiring the average leftover energy of the 
nodes, and the data messages are delivered to the BS using the 
shortest distance path to the BS. ICCBP (Inter Cluster Chain 
Based Protocol) is a new clustering algorithm that uses multi-
hop and intra-cluster communication with updating CHs when 
the existing CHs dissipate their energy [16]. In [17], a new 
structure to construct clusters and establish connections 
between sensors is proposed. In this protocol, the distance 
between CHs depends on a threshold calculated by the signal 
message transmission to insure the connections between 
clusters. In addition, this protocol creates a virtual wireless 
sensor networks. LEACH (Low-Energy Adaptive Clustering 
Hierarchy) protocol is one of the most popular decentralized 
clustering protocol based on the homogeneous WSNs [18]. 
LEACH is a dynamic clustering method that update clusters 
and head clusters (CH) each round. Each round starts with a 
setup phase and finishes with steady state. In the setup phase, 
it rotates the CHs role among all sensor nodes to expend 
energy uniformly. Each sensor will pick a random number 
between 0 and 1. If this number is less than a threshold, 

����	that will be defined, the sensor node becomes a CH for 
the current round. The threshold is set as follows:  

���� = �			 �1 − � �� × ��� 1�� 				���	�	Є	�																			0																				��ℎ������###																																																 	#�1�  

where � is the cluster head probability in the network, �	is the 
current round of election and �	is the set of nodes that were 
not cluster head in the last round. In this paper, we use the 
clustering approach based on LEACH protocol with strategy 
based on location and residual energy of a sensor node to 
select the CHs [19]. 

2.2. Game Theory 

The Game Theory (GT) is extensively applied in 
economics to maximize the outcomes by using the 
mathematical models such as the strategic game theory for the 
differential information economy which players suggest net 
trades and prices [20]. In the recent years, GT is increasingly 
applied in WSN for different objectives, such as 
communication security, energy efficiency, control power 
transmission, data collection and pursuit evasion [21] [22] 
[23]. In this section, we review the GT used to enhance the 
energy conservation and extend the network lifetime. The GT 
can be classified in two top main categories: cooperative and 
non-cooperative games. 

 
2.2.1. Cooperative Game Theory based approach 

To decrease the energy consumed in the network, some 
sensor nodes cooperate to form coalitions. The coalitional 
game is considered as one of the most significant type of 
cooperative game theory. In [24], a power control game 
theoretic model is proposed to optimize the trade-off between 
energy consumption, and data packets transmission 
performance. It takes in consideration the individual utility of 
each sensor player. A novel approach is proposed in [25] to 
identify the overlapping community form in social networks. 
This approach is based on the shapely values mechanism. It 
activates with a weight function to find the stable coalitions of 
underlying community form of the network. The shapely 
values and the weight function are updated by the community 
detection algorithm using the local information. Another type 
of cooperative game is the bargaining game theory. To achieve 
the two opposite objectives, which are prolonging the WSN 
lifetime and maintaining the quality of the sensors activities in 
parallel, a Kalai-Smordinsky Bargaining Solution is used to 
find the best distribution among coalition members in [26].  

2.2.2. Non-Cooperative Game Theory based 
approach 

For the non-cooperative game theory, sensor nodes react 
selfishly to preserve their residual energy by refusing to receipt 
a data information and forward it in multi-hop network. The 
optimal responses for energy efficient non-cooperative game 
theoretic are obtained when each sensor player improves its 
strategy to maximize its utility, given the strategies of other 
sensors players. In [27], a non-cooperative game theory model 
is proposed to control the transmit power levels and the Nash 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPTEquilibrium solution exists and attained according to the 
channel condition and power level. In addition, a non-
cooperative game theory is used in the election of the CHs for 
the clustering model in [28]. In this game model, the sensor 
node decides to declare itself as a CH or not by calculating the 
optimal probability in the mixed strategy that depends on the 
maximizing of its payoff.  

