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1. Introduction

Diffusion is usually the rate controlling step during transport in many polymer solvent systems. Fick’s law of diffusion, states that the
flux of a diffusing component at a location equals the product of diffusion coefficient and its concentration gradient there. For polymer
solvent systems, the diffusion coefficient is a strong function of temperature and concentration. Free volume theory (Vrentas & Duda,
1977a, 1977b) describes this function accurately for several systems involving one polymer and one solvent.

Flux of the solvent at a location in multicomponent systems is determined by not only its concentration gradient but also those of others.
The diffusion coefficient of the solvent, which combines with its own concentration gradient is called main-term coefficient and those that
combine with gradient for other solvents are called cross-term coefficients. In fact, to describe diffusion in a N-component system, (N —1)2
mutual diffusion coefficients are needed.

Recently, a unified theory (Price & Romdhane, 2003) is proposed of which the existing theories are special cases. They showed that the
theories predict almost same average concentration of solvent in a drying ternary coating. But, they could predict different concentration
profile of the solvent inside the coating. Such profiles are important in coatings that phase separate during drying.

Transport equations in multicomponent polymer-solvent-solvent systems are non-linear coupled partial differential equations. This
paper deals with the solution scheme and the optimization of free-volume parameter required for diffusion models.

2. Governing equations

Fig. 1 shows the schematic of a drying ternary coating that has been cast on impermeable substrate. As the solvent reaches the surface
from the bottom, it evaporates into air. As solvents depart, the coating shrinks with time. There is no mass transfer through the substrate;
hence flux of both the solvents is zero at the substrate. The coating is heated from both the top and bottom sides.

2.1. Mass transport

The rate of change of concentration of solvent 1 equals gradient of flux, which is due to its own concentration gradient and that of
solvent 2.

* Corresponding author. Tel.: +91 7544 267051x140; fax: +91 7544 267314.
E-mail address: raj.arya@juet.ac.in

0098-1354/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compchemeng.2012.10.015


dx.doi.org/10.1016/j.compchemeng.2012.10.015
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:raj.arya@juet.ac.in
dx.doi.org/10.1016/j.compchemeng.2012.10.015

RK. Arya / Computers and Chemical Engineering 50 (2013) 152-183

153
G G G
— > GaS (T ’htop’PIh ’P?JJ )
z=L(t
7/ 707777777 // l
? Polymer + Solvent (1) + Solvent (2) /
|IIII||IIIIl|IIII|IIIIIIIIIIIHIIIIIIIIIIHIIIIIIIIIIIJ|IIII||IIII||IIII||IIIII|I
|III|||IIIIl||III|!IIII|||III| D
g
GCIS (T hbor.'om )
Fig. 1. Schematic of a drying coating.
Mass balance for solvent 1:
dcy 9 acy d acy
EaE (D“az) % (Dﬂ az) M
Mass balance for solvent 2:
dc, 0 acy 0 dca
Bt 5z <D21az) + 52 (Dzzaz) (2)

The reference velocity is chosen to be volume average velocity because it is shown to be equal to zero if there is no change in volume
on mixing [4].
¢, is the concentration of solvent i, t is the time, z, is the thickness of the coatings at anytime, D11 and D,; are main-term diffusion

coefficients that characterize transport due to solvents own concentration gradient, D1, and D,; are cross-term diffusion coefficients that
characterize transport due to other solvents concentration gradient.

Mutual diffusion coefficients were calculated using multicomponent diffusion models. There are several models available to relate
self-diffusion coefficient to mutual diffusion coefficient (Alsoy & Duda, 1999; Dabral, 1999; Price & Romdhane, 2003; Zielinski & Hanley,
1999). In this work only Alsoy and Duda model has been used and given in Table 1.

Self diffusion coefficients were calculated using Vrentas and Duda (1977a, 1977b) free volume theory:
3 A~
Zj=1wj‘/j*(§i3/§j3)

D; = Dy; exp e (3)
FH

£y = critical molar volume of a jumping unit of component i
13 = Critical molar volume of the jumping unit of the polymer

&3 = “//*M" (Vrentas, Duda, & Ling, 1984), and

The hole free volume is given by:

1% K K K
= el +T=Tg)+ — 20K +T = Tga) + 2 3(Kas + T = Tga) 4)

w;j: mass fraction of component j

(K—;) K1 — Tg1) and (K” Ky — ng) are free volume parameters for solvent 1 and solvent two respectively
’%3, K33 — Tg3: are free volume parameters for polymer

:gz:ec:ses for diffusion coefficients of ternary polymer solvent systems (Alsoy & Duda, 1999).
Case Dy Di Dy D2
! D [Five] g0 [fme] 20 [fme] Dz [F17¢ ]
2 Di et ] 0 0 D, [ ]
3 Dy 0 0 D,
. Dici(1-c1V1) {B?Tal} Dici(1-c1Vh) achal Daco(1 -2 ¥) ol naz Daca(1 - c2¥a) ding,

BCZ

C1
~ |dlna dlna ~ [dlna ~ |0Ilna
—DycicVs { % 2} —D2C1C2V2 { pr z} —Dyci1c2Vq [ % 1} —DicicaVy [ T 1}
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2.2. Shrinkage of coating

Coating shrinks due to departure of both the solvents into the room air.

dL — —
3¢ = ~Viki (0% - p3,) — V2K (05, — p3,) (5)
L is the thickness of coating; kf and kg, are the convective mass transfer coefficients of solvent 1 and solvent 2, respectively; V; and V5,
are the partial molar volume of solvent 1 and 2, respectively; p1Gb and pgb, are partial pressures of solvents 1 and 2 in bulk air, respectively;

pfl., pg,. are equilibrium partial pressure of solvent 1 and solvent 2, respectively, and they can be calculated by
p1i =P"(T) - ¢1- 1 (6)
P2i =PyP(T) 2 - v (7)

@; is the volume fraction of species i, P;’ap is saturation vapor pressure of species i, y; is the activity constants for species i.
Activity for the ternary systems can be calculated using Flory Huggins theory (Favre, Nguyen, Clement, & Neel, 1996).
Activity coefficient of solvent 1

Vi Vi Vi
Inay=Iny;+Ingr =g+ (1-@1 - =22 | — 203 + X133 + 1203 + 0203 | x13 + X12 — = X23 (8)
V) V3 %)
Activity coefficient of solvent 2
vy vy V5 V5 Vs
e =Iny+Ingy=In @+ (1 - 201 — 02 | — 203+ (2303 + X12= @5 + 01903 | X12—= + X23 — —X13 (9)
Vi V3 Vi Vi Vi
Activity coefficient of polymer 3
1% 1% V. 1% 1%
nas =In g3 +(1-¢3)— =01 — =@+ | x132201 + X3 =202 ) (01 +92) = X12 =919 (10)
Vi Vs Vi Vy Vi

where y is the Flory-Huggins binary interaction parameter can be determined from the Bristow and Watson (1958) semi-empirical equation
given below,

V.
XU:0'35+R71~(51'_5])2 (11)
V; is the partial molar volume of solvent i, §; is the solubility parameter of solvent i, §; is the solubility parameter of polymer j, and volume
fraction is given by ¢; = c;V;, where ¢; is the concentration of species i, V; is the specific volume of species i.

2.3. Energy transport

Usually, the coating is heated by hot air blown on the top and the bottom sides. In the present work, heat transfer occurs due to natural
convection only as experiments were made under quiescent conditions. Because coatings are thin, the conductive resistance of the coating
is negligible compared to convective resistance in the air. Hence, the coating temperature was assumed to be uniform through the thickness
(Alsoy & Duda, 1999). Detailed heat transport model of Price and Cairncross (2000) showed insignificant change in temperature from the
top to the bottom of the coating. Also, temperatures of the coating and the substrate were assumed to be same.

