
Assignment 3

1(13)

1. Objectives

Beginning with this assignment, we are going to go over to writing Windows Forms

based desktop applications with graphical user interface (GUI) using some of the most

common Windows Form controls. The main objectives are:

The main objectives of this assignment are:

• To begin writing Windows Forms based desktop applications with graphical user

interface (GUI) using some of the most common Windows Form controls.

• To acquire input from different Windows Form controls and save them in instance

variables.

• Perform input validation to avoid abnormal program termination and falsely results.

• Write and use getter and setter as well parameterized methods and methods with

return value to establish communication between objects of classes.

Another important purpose of this assignment is to separate the presentation of data (GUI) from

the logics (calculation and manipulation of data). In our previous assignments, we interacted

with the user in the same class. From now on, we let the GUI- class (Form object), be

responsible all interactions (input and output) with the user of the program, and let other classes

serve the GUI by processing input data and producing the needed output data.

In case you have prior experience of Windows Forms, you may try working with Windows

Presentation Foundation (WPF). You may also design the GUI and solve the problem in your

Assignment 3

 2(13)

own way, as long as you meet the main requirements specified here in this document and

maintain a good level of code quality.

This assignment has two parts.

a. BMI Calculator. Calculate the Body Mass Index using two types of units (metric

and imperial, used in USA)

b. Calculate the future value of monthly saving over a period of time using a

compound interest model.

To solve the BMI part, a great amount of help is provided, both here and in different documents

in the module. Using the skills you gain from this part, you should be able to solve the second

part (which is less complicated) without detailed help. Let's begin with the first part, the BMI

Calculator.

2. BMI - Description

The Body Mass Index (BMI) is a measure of body fat and is commonly used within the health

sector to determine whether the weight of adult men and women is healthy. BMI is calculated

in relation to one’s height using the following formulas:

BMI = weight in kg / (height * height in m2) (Metric Units)

BMI = 703.0 *·weight in lb / (height * height in inch2) (Imperial (U.S.) Units)

2.1 The above formulas are standard for adults not taking the age into consideration. The

World Health Organization's (WHO) has recommended a body weight based on BMI

values for adults, as summarized in the following table. It is used for both men and women,

age 18 or older. For more information see: https://www.euro.who.int/en/health-

topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi.

BMI Nutritional status

Below 18.5 Underweight

18.5–24.9 Normal weight

25.0–29.9 Overweight (Pre-obesity)

30.0–34.9 Overweight (Obesity class I)

35.0–39.9 Overweight (Obesity class II)

Above 40 Overweight (Obesity class III)

Assignment 3

3(13)

2.2 The user should have the choice of selecting the measurement system, Metric (cm, kg)

or Imperial (ft and in, lb) unit types. For the metric option, the user should provide the height

values in meters (m) or centimeters (cm) and weight in kilograms (kg). For the Imperial

option , the values should be given in feet (ft) and inches (in) and weight in pounds (lb)

3. BMI - To Do

Start Visual Studio (VS), and create a new project, .NET, Windows Forms Desktop App (or the

corresponding .NET Framework template) for this assignment. Determine the input parameters

you may need and which are to be provided by the user, and the output that your application

should calculate and display to the user. Having these in mind, design your GUI using the proper

Windows Forms controls from the Toolbox in Visual Studio. You can use the sample GUI-

design shown below.

Label is to be used for read-only texts (output, captions, etc.). Textboxes are to be used only

for input.

3.1 VS creates a starting form, on which you can draw your graphical components (more often

called controls), and gives it the default name Form1. Rename Form1 to MainForm.

This class should handle all the interactions (input/output) between the user and the

RadioaButtons

Textbox
GroupBox

Label

GroupBox

 Assignment 3

 4(13)

application, and it should not contain logics that are (or can be) a part of the BMI

calculation.

3.2 For calculation of BMI values, write a class BMICalculator. This class should not interact

with the user in any way, not even giving warnings or error messages. It neither should

have access to the members of the MainForm. A non-GUI class should not know which

other classes will be using them. Any other classes, including those not having a user

interface should be able to create an object of this class and use its methods.

BMICalculator should not be aware of that the MainForm will be using it. In other words,

it should be usable by any other class including MainForm.