In addition to the non-cooperative and cooperative game 
theories, the repeated game theory is involved with a class of 
active games, in which a game is played for several times and 
the players have the ability to spot the result of the preceding 
game before attending the upcoming repetition [29]. In [30], a 
control scheme based on reinforcement learning and game 
theory is proposed as a routing game model to provide a 
packet-forwarding mechanism for underwater wireless sensors 
network and reduces the energy consumption.  

In this paper, we propose a non-cooperative repeated game 
theory. Mostly, a game theory consists of a set of players, a set 
of strategies for each player and a set of corresponding utility 
functions. For a WSN, the sensors are the players, G is a 
particular game, where N	 = 	 {S�1�, S�2�, . . . , S�P�}	is a finite 
set of the sensor nodes. X = {x�1�, x�2�, . . . , x�P�}	is the vector 
representation of the strategies taken by the sensors. U	 =	{U�x�1�, U�x�2�, . . . , U�x�P�}	is the corresponding utility 
function of node j represented by Uj, Uj	�j	 = 	1, 2, . . . , P�, 
corresponds to the utility value of each node. This value is 
obtained at the end of the decision taken by the sensor node *�j�. A strategy for a player is a whole organization of 
decisions in all possible states in the game. The players; 
sensors effort to act selfishly to maximize their consequences 
agreeing to their preferences. We have to formulate the utility 
functions in a way that will help node *�j� to select a strategy 
that characterizes the best response to its strategies. Every 
different mixture of individual decisions of strategies can 
produce a different strategy profile. For a non-cooperative 
repeated game theory, the solution concept involving N players 
is obtained when each player has made the best response 
against the others players decision of probabilities. This 
solution is named mixed strategy Nash Equilibrium.  

3. ENERGY MODEL 

3.1. Energy consumption model for a sensor 

The energy cost for a sensor depends on the energy 
consumed to achieve its activities. In this section, we present 
the different factors that play a main role in the consumption of 
energy. To determinate the residual energy of a node, it is 
required to find the total energy consumption of a node in the 
operating of one data packet information. The notations utilized 
for the factors causing energy consumption by a sensor node 
are described in Table 1. 

Table 1: Notations definition  
Notations Definition � Number of sensor nodes in the network *+	  Sensor node where � = {1, 2, … , �} -.	 Sensing energy cost  -/	 Processing energy cost -0	 Transmitting energy cost 

-1	 Receiving energy cost -.2+3456178+9	 Switching state energy cost in the radio -.2+3456:;<	 Switching mode energy cost in the 
MicroController Unit (MCU) =84	 Voltage supply > Total energy consumption ?�*+	� Number of bits information 

 

• Sensing energy consumption  

The sensing energy cost depends on the type of sensors. For 
example, the temperature sensors consumed less important 
energy than gas sensors. The sensor node can contain diverse 
sensors, and each one has its individual energy consumption 
attributes. Generally, the sensing energy consumption for a *+	can be expressed as follows: -.	 = ?�*+	� × =84	 × @�*+	� × ��*+	�#�2�  

where		@�*+	� is the needed amount of current,  and ��*+	� is the 
duration to detect and collect ?�*+	� bits data information. 

• Processing energy consumption  

The sensor consumes energy to read the data message and 
to write it in its memory. The processing energy consumption 
could be calculated by [31]: 

-/	 = ?�*+	� × =84	8 × �@BC+3D × �BC+3D + @1D78 × �1D78�#�3�  

where @BC+3D and @1D78 	are the necessary amount current to 
write and read one byte data.  �BC+3D and �1D78  are the 
necessary duration to treat the ?�*+	� data information. 

• Communicating energy consumption  

The energy consumed to transmit and receive ?�*+	�	is 
computed following the first-order wireless communication 
model for the radio hardware illustrated in fig.1 [32]. 