The equation for heat transport is given by the following equation:

dr [ heop(T =T+ 3005 kG AR(PS — PG+ hoortom(T — T%) 12
e PPCEX(t) + pSC3H

htop and hyyeom are the heat transfer coefficients on the top and the bottom sides, respectively. AH,; is the enthalpy of evaporation of
solvent i, p is the density, fp is the specific heat, superscripts, p and s stand for the polymer and the substrate, respectively.

2.4. Boundary conditions at the top surface

Fluxes of the solvents at the top are described by mass transfer coefficients for both the solvents:
Flux of solvent 1:

ac ac - =
(—Dnz‘ —Duj) = (1= a VDRSPS, — pGy) — 1 V2K (05, — py) (13)
z=L(t)
Flux of solvent 2:
ac ac — —
(—Dzz 52— Dan 321) = (1 - c2V2)K§ (P, — pS,) — c2ViK (v, — ) (14)
z=L(t)
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2.5. Boundary conditions at the bottom

Since the substrate is impermeable, fluxes of both the solvents are zero there:
Flux of solvent 1:

3 aCz
< Di1— % —D12 82) =0 (15)
z=0
Flux of solvent 2:
8 aC1 _
( Dy == 5 2 _ Dy 82) z=0_0 (16)

3. Solution of equations

Egs. (1) and (2) are partial differential equations, and Eqs. (5) and (12) are ordinary differential equations; they are coupled and non-
linear. Together they model the mass and heat transport during drying. They were solved using Galerkin’s method of finite elements,
which transforms them into ordinary differential equations (ODEs). ODEs were then integrated with time to determine concentrations as
a function of time and distance and temperature as a function of time. The method is described below.

3.1. Galerkin’s method of finite elements

In finite element method, the unknown variables, which are concentration here (temperature is not discretized because an ordinary
differential equation (Eq. (12)) exists for it), are expressed as a sum of product of unknown coefficients and basis functions:

n

€= Zuj¢j (17)

j=1

=) v (18)
j=1

¢; are basis functions, n is number of nodes in the domain at which the solution is computed and u; and v; are unknown coefficients. The
basis functions, ¢;, are chosen such that they have a value of 1 at node j and 0 at others. This choice of the basis functions renders the
computed coefficients, u; and v}, as solution at the nodes. The functions are usually piece-wise continuous polynomials of a certain degree
because they lend themselves to easy integration (Strang and Fix, 1973). Eqs. (17) and (18) for concentrations are substituted into the
governing differential equations (1) and (2) and the residuals are made orthogonal to all functions from a complete set of infinite number
of independent functions. For practical purposes, however, finite numbers of functions, as warranted by a trade-off between accuracy and
computation time, are taken from the set.
Differentiating equation (17) with respect to t using chain rule,

du; Oy
Z ac it - Ye (19)
Jj=

Since ¢; s are functions of space only and not of time, the second term in Eq. (19) vanishes. Therefore,

ou;
J
Z o b (20)
Differentiating equation (17) with respect to z,
8(‘1 duj " Ay
Z bt > g 3z (21)

j=1

Since u; are unknown coefficients at j, the first term vanishes in Eq. (21). Hence,

n
8c1 a¢]
2z 2Ny (22)
j=1
Similarly,

86 v
e Z 2 (23)
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and
ac " 8
%2 _ s
0z Ui 0z (24)
j=1
Residual of Egs. (1) and (2), Ry and R;, are made orthogonal to each function, ¥, belonging to a complete set of functions
L
_ dcy 0 acy 9 a
R1—/0 {Bt_az(DHBZ) P <D12a )]Iﬁldz i=1,2,3,...,n (25)
L
— 862 ad 861 K] o
Rz—/o {2%_82<D213Z) % (Dzz )]1//,(12 i=1,2,3,...,n (26)

Substituting the expressions for dcy/dt, dc1/dz and dc, [0z from Egs. (21), (22) and (24) in Eq. (25)

duj 1Ay 3 "oy
/ Z % i — 112”1 ~ % Dlzzng Yidz
= 27)
ou; Lla "L 0o Lla "L 0
- i 9 ] dz — 9 09 .
Rq _/o Z ot ¢] Yidz — ‘/0 %2 Dllzu} %z Yidz ‘/0 % DIZZV] %2z Yy dz
j=1 j=1

Substituting the expressions for dcy/dt, dc,/dz and dc, [0z from Eqs. (22)-(24) in Eq. (26)

o, “la ¢, “la g,
R, =/ Z 8t] &j | Yidz - /0 P DZ]ZuJETZJ Widl—/o P DzzZUjETZ] Yidz
Jj=1 j=1

(28)
The integration and summation in Term 1 of Eq. (27) can interchanged without any loss of generality. Hence, Term 1 becomes
L n L n n L
ou; ou; auj . .
/ ¥ widz=/ > ¢ividz 3;=Z(/ ¢jw,-dz>8;, i=1,2,3,...,n, j=1,2,3,...,n (29)
o |4 o |4 . 0
j=1 j=1 j=1
Term 1 of Eq. (27) can be expanded for all values of i and j and, arranged in matrix form
L L L 3
/ $1ydz / $ayndz - / $n1dz o
0 0 0 ot
. =AU (30)
a

-
/‘151%‘12 /¢2‘/fndz /d)m//ndz %
0 nxn

nx1
Terms 2 and 3 of Eq. (27) can be integrated by parts to give

L
3 L . 3¢ . 3¢, L " 3¢ o,
/ 9 llz ¢] widz—i-/ 822 DIZZ%W }l//,‘dZ: D]]Zﬁuﬂﬁi —/ D“Z ¢] oY
0 0 —

% | %
j=1 j=1 0 j=1
L L L
— 3¢ ' 00y 0y — 0 3¢ : ogj o
+D1zzgvjlﬁi 7/0 D2y === v dz| = |Duy S ui +D1zzgvj‘ﬁi - / Dn) 5 u|d
j=1 0 j=1 j=1 0 j=1 0 j=1
L
3
,/ D1y a¢] (;Zl] dz (31)
0 j=1

The first and second terms of Eq. (31) are evaluated at z=0 and z=L. They constitute two boundary conditions for solvent 1.
At the coating-air interface, z=L, only basis function 11 has a value of one and others are zero. Therefore, boundary condition there is

n n
Z |V Z | =Du gz Do) | 40w |5 | Doy
j=1

j=1

+ D12

. _ _ 8(:1
(Y1 =1, attop)=Dyy {82

ac ac ac — —
822] = {Dn T; +D12322} = —[(1 = c1V1)kg1(P1i — P1p) — €1V2Kkg2(P2i — P2p)] (32)
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Eq. (32) indicates that the boundary condition at the top is described by mass transfer coefficients for solvents 1 and 2.
At the coating-substrate interface, ¥/, has a value of one and others are zero. Hence,

n n
d 0
E U] Yn + D12 E U] Y =Dy % §Uj¢j Y + D12 P gyj¢j Yn,
Jj=1

j=1

(Yn =1, atbottom)= Dy

Bac;} Y+ D12 [8 ] Yn == |:Dll 882 + D12 Bcz} Yn = (33)

Eq. (33) means that the flux of the solvent at the coating-substrate interface is zero.
The boundary conditions were arranged in the form of a vector C; as:

—[(1 = c1V1)kg1(p1i — P1p) — ¢1Vakga(p2i — Pap)] < Boundary condition at top

0
= . (34)

0 < Boundary condition at bottom |,

Without loss of generality, integration and summation can be interchanged in third and fourth term of Eq. (31). Therefore,

L L n L L
¢81 ¢a, ¢ i ¢az
/o P 87]871/;“’ dz+/0 D12 8] E;gvf dz:z</0 ] Ipdl)”]“‘Z(/ D128] awdz)

j=1 j=1 j=1

i=1,2,3,...,n (35)

Eq. (35) can be expanded for all values of i and j and rearranged in matrix form as:

uq
[ [ o1 dyn "L ddn dy "L dey dyn o dgndys ] “2
D D —_ D D —r1
/O“dzd /O“dz dzdz/oudzdd /01de iz ,
L L L L :
/ p,, 41 dpr dvo / Dy dn dyr> | / D;, 41 dpr dvo / Diy dpn dra | s
0 dz dz 0 dz dz 0 dz dz 0 dz dz —=B,U (36)
41
T dgdy T dgdye, [N dgdy T dgwdy "
1 n n n 1 n n n
/OD“ iz dz /OD“ iz dz /OD”E iz /0D12 iz dz
L = nx2n
LVn 1 2nx1
Now substituting Terms 1-3 into Eq. (27)
Ri =AU —BiU - (37)
Similar to Eq. (37) for residual Ry, the following matrix equation can be written for residual R, (Eq. (28)):
Ry =A;V5 —ByUy —C, =0 (38)
L L L
81/1
R R A
0 0 0 t
: : L . =AV (39)
L L L )
vy
/ $1Yndz / PaYpdz - / Pnndz 5t
0 0 0 nxn nx1
—[(1 = c2V2)kg2(P2i — P2p) — ©2Vakg1(P1i —p1p)] < Boundary condition at top
0
G = (40)

0 < Boundary condition at bottom
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Eq. (28) can be expanded in matrix form similar to Eq. (27)

ByUs

Above matrix can be rearranged as

- oL
/ Do
0
L
Dy1——
/0 dz

L
/ D21 d¢1 ded
LJo

dz dz
L
dey dyrp
(}g [)22 dz dz —=dz

L
| pn
LJo

r L
/ D, 41 déy dyn W,
0

din dyn .
dz dz

deér dyn W,
dz dz

dé %dz
dz

dz dz

L L
dd)n dl//l
/ODzz e Edl /OD21

L L
don dyr,
/ODzz e ?dl /OD21

dgn dym

2747 dz

L
[ o
0

dz “dz

L
d¢n dwz
"4z dz dz /0

dn dn . /L
0

dz dz

L
d¢n dllfl d / D
0

o
dz/D
0

D
22717

d
D,, 41

Matrix Egs. (37) and (38) can be combined and arranged as:

AU =BU +C

roeL
/ $1y1dz
0

L
/¢1 Yondz
L0

_aﬂ_

el

. L

/¢1Wndz
OL

/‘pl‘ﬂn-ﬂdz
0

ot

dup

ot
8V1
ot

o

2nx1 L

—[(1 = 2V )kga (P2

0
0

0

L L
/ Gnirdz / Bui1vrdz
0 0

: . : .

/ Pn¥ndz / Pnp1¥ndz
OL OL

/ On¥n1dz / Pni1¥ni1dz
0 0

L L
/¢n‘ﬁ2ndl /¢1 Yondz
0 0

= [(1 = c1Vi)kg1(p1i = P1b) — €1 Vakga(P2i — Pab)] ]

—pap) — ©2Vikg1(p1i

deér dyn 1,
2z dz

%Lv/zdz
dz

dyrm
dz dz dz

iy dvn .

dz dz

dr v
dz

dz

d1 dym
dz dz

L
/D
0
L
/Dzz
0

L
/Dzz
0

L
/ ¢onY1dz
0

. L

/¢2n¢ndl
OL

/¢2n‘/’n+1dz
0

L
/ Pnrandz
0

—DP1p)]

- 2nx1

U1
L -
dd)n dllfl va
/0 Do gy gz
L
dopn dyry
/0 Doy gz | |
. Uy
: "
/L D, 4n d¥n
0 dz dz = nx2n
_Un
Uy
dgndy 7 |H2
dz dz
d¢n dwz
iz az ¢ tn
41
v2
dn dn ;.
dz dz = nx2n
LVn J 2nx1
T
up
Un
U=
L1
L)
2nx2n
LVn ] 2nx1

—ByU

2nx1

(41)

(42)
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Fig. 2. Quadratic basis functions for two elements. Each element has three nodes and the same number of basis functions. The node within an element is chosen to be at its
center.

- L L L -
deoy dyry den dijry deoy dyry den dyry
/0 b7 dz - o Dv 4z dz 0 Do dz - o Doz dz

L L L L
/D“%dllfndz /D11d¢”d‘/’”d /D12%dw"dz /D1 don d¥m 4,
0 0 0 0

dz dz dz dz dz dz dz dz

Bl do dw L dgn dyr L de dw b dgn dyr
/D21 : 1dZ /Dn 1Lz /Dzz ! ldz /Dzz n = ld,

0 0 dz dz o o dz dz

dz dz dz dz dz dz

L L L L
D21 d¢l dwﬂ dz - Dz] d¢n dwn dz D22 7d¢l dw“ dz - D22 d¢n dwn dz
-Jo dz 0 0 dz 0

- 2nx2n

3.2. Evaluation of matrices A and B

In Galerkin’s method, the functions, ; are chosen to be same as the basis functions, ¢;. In this work, the basis functions were chosen
to be quadratic polynomials because of their popularity. For quadratic polynomials, each element has three nodes—one at each end and
the third one at the center as shown in Fig. 2. As mentioned before, the polynomials chosen were piece-wise continuous having a value of
1 at one node and zero at all other nodes. For example, the polynomial ¢p; =1 at z=0 and ¢ =0 at z=1;/2 and z=1;. Each polynomial spans
at the most two elements. For illustrative purpose, only two elements are shown in Fig. 2. The number of elements can be changed till the
solution becomes independent of it.

Equations for a basis functions are given below for an element starting at a and ending at b.

2, a+3b b? +ab

- - 43

P L Py A PR “3)
4 2 a+b 4ab

__ 4 - 44

P Py A PR ()

s — 2, 3a+b a’4ab (45)

@—bF (@=b7  (@a-by

It can easily be seen that the basis functions ¢; (i=1, 2 and 3) have a value of one at node i and zero at others. In Fig. 2, for the first
element,a=0and b=1 and for the second, a=1; and b=L. Unlike other basis functions, ¢3, spans two elements. Eq. (45) defines it in element
one and in element two it is same as ¢, in element one for different values of a and b.

