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A B S T R A C T   

This manuscript proposes a hybrid method for the smart-grid (SG) optimization, which combines automatic 
demand-response (DR) shedding with load classification. The integration of the Mexican Axolotl Optimization 
(MAO) and Honey Badger Algorithm (HBA) constitutes the proposed hybrid approach. The HBA method im
proves the axolotls’ updating behavior. It is commonly referred to as the Enhanced MAO (EMAO) approach. The 
proposed energy-management framework optimizes customer power consumption patterns to minimize carbon- 
emissions, electricity-costs, and peak-power-consumption. By integrating utility generation, PV-battery systems, 
and dynamic price signals using the EMAO approach, it reduces power consumption costs, minimizes peak- 
fluctuations, and lowers carbon emissions. The EMAO control-topology is rigorously evaluated through MAT
LAB simulations, demonstrating superior performance compared to existing optimization methods such as 
HGPO, PSO, and GA. The results showcase the EMAO algorithm consistently achieving the lowest cost at 310 
cents, minimizing carbon emissions to 1.8 pounds, and achieving a high load classification accuracy of 98.2 %. 
With a moderate performance-to-cost ratio of 1.7, the EMAO algorithm excels in energy management, effectively 
balancing cost considerations, environmental impact, and load classification objectives. The proposed hybrid 
method effectively integrates DR shedding and load classification to optimize SG-operation, achieving significant 
improvements in cost, emissions, and load-classification accuracy compared to traditional methods.   

1. Introduction 

Electrical energy is an indispensable facet of modern human life, 
underpinning the functioning of societies, industries, and economies [1, 
2]. However, in many developing countries, the provision of reliable 
electricity remains a formidable challenge, primarily due to budget 
constraints and limited generating capacity [3,4]. The consequence of 
this shortfall often manifests as load shedding, a disruptive practice that 
frustrates consumers and hampers economic development [5,6]. In 
response to these pressing issues, Demand Side Management (DSM) 
emerges as a compelling solution, particularly when seamlessly inte
grated with the transformative capabilities of Smart Grid technology [7, 
8]. Furthermore, the environmental repercussions associated with con
ventional power generation methods have intensified the urgency to 
explore Renewable Energy Sources (RESs) as a promising and sustain
able alternative [9,10]. Several works have earlier presented in the 
literature were based on load classification with automatic shedding of 

demand response in smart grid by utilizing various approaches and 
features. A few works were given below [11,12]. 

Daneshvar et al. [13], have suggested an efficient scheduling method 
for multi-energy hubs in the day-ahead market, aiming to cut energy hub 
costs and decrease greenhouse gas emissions. The approach relies on 
maximizing clean energy production from WTs and photovoltaic panels 
at each hub, minimizing gas-fired system operation. However, it faces 
challenges due to the unpredictable behavior of stochastic producers, 
necessitating scenario reduction for practical application. Jadidbonab 
et al. [14], have devised a solution to the issue of optimum scheduling of 
smart residential energy hubs (SREHs) while accounting for various 
unknown characteristics. A risk-constrained two-stage stochastic pro
gramming model was used to characterize the influence of market 
pricing, demand, and solar radiation uncertainties on the SREH sched
uling issue. Daneshvar et al. [15], have presented a real-time energy 
market optimum energy dispatch scheduling model for renewable-based 
energy hubs. Battery energy storage methods, on the other hand, impose 
extra expenses and constraints. Mahto et al. [16], have studied the issue 
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of power and energy management on the grid’s consumption side via 
decision-making and load management based on the dynamic price of 
electricity. Ebrahimi and Ahmadi [17] have suggested a unique 
under-voltage load shedding strategy for power system voltage stability. 
Voltage-dependent load models and discrete load levels, on the other 
hand, impair the accuracy of load shedding strategies. 
Moradi-Sarvestani et al. [18], have presented distribution system plan
ning (DSP) with demand response (DR), emphasizing direct load control 
(DLC) DR using financial incentives for consumers with smart meters 
and switches. However, integrating detailed demand response data may 
introduce inflexibility in distribution system design. Since more pro
sumers and renewable energy sources were being used, demand-side 
energy management must be incorporated for reliable and sustainable 
grid operation, according to Rehman et al., [19]. However, Lack of 
confidence among parties hinders the adoption and effectiveness of 
demand-side energy management. 