 

 

 
Figure 1. First order radio energy model 

 
Transmitter expends energy to run the radio electronics and the 
power amplifier. The necessary energy required to transmit 	?�*+	� bits data message is: 

-0G = H ?�*+	� 	× -DID4 + ?�*+	� 	× -JK × �L											�ℎ��	� < �N?�*+	� 	× -DID4 + ?�*+	� 	× -OP × �Q										�ℎ��	� > �N	 # 

�4� 

?�*+� × -DID4	

-0���	

-1���	
?�*+� × -DID4	 d	
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receive 1 bit messag, the constants -JK 	and -OP 	depend on the 
transmitter amplifier model.  -JK is for the free space model, -OP is for multipath model, � is the transmitter receiver 
distance and �N	is a threshold distance calculated as follows: 

�N = U	-JK -OP	V 		#�5�  

And the energy consumed by the radio to receive	?�*+	�  bits 
data information is defined by:            -1G = 	?�*+	� × -DID4 	#�6�  

• Switching Radio sensor state energy consumption  

The sensor dissipates a significant amount of energy to 
change from a state (i.e., sensing, processing, transmitting and 
receiving) � to another Y. For the switching states in the radio, 
the wasted energy can be determined as: 

-.2+3456178+9	 = =84	2 × �@K3Z − @K3G� × �K3G,Z 																					�7� 
where @K3Z is the current draw of the radio in the state switched 

to, and @K3Gis the current draw of the radio in the current state 
and �K3G,Z is the necessary time for the radio to switch from state � to Y. 
• Switching the microcontroller (MCU) mode energy 

consumption  

The sensor wastes energy by switching between the MCU 
modes. In this paper, we just take in consideration the active 
mode and the sleeoing mode. This wasted energy is negligible 
compared to switching radio energy consumption. The energy 
cost for the computational MCU mode can be expressed as: -.2+3456:;<	 = =84	 × \@]43+^D × �]43+^D + @.IDDP × �.IDDP_#�8� 

The total energy consumed by each sensor > is defined as 
follows: > = -.	 + -/	 + -0G + -1G + -.2+3456178+9	 + -.2+3456:;<		#�9� 

 

3.2. Rechargeable battery model  

The applications of the sensor node are limited by the 
availability of the power stored in its battery. If the sensor 
node expends all its energy, it is considered as dead. 
Moreover, it disturbs the dispatching of the information data 
to reach the sink. In view of the fact that the replacing of the 
sensor’s battery by a new one and the redeployment of the 
sensors are very costly, it is not appropriate to change the 
sensor’s battery. To overcome these problems, the sensors 
nodes can use energy harvesting supplies to recharge their 
batteries. However, the utilization of renewable energy 
depends on the network environmental conditions as solar, 
wind, hydrogen, and hybrid sources [33]. In this article, we 
considered that the sensor’s battery can be recharged from the 
environment (see Fig.2). 

 

 

Figure 2. Energy harvesting for WSN model 

4. THE PROPOSED APPROACH: GAME THEORY WITHIN 

CLUSTERING ALGORITHM FOR WSN 

 The distributed clustering algorithm uses round as unit, 
each round is made up of set-up phase and steady phase for the 
purpose of reducing unnecessary energy costs. Set-up phase is 
for the building of the clusters and the election of the CHs and 
steady phase is for the sensor’s states (see Fig.3). 

 

 

Figure 3. Set-up and steady phases 

4.1. Set-up phase 

It concerns the formation of the clusters and their heads 
for each round using sensor location and individual energy 
consumption [19]. Two CHs cannot be in the same cluster. For 
this reason, the distance between CHs should be bigger than a 
threshold distance. The remaining energy level in each sensor 
node plays an important role in increasing the lifetime of the 
network. CHs can ensure the link between sensors and the 
Base Station (BS). For a round, if a CHs is dead, the 
communications between the sensor nodes in its cluster and 
the BS are interrupted and no data information from this 
cluster can reach the BS. A sensor node that has a residual 
energy bigger than a threshold energy could become a CH for 
the actual round. 
 -�*+	� > a9P3 × -39.+bc 	#�10�  
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where 	a9P3 = ���O7d − ��e��O7d × \-39.+bcf-N�*+	�_�	#�11�  