Now, substituting the values of a and b in elements one and two in Egs. (43)—(45), the basis functions in Fig. 2 are obtained:

3.3. First element

¢1:72 - —z+1 (46)
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4 4
$2 = —l—zzz + Hz (47)
1
2 5, 1 1
¢3 = l]—zz —EZ+E (48)

3.4. Second element

2 2 11 +3L L2+11L

= z° - z+ (49)
S TR L TR L Ty
P 244 I1+L22_ 4l1L2 (50)
(h—1) (h—12  (j-1L)
2
¢5 2 Zz— 311+L P l] +11L (51)

BN ) e T

In Galerkin’s method, the weighting functions 1; are chosen to be same as the basis functions, ¢;. Incorporating ¥/; = ¢; in matrix A changes

it to:
roL L L L
/¢1¢1d2 /¢n¢1dl /¢n+1¢1d2 /¢2n¢1d2
0 0 0 0

. ) IV ) . ) IO )
/ h1¢Pndz s / Pnndz / Pny1¢ndz e / Ponndz
A= 0 0 0 0

L L L L
/ bréundz - / Gubusadz / Guirfuindz - / anbnsrdz
0 0 0 0

L L L L
/ d1¢dz - / PnPondz / Gny1¢2ndz - / P2nP2ndz
LJO 0 0 0 4 2nx2n

The evaluation of entries in row 1 is shown below for two elements. Entries in row 1 and entries in others rows for any number of
elements can be calculated in a similar way.

L I L I . .
A = fo ¢1¢1 = fol o101 + fh D11 = fol @11, because ¢y is zero in element two.
For the same reason as above, the next two entries in row one are:

L I L Iy
Az =/ G201 = G291+ | o1 = b2
0 0 I 0

L I L Iy
A3 =/ P3¢ = P31+ | G301 = P3¢
0 0 I 0

The remaining entries in row one are zeros because in element one ¢4 and ¢s are zero and in element two ¢; is zero.

L I L
Ay =/ P41 = Qa1+ | Gap1 =0
0 0 I

L I L
Ais =/ P51 = ¢sPp1+ | ¢s¢p1=0
0 0 I

Similar calculation can be shown for solvent 2.
Ant1,1 =A11, Ant12 =A12, Anp13 =A13, Apy1,4a=A14, App1s =Ars

The second row would also have only six non-zero entries because ¢4 and ¢5 are zeros in element one. The third row would have ten
non-zero entries because the basis function ¢3 spans both the elements.
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For n elements, starting with row three, every odd row would have ten non-zero entries and every even row would have six non-zero
entries. That is, 4th, 6th, 8th,. .. would have six non-zero entries and 5th, 7th, 9th,. .. would have ten non-zero entries. The matrix A then

has the following form with A;; (i, j=1, 2, .. ., n) representing non-zero entries.
Ay Az Az 0 0 0 O Ay Ay Ak 0 0 0 0 7
Ay Ay Ay 0 0 0 O Ay Ap A3 0 0 0 0
A3y A3y Asz Asg Ass 0 0 A3z Ay Asz Asg Ass 0 O
0 O Ag3 Agg Ass O O O O Ay A Ags O O

0 0 As3 Asqy Ass Asg As7 0 0 Ass Ass Ass Asg Asy
0 0 0 0 Ass A As7 O 0 0 0 Ags Ass Ag
0 0 0 0 A Ag A7 0 0 0 0 A A Ag
A Ay A3z 0 0 O O Ay Ap A3 0 0 0 O

As3 Asq Ass Asg Asy

0
0

0 0 O O Ags Ass Asg 0 0 0 0 Ass Ags Agy
0

0 0 0 0 As;s A A7 O 0 0 As;s A A7z

2nx2n

Similar calculations can be made for each row of matrix B, which will have the same structure as matrix A. The calculation of entries of
matrix B is complicated than those in matrix A because of diffusion coefficient. The entries in the matrices are obtained by evaluating the
integrals by Gaussian quadrature. To perform repeated evaluations using a computer, it is better to scale all the elements to [-1 1]. After
scaling, the entries in matrices A and B would change; only entries in row one of the matrices are illustrated below. Other entries in the
matrices change in a similar way.

I 1 I 1 I 1
l l l
d1¢p1 dz == 51/ &1 Pqdx, b1 = 51/ &, Py dx, 301 = 51/ PP dx (52)
0 -1 0 -1 0 -1
where
X2 —x 5 X2 +x
Pr=——, Pp=—x"+1, P3= (53)
2 2
The entries in first row of matrix B would become:
pd¢rder . _ 2 d®, dd,
/0 @z @ L D ax dx X (54)
dppdpy , 2 d®, dd,q
/0 Dar @ 4= L 7DW x (55)
d¢>3 doq 2 d®3 dd,
/0 dz dz 4z # l1 D dx dx o (56)

Mutual diffusion coefficient in matrix B is to be calculated using multicomponent diffusion models given in Table 1 which need value
of self diffusion coefficients. Self-diffusion coefficients for both the solvents were calculated at Gauss points. The method is given below.

Calculate the concentration of each solvent at each Gauss points

Gauss points are, k = [«/ﬁ/S, 0, —\/ﬁ/S} corresponding weights, @ =[5/9, 8/9, 5/9]

3

= ueik) (57)
i=1
3

=) (k) (58)
i=1

3.5. Weight fractions at Gauss points

Weight fraction of solvent 1

w1 (k) = all) _ (59)
c1(k) + ca(k) + (1 = c1(k)V1 — ca(k)V2 )Ppolymer
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Table 2
Free volume parameters (Alsoy & Duda, 1999).
Parameter Unit PS-toluene PS-tetrahydrofuran
Do cm?/s 482 %104 144 %104
Ky cm3/gK 0.000145 0.00075
KV% cm?/gK 0.000582 0.000582
K> K -86.32 10.45
Koo K -327 —-327
Tai K 0 0
Te K 0 0
vr cm3/g 0.917 0.899
vz cm3/g 0.85 0.85
£ 0.58 0.45
X 0.354 0.34

Weight fraction of solvent 2
cy(k)

wy(k) = ~ ~ (60)
c1(k) + c2(k) + (1 = c1(k)V1 — ca(k)V> )/Opolymer

Weight fraction of polymer

w3(k) =1 — w1(k) — wa(k) (61)
Total free volume for jumping at Gauss points

% K K K

%(k) = ;/1 @1 (k)(Ka1 +T = Tgr) + )1/2 @y (k) Kz + T = Tga) + ;3 o3(k)(Ka3 + T — Tg3) (62)
Now self-diffusion coefficient were calculated using following

3 A
(Zj:1wj(1<)‘/j*§i3/§j3)
Dj(k) = Dy; exp | — (63)

Ven/y(k)

Above self-diffusion coefficient were used to calculate the mutual diffusion coefficient and then entries in B matrix were calculated
using three point Gauss quadrature, as shown below
Lets take Eq. (54)

dér doy do, d‘P1 2 ,
/0 D —dz ﬂ D el TZ Dy (k) - @, (k) - @ (k) - (k) (64)
- =1

Entries in A matrix were calculated as following

3

1 / @11 == 13 (@1(K) - B4 (K) - (k) (65)

k=1
4. Element sizing, time integration and number of elements

The coating thickness was divided into n, elements, at all instants of time. The elements were made non-uniform with their size rising
gradually from the top to the bottom. The elements near the top were chosen to be small to capture the precipitous drop in concentration
there. A benefit of using non-uniform elements is reduction in computation time. A function, r; =((i — 1)/ne)>L where i varies from 1 to ne + 1
stretched the elements from the top to the bottom of the coating. The size of element i can be obtained by r;+; — ;. The exponent in the
stretching function can be changed to raise or lower stretching.

Matrices A and B are computed and then Eq. (42) is expanded to generate 2n ODEs. To these ODEs, Eqgs. (5) and (12) are appended
to produce a total of 2n+2 ODEs. The set of ordinary differential equations generated by expanding Eq. (42) was integrated by a stiff
solver, ode15s, of MATLAB. 50 elements were taken in the present study; doubling the number to 100 changed the concentrations at all
locations by <1%. Code for the drying of ternary polymer solutions is given in Appendix I. MATLAB Solution consists of two programs: one is
function file and other one is main file. In main file, number of the elements, coating thickness, coating temperature and concentration or
weight fractions of any two species are to be defined. In function file, all free volume parameters, mass transfer coefficients, heat transfer
coefficients, size of coating, physical and chemical properties of each species and sample holder are to be defined. It generates matrices A,
B, and C which were then integrated using MATLAB. A typical run on a 2.66 GHz computer with a memory of 506 MB took about 20s.

