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Abstract—Smart grid infrastructures enable consumers with
technologies such as electric vehicle and energy storage to
participate in electric regulation services. Usually with such
technologies, the implementation of large-scale regulation services
confronts high interruption cost, uncertainties in availability,
and batteries’ degradation cost. This motivates us to explore
an alternative solution by participating energy hubs with energy
conversion technologies to adjust the conversion of natural gas
into electricity if the electric grid calls for demand shaping
and regulation services. To exploit the potential of energy hubs,
we propose an auction for their participation in regulation
services. The energy hubs’ interaction in the auction is modeled
as a non-cooperative game with coupling constraints. To study
the existence and uniqueness of the generalized Nash equilib-
rium (GNE) for such a game, we show that it admits a best
response potential function, whose global minimum corresponds
to the GNE. We also design a distributed algorithm to achieve
that equilibrium. Simulations are performed to illustrate the
convergence properties and scalability of the proposed algorithm.
Results show that if a participant becomes an energy hub, its
profit increases by 60% on average. The electric system operator
also benefits from 31% payment reduction to the participants.

Index Terms—Energy hub, regulation services, generalized
Nash equilibrium, potential game, distributed algorithm.

I. INTRODUCTION

Addressing unforeseen supply-demand imbalance at short
notice is of prominent importance to guarantee the stable
operation of power grids. This goal can be achieved through
procuring regulation services comprising a variety of control
actions to maintain the grid’s secure operation at the nomi-
nal frequency. Regulation services have conventionally been
provided by generation facilities with automatic generation
control (AGC) capability to adjust their output power. The
recent advancement in smart grid facilities has promoted effec-
tive regulation services by electricity consumers adjusting their
demand in response to an unexpected supply variation [1].

The evolving regulatory frameworks such as the recent
orders issued by the United States (U.S.) Federal Energy Reg-
ulatory Commission (FERC) have opened ancillary services
markets for new technologies [2]. This has motivated a recent
rich body of literature on the participation of electricity con-
sumers in regulation services programs. In [3]–[5], responsive
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thermal loads such as heating, ventilation, and air-conditioners
(HVACs) are suggested to be switched off when the frequency
drops. Nevertheless, the consumers often experience a high
interruption cost for curtailing their demand. To mitigate the
high interruption cost, the application of electric vehicles
(EVs) for regulation services has been studied by using
different techniques such as stochastic optimization [6], robust
control [7], game theory [8], and Markov decision process [9].
Using EVs, however, involves uncertainty in the arrival and
departure times. To avoid these uncertainties, energy storage
systems (ESSs) has been suggested for regulation services. To
do so, different techniques such as robust optimization [10],
convex optimization [11], and dynamic programming [12]
have been used. Nonetheless, ESSs have strict constraints for
their battery’s cycle life cost and capacity degradation.

The low energy efficiency of the fossil fueled power plants
have accelerated the proliferation of new high-efficiency en-
ergy conversion technologies such as combined heat and
power (CHP) units in energy hub [13]. CHPs in energy hubs
are equipped with micro turbine and gas furnace to convert
natural gas into electricity locally, enabling them to adjust
the conversion process of natural gas into electricity if the
electric grid is in need of demand shaping. In other words,
CHPs in energy hubs can decouple the electricity consumption
at the customer-side from the electrical power provided by
the power grid. Hence, an energy hub is able to change the
amount of purchased electric power without a major effect on
the customer side’s power consumption. This unique flexibility
can make energy hubs applicable source of regulation services
with high availability and low customers’ interruption cost.

A rich body of literature includuing [14]–[16] studied the
load management for an energy hub with CHPs to address the
operation scheduling problem in a demand response program
for power systems. These studies, however, cannot be directly
applied for regulation services as they did not mention how
the proposed approaches can be extended to a system with
multiple energy hubs. A main challenge in regulation services
is to cope with the demand shaping of multiple participants.
Several studies including [17]–[19] addressed the interaction
of multiple energy hubs for energy management in an energy
system to tackle the problem of steady state balancing the sup-
ply and demand. Nevertheless, addressing unforeseen supply-
demand imbalance needs a proper mechanism to incentivize
the participants for a near real-time demand shaping. The
recent work in [20] has studied the participation of energy hubs
in tertiary regulation services, where the reserves are traded for
capacity and energy. This is a long-run optimization problem,
which is formulated as a mixed-integer linear program.
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Despite a high potential of energy hubs for regulation
services, their participation would not be without challenges.
Specifically, system operators should motivate a fair competi-
tion through a well-designed regulation services mechanism.
This paper focuses on proposing a viable auction-based mech-
anism, where the energy hubs submit their bids to indicate
their amount of electric power variations in response to pricing
offers. The bidding decision of an energy hub affects the
clearing price, and thereby the profit of other participating
energy hubs. Reaching a stable equilibrium in the auction is
a challenge due to the coupling among the competing energy
hubs. The main contributions of this paper are as follows:
• Regulation Services Mechanism Design: We design a

framework specifically for the participation of energy
hubs in regulation services. Motivated by the application
of bidding mechanisms in wholesale markets [21], we
propose an auction-based regulation services mechanism
for energy hubs, in which each energy hub expresses its
willingness to provide regulation services by submitting
a bid. Based on all submitted bids as well as the power
network’s operating constraints, the auction clearing price
and the contribution of each energy hub are determined.