The review of recent research shows that the load classification with 
automatic shedding of demand response in smart grid is the most 
challenging task. Uncertain behaviors of stochastic energy producers, 
like renewables, pose challenges in accurate energy scheduling. Overly 
conservative risk-constrained models may hinder the full utilization of 
renewable energy sources when actual uncertainties are lower than 
predicted. Integration of battery energy storage systems introduces 
constraints such as finite storage capacity and ongoing maintenance 
costs. Voltage-dependent load models may not accurately represent load 

behaviors, potentially leading to suboptimal load management. Addi
tionally, computational intractability issues arise in distribution system 
planning with increasing prosumers and renewable sources. The above- 
mentioned limitations are motivated to do this research work. 

Smart Grids use three approaches for optimal Demand Side Man
agement (DSM): game theory-based strategies, heuristic algorithms, and 
mathematical methods. Each has strengths and challenges. Mathemat
ical techniques offer robust tools but struggle with renewables and scale. 
Game theory balances comfort and cost but may miss complexities. 
Heuristic algorithms like PSO and GA prioritize DSM goals but need to 
consider grid resilience and user satisfaction. Challenges remain in 
handling renewables, ensuring comfort, and achieving grid sustain
ability. This study contributes to addressing these challenges in DSM. 

Contribution and novelty.  

• This study proposes a hybrid technique that combines automatic DR 
shedding with load classification techniques to improve energy 
management.  

• This study introduces the Honey Badger Algorithm to enhance the 
MAO algorithm, improving the optimization process and power 
consumption scheduling.  

• This study proposes an energy management framework based on 
optimization techniques that adapt customer power consumption 
patterns to minimize carbon emissions, electricity costs, and peak 
power consumption. 

Nomenclature 

DSM Demand Side Management 
RESs Renewable Energy Sources 
DR Demand Response 
EMS Energy Management Systems 
CSFs Common Storage Facilities 
GA Genetic Algorithms 
PSO Particle Swarm Optimization 
PAR Peak to Average Ratio 
RTP Real-Time Pricing 
RES Renewable Energy Sources 
AMI Advanced Metering Infrastructure 
EMC Energy Management Controller 
RAs Regular Appliances 
HGPSO Hybrid Genetic Particle swarm Optimization 
Vth Thermal voltage of diode 
Iph Photocurrent generated by the solar cell 
Ish-Shunt current 
T Temperature in kelvin 
Q Elementary charge 
rse, rsh Series resistance, shunt resistance 
μess Effectiveness of energy storage system 
eeCH and eedCH the power supplied (Kw) from photovoltaic to energy 

storage system and ESS to load 
dSHI Every appliance sold by sias 
γSHI On/off appliance status 
eSHU Net energy consumption 
dSHU ∈ As Each appliance from sias 
γSHU Status of the appliances’ on/off 
AVGep Average electricity price 
ς Electrical emission factor 
Φt Energy consumed by the appliance at time T 
t0,UNSCH
B,T , t0,UNSCH

B,T The status of appliance without and with 
scheduling 

ωD
B An appliance can experience maximum delay 

i Operating time of appliances and T1 to T24 as time-slots 
PEDs Priced Elasticity Demands 
PV Photovoltaic 
SREH smart residential energy hub 
DSP distribution system planning 
DLC direct load control 
SG smart grid 
MAO Mexican Axolotl Optimization 
HBA Honey Badger Algorithm 
ESS Energy Storage System 
EMAO Enhanced Mexican Axolotl Optimization 
MDMS Meter Data Management System 
DTR delay-time-rate 
SUAs Shiftable Uninterruptible Appliances 
SIAs Shiftable Interruptible Appliances 
v Voltage across the cell 
Vter min al Terminal voltage of the cell 
Iout Output current of the solar cell 
ps Stored energy (kwh) at time T 
nP and nS number of modules attached in series and parallel 
K Boltzmann’s constant 
η Duration of time in hours 
eSHI Net energy-consumption 
ΩSHI Power consumption of all appliances 
β The unit price 
As Sum of shiftable uninterruptible appliances 
ΩSHU Power-consumption of all appliances 
∏

Shiftable interruptible and uninterruptible appliances of 
net electricity costs by consumers 

∈ Cost per kwh 
ζ Number of hours in a day 
ωB Communicates an appliance-specific delay time rate based 

on operational delays 
tLO
B Length of net operation time-slots 

tT
B As appliance of net time-interval  

R. R et al.                                                                                                                                                                                                                                        



Energy 290 (2024) 130051

3

• The proposed EMAO algorithm is thoroughly evaluated through 
simulations conducted in MATLAB. It is compared with existing 
optimization methods, like Hybrid Genetic Particle Optimization 
(HGPO), Particle Swarm Optimization (PSO), and Genetic Algorithm 
(GA). The outcome shows that the superiority of the EMAO algo
rithm is based on cost reduction, carbon emissions, and performance- 
to-cost ratio.  