Code was tested with the published results of Alsoy and Duda (1999). All the free volume parameters are given in Table 2 and
experimental conditions and other parameters are given in Table 3.

Fig. 3 shows the comparison of residual solvent and temperature with time for polystyrene-toluene-tetrahydrofuran system. There is
very good agreement between the simulation results of this work with earlier data (Alsoy & Duda, 1999). Hence, current formulation and
solution scheme can be used for further analysis of drying process.

Figs. 4-6 show the evolution of concentration profiles during the course of drying of coating. Both the solvents evaporated from
the coating into the air. Initially concentration of less volatile solvents (toluene) goes up due to higher rate of evaporation of high
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Experimental parameters for polystyrene-toluene-tetrahydrofuran system (Alsoy & Duda, 1999).
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Initial conditions

Substrate
parameters

Coating parameters

Operating
conditions

Tem

perature

Coating thickness
Initial composition of solvent 1
Initial composition of solvent 2

Heat capacity
Density

Base thickness

Heat capacity
Density of polymer

Heat of evaporation of solvent 1
Heat of evaporation of solvent 2

Base side heat transfer coefficient, h®
Coat side heat transfer coefficient, h®
Bottom air supply temperature, T®

Top air supply temperature, T¢

Mass transfer coefficient of solvent 1
Mass transfer coefficient of solvent 2
Mole fraction of the solvent 1 in the air

Mole fraction of the solvent 2 in the air

303K

0.00577 cm
0.321cm?/g
0.321cm3/g

1.25]/gK
1.37cm3/g
0.003556 cm

212]/gK
1.083cm3/g
360]/g
435]/g

0.9228 x 103 W/cm? K
10.944 x 1074 W/cm? K
333K

333K

1.85x 1079 s/cm

1.71 x 109 sjcm

0

—340

100 M

80|
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40r

% Residual solvent
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Coating Temperature
( Alsoy and Duda, 1999)

G
s
&
H

Residual Solvent
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( Alsoy and Duda, 1999)
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Fig. 3. Comparison of drying model predictions of this paper with published data for polystyrene-toluene-tetrahydrofuran system. Initial coating thickness was 577 pwm,
concentrations of toluene and tetrahydrofuran were both 0.321gcm>. Initial coating temperature was 303 K, air temperature was 333K and top and bottom side heat
transfer coefficients were 10.944Wm=2°C-! and 9.228 Wm~2°C-!, respectively.

volatile solvent (tetrahydrofuran) as shown in Fig. 5 after 5s. After 55, toluene concentration starts falling and steep concentration
profile is developed near the surface after 20s of drying. Selection of unequal element size can only produce such kind of results in
lesser computational time. Therefore, near the interface, element size was smaller than that of near the substrate where profile is nearly

flat.
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Fig. 4. Evolution of tetrahydrofuran concentration profiles in poly(styrene)-toluene-tetrahydrofuran (THF) system.
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Fig. 5. Evolution of toluene profiles in poly(styrene)-toluene-tetrahydrofuran coating system.
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Fig. 6. Evolution of poly(styrene) profiles in poly(styrene)-toluene-tetrahydrofuran coating system.

Fig. 6 shows the profile of poly(styrene) during the course of drying. Initially concentration of poly (styrene) drop near the coating-air
interface because of low external mass transfer rate. As drying proceeds, drying mechanism changes from externally controlled to internal
diffusion controlled which is very slow process in case of polymeric coatings. Therefore, longer time is needed to remove the same amount
of solvent at later stages.

5. Conclusions
Finite element formulation using Galerkin’s methods of weighted residuals has been discussed extensively for multicomponent

polymer-solvent-solvent systems. Three point Gauss quadrature polynomials have been used to evaluate coefficients of matrices A and
B. Finite element solution has been validated with earlier published data for poly(styrene)-toluene-tetrahydrofuran system.
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Appendix I. Code for drying of polymer-solvent-solvent coating

% Solvent (1): Toluene

% Solvent (2): Tetrahydrofuran (THF)
% Polymer (3): Polystyrene

cle, clear all

global ne v1 v2 v3 tc;

ne = 50; % Number of elements

n=2%ne+l; % Number of nodes

vl =1/0.8622 ; % Specific Volume solvent 1, cc’/gm
v2 =1/0.886; % Specific Volume of solvent 2
v3=1/1.10; % Specific Volume of polymer

tc =303; % Temperature of air, K

% To calculate concentration using weight %age of polymer and solvents

wt3=14.17; % Mass of polymer out of 100 gm
wt1=15.68; % Mass of solvent 1 out of 100 gm
wt2=70.15; % Mass of solvent 2 out of 100 gm
cwl=wtl/(wtl *vI+wt2*v2+wt3*v3); % Concentration of solvent 1, g/cc

cw2=wt2/(wtl *v1+wt2*v2+wt3*v3); % Concentration of solvent 2, g/cc
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cw3=wt3/(wtl1*v1+wt2*v2+wt3*v3); % Concentration of polymer, g/cc
%%%%%%%%%% For this case use following values of concentrations
cwl1=0.321;

cw2=0.321;

% Assigning Initial Concentration at All Nodes for Both the Solvents

fori=1:n
u(i,l)=cwl; % Initial concentration of solvent 1 at all nodes
u(i+n,1)=cw2; % Initial concentration of solvent 2 at all nodes
end
u(2*n+1,1)=0.00577; % Initial coating thickness, cm
u(2*n+2,1)=tc; % Initial coating temperature, K

[t,u]=odel5s(@code ps tol thf[0:1:2397],u);

% To plot concentration of solvent 1 at all nodded for given drying time
figure(1)

plot(t,u(:,1:n),'b")

hold on

% To plot concentration of solvent 2 at all nodded for given drying time
figure(2)

plot(t,u(:,n+1:2*n),'b")

hold on

% To plot change in coating thickness for given drying time

figure(3)

plot(t,u(:,2*n+1),'r"

hold on
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% To plot change in coating temperature for given drying time
figure(4)
plot(t,u(:,2*n+2),'r")
hold on
for i =1:length(t)
% Calculation for residual solvent starts
cl1t=0; % set initial amount of solvent 2
c2t=0; % set initial amount of solvent 2
% To calculate element size
for k =1:ne;
kk1(i,k)=(((k+1-1)/ne)*2 - ((k-1)/ne)*2)*u(i,2*n+1);
end

x =[sqrt(15)/5,0,-sqrt(15)/5]; % points of Gauss quadrature

w=[5/9,8/9,5/9]; % values of weighting function
r=0.0;
for 1=1:2:n-2
m =l;
r=rt+l;
forj=1:3
% Phis

fi(m,j)=(x(1)*x() - x())/2;
fi(m+1,j)=(-x()*x()+1);
fi(m+2,)=(x()*x() + x())/2;
end

fork=1:3
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clt=clt+(kk1(i,r)/2)*(u(i,m)*fi(m,k)*w(k)+u(i,m+1)*fi(m+1,k)*w(k)