                                                                                                                  
where -�*�	� is the residual energy of the sensor *+		, -39.+bc	is 
the necessary energy for a sensor to transmit a data 
information to the BS, a9P3 is the maximum number of data 

messages that the sensor *+		can send to the BS, �O7d is the 
maximum number of rounds (that corresponds to the network 
lifetime) and � is the actual round. 
The proposed set-up phase is illustrated by a flowchart scheme 
in Fig.4. 
For each round, the selection of the CHs is based on the 
location and residual energy and each non-CH sensor decides 
to belong the cluster that corresponds to the minimum distance 
between its location and the CH location. Each cluster has its 
unique CH that can be updated after each round epochs. 
 

4.2. Steady phase 

 It corresponds to the data processing, transmitting and 
receiving between the sensors in the same cluster. This phase is 
divided in two stages: Data information aggregation and entry 
market game theory for the communication between neighbors’ 
nodes in the same cluster. 

• Data information aggregation 

To save the maximum amount of energy consuming during 
sensors communications and to increase the limited available 
space in the memory, the data messages are compressed 
before their registration in the sensor’s memory.  

If we compress a message of ?�*+� bits to a message of	?�*+�/h, the saving energy obtained by compressing the data 
information can be expressed as follows: 
 -K7^+biG = j1 − 1 h⁄ l. j-/ + -0 + -1l − -49OPCDKK 	#�12�  
 
where -;9OPCDKK is the energy cost to compress ?�*+� bits data 
packet message. 
 
 
 

 

Figure 4. Flowchart for the set-up phase 
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At this stage, we propose a non-cooperative game theory 
based algorithm to control the energy consumed by the 
sensors in the network. This algorithm is called the Profitable 
Energy Market Game (PEMG) wherein each player has to 
decide if he wants to participate or to stay out of the market at 
each round. The market defines trading rules according to a 
strategy. In this work, the strategy has two actions: to enter 
the game or to stay out the game. Each player (i.e. sensor) 
calculates a payoff that can affect or be affected by the 
payoffs of other players (i.e. its neighbors). The payoff is a 
function of the sensor’s residual energy. More precisely, the 
payoffs depend on the players’ strategies that stay in the 
sleeping mode to charge their batteries or enter the game to 
transmit the sensing data messages. 

 
In what follows, a PEMG is deployed within each cluster. The 
players in each cluster �	are  *+�Y� where Y = {1,2⋯	n+} is the 
current number of sensors in the cluster for the round	�, �+�o� 
denotes the number of messages sent by a given player *+�o�, pq is the number of *+�Y� neighbors and r+�Y� is the individual 
utility function that will be presented later. 
 
The player *+�Y� can take one of two decisions denoted by s+�Y� set to 0 or 1: Entering the game with s+�Y� = 1 and 
participate by sending messages or staying out of the game and 
harvesting energy to charge its battery with s+�Y� = 0. The 
sensor’s decisions can be expressed as follows: 
 s+�Y� = t	1, 					*+�Y�	������	�ℎ�	uh��0, 					*+�Y�	��hv�	�w�	�ℎ�	uh�� #�13�  

  
In this paper, our game model in each cluster is defined by:  
 �+ = xn+ , pq , y+�Y�qz{G , r+�Y�qz{G|	#�14�  
 
The utility function for a sensor node depends on the cost of 
the strategy decision taken and it can be expressed by:  
 

r+\s+�Y�_ = }u+�Y� − >+�Y�, i�	s+�Y� = 0	and	∃	s+�o� = 1	u+�Y� + �+�Y�, ��	s+�Y� = 0	for	all	j ∈ 	pq0, i�	s+�Y� = 1  

�15� 
where � ≠ Y , the cost function >+�Y� is the total energy 
consumed by *+�Y� to send a message, the gain function u+�Y� 
is its residual energy and �+�Y� is the energy harvested to 
recharge the sensor’s battery. 