• Solution Concept: The energy hubs’ interaction in the
proposed auction-based regulation services is captured by
a non-cooperative game with coupling constraints. We
study the generalized Nash equilibrium (GNE) [22] of
such a game. We prove that the game is a best response
potential game [23] with a strictly convex potential func-
tion, whose global minimum coincides with the GNE.

• Distributed Algorithm Design: Characterizing the poten-
tial function enables us to develop an efficient algorithm
executed by the energy hubs in a distributed fashion. We
show that the proposed algorithm globally converges to
the GNE from any initial condition in the auction. The
convergence is guaranteed even with delay/interruption in
the communication network.

The rest of this paper is organized as follows. Section II
introduces the system model. In Section III, an auction-based
regulation services program is proposed. In Section IV, a
distributed algorithm is developed. Simulations are performed
in Section V, and the paper is concluded in Section VI.

II. SYSTEM MODEL

Consider an energy network shown in Fig. 1(a) comprises
a set N of N = |N | energy hubs, one electricity utility
company (EUC), and one natural gas utility company (GUC).
The energy hubs are scattered in a power network with a
set B of B = |B| buses and a set L ∈ B × B of power
transmission lines. An energy hub has multiple inputs and
outputs. The inputs correspond to the purchased energies
from the utility companies, and the outputs correspond to the
customer side. Fig. 1(b) depicts the schematic of an energy
hub that couples electricity and natural gas infrastructures to
provide the customer side with electricity and heating powers.

A. Energy Hub’s Operation Model
Consider energy hub n ∈ N . Ein

n and Gin
n denote the input

electricity and natural gas powers, respectively. Also, Eout
n

Fig. 1. (a) Energy market with N energy hubs, one electricity utility company,
and one gas utility company; (b) Schematic of an energy hub consisting of
transformer, gas furnace, and micro turbine as the energy conversion devices.

and Hout
n denote the output electricity and heating powers,

respectively. Denote the dispatch factor in energy hub n by
αn ∈ [0, 1]. It defines the dispatch of the natural gas input
to the micro turbine and the gas furnace [17]. The energy
conversion devices are transformer, gas furnace, and micro
turbine with efficiency parameters ηT,n, ηF,n, ηe

MT,n (electrical
efficiency of the micro turbine), and ηg

MT,n (thermal efficiency
of the micro turbine), respectively. The power conversion can
be expressed by the following matrix equation:[

Eout
n

Hout
n

]
=

[
ηT,n αn η

e
MT,n

0 ηF,n(1− αn) + αnη
g
MT,n

][
Ein

n

Gin
n

]
. (1)

Next we study the participation of energy hub n ∈ N in
the electrical regulation services program. Let ẑn denote the of
value an arbitrary variable zn for energy hub n after participat-
ing in the ancillary services program. Let ∆ein

n = En−Ên and
∆eout

n = Eout
n − Êout

n denote the reduction in the input electric
power and the customer side’s electric demand in energy hub
n ∈ N , respectively. Energy hub n may change its input
natural gas by ∆gin

n = Gin
n − Ĝin

n and the dispatch factor by
∆αn = αn − α̂n. We make the following assumption:

Assumption 1: In the electricity regulation services program,
the customer side’s heating power consumption will not be
interrupted, i.e., ∆Hout

n = 0, n ∈ N .
Considering Assumption 1 and using (1), we can express

∆eout
n and ∆gin

n as follows:

∆eout
n = ηT,n∆ein

n + ηe
MT,n

(
αnG

in
n − α̂nĜ

in
n

)
, (2a)

∆gin
n =

(ηF,n − ηg
MT,n)

ηF,n

(
αnG

in
n − α̂nĜ

in
n

)
. (2b)

From (2a) and (2b), we obtain

∆eout
n = ηT,n∆ein

n +
ηF,n η

e
MT,n

(ηF,n − ηg
MT,n)

∆gin
n , n ∈ N . (3)

Remark 1 (Energy Hubs’ Flexibility): Equation (3) implies
that in the scenario where energy hub n increases its input
natural gas (i.e., ∆gin

n <0), then we have ∆eout
n <∆ein

n . This
demonstrates the flexibility of an energy hub to avoid a large
interruption cost in shedding electric demands.

In energy hub n, the value of ∆eout
n is always nonnegative.
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Thus, we obtain the following lower bound for ∆gin
n :

∆gin
n ≥ −ηn ∆ein

n , n ∈ N , (4)

where ηn = ηT,n
(
ηF,n − ηg

MT,n

)
/(ηF,n η

e
MT,n). Also, (2b)

implies that |∆gin
n | is maximized if α̂n = 1. From equality

∆Hout
n = 0 obtained from Assumption 1 and using (1), we

get Ĝin
n = (ηF,n(1 − αn) + αnη

g
MT,n)Gin

n/η
g
MT,n. Substituting

Ĝin
n and α̂n = 1 into (2b), we obtain the following inequality:

∆gin
n ≥ −∆gmin

n . (5)

where ∆gmin
n = (ηF,n − ηg

MT,n)(1− αn)Gin
n /η

g
MT,n. Depend-

ing on ∆ein
n , αn, and Gin

n , one of (4) and (5) becomes tighter.
The cost of energy hub n ∈ N involves three terms: i)

the customer side’s interruption cost In(∆eout
n ) for shedding

∆eout
n of electrical load demand, ii) the payment to the GUC

for purchasing |∆gin
i | extra natural gas, and iii) the reward

from the EUC for reducing ∆ein
i of electrical input power.