+u(i,m+2)*film+2,k)*w(k)); % Amount of solvent 1 at a given time, gm

c2t=c2t+(kk1(i,r)/2)*(u(i,m+n)*fi(m,k)*w(k)+u(i,m+1+n)*fi(m+1,k)*w(k)
+u(i,m+2+n)*fi(m+2,k)*w(k)); % Amount of solvent 2 at a given time, gm

end

end

ct(i)=clt+c2t; % Total amount of solvent in the coating , gm

cwt(i) = ct(i)*100/ct(1); % Percentage solvent remaining in the coating

cavl(i)=clt/u(i,2*n+1); % Average solvent 1 within the coating

cav2(i)=c2t/u(i,2*n+1); % Average solvent 2 within the coating

% Calculation for residual solvent ends
% To calculate polymer concentration
for j=1:n
c3(i))=(1-u(i,j)*vl-u(i,j+n)*v2)/v3;
cl(ij)=u(i,j);
c2(ij)=u(i,j+tn);
end
% To calculate node positions if base is at zero
for j=1:2*ne+1
pp(i.j)=p(i.,2*ne+1)-p(i,));
end

end

% To plot residual solvents with time

figure(5)
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plot(t,cwt,'m")

hold on

% To plot residual solvent and coating temperature on primary and secondary y-axis
figure(7)

[AX,cwt,u(:,2*n+2)]=plotyy(t,cwt,t,u(:,2*n+2));

set(cwt,'color','d")

set(u(:,2*n+2),'color','b")

set(cwt,'linestyle','-")

set(u(:,2*n+2),'linestyle',":")

set(cwt,'linewidth',2.5)

set(u(:,2*n+2),'linewidth',2.5)

hold on

% To plot average residual solvent with time

figure(8) % Average concentration of solvent 1 with time
plot(t,cav1,'k")
hold on

figure(9) % Average concentration of solvent 2 with time
plot(t,cav2,'k")
hold on

% To calculate concentration at nodes

for j = 1:50:length(t) % Time interval between two profiles is 50 s
figure(6) % Concentration profiles of polymer

plot(pp(j,1:n),c3(j,1:n),k")
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hold on

figure(7) % Concentration profiles of solvent 1

plot(pp(j,1:n),u(j,1:n),'’k")

hold on

figure(8) % Concentration profiles of solvent 2

plot(pp(j,1:n),u(j,n+1:2*n),'k")

hold on
end
% Start of calculations of model concentration at given experimental times and positions
count = 1;
texparray= time; %% define all times here
positionarray=position; % define all position from top on which concentration need to be
calculated.
clexp=toluene; % experimental values of toluene concentration
c2exp=thf; % experimental values of THF
c3exp=ps; % esperimental values of poly(styrene)
for itx = 1:length(texparray)

texp = texparray(itx);
pexp=positionarray(itx)*100/1000000;

kkk(texp,ne+1)=0;

for i=ne:-1:1

kkk(texp,i)=kkk(texp,i+1)+kk1(texp,i);
if (kkk(texp,i)==pexp)
nn=2%i-1;
clmodel=cI(texp,nn); % Solvent 1 concentration

c2model=c2(texp,nn); % Solvent 1 concentration
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c3model=c3(texp,nn); % Polymer Concentration
elseif (kkk(texp,i+1)<pexp && pexp<kkk(texp,1))
nn=2%i+1;
zeta=(pexp-pp(texp,nn))/(pp(texp,nn-2)-pp(texp,nn));
philmodel=2*zeta"2-3*zeta+1; % from 0 to 1
phi2model=4*zeta-4*zeta"2;
phi3dmodel=2*zeta"2-zeta;
clmodel=cl(texp,nn)*philmodel+c1(texp,nn-1)*phi2model+c1(texp,nn-2)*phi3model;
c2model=c2(texp,nn)*phil model+c2(texp,nn-1)*phi2model+c2(texp,nn-2)*phi3model;
c3model=c3(texp,nn)*philmodel+c3(texp,nn-1)*phi2model+c3(texp,nn-2)*phi3model;
end
end
texparray(count) = texp;
clarray(count,1) = cImodel;
c2array(count,1) = c2model;
c3array(count,1) = c3model;
count = count +1;

end

% End of calculations of model concentration at given experimental times and positions

% To plot experimental and model predicted concentration in same graph

figure(9)

plot(texparray,clarray,'’kv') % Plot time and model concentration of solvent 1 at experimental
positions and time

hold on
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plot(texparray,clexp,'’k")
positions and time

hold on

figure(10)
plot(texparray,c2array,'kv')
positions and time

hold on
plot(texparray,c2exp,'’k™")
positions and time

hold on

figure(11)
plot(texparray,c3array,'kv')
positions and time

hold on
plot(texparray,c3exp,'’k"")
positions and time

hold on
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% Plot time and measured concentration of solvent 1 at experimental

% Plot time and model concentration of solvent 2 at experimental

% Plot time and measured concentration of solvent 2 at experimental

% Plot time and model concentration of polymer at experimental

% Plot time and measured concentration of polymer at experimental

% m-file called by the main program is given below

function du = code ps tol thf(t,u)

global ne v1 v2 v3 tc;

global k13 k23 zel3 ze23;

% Calculation of elements sizes starts

for j = l:ne+1;
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p() =[(G-D/ne)*2 *u(2*n+1)]; % Position of element
end
for i =1:ne;

Kk(i)=p(i+1)-p(0);

end

% Size of element

%Calculation of element size ends

%Interaction Parameter Input Data

del2=19.129 ; % Solubility parameter solvent 2 , [J/cc]*1/2
dell=18.15; % Solubility Parameter of solvent 1
del3=19.81; % Solubility Parameter of polymer
v22=81.942; % Molar Volume of solvent 2, cc/mol
v11=106.556; % Molar Volume of solvent 1, cc/mol
volair=20.1; % molar volume of air, cc/mol

mol3=230000;
mol2=72.10;
moll=106.167;

molair=28.97;

% Molecular weight of polymer
% Molecular weight of solvent 2
% Molecular weight of solvent 1

% molecular weight of air, g/mol

rohl=1/v1; % Density of solvent 1 , gm/cc
roh2=1/v2; % Density of solvent 2 , gm/cc
roh3=1/v3; % Density of polymer , gm/cc

v33=mol3/roh3; % Molar Volume of polymer, cc/mol

R11=8.3145; % Universal Gas Constant, J/gm/ mol/ K

%Flory —Huggins’ interaction calculation starts

x13=0.35+v11*(del1-del3)"2/(R11*tc); % Solvent 1 and polymer
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x12=0.35+v11*( dell-del2)*2 /( R11*tc); % Solvent 1 as the reference
x12=0.35+v22*(dell-del2)"2/( R11*tc); % Solvent 2 as reference
x23=0.35+v22*(del2-del3)"2/( R11*tc); % Solvent 2 and polymer
%% 1If interaction parameters values are known then define above

X

%Interaction parameter calculations ends

%Free Volume Parameters

v2stt=0.899; %Critical molar volume of solvent 2, cc/gm
v1stt=0.917; %Critical molar volume of solvent 1, cc/gm
v3stt=0.850; %Critical molar volume of polymer, cc/gm
tg3=94+273; % Glass Transition temperature of polymer , K
v3j=0.6224*tg3-86.95; % Molar volume of polymer jumping unit, cc/mol
m3j= v3j*roh3 ; % Molecular weight of polymer jumping unit, gm