When a sensor player Y selects the action to enter the game to 
transmit messages and its neighbors sensors not then the utility 
is u+�Y� − >+�Y�. The utility is u+�Y� + �+�Y�,	 if the sensor 
player Ydecides not to enter the game to harvest and charge its 
battery and that, one of its neighbors enters the game. 

In our proposed non-cooperative market entry game, the best 
response dynamics for the sensors players can be acquired in 
the context that each sensor node updates its strategy in order 

to maximize its utility, given the strategy of its neighbors (i.e., 
a mixed strategy). 

To determine a mixed strategy equilibrium, we need to 
consider the expected utility of each player.  If a randomly 
node j in the cluster � enters the market with a probability	�+�Y�, 
the expected utility of the node Y can be expressed as follows: -�r+\s+�Y�_� = 	�+�Y� × \u+�Y� − >+�Y�_ + \1 − 	�+�Y�_ 
																																	× \u+�Y� + �+�Y�_ × �1 −�\1 − 	�+�o�_:Z

c�q � 

(16) 

It should be noted this expected utility of node Y reaches its 
maximum when the battery of the sensor is full (i.e., the 
residual energy u+�Y�is at its maximum) and the energy 
consumption >+�Y� is 0. 

The Figure fig.5 shows the variation of the expected utility 
function for a given sensor Y,  with the variation of the number 
of neighbors between 1 and 30 and the variation of the 
probability to enter the game, e.g., 	�+�Y� is between 0.1 and 1. 
We consider that the neighbors have the same probability to 
enter the game	�+�o� = 0.3,	o ≠ Y. Assuming in the simulation 
that the maximum energy capacity available is 0.5 j, the result 
shown in fig.5 shows that the expected utility function has a 
maximum which is the maximum energy in the sensor’s 
battery. 

 

 
Figure 5. The expected utility function varies with the number of 
nodes neighbors and the probability 	�+�Y� and has a maximum that 
corresponds to the maximum battery capacity. 

Since the best response for a sensor node is when its utility 
reaches its maximum, we derive the expected utility function 
and the derivation is obtained by: 
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×�\1 − 	�+�o�_	:Z

c�q #
 

�17� 
Setting the derivation to zero, we get the maximum as follows: 
 �>+�Y� + �+�Y��\u+�Y� + �+�Y�_ = �\1 − 	�+�o�_##	##	

:Z
c�q  

�18� 
Letting �+�Y� = �;G�q��JG�q��\iG�q��JG�q�_) and �+�o� = \1 − 	�+�o�_, we 

obtain a system of pq equations from eq. 18 
 that can be written as: 

���
�� �+�1� = �+�2� × �+�3� × …× �+\pq_�+�2� = �+�1� × �+�3� × …× �+\pq_⋮																					�+\pq − 1_ = �+�1� × …× �+\pq − 2_ × �+\pq_																				�+\pq_ = �+�1� × …× �+\pq − 2_ × �+\pq − 1_

###
# 

�19� 
which can be rewritten as: 

��\�+�o�_:Z
q�� �:Z6� = �\�+�Y�_:Z

q�� #�20�  

 
since �+�o� = \1 − 	�+�o�_, the eq. 20 becomes : 

��\1 − �+�o�_:Z
q�� �:Z6� = �\�+�Y�_:Z

q�� #�21�  

 
The optimal probability for a given sensor node	Y in the cluster � to enter the market game can be then expressed as follows: 

	�+�Y� = 1 − �∏ \�+�o�_:Zc���Z��
�+�Y� #�22�  

The maximum utility for a sensor player depends on its 
strategy and also on the combination decisions of all other 
neighbors players. 