Determining the interruption cost In(∆eout
n ) requires well-

designed surveys. We make the following assumption:
Assumption 2: The customers’ interruption cost In(∆eout

n )
in energy hub n ∈ N is an affine function of ∆eout

i . That is

In
(
∆eout

n

)
= cn ∆eout

n , (6)

where cn ≥ 0, n ∈ N is the marginal interruption cost.
In nowadays natural gas markets, the GUCs typically im-

plement a fixed price scheme. Let pg denote the natural gas
market price in $/kWh. Energy hub n pays the GUC for
purchasing |∆gin

n | of extra natural gas. The EUC rewards
energy hubs with price pe. The cost function of energy hub
n ∈ N in the ancillary services program can be obtained as

Cn = In
(
∆eout

n

)
− pg ∆gin

i − pe ∆ein
n . (7)

B. Power Network’s Model

Participation of energy hubs in the electricity regulation
services changes the voltage of the buses and the power flow in
transmission lines of the power network. Let v = (vb, b ∈ B)
denote the column vector of voltage magnitude of all buses.
Let Eflow denote the column vector of active power flow into
the all transmission line (r, s) ∈ L. We define Einj as the
column vector of injected active powers into the buses b ∈ B.
The elements corresponding to bus n with an energy hub in
vector ∆Einj is equal to ∆ein

n . Other elements of ∆Einj are
zero. Similar to [24], we can use linearized ac power flow
model and show that there exist a predetermined matrices R
and L, such that ∆v = R ∆Einj and ∆Eflow = L ∆Einj. The
voltage magnitude of buses and power flow of lines should
maintain between their lower and upper limits. We have

∆vmin ≤ R ∆Einj ≤ ∆vmax, (8a)

∆Eflow,min ≤ L ∆Einj ≤ ∆Eflow,max. (8b)

III. REGULATION SERVICES PROGRAM

Suppose that the EUC broadcasts the request signal to
decrease the aggregate electrical load demand with amount of
D > 0. The EUC establishes a proper mechanism to determine
the price pe and the contribution of each participating energy

hub n, (i.e., ∆ein
n ) in the load shedding. Inspired by the

work in [25], we propose an auction-based electrical load
control using the supply function bidding mechanism. In the
proposed auction mechanism, ∆ein

n for energy hub n depends
on the offered unit price pe by the EUC and the submitted
bid bn ≥ 0 (in kW/$) as ∆ein

n (pe, bn) = bnpe, n ∈ N . The
bid bn indicates the elasticity of energy hub n to the auction
price pe. Let b = (bn, n ∈ N ) denote the vector of bids
for all energy hubs. To clear the auction, the total amount of
change in the electrical loads should be equal to D. That is∑

n∈N ∆ein
n (pe, bn) = D. We have

pe(b) =
D∑
i∈N bi

. (9)

From (9), the contribution of energy hub n is

∆ein
n (b) =

D bn∑
i∈N bi

, n ∈ N , (10)

which depends on the bid of energy hub n as well as the
bids of other energy hubs. We capture the interactions among
energy hubs by the following non-cooperative game.
Game 1 (Energy Hubs’ Strategic Bidding Game):
• Players: The set N of all energy hubs.
• Strategies: The strategy of energy hub n ∈ N is the tuple

xn = (bn, ∆gin
n ). Let x = (xn, n ∈ N ) denote the joint

strategy profile of all energy hubs. Also, let x−n denote
the strategy profile of energy hubs except energy hub
n. To determine the strategy space of energy hub n, we
substitute (10) into (4) to obtain

∆gin
n ≥ −ηn

D bn∑
i∈N bi

, n ∈ N . (11)

Let Xn denote the strategy space for energy hub n defined
by constraints (5), (8a), (8b), (11), and bn ≥ 0.

• Costs: Energy hub n ∈ N aims to minimize (7). We
substitute (10) into (3), and the result into (6) and
(7). Setting pthr

g,n = cn η
e
MT,nηF,n/(ηF,n − ηg

MT,n), we can
express the cost of energy hub n as follows:

Cn(xn,x−n) =
cn ηT,nD bn∑

i∈N bi
+ pthr

g,n∆gin
n − pg∆gin

n

− D2bn(∑
i∈N bi

)2 . (12)

Analyzing Game 1 is challenging, as the inequality con-
streaints (8a), (8b), and (11) depend on the energy hubs’ joint
bids. Thus, the strategy space Xn(xn,x−n) of energy hub n
depends on the decision of other energy hubs in set N \ {n}.
Generalized Nash equilibrium (GNE) is a commonly used
solution concept for such a game [22].

Definition 1 (Generalized Nash Equilibrium): A joint pure
strategy profile x? = (x?

n, n ∈ N ) is a GNE for Game 1 if
and only if for each energy hub n ∈ N , we have

x?
n ∈ argmin

xn∈Xn(xn,x?
−n)

Cn(xn,x
?
−n), n ∈ N . (13)

That is, x∗ is a GNE if and only if it satisfies the individual
and coupling constraints and no energy hub can benefit by
unilaterally deviating from its own strategy x?

n.
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A. Preliminary Analysis of the GNE

Problem (13) implies that the GNE is a fixed point solution
of |N | optimization problems with coupling constraints. To
analyze the GNE of Game 1, we consider problem (13) for
energy hub n under the given profile x?