% m3j=163.60 ; % known here
ze23=v2stt*mol2/(v3stt*m3j);
% Can be estimated from weight loss experiments in this work
zel3=vlstt*moll/(v3stt*m3j);
% Can be estimated from weight loss experiments in this work
%Literature values of free-volume parameters
k12=0.000753; % cc/gm /K
k11=1.45¢e-3;
k13=5.82e-4; % Can estimated from weight loss experiments in this work
ze23=0.45;
ze13=0.58;
ze33=1;

k21=-86.32; %K
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k22=10.45; %K

k23=-327;, %K % Can be estimated from weight loss experiments in this work

d02=14.4¢-4 ; % cm’/s
% Cab be estimated from weight loss experiments in this work
d01=4.82e-4; %
% Can be estimated from weight loss experiments in this work
klg=1.85e-009; s/cm
% Can be estimated from solvent 1 evaporation experiments
k2g =1.71e-009; s/cm
% Can be estimated from solvent 2 evaporation experiments
HG=10.944e-4; W/cm"2/K % Coating-air side heat transfer coefficient

% Lowest possible heat transfer coefficient for natural convection on coating-gas side interface

cpp=2.12; % J/g K % Specific heat capacity of polymer
rohp=1.083; % g/cc % Density of polymer

cps=1.25;% J/gK % Specific heat of substrate material
rohs=1.37; % g/cc % Density of substrate material
hs=0.003556; %cm, % Thickness of substrate material

tG= 333; K % Temperature of coating —air side gas
tg=333; K % Temperature of gas at substrate side

% Vapour Pressure from Yaws(1999)

pv2=13.6%9.8*power(10,(34.8700-2.7523e3/u(2*n+2)-9.5958*log1 0(u(2*n+2))
+1.9889¢-10*u(2*n+2)+3.5465e-6*u(2*n+2)*u(2*n+2)));

% Vapor Pressure of solvent 2 (THF), Kg/( m. sz)
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pvl =13.6*9.8* power(10,(34.0775 - 3.0379e3/u(2*n+2) - 9.1635*log10(u(2*n+2))+1.028%¢-11
*u(2*n+2) +2.7035e-6 *u(2*n+2)*u(2*n+2))); % Kg/ m. s"2
% Vapor Pressure of solvent 1 (toluene) Kg/ (m. s2)
hv2=29.81e3/mol2; % J/g % Enthalpy of vaporization of solvent 2(THF)
hv1=35.67¢3/moll; % Enthalpy of vaporization of solvent 1(toluene)
hv1=360; Alsoy and Duda(1999)
hv2=435;
% Expressions for activity ( Favre et al.,1996 )
al=exp(log(u(l)*vl)+(1-u(1)*vl-u(n+1)*v2*v11/v22)-(1-u(1)*vl-
u(nt+1)*v2)*v11/v33 + x13*power(((1-u(1)*vI-u(n+1)*v2)),2)+
x12*power((u(n+1)*v2),2)+u(n+1)*v2*(1-u(1)*vl-u(n+1)*v2)*(x13+x12-

x23*v11/v22)); % Activity of solvent 1(toluene)

a2=exp(log(u(n+1)*v2)+(1-u(1)*v1*v22/vl1-u(n+1)*v2)-(1-u(1)*vl-
u(n+1)*v2)*v22/v33+x23*power(((1-u(1)*vl-u(nt+1)*v2)),2)+
x12*(v22/v11)*power((u(1)*vl),2)+u(1)*vI*(1-u(l)*vl-

u(nt+1)*v2)*(x12*v22/v11+x23-x13*v22/v11)); % Activity of solvent 2(THF)

pli=pvl*al; % Kg/(s"2.m) % Interfacial vapor pressure of solvent 1(toluene)

p2i=pv2*a2; % Interfacial vapor pressure of solvent 2(THF)

% Generation of A & B matrices starts

x =[sqrt(15)/5,0,-sqrt(15)/5]; % Gauss points
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w=[5/9,8/9,5/9]; % Weighting
r=0.0;
fori=1:2*n
forj=1:2*%n
f1(1,))=0.0; % To set all inputs of matrix A zeros
2(1,))=0.0; % To set all inputs of matrix B zeros
end
end
for 1=1:2:n-2
m =I;
r=rtl;
for k=1:3
% First Derivatives of basis function
df(m,k)=(x(k)*2-1)/2;
df(m+1,k)=(-x(k)*2);
df(m+2,k)=(x(k)*2+1)/2;
% Phi's , basis fucntion
fi(m,k)=(x(k)*x(k) - x(k))/2;
film+1,k)=(-x(k)*x(k)+1);
fi(m+2,k)=(x(k)*x(k) + x(k))/2;
end
fork=1:3
cl(r,k)=u(m)*fi(m,k) +u(m+1)*fi(m+1,k)+u(m+2)*fi(m+2,k);
% Concentration of solvent 1(toluene) at nodes
c2(r,k)=u(m+n)*fi(m,k)+u(m+1+n)*fi(m+1,k)+u(m+2+n)*fi(m+2,k);

% Concentration of solvent 2(THF) at nodes
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phil(r,k)=cl(r,k)*vl; % Volume fraction of solvent 1(toluene) at nodes
phi2(r,k)=c2(r,k)*v2; % Volume fraction of solvent 2(THF) at nodes
phi3(r,k)=1-phil(r,k)-phi2(r,k); % Volume fraction of polymer(PS) at nodes
wl(r,k)=cl(r.k)/(cl(r,k)+c2(r,k)+(1-c1(r,k)*vI-c2(r,k)*v2)*rohp);

% Weight fraction of solvent 1(toluene) at nodes
w2(r,k)=c2(r,k)/(c1(r,k)+c2(r,k)+(1-c1(r,k)*v1-c2(r,k)*v2)*rohp);

% Weight fraction of solvent 2(THF) at nodes
w3(r,k)=1-w1(r,k)-w2(r,k); % Weight fraction of polymer(PS) at nodes
vih(r,k)=w1(r,k)*k11*(k21+u(2*n+2))+w2(r,k)*k12*(k22+u(2*n+2))+

w3(1,k)*k13*(k23+u(2*n+2)); % cc"3/gm

% Total free-volume for jumping

d1(r,k)=d01*exp(-(W1(r,k)*vIstt+w2(r,k)*v2stt*(zel3/ze23)
+w3(r,k)*v3stt*ze13)/vfh(r,k)); % cm?/s
% Self diffusion of solvent 1 (toluene) at Gauss points
d2(r,k)=d02*exp(-(w1(r,k)*v1stt*(ze23/ze13)+w2(r,k)*v2stt +
w3(r,k)*v3stt*ze23)/vth(r,k)); % cm?/s
% Self diffusion of solvent 2 (THF) at Gauss points
d3(r,k)=d03*exp(-(wW1(r,k)*vIstt*(ze33/ze13)+w2(r,k)*v2stt*(ze33/ze23) +
w3(r,k)*v3stt*(ze33/ze33))/vh(r.k)); % cm?/s
% Self diffusion of polymer (PS) at Gauss points
% Derivative of activity with respect to concentration
dlnaldcl(r,k)=v1*(1/phil(r,k)-1+v11/v33-2*x13*(1-phil(r,k))-phi2(r,k)*(x12-
x13-x23*v11/v22));
dlnaldc2(r,k)=v2*(-v11/v22+v11/v33+2*x23*phi2(r,k)*v11/v22+(1-

phil(r,k))*(x12-x13-x23*v11/v22));
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dIna2dcl(r,k)=v1*(-v22/v11+v22/v33+2*x13*phil (r,k)*v22/v11+(1-

phi2(r,k))*(x12*v22/v11-x13*v22/v11-x23));
dlna2dc2(r,k)=v2*(1/phi2(r,k)-1+v22/v33-2*x23*(1-phi2(r,k))-

phil(r,k)*(x12*v22/v11-x13*v22/v11-x23));
dIna3dc1(r,k)=v1*(-1/phi3(r,k)+(1-v33/v11)+2*x13*(v33/v11)*phil (r,k)+

phi2(r.k)*(x12*v33/v11-x12*v33/v11+x23*v33/vll));
dIna3dc2(r,k)=v2*(-1/phi3(r,k)+(1-v33/v11)+2*x23*(v33/v11)*phi2(r,k)+

phil(r,k)*(x13*v33/v11-x12*v33/v11+x23*v33/vl1));