The utility matrix for sensor player *+�Y� is shown in Table 2. 
For the calculation of the utility matrix for each cluster game, 
the resulting utility coming from the combination of the 
actions taken by the players (to enter the market game or not 
to enter the market game) are taken into consideration as 
indicated by eq.15. If a node player Y in the cluster � enters the 
market, its utility will be \u+�Y� − >+�Y�_	regardless of the 
action of its neighbors in this cluster. If none of the nodes in 
the same cluster enters the market, this means that all the 
nodes Y and their neighbors’ nodes are out of energy and 

cannot find any available energy sources to harvest and charge 
their batteries. For this reason, these sensors receive a payoff 
equal to	0. It is assumed that \>+�Y� < u+�Y�_, so that at least a 
node would enter the market if no other sensor node does. 
However, if one node enters the market, then each of its 
neighbors would prefer to be selfish and would maximize its 
residual energy by charging its battery. 
 
 

Table 2: Symmetric entering market game matrix 
 

 All *+�o� do not 
enter the market 

At least one 
enters the market *+�Y� enters the 

market 
u+�Y� − >+�Y� u+�Y� − >+�Y� 

*+�Y� doesn’t 
enter the market 

0 u+�Y� + �+�Y� 
 
Let y = {s+�1�, … s+\pq_} be the vector representation of the 
strategies played by the sensors. 
The utility matrix for *+�Y� can be written as follows: 
 r+�Y� = �\u+�Y� − >+�Y�_ \u+�Y� − >+�Y�_0 \u+�Y� + �+�Y�_  #�23�  

 
In a symmetrical market game, the strategy that a sensor player 
and its neighbors decide to enter the game market, i.e., y = {1…1}, or the strategy that a sensor player and its 
neighbors decide to charge their battery in the sleeping mode, 
i.e.,  y = {0…0},  are not Nash equilibria. Indeed, it is 
impossible for each node to find out a best response to the 
strategy decisions. Namely, no pure-strategy Nash Equilibrium 
exists in our game. However, to permit the entry market game 
to have symmetrical Nash equilibria, the players can adopt 
mixed strategies. For any node, as \u+�Y� − >+�Y�_ > 0, the 
sensors players do not have a dominant strategy. We assumed 
that each sensor player is allowed to choose its strategy 
decisions randomly following a probability distribution. In 
other words, there are pq mixed strategies Nash equilibria in 
the game and the best responses are obtained when the utility 
of a node Y to enter the market is equal to the utility of the node Y to stay out of the market and thus we can compute the 
equilibrium probability from the table 2 by: r+�s+�Y� = 0� = r+�s+�Y� = 1�#�24�  

 \u+�Y� − >+�Y�_ × � = �u+�Y� + �+�Y�� × \1 − �1 − ��:Z6�_	#�25�#  

Therefore, from the above eq. 25, we can calculate the 
equilibrium probability �¡  to enter the game for a pq Nash 
equilibrium with a mixed strategies as follows: 

�¡G�Y� = 1 − ¢1 − \u+�Y� − >+�Y�_\u+�Y� + �+�Y�_£
�:Z6� #�26�  
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since we have 0 < �u��Y�−>��Y���u��Y�+���Y�� < 1. Subsequently, from the 

eq. 26, we can notice that the probability decreases when 
the number of neighbors players increases. For example, in 
the limiting cases, while �pq − 1� is varying from 1 to 
infinity, the probability of entering the market game will be 
changing from 1 to 0. 

 

 

Figure 6. Entering game probability varies with the number of 
nodes neighbors for a Nash Equilibrium mixed strategies 

Fig. 6 depicts the entering game probability that is given in Eq. 
26 with increasing number of neighbors of the source, from 1 
to 30, for different values of actual energy in the battery u+�Y�. 
When the number of neighbors decreases (from 30 to 1) when 
some neighbors nodes dead, the forwarding entering game 
increases. 

5. SIMULATION RESULTS 

 For our experiments, we used 200 sensor nodes in our 
network, where nodes are randomly distributed in 1000x1000 
m2 area. The BS is deployed at the center of the area. For the 
simulations, a sensor node considers another sensor as a 
neighbor if the distance that separate them is lower than a 
threshold D. This threshold D is the maximum radius with 
which a sensor can receive a fixed number of bits for a fixed 
power transmission. 