−n. We define B?
−n =∑

i∈N\{n} b
?
i as the sum of bids for all energy hubs other

than energy hub n. Considering the bounds in (5) and (11)
and the linearity of cost function (12) in ∆gin

n , we consider
the following three cases for energy hub n in the GNE:

Case 1: In this case, we suppose that

C1 : pg ≥ pthr
g,n.

Minimizing (12) for energy hub n results in

∆g?,inn = 0. (14)

That is, energy hub n prefers not to convert natural gas into
electricity due to a high natural gas price pg. Substituting
∆g?,inn = 0 into (12), we have

Cn(bn,x
?
−n) =

cn ηT,nD bn
bn +B?

−n
− D2bn

(bn +B?
−n)2

. (15)

Under the given strategy profile x?
−n, the optimal bid b∗n

should satisfy the optimality condition for problem (13), i.e.,
∂Cn(b∗n,x

∗
−n)

∂b∗n
(bn − b∗n) ≥ 0 for all feasible bn. By performing

some algebraic manipulations, for all feasible bn, we have(
cn ηT,nB

∗
−n

D
−
B∗−n − b∗n
B∗−n + b∗n

)
(bn − b∗n) ≥ 0. (16)

Case 2: By setting ∆ethr
n = (1 − αn)

ηF,nη
e
MT,n

ηT,nη
g
MT,n

Gin
n , we

suppose that

C2 :

pg < pthr
g,n,

D bn
bn +B?

−n
< ∆ethr

n .

Based on C2, minimizing Cn(xn,x−n) in (12) is equivalent
to set ∆g?,inn to the lower bound in (11). Hence, we have

∆g?,inn = −ηn
D b?n

b?n +B?
−n
. (17)

Substituting (17) into (12), cost of energy hub n becomes

Cn(bn,x
?
−n) =

pgηnD bn
bn +B?

−n
− D2bn(

bn +B?
−n
)2 . (18)

The objective function (18) has the same structure as of the
objective function (15). The following optimality condition can
be derived for all feasible bn:(

pgηnB
?
−n

D
−
B?
−n − b?n

B?
−n + b?n

)
(bn−b?n) ≥ 0. (19)

Case 3: In this case, we have

C3 :

pg < pthr
g,n,

D bn
bn +B?

−n
≥ ∆ethr

n .

Minimizing (12) for energy hub n results in setting ∆g?,inn

to the lower bound in (5). That is, we have

∆g?,inn = −∆gmin
n . (20)

In this case, ∆g∗,inn is constant. We remove the terms with
∆g∗,inn from (12). The cost function of energy hub n becomes

Cn(bn,x
?
−n) =

cn ηT,nD bn
bn +B?

−n
− D2bn

(bn +B?
−n)2

, (21)

which is the same as (15) for Case 1. Thus, we have the same
optimality condition as (16) for all feasible bn:(

cn ηT,nB
?
−n

D
−
B?
−n − b?n

B?
−n + b?n

)
(bn − b?n) ≥ 0. (22)

B. Existence and Uniqueness of the GNE

In this subsection, we study the existence and uniqueness
of the GNE. In the following theorem, we show that there is
no GNE for a system with two energy hubs.

Theorem 1: For an ancillary services market with N = 2
energy hubs, the strategic bidding game among energy hubs
(Game 1) does not have a GNE in pure strategies.

The proof can be found in Appendix A. From the proof
of Theorem 1, if a GNE exists for Game 1, then we have
0 ≤ ∆e?,inn < D

2 for all energy hubs n ∈ N in the GNE.
Next we show that a GNE exists for an ancillary services

market for N ≥ 3. To do so, we show that Game 1 can be
categorized in a class of best response potential games [23].

Definition 2 (Best Response Potential Game): Game
G
(
N , x, (Cn, n ∈ N )

)
is a best response potential, if it is

equivalent to game G̃
(
N , y, (Φ, n ∈ N )

)
, and there exists

a one-to-one mapping F between the joint strategy profiles
x and y. Also, cost functions Cn for all agents n ∈ N are
replaced with a function Φ called a potential function. Agent
n has the same best response to arbitrary strategy profiles x−n
in G and y−n = F(x−n) in G̃, i.e., B̃n(y−n) = Bn(x−n).

To show that Game 1 is a best response potential game,
we assign the new strategy profile yn = (∆ein

n ,∆g
in
n ) to

energy hub n ∈ N . The strategy space Yn is defined by
0 ≤ ∆ein

n < D
2 ,
∑

n∈N ∆ein
n = D, ∆gin

n ≤ 0, and the power
flow constraints (8a) and (8b). Consider the following theorem:

Theorem 2: Game 1 is a best response potential game. It
is equivalent to Game 2 with the new strategy profile y =
(yn, n ∈ N ) and the following potential function:

Φ(y) =
∑
n∈N

ϕn(yn), (23)

where for pg ≥ pthr
g,n, we have

ϕn(yn) = cnηT,n

(
∆ein

n

2
− D

4
ln
(
D − 2∆ein

n

))
+
(
∆gin

n

)2
, (26a)

and for pg < pthr
g,n, if ∆ein

n < ∆ethr
n , then

ϕn(yn) = pgηn

(
∆ein

n

2
− D

4
ln
(
D − 2∆ein

n

))
+
(
∆gin

n + ηn∆ein
n

)2
, (26b)
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and if ∆ein
n ≥ ∆ethr

n , then we have

ϕn(yn) = cn ηT,n

(
∆ein

n

2
− D

4
ln
(
D − 2∆ein

n

))
+
(
∆gin

n + ∆gmin
n

)2
. (26c)

For the proof see Appendix B.
Theorem 3: For nonempty strategy spaces Yn, n ∈ N and

N ≥ 3, Game 1 has a unique GNE.
The proof can be found in Appendix C. The proof of

Theorem 3 is based on the the strictly convexity of the
potential function (23) and the coincidence of the GNE and
the unique global minimum of the potential function.