• The proposed EMAO algorithm consistently achieves the lowest cost 
and lowest carbon emissions compared to existing optimization 
methods. It also maintains a moderate performance-to-cost ratio, 
highlighting its cost-effectiveness and efficiency in energy 
management. 

The novelty of this study lies in the development of a hybrid tech
nique that combines automatic demand response shedding with load 
classification techniques. The study also introduces the Enhanced MAO 
(EMAO) algorithm, which enhances the scheduling of power consump
tion. This novel approach improves energy-management in the smart- 
grid, resulting in cost reduction, carbon emission reduction, and opti
mized power consumption. The rest of the paper is described as follows: 
section 2 explains the structure of energy-management using smart grid, 
section 3 details the hybrid strategy, section 4 demonstrates the result 

and discussion, and section 5 concludes the paper. 

2. Configuration of energy management in SG with 
photovoltaic-battery system 

Fig. 1 depicts the structure of Energy management in SG. The pro
posed approach is incorporated with grid and smart meter, PV module, 
energy storage system (ESS), smart home appliances, and grid. To lessen 
the cost of electricity in this manuscript, a hybrid EMAO approach is 
proposed to lessen the energy management cost by using smart grid. The 
two way communication is utilized for managing and solving the issues 
of demand-side. For managing the energy, in this manuscript, the 
controller of energy management EMAO is proposed to schedule the 
load. User discomforts, Peak to average ratio (PAR), reduction of carbon 
emission, are the key goals of the proposed method [20]. 

2.1. PV modeling 

A solar cell is an electrical device that converts light energy into 
electricity via the PV effect. To make an equal circuit diagram of a solar 
PV cell, connect the current source in parallel to an inverted diode with 
shunt and series resistances [21]. The shunt resistance contributes to 

Fig. 1. Configuration of energy management in SG  
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leakage current; however, the series resistance obstructs electron pas
sage from the N to P junction. When a PV cell receives solar irradiation, 
the output current is represented as, 

Iout = npIph − npI1

⎡

⎢
⎢
⎣e

(
v
ns
× Iout ×

rs
np

)

n + Vter min al
− 1

⎤

⎥
⎥
⎦ − Ish (1)  

where Iout denotes the output current of the solar cell, Iph indicates 
Photocurrent generated by the solar cell, v is the voltage across the cell, 
Vter min al is the terminal voltage of the cell, Ish indicates the Shunt- 
current. The thermal-voltage of diode is 

Vth =
K × T

Q
(2)  

where Vth implies the thermal voltage of diode, K is Boltzmann’s con
stant, T implies the temperature in kelvin, Q implies the elementary 
charge. The shunt-current is computed as, 

Ish =
v × np

ns
+ Iout × rse

rsh
(3)  

here the number of modules attached in series and parallel as nS and nP. 
rse, rsh specifies series resistance, shunt resistance. 

2.2. Modelling of ESS 

The goal of ESS is to make the electrical grid carbon-free by storing 
clean energy from renewable sources [22]. ESS helps balance supply and 
demand, reducing greenhouse gas emissions and cutting electricity costs 
for users. It stores excess energy during off-peak hours and releases it 
when needed, primarily optimizing solar panel output, despite some 
energy loss during charging and discharging. Therefore, the increase in 
energy storage system effectiveness is computed in eqn (4). 

ps(T)= ps(T − 1) + η.μess.eeCH(T) −
η.eedCH(T)

μess ∀T (4)  

here μess as effectiveness of energy storage system, ps as stored energy 
(kWh) at time T, η specifies duration of time in hours, eeCH and eedCH 

denotes the power provided (Kw) from photovoltaic to energy storage 
system and ESS to load. The following limitations are used to prevent 
deep discharge and overcharging. 

eeCH(T) ≤ eeCH
ub (5)  

ee(T)dCH
≤ eedCH

lb (6)  

ps(T) ≤ psCH
ub (7) 

For the purpose of creating an energy usage schedule, the EMC gets 
the signal of RTP, the power signal from renewable energy sources and 
utilities, and the consumer’s appliance operating priorities. 

2.3. Infrastructure for 2-way communication 

Advanced Metering Infrastructure (AMI) enables bidirectional 
communication between electricity sources and smart meters, facili
tating real-time demand response and consumer participation in DSM 
programs. AMI benefits power suppliers by tracking costs, identifying 
outages, and managing assets, while smart meters connect AMI to the 
Energy Management Controller (EMC) for energy usage optimization. 