3.3 Write an enum UnitTypes, and define the unit types used in this application (Metric and

Imperial). To create an enum, create a class and then change the keyword class to enum.

enum UnitTypes

{

 Metric,

 Imperial

}

Save this little enum in its own file UnitTypes.cs.

4. The class MainForm

4.1 The MainForm class should only have an instance variable, an object of the

BMICalculator class. Use local variables for other purposes.

4.2 Click somewhere on the MainForm in VS to make the Form highlighted (the outer frame).

Then go to the Properties and change the following:

The only instance

variable, so far.

We will need

another one for

the next part.

Assignment 3

5(13)

4.2.1 FormBorderStyle: Select one of the fixed-types.

4.2.2 MaximizeBox: false

4.2.3 StartPosition: CenterScreen

4.2.4 Text: Give a title to your program (BMI Calculator) and make sure that you

substitute the text <Your Name > by your real name.

4.3 Provide an InitializeGUI method and do your initializations there, e.g. clearing input-

boxes, output controls, setting default values in controls (for example, you can select one

of the option buttons as default), etc.

4.4 Use double.TryParse() to convert the contents of the TextBoxes used for input of height

and weight into numerical values. You can write a method that you can use with all text boxes.

The code for this method is given later in this document.

4.5 Instead of reading all input in one method, organize readings in separate methods.

5. The BMICalculator class

5.1 The BMICalculator class should only define instance variables for storing input, as in the

figure below. Do not use any other instance variables, but you may (should) use as many

local variable (variables inside a method) as you need-

5.2 Weight and height should be floating-point values (double) greater than zero. As you may

noticed, the BMI formula in the metric system uses meters. If you read the height in cm,

you must divide it by 100 before you perform the calculation.

5.3 The application should allow the height to be given in a combination of feet and inches

when the Imperial Unit is selected, although the formula uses inches in the imperial

Assignment 3

 6(13)

system. On your GUI, you read feet and inches. Multiply the feet value by 12 and add the

result to the inches so the height is all in inches.

5.4 Assign a default value for the name (“No name” or "Unknown") if the user does not provide

one.

5.5 Write setter and getter methods connected to the instance variables, so MainForm

can use to save input (given on the GUI) and get values stored in the instance variables,

when requested. All output should be provided to the caller methods in the MainForm

via the return statement of the methods.

5.6 The program should calculate and display the weights that correspond to the normal BMI

limit values, i.e. 18.5 and 24.9 (see the Help section for hints).

6. Connection between MainForm and BMICalcultor

6.1 MainForm is responsible for handling input and output. BMICalculator is responsible for

calculating values using the input receiving from the MainForm.

- MainForm declares and creates an instance of the BMCalculator (bmiCalc).

- MainForm validates the input that are given by the user on the GUI (e.g. contents of

the textboxes). It then calls the setter methods of the bmiCalc to set (save) values in

the object.

double inchValue = 0;

ok = double.TryParse(txtInch.Text, out inchValue);

if (ok)

bmiCalc.SetHeight(outValue * 12.00 + inchValue);//ft->in

- MainForm calls the methods of the BMICalculator to calculate and provide an output

through their return statement.

- MainForm updates the GUI by displaying the output using the dedicated controls (e.g.

labels).

Tre steps when the Calculate BMI button is clicked.

1. MainForm saves input given on the GUI and saves them in bmiCalc, using its set-

methods.

2. MainForm calls methods of bmiCalc to perform calculations and receive output

3. MainForm displays the output on the GUI

Complete this part, run the program and make sure that everything works well. Then,

move to the next part.

 Assignment 3

7(13)

7. Saving Calculator - Saving plan

In compound interest calculation, the interest earned is added to your principal (capital) and the
next the interested calculated, you will received interest on interest. Interest can be applied on
a daily, monthly or yearly basis. It depends on the type of saving and the policies of the
investment company. Long-term monthly saving can make you rich if you invest the money in
stocks may make you rich if the growth rate is positive.

Compound interest is one of the most useful
concepts in finance. It is the basis of everything
from a personal savings plan to the long term
growth of the stock market. Although, there are
formulas that can be used to compute the
effects of inflation, we neglect this computation
in this part and neither are we going to account
for costs and expense such as the stock fees.