IV. DISTRIBUTED ALGORITHM DESIGN

In this section, we develop a distributed algorithm executed
by the energy hubs in a parallel fashion to converge to the
unique GNE of Game 1. Based on Theorems 2 and 3, we
develop a distributed algorithm that converges to the global
optimum of Φ(y). Note that Φ(y) is a sum of N distinct
functions ϕn(yn). The coupling constraint

∑
n∈N ∆ein

n = D
is also linear and decomposable. Hence, we can develop a
distributed algorithm based on dual decomposition method
[26, Sec. 3.5] to determine the global optimal point of Φ(y).

Denote the iteration index of Algorithm 1 by k. The loop
involving Lines 3 to 8 describes the interactions among energy
hubs and the EUC in the auction. The price in the GNE
corresponds to the dual variable for

∑
n∈N ∆ein

n = D. By
receiving the bids from all energy hubs, the EUC determines
the updated price pk+1

e in Line 5 as follows:

pk+1
e =

[
pke − ρ

(∑
n∈N

bknp
k
e −D

)]
℘

, (27)

where ρ > 0 is the step-size and [·]℘ is the projection
on to nonnegative orthand. In Line 6, when energy hub n
receives the updated price and uses the optimality conditions
(26a)−(26c) to compute ∆ein,k+1

n and ∆gin,k+1
n as follows:

If pg ≥ pthr
g,n, then energy hub n sets

∆gin,k+1
n = 0. (28)

According to (38) in Appendix B, energy hub n sets

∆ein,k+1
n =

[
D(pk+1

e − cn ηT,n)

2pk+1
e − cn ηT,n

]
℘

, (29)

where [·]℘ is the projection on to the feasible space defined
by 0 ≤ ∆ein

n < D
2 and the power flow constraints (8a) and

(8b) under the given ∆e?,inn′ , n
′ ∈ N \{n}. The EUC provides

energy hub n with the limits for ∆ein
n using (8a) and (8b). For

pg < pthr
g,n, then if ∆ein,k

n < ∆ethr
n , energy hub n sets

∆gin,k+1
n = −

ηT,n(ηF,n − ηg
MT,n)

ηF,nηe
MT,n

∆ein,k
n . (30)

According to (39) in Appendix B, energy hub n sets

∆ein,k+1
n =

[
D
(
pk+1

e − pgηn
)

2pk+1
e − pgηn

]
℘

. (31)

Algorithm 1 Decentralized Load Control Algorithm.
1: Set k := 0 and ξ := 10−3.
2: Each energy hub n randomly initializes its bid b0n and sets

∆ein,0
n = ∆gin,0

n = 0.
3: Repeat
4: Each energy hub n submits its bid bkn to the EUC.
5: EUC determines the updated price pk+1

e according to
(27) and broadcasts to the energy hubs.

6: Each energy hub n, depending on the value of pg and
∆ein,k

n , determines ∆gin,k+1
n and ∆ein,k+1

n according to
(28)−(32). Energy hub n computes bk+1

n as (33).
7: k := k + 1.
8: Until |pke − pk−1

e | ≤ ξ.

If ∆ein,k
n ≥ ∆ethr

n , then energy hub n sets

∆gin,k+1
n = −∆gmin

n , (32)

Energy hub n sets ∆ein,k+1
n as (29). In all above-mentioned

scenarios, energy hub n sets its updated bid as

bk+1
n =

∆ein,k+1
n

pk+1
e

. (33)

The potential function is strictly convex. Hence, with any
initial condition, the Algorithm 1 converges to the global
minimum of the potential function [26, Sec. 3.5]. That is

Theorem 4: Algorithm 1 converges to the GNE from any
initial point, and the convergence rate is O(1/

√
k).

This is an important result, since if the communication
interrupted or delayed, the GNE would not be affected. Specif-
ically, if the delays/interruptions happen in a finite number of
iterations, then there exists an iteration number, after which all
hubs update their strategy profile without delay. That iteration
can be interpreted as a new initial point for Algorithm 1.

The number of iterations for convergence depends on the
initial conditions. In Section V, we show that the number
of iterations is acceptable for practical implementations. One
can also apply the approach in [27, Algorithm 4] and [28,
Sec. IV.B] to enhance the convergence rate of Algorithm 1
to O(1/k) using proximal Jacobian alternating method of
multipliers (PJ-ADMM). We omit the modification and only
present the comparison in Section V.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
distributed algorithm on an ancillary market with N = 5
energy hubs. We consider the request from the EUC for D = 2
MW load reduction due to the supply shortage. The natural
gas wholesale price is set to pg = 17 $/MWh. The parameters
ηT,n, ηF,n, ηe

MT,n, and ηg
MT,n for energy hub n ∈ N are selected

randomly from intervals [0.92, 0.98], [0.6, 0.8], [0.18, 0.27],
and [0.2, 0.3] [29], respectively. The initial dispatch factors
αn, for n = 1, . . . , 5 are set to 0.2, 0.7, 0.4, 0.65, and 0.8,
respectively. The gas demand Gin

n for n = 1, . . . , 5 are set to
2, 2.5, 5.2, 7.8, and 6 MWh, respectively. The coefficients cn
are set to 100, 50, 105, 100, and 110 $/MWh, respectively.
The stepsize ρ is set to 0.2 $/MWh.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



1949-3053 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2018.2888550, IEEE
Transactions on Smart Grid

6

Fig. 2. The equilibrium of the energy market in the underlying auction-based
regulation services program.