2.4. Modelling of appliances 

Smart appliances interact with the Energy Management Controller 
(EMC) to optimize energy consumption. Regular appliances run 

continuously, while Shiftable Uninterruptible (SUAs) and Shiftable 
Interruptible (SIAs) appliances collaborate with the EMC to reduce peak 
demand, lower costs, and minimize emissions. Examples of SIAs include 
dishwashers, water heaters, and humidifiers, while SUAs include electric 
cars, washing machines, and dryers [23,24]. The overall energy usage 
per day for SIAs can be calculated as follows: 

eSHI =
∑

γSHI ∈ dSHI

(
∑24

T=1
ΩSHI × γSHI(T)

)

(8)  

here dSHI, ΩSHI, and γSHI implies every SIA, power, and on/off status 
appliances; eSHI implies net consumption of energy, and β implies unit 
price. 

The net cost per day of every Shiftable Interruptible Appliances at 
time T is computed as follows 

δAξSHI =
∑

γSHI ∈ dSHI

(
∑24

T=1
ΩSHI × β(T)× γSHI(T)

)

(9) 

The net energy-consumption per day for Shiftable Uninterruptible 
Appliances are computed as follows, 

eSHU =
∑

γSHU ∈ dSHU

(
∑24

T=1
ΩSHU × γSHU(T)

)

(10)  

here As as sum of Shiftable Uninterruptible Appliances, eSHU represents 
net energy consumption, dSHU ∈ As as each appliance from SIAs, ΩSHU as 
power-consumption of all appliances, γSHU as status of the appliances’ 
on/off. The total daily cost of all Shiftable Uninterruptible Appliances in 
time T may be calculated as follows. 

δAξSHU =
∑

γSHU ∈ dSHU

(
∑24

T=1
ΩSHU × β(T)× γSHU(T)

)

(11)  

2.5. Problem formulation 

The main goals of the proposed methodology are to reduce electricity 
costs by coordinating consumer power use patterns, reduce carbon 
emissions, improve user-comfort, reduce PAR, and deal with the 
demand-supply imbalance. Initially, each aim is enlarged and articu
lated separately. This leads to the formulation of the whole demand side 
management issue. The cost of energy is the amount charged by a utility 
provider to a client for the consumption of power within the specified 
period. The proposed method contains 2 kinds of appliances: SUAs and 
SIAs. The entire cost is calculated mathematically as follows: 
∏

= δAξSHI + δAξSHU (12)  

where, Shiftable Interruptible and Uninterruptible Appliances of Net 
Electricity Costs are expressed as 

∏
by consumers. 

Carbon emissions, a consequence of operating Shiftable Interruptible 
and Uninterruptible Appliances, can be quantified through equation 
(13). 

y=
AVGep
∈ ×ς × ζ

(13) 

The carbon emission in pounds is shown in equation (13), wherever 
AVGep as average electricity price, ∈ as cost per kWh, ς as electrical 
emission factor, ζ as number of hours within a day. 

PAR is the peak to average power demand for particular time-slots. 
The PAR decrease benefits utilities and consumers alike because it as
sists to close the gap amid the supply and demand. It is denoted by PAR 
and it is mathematically expressed below: 

PAR=
MAXT∈t(Φt)

1
t

∑t

T=1
Φt

(14) 
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here the energy consumed by the appliance of Φt at time T. 
User comfort in smart homes depends on factors like energy usage, 

waiting time, air quality, temperature, humidity, illumination, and user 
demographics. The study assesses user satisfaction using the delay-time- 
rate (DTR), measuring appliance startup delays. When the Energy 
Management Controller (EMC) incentivizes load shifting, users may face 
delays, with lower DTR resulting in higher utility costs and vice versa. It 
is a trade-off between the cost of power and the DTR. Thus, the user 
comfort based on delay-time-rate is expressed in equation (15). 

ωB =

∑t

T=1

∑N

B=1

(
t0,UNSCH
B,T − t0,SCH

B,T
)

tLO
B

(15) 

The ωB communicates an appliance-specific delay time rate based on 
operational delays or advancements, t0,UNSCH

B,T , t0,UNSCH
B,T represents the 

status of appliance without and with scheduling, tLO
B is the length of net 

operation time-slots [25,26]. Depend on real time pricing signal and 
consumer priority, the heuristic-based EMC schedules consumer power 
utilization. An appliance can experience maximum delay and it is 
specified in equation (16). 

ωD
B = tT

B − tLo
B (16)  

where An appliance may experience a maximal delay of ωD
B while 

switching from operating during peak to off-peak hours, tT
B as appliance 

of net time-interval. The greatest delay has a negative relationship with 
user comfort, i.e., as ωD

B increases, so does the user comfort. Equation 
(17) can be used to calculate the percentage of discomfort. 

d =
ωB

ωD
B
× 100 (17) 

By scheduling user energy usage, the DSM problem aims to lower 
electricity prices, carbon emissions, user irritability, and PAR. The 
objective-function is signified as the problem of minimization in below 
equation. 