Table 3: Simulation parameters 
Parameter value 

Network area (m2) 100×100 

BS location (50, 50) 

Number of sensor nodes � 200 

Initial energy (J) -N 0.5 -DID4 (nJ/bit) 50 

parameters of amplifier energy  
consumption	-��	(pJ/bit/m4) 
and	-�� (pJ/bit/m2) 

0.0013  
and 10 

Data aggregation energy (J) 5×10-12 

Parameter value 

Size of data packet (bits) ¤ 4000 

Number of bits transmitted by sensor 
(bits) L 

2500 

Compression percentage (%) 20 

Round epochs �O7d 5000, 10000 

Proper percentage of CH nodes (%) � 
5 

Distance (m) ¥ 10 

In Fig.7, we compare the energy consumed by the network for 
7000 rounds by comparing our proposed approach with other 
protocols from the literature: the LEACH clustering protocol 
[18] and a clustering based protocol [19]. The results show 
that these Leach protocol consumes all its energy after 2000 
rounds. An improved version of Leach via a low energy and 
location based clustering approach (LELC) presented in [19] 
stills have energy for 5000 rounds. Fig.7 shows also the results 
of the two versions of the proposed PEMG with Game Theory 
(GT), Popt GT and Pnash GT, according respectively to Eq.22 
(optimal probability) and Eq.26 (Nash equilibrium 
probability). The either PEMG versions extend the lifetime of 
the network beyond 7000 rounds. The results show also that 
Popt GT consumes less energy than the PEMG with Nash 
probability Pnash GT. 

 
Figure 7. Energy Consumption by the network 

The figure fig.8 shows the evolution of number of dead 
sensors. For Leach clustering protocol, the majority of sensor 
nodes are died before 2000 rounds of time. At the same time, 
with LELC clustering protocol, the number of dead sensors is 
less than the half of the number of dead sensor nodes in Leach 
protocol. Moreover, when the WSN is dead, after 5000 
rounds, the number of dead nodes is 120. It stills less than the 
dead nodes in Leach protocol after 2000 rounds. 
In the case of Pnash GT, the number of dead nodes is the half 
of the total number after 7000 rounds (i.e., 50%), while in the 
case of Popt GT and LELC without GT, 60% of the initial 
number of sensors are dead. This is mainly because of our GT 
based protocols provide the harvesting option to the sensors. 
Moreover, with Popt GT, the strategy taken by a sensor 
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messages, i.e., maximizing the strategy of communicating 
messages via Popt maximization. However, for Pnash GT, all 
the strategies taken by the sensor are equally probable. 
 

 
Figure 8. Dead Nodes in the network 

The simulation results reported in Fig.9 show that the number 
of packets received by the BS for PEMGT with Pnash in our 
clustering protocol is more important than all the other 
approaches and that the network is still active after 7000 
rounds. However, in the case of clustering without any GT, the 
network lifetime is limited to 5000 rounds.  In addition, the 
small difference in energy consumed by the network between 
Pnash and Popt in PEMGT is justified by the number of 
packets information that reach the BS and the extension of the 
network lifetime. 

 

 
Figure 9. Number of Data Packets received by the BS. With Pnash 

GT, the network is still active as the packets continue to be received 
by BS beyond the other protocols. 

6. CONCLUSION 

In this paper, a clustering based protocol using a non-
cooperative game theory (GT) approach is proposed with the 
aims to prolong WSN lifetime. The GT permits to a sensor to 
decide between two actions: to enter the game and transmit a 
message or to stay out the game and harvest to charge its 
battery. For the network organization, a clustering protocol 
based on sensors locations and energy consumptions is used 
and a GT based algorithm is deployed within each cluster. The 
objective is to find out the Nash Equilibrium (NE) solution for 
mixed strategies. The simulation results show that the 
proposed approaches outperforms those without GT in terms 
of energy consumption, nodes and network lifetimes. In other 
words, combining a GT based approach with a clustering 
protocol provides an efficient solution for energy harvesting to 
prolong WSNs lifetime. The future work will focus on the 
control of the energy harvesting process in the sensors. 
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