First we study the participation of the energy hubs in the
proposed auction-based regulation services program. Fig. 2
shows the underlying energy network with five energy hubs
in the GNE. The auction clearing price in the GNE is pe = 79
$/MWh. Different factors such as the marginal interruption
cost cn, the dispatch factor αn, and the natural gas demand
Gin

n affect the contribution of each energy hub in the regulation
services program. For example, energy hub 2 has the largest
∆ein

n due to its low marginal interruption cost. Energy hub
1 has also a large contribution due its small initial dispatch
factor. As expected, the energy hub with a larger contribution
would submit a larger bid in the auction. We can observe
that ∆gin

n ≤ 0 for all energy hubs. Energy hub 1 has the
highest |∆gin

n | due to its low dispatch factor. Furthermore
for energy hub 2, we have ∆gin

n = 0, since pg ≥< pthr
g,2

(condition C1). Energy hub 2 has the lowest interruption cost,
and hence it does not prefer to pay to the GUC for converting
natural gas into electricity. Instead, it prefers to interrupt its
customer side’s electricity consumption, i.e., ∆eout

n = 0.55
MWh. Other energy hubs have relatively high interruption
costs, and thereby preferring to use their CHP technology
for energy conversion. We can observe that ∆eout

n = 0 for
energy hubs 1, 3, 4, and 5. This perfectly demonstrates the
potential of energy hubs in a regulation services program, as
they can actively participate in the program without affecting
their customer side’s electricity consumption habits.

We now study the convergence of Algorithm 1 to the GNE.
Fig. 3(a) shows the convergence of the auction clearing price
pe from the initial value 120 $/MWh to 79 $/MWh in the
GNE within 27 iterations. Fig. 3(b) shows the convergence of
electrical load change ∆en for the participating energy hubs.
The initial value of ∆en is zero for all energy hubs. The value
of ∆en is higher in the initial iterations, as the auction price
is still large compared with the clearing price in the GNE.
Fig. 3(c) shows the convergence of ∆gin

n . For hub 2, we have
we have ∆gin

n = 0 in all iterations, as condition C1 is always
satisfied for this energy hub. Fig. 3(d) shows the convergence
of the submitted bids. A larger bid implies a larger market
share. We can observe that energy hub 2 gains a larger market
share gradually due its lowest interruption cost.

We study the impact of communication delay/interruption
on the convergence of Algorithm 1 to the GNE. We consider
four scenarios: In Scenario 1, no delay or interruption is
occurred. In Scenario 2, energy hubs 1, 2, and 3 experience an
interruption in their communication link from iteration 4 to 20.
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Fig. 3. Convergence of (a) market price; (b) electrical load change; (c)
natural gas load change; and (d) submitted bids to the GNE of Game 1.
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Fig. 4. The impact of communication delay and interruption on the conver-
gence of Algorithm 1 to the GNE.

In Scenario 3, energy hubs 4 and 52 experience a delay in their
communication link and update their bids in every 2 iterations;
and Scenario 4 is the combination of the second and third
scenarios. Fig. 4 depicts that in all aformentioned scenarios,
the clearing market price converges to a same value in the
unique GNE though the convergence rate changes. This shows
that the GNE is asymptotically stable and the convergence of
Algorithm 1 is independent to the initial conditions.

Next we study the profit of the energy hubs and the total
payment of the EUC to the energy hubs in the GNE. We
consider three scenarios. In Scenario 1, the energy hubs do not
convert gas to electricity. In Scenario 2, energy hub 1 uses its
ability to convert gas to electricity, but other energy hubs do
not convert natural gas to electricity. In Scenario 3, all energy
hubs use their ability to convert gas to electricity. Fig 5(a)
shows that in Scenario 1, energy hub 2 gains the highest profit
due to its lowest marginal interruption cost. When energy hub
1 uses CHP technology in the second scenario, it can get a
larger market share to increase its profit. When energy hubs

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



1949-3053 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2018.2888550, IEEE
Transactions on Smart Grid

7

Energy Hub 1 Energy Hub 2 Energy Hub 3 Energy Hub 4 Energy Hub 5

P
ro
fi
t
($
)

0

25

50
Scenario 1
Scenario 2
Scenario 3

(a)

Scenario 1 Scenario 2 Scenario 3E
U
C
’s
P
ay
m
en
t

100

140

180

220

260

p∗e = 79 $/MWh

p∗e = 115 $/MWh
p∗e = 106 $/MWh

(b)

Fig. 5. (a) Profit of the energy hubs; and (b) payment of the EUC.

3, 4, and 5 also use CHP in the third scenario, they can
increase their market share, and thus their profit (by about
60%). Results for all five energy hubs show that using the CHP
enables them to avoid a large interruption cost and increase
their profit by about 7.6% compared to Scenario 1.