% Case 1(Alsoy and Duda, 1999)

d11(r.k)=d1(r,k)*cl(r,k)*dlnaldcl(rk);

d12(r,k)=d1(r,k)*cl(r,k)*dlnaldc2(r,k);

d21(r,k)=d2(r,k)*c2(r,k)*dIna2dc1(r,k);

d22(1,k)=d2(r,k)*c2(r,k)*dIna2de2(r,k);

% Case 2 (Alsoy and Duda, 1999)

d11(r,k)=d1(r,k)*cl(r,k)*dlnaldcl(rk); % Main diffusion coeff. of solvent 1

d12(r,k)=0; % Cross term diffusion coeff. of solvent 1

d21(r,k)=0; % Cross term diffusion coeff. of solvent 2

d22(r,k)=d2(r,k)*c2(r,k)*dlna2dc2(r,k); % Main term diffusion coeff. of solvent 2

% Case 3 (Alsoy and Duda, 1999)
d11(r,k)y=d1(r.k);
d12(r,k)=0;

d21(r,k)=0;
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d22(r,k)=d2(r.,k);

% Case 4 (Alsoy and Duda, 1999)

d11(r,k)=cl(r,k)*(1-phil(r,k))*d1(r,k)*dlnaldc1(r,k)-
cl(r.k)*c2(r,k)*v2*d2(r,k)*dlna2dc1(r,k);

d12(r,k)=cl(r,k)*(1-phil(r,k))*d1(r,k)*dlnaldc2(r.k)-
cl(r,k)*c2(r,k)*v2*d2(r,k)*dlna2dc2(r,k);
d21(r,k)=c2(r,k)*(1-phi2(r,k))*d2(r.k)*dlna2dc1(r.k)-
cl(r,k)*v1*c2(r,k)*d1(r,k)*dlnaldc1(r,k);
d22(r.k)=c2(r,k)*(1-phi2(r,k))*d2(r,k)*dIlna2dc2(r.k)-
cl(r,k)*v1*c2(r,k)*d1(r,k)*dlnaldc2(r,k);

% Zielinski and Hanley (1999)

d11(r,k)=d1(r,k)*c1(r,k)*(1-phil(r,k)+cl(r,k)*v3)*dInaldcl(r,k)+
d2(r,k)*cl(r,k)*c2(r,k)*(v3-v2)*dlna2dc1(r,k);
d12(r,k)=d1(r,k)*c1(r,k)*(1-phil(r,k)+cl(r,k)*v3)*dlnaldc2(r,k)+
d2(r,k)*c1(r,k)*c2(r,k)*(v3-v2)*dIna2dc2(r,k);
d21(r,k)=d2(r,k)*c2(r,k)*(1-phi2(r,k)+c2(r,k)*v3)*dIna2dc1(r,k)+...
d1(r,k)*cl(r,k)*c2(r,k)*(v3-vl)*dInaldc1(r,k);
d22(r,k)=d2(r,k)*c2(r,k)*(1-phi2(r,k)+c2(r,k)*v3)*dIna2dc2(r,k)+

d1(r,k)*cl(r,k)*(v3-vl)*c2(r,k)*dlnaldc2(r,k);

% Generalized Model ( Price and Romdhane , 2003)

d11(r,k)=cl(r,k)*phi2(r.k)*(d1(r,k)*dlnaldc1(r,k)-d2(r,k)*dlna2dc1(r,k))+

c1(r,k)*phi3(r,k)*(d1(r,k)*dInal dc 1 (r,k)-d3(r,k)*dIna3de 1 (r,k));
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d12(r,k)=cl(r,k)*phi2(r,k)*(d1(r,k)*dlnaldc2(r,k)-d2(r,k)*dIlna2dc2(r,k))+
cl(r,k)*phi3(r,k)*(d1(r,k)*dlnaldc2(r,k)-d3(r,k)*dlna3dc2(r,k));
d21(r,k)=c2(r,k)*phil(r,k)*(d2(r,k)*dIna2dc1(r,k)-d1(r,k) *dlnaldc1(r,k))+
c2(r,k)*phi3(r,k)*(d2(r,k)*dIna2dc1(r,k)-d3(r,k) *dIlna3dc1(r,k));
d22(r,k)=c2(r,k)*phil (r,k)*(d2(r,k)*dIna2dc2(r,k)-d 1 (r,k) *dlnaldc2(r,k))+
c2(r,k)*phi3(r,k)*(d2(r,k)*dlna2dc2(r,k)-d3(r,k) *dlna3dc2(r,k));
end
for i =m:m+2
for j =m:m+2
for k =1:3
f1(1,))=f1(1,))+ (kk(r)/2) * fi(i,k)*fi(j,k)* w(k);
% To calculate left hand side of matrix A
f1(i+n,j+n)=f1(i+n,j+n)+ (kk(r)/2) * fi(i,k)*fi(j,k)* w(k);
% To calculate right hand side of matrix A
2(1,))=2(1,j)+ (2/kk(r)) * d11(r,k) * df(i,k)* df(j,k)*w(k);
% To calculate upper left part of matrix B
f2(1,j+n) = £2(i,j+n)+ (2/kk(r)) * d12(r,k)*df(i,k)*df(j,k) *w(k);
% To calculate upper right part of matrix B
f2(i+n,j) = 2(i+n,j)+ (2/kk(r)) * d21(r,k)*df(i,k)*df(j,k)*w(k);
% To calculate lower left part of matrix B
f2(i+n,j+n) = f2(i+n,j+n) + (2/kk(r)) * d22(r.k)*df(i,k)*df(G.k)*w(k);
% To calculate lower right part of matrix B
end
end
end

end
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% Boundary conditions
fori=1:2%n
c(D)=-((1-u()*vl)*klg*pli -u(1)*v2*k2g*p2i)*10;
c(n+1)=-((T-u(n+1)*v2)*k2g*p2i - u(n+1)*vi*k1g*pli)*10;
c(1)=0;
end
c=c';
% To keep time derivatives of concentrations on left hand side du/dtt
a=inv(fl); % To calculate A™
b=a*(-f2); % To calculate A" times (-Diffusion Matrix)
cc =a*c; % Product of A*C
fori=1:2*n
ul(i)=u(i);
end
ul=ul";
dul=b*ul;
for i=1:2*n
du(i)=dul(i)+cc(i);
end
du(2*n+1)=(-vI*pli*klg - v2*p2i*k2g)*10; % Change in Thickness cm/s
du(2*n+2)=-(HG*(u(2*n+2)-tG)+kig*hvi*p1i*10+k2g*hv2*p2i*10+hg*(u(2*n+2)-
1g))/(rohp*cpp*du(2*n+1)+rohs*cps*hs)); % Change in Temperature,
du(2*n+2)=0; % There was no change in coating temperature in this work

du=du’; % All ODE’s to be solved in column form
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