MIN
(∏

+ y
)

(18) 

The minimization issue in equation (18) consists of below 
restrictions: 

PAR=
MAXT∈t(ΦT)

1
t

∑t

T=1
ΦT

≤ pC (19)  

tMIN ≤T ≤ tMAX (20)  

∑t

T=1
ΛUNSH

T =
∑t

T=1
ΛSH

T (21)  

zUNSCH
T < = zSCH

T (22)  

iUNSCH
T = iSCH

T (23) 

The net PAR ≤ grid-capacity, pC as per restriction (19) demonstrates. 
Grid capacity refers to the amount of power the electrical grid can 
supply. This restriction aids in avoiding power shortages or blackouts. 
Restriction (20) defines the scheduling interval. Restriction (21) en
forces a power consumption limit to keep overall power usage consistent 
before and after scheduling [27,28]. Restriction (22) ensures that the 
appliance’s status changes between before and after scheduling. Similar 
to the previous example, equation (23) displays that the operating times 
of the appliances before and after scheduling are equal, from which, T1 

to T24 as time-slots, i as operating time of appliances. 

3. Energy management using proposed EMAO approach 

The manuscript proposes an EMAO method for SG energy manage
ment, aiming to reduce costs and peak power usage. It includes load 
classification, automatic demand response shedding, and creates an 
optimal power schedule based on price, renewable energy sources, 
consumer priority, and appliance ratings. The system employs a two- 
way communication infrastructure, and the method combines the 
Mexican Axolotl Optimization (MAO) and Honey Badger Algorithm 
methods. Thus the stepwise process of the proposed method is given 
below. 

3.1. Proposed EMAO method 

The Mexican Axolotl Optimization (MAO) method is a meta-heuristic 
process motivated by the life of axolotl’s, like axolotls’ birth, breeding, 
tissue restoration, and the manner in which they survive in the aquatic 
environment [29]. Axolotls have sexes; therefore there are males and 
females in each group. We think axolotls use their ability to change color 
to protect them and evade predators. The TIRA acronym stands for 
Transition from the state of Larval to Adult, Reproduction, and Assort
ment, as well as Injury and Restoration. These four iterative processes 
make up the MAO technique. The HBA is a meta-heuristic optimization 
technique that draws motivation from the clever foraging strategies of 
honey badgers [30]. The HB’s dynamic search behaviour with digging 
and honey seeking procedures are essential to the HBA exploration and 
exploitation phases. To find food, honey badgers dig or follow the scent 
of the honeydew bird. The HBA strategy is used in this research to 
improve the updating behavior of the MAO method. The energy man
agement problem is handled by utilizing this approach. The proposed 
method’s stepwise procedure is explained below. 

Step 1. Initialization 
Initiate the input-parameters, like real-time pricing signal, power of 

sources, stopping criterion. 

Step 2. Random Generation 
The population is created randomly. 

Fi =

⎡

⎢
⎢
⎣

(S)11
(S)12 ⋯ (S)1n

(S)21
(S)22 ⋯ (S)2n

⋮ ⋮ ⋮ ⋮
(S)m1

(S)m2 ⋯ (S)mn

⎤

⎥
⎥
⎦ (24)   

Step 3. Calculation of Fitness 
The fitness is calculated depending on the objective function. Thus, it 

is computed below, 

FitOBJ =Obj
(
Mj,Fj

)
=Min(Cost,PAR) (25)   

Step 4. Categorise of male and female populations 
Two subgroups are created once the individuals are divided into 

female and male groups based on the axolotls, which emerge owing to 
their sex. 

Step 5. Conversion from larvae to adult state 
As axolotls mature from larvae to adults, males undergo physical 

changes to attract compatible mates. The best female and male axolotls 
for breeding can be selected depending on the objective function that 
considers the inverse-probability transition for each sex. 

p(M,F)j =
Obj
(
Mj,Fj

)

∑
Obj
(
Mj,Fj

) (26)   
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Step 6. Updating the position of agents 
To update the position, the phases of honey and digging are used. 