Fig 5(b) shows the EUC’s payment in the mentioned three
scenarios. The market clearing price is 115 $/MWh and 79
$/MWh in Scenarios 1 and 3, respectively. That is, the EUC’s
payment to the participating consumers is about 31% lower
when energy hubs convert natural gas to electricity in the
third scenario. This shows the advantage of using energy con-
version technologies in the regulation services programs. The
CHP technology enables the energy hubs’ active participation
with lower bids through converting natural gas to electricity.
Scenario 2 demonstrates that if energy hub 1 deploys the
CHP technology, then it can damp the market by reducing the
market clearing price from 115 to 106 $/MWh. This scenario
shows the fact that even if the EUC motivates one energy
hub to participate in the ancillary services market, then its
payment will be reduced. Other participants are also motivated
to deploy the CHP; they will otherwise lose the market share
to their competitors with CHP technology.

Now we study the impact of power network constraints on
the auction results. Suppose that the energy hubs are located
in an IEEE 37-bus test feeder, as shown in Fig. 6(a). The
limits for the bus voltage are set to 0.95 pu and 1.05 pu.
The line flow limit is set to 1.05 pu. The initial operating
conditions are shown in Fig. 6(a). Figs. 6(b) and (c) show
the auction clearing price and the energy hubs contributions
to curtail 2 MW of electric demand. Energy hubs 2 and 3
are located in buses with low voltage magnitudes. Thus, they
cannot reduce their demand too much due to constraint (8a).
In particular, when the network constraints are taken into
account, the auction price increases from 79 $/MWh to 90
$/MWh (i.e., the DNO pays more to the participants). Also,
the contributions of energy hubs 2 and 3 decrease in the
regulation services. That is, the network constraints force a
new operating condition in the regulation services that might
limit high-potential participants (e.g., energy hub 2) not to
schedule their demand as much as they can.

We study the scalability of Algorithm 1 by considering test
systems with 37, 123, and 8500 buses [30] with different
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Fig. 6. (a) Energy hubs’ locations in the distribution feeder; (b) auction
clearing price; and (c) contributions of each energy hub, with and without
considering power flow constraints.
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number of energy hubs. The characteristics of the energy
hubs are randomly chosen to be similar to our simulation
setup. Fig. 7 depicts the required number of iterations for
convergence to the GNE. For 100 random initial conditions,
the minimum and maximum number of iterations are shown,
which are even in large test systems. We also apply the
approach in [27, Algorithm 4] and [28, Sec. IV.B] to enhance
the convergence rate of Algorithm 1. We can observe that
PJ-ADMM can reduce the average number of iterations by
about 40%. Usually, in practical energy markets, the number of
energy hubs is not too large. Thus, Algorithm 1 has a potential
to be used in practice. In all scenarios, the running time per
iteration is less than 0.5 seconds thanks to the closed form
update rules in (28)−(33), which do not depend on the the
network scale and number of energy hubs. In other words, the
number of iterations for convergence is the bottleneck for the
algorithm’s aggregate running time.

Finally, we compare performance of the proposed auction
mechanism with existing demand response algorithms (e.g.,
[17]–[20]). We consider an optimization problem with the
objective function

∑
n∈N In(∆eout

n )−pg ∆gin
i and constraints

(4), (5), (8a), and (8b), as well as the constraint
∑

n∈N ∆ein
n =

D. We focus on the profit of energy hubs in the GNE of
Game 1 and the underlying demand response framework in
Fig. 8. Two facts can be observed. i) Energy hubs 3, 4, and
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Fig. 8. Energy hubs’ profit in the GNE of Game 1 and minimum social cost.

5 have lower profit in the underlying demand response frame-
work. They have incentive to change their strategy unilaterally
to increase their own profit. In the GNE, however, the energy
hubs are satisfied with their profit and do not have incentive
to change their strategy unilaterally, i.e., the GNE is stable. ii)
As shown in Fig. 8, the market clearing price p?e (i.e., the dual
variable associated with constraint

∑
n∈N ∆ein

n = D) is lower
in the GNE. The reason is that in our framework, the energy
hubs are allowed to submit bids considering their interruption
costs. But when the EUC minimizes the social cost, all energy
hubs should be satisfied; thereby the clearing price is largely
biased by the participants with higher interruption costs.

VI. CONCLUSION

In this paper, we studied the potential of energy hubs for
power systems regulation services. We considered the scenario
of electric supply shortage and showed that energy hubs can
effectively adjust energy conversion process to reduce their
input electric power without a major effect on the customer
side’s electric power consumption. We proposed a bidding
mechanism and modeled the interaction among energy hubs as
a non-cooperative game with coupling constraints. We prove
the existence of the GNE in such a game by constructing a
best response potential function, whose global minimum corre-
sponds to the GNE. We also developed a distributed algorithm
to reach the GNE. Simulation results showed that the proposed
algorithm converges to the GNE in a reasonable number of it-
erations even with interruption in the communication network.
If all participants use CHP technology, they can take advantage
of 7.6% increase in their profit on average. Meanwhile, the
EUC can reduce its payment by 31% by motivating energy
hubs to participate in the regulation program. For future work,
we plan to extend our proposed algorithm by considering the
energy hubs’ interaction in capacity markets.

APPENDIX A
PROOF OF THEOREM 1

We prove the result by contradiction. Suppose that for a
system with two energy hubs, there exists a GNE for Game 1.
From the optimality conditions (16), (19), and (22), we con-
clude that b?n < B?

−n, n ∈ N . Specifically, if b?n ≥ B?
−n for

energy hub n, then we have ∂Cn(b?n,x
?
−n)

∂b?n
> 0. That is, energy

hub n has an incentive to decrease its bid b?n, which contradicts
with the definition of the GNE. Consequently, from (10), we
obtain ∆ein

n (b?) =
D b?n

b?n+B?
−n

< D
2 . Thus, for a system with

N = 2 energy hubs, we have
∑

n∈N ∆ein
n (b∗) < D, which

contradicts with the power balance. We conclude that the GNE
does not exits. The proof is completed. �

APPENDIX B
PROOF OF THEOREM 2

The proof involves the following two steps:
Step a) Considering ∆ein

n (b) = D bn
bn+B−n

, the conditions for
(26a)−(26c) correspond to the conditions C1, C2, and C3 for
Cases 1, 2, and 3 in Section III-A, respectively. ∆g?,inn = 0
is the optimal point for (26a) which also corresponds to (14).
∆g?,inn = −ηn∆e?,inn is the optimal point for (26b) which also
corresponds to (17). ∆g?,inn = −∆gmin

n is the optimal point
for (26c) which also corresponds to (20).

Step b) Next we show that the optimality condition for
∆ein

n , n ∈ N in Game 2 is equivalent to the optimality
conditions (16), (19), and (22) for bn, n ∈ N in Game 1.

Consider (16) and (22). By exchanging the denominator of
the first term and the nominator of the second term, we can
rewrite the optimality conditions (16) and (22) as follows:(

cn ηT,nB
∗
−n

B∗−n − b∗n
− D

B∗−n + b∗n

)
(bn − b∗n) ≥ 0, (34)

and for all feasible bn:(
pgηnB

∗
−n

B∗−n − b∗n
− D

B∗−n + b∗n

)
(bn − b∗n) ≥ 0. (35)

It enables us to express the optimality condition (16) and (22)
in terms of ∆e?,inn . By substituting ∆e?,inn =

D b?n
B?
−n+b?n

and

p?e = D
B?
−n+b?n

into (34), for all feasible bn, we obtain(
cn ηT,n

D −∆e∗,inn

D − 2∆e∗,inn

− p∗e
)

(p∗e bn −∆e∗,inn ) ≥ 0. (36)

Similarly, the optimality condition (35) is equivalent to(
pgηn

D −∆e∗,inn

D − 2∆e∗,inn

− p∗e
)

(p∗e bn−∆e∗,inn )≥ 0. (37)

Now we study the optimality conditions for ∆ein
n in Game 2.

Let y? denote the optimal point of potential function Φ(y). Let
λ∗ denote the dual variable for constraint

∑
n∈N ∆ein

n = D in
the optimal point of Φ(y). The derivative of ∆einn

2 −
D
4 ln(D−

2∆ein
n ) w.r.t. ∆ein

n is D−∆einn
D−2∆einn

. Thus, the optimality condition
for ∆ein

n in (26a) (and (26c)) is obtained as(
cn ηT,n

D −∆e?,inn

D − 2∆e?,inn

− λ?
)

(∆ein
n −∆e?,inn ) ≥ 0, (38)

which is the same as (36) by setting λ∗ = p∗e . In a similar
manner, the optimality condition for ϕn(yn) in (26b) after
substituting ∆g?,inn = −ηn∆e∗,inn is as(

pgηn
D−∆e∗,inn

D−2∆e∗,inn

−λ∗
)

(∆ein
n −∆e∗,inn ) ≥ 0, (39)

which is the same as (37) by setting λ∗ = p∗e . That is, we
have a one-to-one mapping between ∆e?,inn and b?n.

We can conclude that Game 1 is a best response potential
game, and the potential function is given in (23). �

APPENDIX C
PROOF OF THEOREM 3

The GNE of Game 1 is the fixed point of the best response
strategies of energy hubs. According to Theorem 2, Game 1 is
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a best response potential game. Hence, the fixed point of the
best response of the energy hubs in Game 1 corresponds to
global optimal point of the potential function Φ(y) in (23) over
the feasible space Y defined by constraints 0 ≤ ∆ein

n < D
2 ,

∆gin
n ≤ 0, n ∈ N ,

∑
n∈N ∆ein

n = D, and the power flow
constraints (8a) and (8b). If this feasible space is non-empty
when N ≥ 3, then, the global optimal point of Φ(y) exists,
and thereby Game 1 has at least one GNE.

Next we show that the potential function Φ(y) in (23)
is strictly convex. It is sufficient to show that function
ϕn(yn) defined in (28a)−(28c) is strictly convex in yn =

(∆ein
n , ∆gin

n ). The second derivative of ∆einn
2 − D

4 ln(D −
2∆ein

n ) with respect to ∆ein
n is D

(D−2∆einn )2 , which is pos-
itive and continuous for ∆ein

n < D/2. That is, function
∆einn

2 − D
4 ln(D − 2∆ein

n ) is strictly convex. Other terms in
(28a)−(28c) are quadratic functions of yn, n ∈ N . Hence,
function ϕn(yn) is strictly convex in yn = (∆ein

n , ∆gin
n ).

The feasible space is also a convex polyhedron, and thus, the
potential function has a unique global minimum corresponding
to the unique GNE of Game 1. �
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