Step 6.1. Digging phase 
It is computed as, 

XNEW =XPREY +F ×α× i×XPREY +F ×R3 × β×DI × [cos(2πR4)× (1

− cos(2πR5))]

(27)  

F =

{
1⥄⥄⥄⥄⥄, if ⥄R6 ≤ 0.5
− 1,⥄Else ⥄ (28)   

Step 6.2. Honey phase 
It is computed as, 

XNEW =XPREY + F × R7 × β × DI (29)   

Step 7. Phases of Exploitation and Exploration 
The exploitation and exploration is calculated as 

Explor⥄%=
div′

Max⥄(Div)
× 100 (30)  

Exploit⥄%=
|div′ − Max(div′)|

Max⥄(Div)
× 100 (31)   

Step 8. Stopping criterion 
Verify the stopping criterion, if it satisfies the condition means the 

optimum result is attained, else continue the procedure. Flowchart of 
EMAO is depicts in Fig. 2. 

4. Results and discussion 

Here, the simulation outcomes for the performance of the proposed 
technique are analyzed. The major proposed EMAO method minimizes 
the cost based on the automatic load shedding and classification of load. 
The proposed system is simulated in MATLAB software and it is 
compared with different existing PSO, HGPO, and GA methods. The 
proposed method is executed based on three scenarios like PAR deter
mination without PV-battery systems, scheduling the home appliances 
with PV, Photovoltaic battery systems-based scheduling. 

Cost analysis of real time price is shown in Fig. 3. At 1–7 h, the cost of 
demand response is varied from 9 to 13 cents/kWh and then the cost is 
increased up to 27.5 Cents/kWh at 8–10 h. After that, cost is reduced 
below 10 cents/kWh at15 to 24 h. Estimation of Solar Irradiance is 
shown in Fig. 4. Here, the solar irradiance varies with time. At the time 
of 1–6h, solar irradiance remains 0. From the time of 6h, it gradually 
rises and reaches to the peak in noon time. And it remains constant at 
1200(W/m2) from hour 11 to 15. Again at the time of 15h, solar irra
diance gradually decreased from 15h to 20h. At the time of 20h–24h, it 
remains constant in 0. 

Fig. 2. Flowchart of EMAO  
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In Fig. 5, the graph tells about how the temperature rises an hour to 
hour based on time. Here, the temperature is represented as degree 
Celsius and time an hour. The changes happen from 1h to 24h. At the 
time of 1hr, the temperature starts to rise gradually and reaches to the 
peak of 30 ◦C at 13h. And again, it decreased from the time of 13h to till 
24h. In Fig. 6, this graphical representation shows the level of energy 
stored in battery based on time. At 7h, the storage level rises step by step 
till 18h. Then, it remains constant till 24h between 250Ah and 300Ah. In 
Fig. 7, this graphical representation shows the three factors of RSE. They 

are: 1) Estimated renewable energy generation, 2) Percentage of Solar 
and Wind power generation, 3) Remaining RE after ESS Charging. These 
factors are evaluated based on the time. These three estimations remain 
0 till 7h, then they increases step by step till 11h. After that, till 16h they 
remain constant at certain value. Then, they gradually decrease up to 
24h. 

Case 1. Investigation Performance of Proposed Method based on 
without PV-battery systems 

In this case, the performance of the proposed approach is executed 
without PV-battery systems. Fig. 8 depicts the Analysis of Electricity 
Cost. In Fig. 8, the graphical representation shows the analysis of elec
tricity costs based on the proposed method. The cost of electricity is 
compared between GA, PSO, proposed, and HGP. The electricity cost of 
the proposed is lesser than the GA, PSO, and HGP methods. Hence, the 
proposed method gives a better result than existing methods. This 
analysis is made without a PV battery system. In Fig. 9, the analysis of 
electricity costs based on GA, PSO, HGPO, and the proposed methods are 
690 cents, 590 cents, 550 cents, and 400 cents, as shown in the figure. 
This estimation is based on without PV battery system. The electricity 
cost of the proposed technique is better than the GA, PSO, and HGPO 
methods during off-peak and mid-peak hours. 

Fig. 10 shows the graphical representation of Peak to Average Ratio 
based on GA, PSO, HGPO and proposed method per time slots. GA, PSO, 
HGPO and proposed method are evaluated as PAR by 2.9, 3.49, 3.4 and 
2.5 respectively. Here, Proposed is better than GA, PSO and HGPO 
methods without PV battery system. In Fig. 11, this graphical repre
sentation show the level of CO2 based on time. The Carbon is emission is 
compared with GA, PSO, HGPO and a proposed method is 3.7 pounds, 

Fig. 3. Cost analysis of real time price.  

Fig. 4. Estimation of Solar Irradiance depends on time.  

Fig. 5. Ambient temperature depends on Time.  

Fig. 6. Analysis of Battery storage level.  

Fig. 7. Evaluation of generated rse..  
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3.3 pounds, 3.2 pounds, and 2.7 pounds respectively. The proposed 
method effectively reduces carbon emissions for each time slot when 
compared to the existing approaches. This comparison is made without 
PV battery system. 

Case 2: Investigation Performance of Proposed approach depends on 
scheduling the Home Appliances with PV. 

In this case, the performance of the proposed technique with loaded 
photovoltaic-systems is examined to attain best result. In Fig. 12, the 

graphical representation shows the analysis of electricity cost based on 
proposed method. The home appliances are connected with PV system to 
attain best result. The maximum cost of electricity is compared with 
scheduled and unscheduled load between GA, PSO, and HGP and pro
posed. The cost of electricity of proposed is less than GA, PSO, and HGP 
method. This analysis made proposed method is better than existing 
methods without PV battery system. 

Fig. 13 depicts the evaluated cost of electricity analysis with loaded 
PV. The electricity cost based on GA, PSO, HGPO and proposed methods 
are 550cents, 480cents, 450cents and 350cents. This estimation is based 
on with load connected PV system. The electricity cost of proposed is 

Fig. 8. Analysis of electricity cost.  

Fig. 9. Aggregated cost analysis of electricity.  

Fig. 10. Analysis of peak average ratio.  

Fig. 11. Carbon Emission based on Time without PV.  

Fig. 12. Electricity cost analysis with load connected PV.  

Fig. 13. Evaluated cost of electricity analysis with loaded PV.  
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better than GA, PSO, HGPO methods under off- and mid-peak hours. 
Fig. 14 depicts the graphical representation of Peak to Average Ratio 
based on GA, PSO, HGPO and proposed method per time slots. The GA, 
PSO, HGPO and proposed method are evaluated as PAR by 3, 3.8, 3.3 
and 2.2 respectively. The Proposed is better than GA, PSO and HGPO 
methods with load connected PV. Graphical representation is show in 
Fig. 15 that is the level of CO2 emission based on time. Here, the carbon 
emission is compared between GA, PSO, HGPO and a proposed method 
is 3.3pounds, 2.7 pounds, 2.6 pounds, and 2.2pounds respectively. 
When compared to existing techniques, the proposed strategy is effec
tive at reducing carbon emissions per each time slot. This comparison is 
made without PV battery system. 

Case 3. Investigation Performance of Proposed approach Photovoltaic 
battery systems-based scheduling. 

Here, the performance of proposed approach is executed with PV 
battery systems. Fig. 16 depicts the electricity cost analysis with PV 
battery system. In Fig. 16, the graphical representation shows the 
analysis of electricity cost based on GA, PSO, HGP and proposed method. 
In this, the battery system with PV is connected to attain best result. The 
cost of electricity of proposed is less than GA, PSO, and HGP method. 
This analysis made proposed method is better than existing methods 
with PV battery system. Fig. 17 depicts the aggregated cost of electricity 
analysis. This figure analysis of electricity cost based on GA, PSO, HGPO 
and proposed method are 520cents, 430 cents, 400cents and 310 cents. 
This estimation is based on PV battery system. The electricity cost of 
proposed is better than GA, PSO, HGPO methods during off-peak and 
mid-peak hours. 

Fig. 18 shows Evaluation of PAR with PV battery system. Here, the 
values of GA, PSO, HGPO and proposed method are evaluated as 2.3, 
3.6, 2.6 and 1.7 respectively. The Proposed gives better result than GA, 
PSO and HGPO methods with PV battery system. In Fig. 19, the graph
ical representation shows the level of CO2 emission based on time slots. 
Here, the level of Carbon emission is compared between GA, PSO, HGPO 
and a proposed method. This method has an evaluation of 3.3pounds, 
2.49pounds, 2.3pounds, and 1.8pounds are compared. The proposed 
method is efficient in reducing the carbon emission per each time slots, 
when compared with existing methods. This comparison is made with 
PV battery system. In Fig. 20, the graph tells about how the consumers 
faced delay in power usage, while using appliances. The projected 
average delays for humidifiers, water heaters, dishwashers, EVs, 
washing machines, and textile dryers for GA-based scheduling are 1.3, 
1.55, 0.7, 1.8, 1.3, and 1 h, respectively. The PSO faces average delays of 
1.4, 1.2, 1, 0.6, 1.8 and 1 h respectively on such appliances. In HGPO 
method, average delays of 0.7, 1.3, 1.28, 1.8 and 1.35h respectively on 
such appliances are shown in graph. This proves that the proposed 
technique performs better than the existing approaches. 

Table 1 compares the investigation performance of different algo
rithms for the proposed method without PV-battery systems in Case 1. 
The proposed method has the lowest cost of 400 cents, the lowest carbon 
emissions of 2.7 pounds, and a moderate performance-to-cost ratio 

(PAR) of 2.5. This suggests that the proposed approach is the most cost- 
effective and environmentally friendly option among the algorithms 
considered in Case 1. Table 2 compares the Investigation Performance of 
Proposed Method schedules the Home Appliances with PV in case 2. The 
proposed method has the lowest cost of 350 cents, the lowest carbon 
emissions of 2.2 pounds, and a moderate performance-to-cost ratio 
(PAR) of 2.2. This implies that the proposed method is highly cost- 
effective and ecologically friendly alternative among the algorithms 
studied in Case 2. Table 3 compares the Investigation Performance of 
Proposed Method with Photovoltaic battery systems-based scheduling in 
case 3. The proposed approach performs better than other algorithms 
with the lowest cost of 310 cents, the lowest carbon emissions of 1.8 
pounds, and a PAR of 1.7. This suggests that the proposed technique is 
the most cost-effective and environmentally friendly option among the Fig. 14. Estimation of PAR with loaded PV.  

Fig. 15. Analysis of Carbon emission with loaded PV.  

Fig. 16. Electricity cost analysis with PV battery system.  

Fig. 17. Aggregated cost of electricity analysis.  
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algorithms considered in case 3. 

5. Conclusion  

• The manuscript proposes an enhanced EMAO method for reducing 
the cost of the SG system through automatic demand response 

shedding with load classification, considering photovoltaic and 
battery as the system’s source.  

• The proposed method effectively solves demand side problems and 
optimally schedules the system. It leads to lower power consumption 
costs, reduced peak-valley and peak-load, decreased carbon emis
sions, and prevents rebound peaks without causing significant 
inconvenience to consumers. The method also reduces the PAR value 
of the system. 

• The evaluation outcome provides that the proposed technique pro
vides better than the GA, PSO, and HGPO methods when applied 
with a PV battery system. It achieves better results in terms of cost 
reduction, carbon emissions, and minimizing delays in power usage 
for various appliances.  

• The outcome shows that the EMAO method consistently achieves the 
lowest cost, with values of 400 cents in Case 1, 350cents in Case 2, 
and 310 cents in Case 3. Additionally, the EMAO algorithm consis
tently produces the lowest carbon emissions, with values of 2.7 
pounds in Case 1, 2.2pounds in Case 2, and 1.8 pounds in Case 3. 
Furthermore, the algorithm maintains a moderate performance-to- 
cost ratio, with values of 2.5 in Case 1, 2.2in Case 2, and 1.7 in 
Case 3, indicating its cost-effectiveness and efficiency.  

• In summary, the proposed enhanced EMAO method offers a solution 
for cost reduction and demand management in the SG system. It 
provides advantages in terms of cost efficiency, carbon emissions 
reduction, and minimizing delays. The manuscript contributes to the 
form of information by presenting a more effective and efficient 
approach compared to existing methods. 

• The limitations of this study include the assumption of fixed con
sumer behavior and the focus on a specific combination of algo
rithms. Future work could explore dynamic consumer behavior and 
investigate the applicability of other hybrid algorithms in the energy 
management framework. Additionally, the integration of other RESs 
and the consideration of different consumer segments could further 
enhance the efficiency and of the proposed method.  

• The study shows that it have important implications for the practical 
implementation of demand-response approaches and the optimiza
tion of SG systems, ultimately leading to cost savings, reduced car
bon emissions, and improved energy management. 

Funding 
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agencies in the public,commercial, or not-for-profit sectors. 

Fig. 18. Evaluation of PAR with PV battery system.  

Fig. 19. Analysis of Carbon emission based on hour.  

Fig. 20. Analysis of Delay time in PV battery system.  

Table 1 
Study Performance of Proposed Method without PV-battery systems in case 1.  

Techniques Cost (Cents) Peak to average ratio Carbon Emissions (Pounds) 

GA 690 2.9 3.7 
PSO 590 3.49 3.3 
HGPO 550 3.4 3.2 
proposed 400 2.5 2.7  

Table 2 
Investigation Performance of Proposed Method schedules the Home Appliances 
with PV in case 2.  

Techniques Cost (Cents) Peak to average ratio Carbon Emissions (Pounds) 

GA 550 3 3.3 
PSO 480 3.8 2.7 
HGPO 450 3.3 2.6 
proposed 350 2.2 2.2  

Table 3 
Investigation Performance of Proposed Method with Photovoltaic battery 
systems-based scheduling in case 3.  

Algorithms Cost (Cents) Peak to average ratio Carbon Emission (Pounds) 

GA 520 2.3 3.3 
PSO 430 3.6 2.49 
HGPO 400 2.6 2.3 
proposed 310 1.7 1.8  
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