7.1 To simplify the work, let the user input the

monthly deposit and the period in years.

Use the following constant values for the

rest of variables.

Growth/interest rate: 10% (0.10) yearly which
you can divide by 12 to calculate the monthly
interest.

You may use the following algorithm to
calculate the future value:

Let numOfMonths = years * 12.

balance = 0 //future value

Loop from 1 to numOfMonths:

interestEarned = rate * balance

balance += interestEarned + monthly saving

Display balance as the final balance (see the above figure).
Amount paid = monthly saving * numOfMonths.

7.2 Create a class SavingCalculator. Declare the needed instance variables (monthlyDeposit,

interestRate, period, etc).

7.3 Write a method that calculates the future value using the above algorithm. You may of

course use other formulas from the financial sources instead of the suggested looping.

7.4 Declare an instance variable in the MainForm for this calculator and do the necessary

programming to make things work as shown in the above run example.

//Declare and create an instance of the SavingCalculator

 private SavingCalculator savingCalc = new SavingCalculator();

 Assignment 3

 8(13)

8. Functional Requirements

8.1 At program start, the Form should be clear of all design-time texts such as Label1, etc.

(Form1 as the title of the form is not accepted). All input boxes (textboxes) and output

controls (labels) should be empty at program start. Input boxes may have default values

(for example Name = "No name").

8.2 The application should control the user input so it does not crash or give unexpected

output for invalid input. Numeric values can be validated using the TryParse method of

the data type being used, e.g. int.TryParse and double.TryParse.(as in above example).

String values can be validated using string.IsNullOrEmpty.

8.3 The user should receive a notification when the input data is invalid. You can use a

MessageBox for notifications.

You can copy the following method to the MainFrame class.

You can then use the above method to validate and read data from a textbox, as below:

8.4 All results should be correct for calculation of BMI and BMR. There are several sites in

the Internet that you can check. The following page has both BMI and BMR calculators

(BMR is only A and B grades).

https://www.thecalculatorsite.com/health/bmr-calculator.php

Assignment 3

 9(13)

9. Structural Requirements

9.1 Textboxes should be used for input and Labels for output and other read-only

information. Do not make a textbox work as a label by disabling the control (setting its

Enabled property to false).

9.2 All instance variables should be declared as private. Public instance variables are

strictly forbidden.

9.3 Every class and every method in the class should contain a brief but informative

documentation in form of comments. Shortage of time is not an acceptable excuse.

9.4 Use appropriate names for all identifiers (names of classes, variables and method).

Follow the general coding rules and suggestion available on Canvas.

9.5 MainForm should only use an instance of each calculator class, and a field for the

name (name of the user, as it does not belong to any calculator class), as its fields. No

other instance variables should be used.

9.6 MainForm should work with the user interface. No other class should have access to the

MainForm and its components. Instead, the MainForm will be using the calculator

classes. For more details, see Part 1.

Note: Each set of RadioButtons must be enclosed inside a container component such as a

GroupBox. Otherwise different RadioButtons sets contained in the same component will be

considered as one set. To separate the Female-Male buttons from the Activity Level buttons,

you need to put at least one of the sets inside a separate GroupBox control – see the GUI

image given earlier.

 Assignment 3

 10(13)

10. Help and Guidance (Part 1)

The class diagrams shows instance variables and methods of the two classes. You don't have

the diagram and write every method. You can make your own implementation and your own

methods.

If you are reading the height in cm, you have to change the given value to meters as required

by the metric formula:

bmiCalc.SetHeight(outValue / 100.0); //cm -> m

For the Imperial unit, the formula works with inches and therefore you must change the given

value in feet to inches, and then add it to the inch part.

bmiCalc.SetHeight(outValue * 12.00 + inchValue); //feet -> inches

To calculate the normal weight, you can use the lower and upper limits of BMI as below:

factor = 703 for US and 1 for metric

weight = height * height / factor;

weight1 = weight * 18.50; //low limit

weight2 = weight * 24.9; // high limit

 Assignment 3

 11(13)

11. Saving Calculator with improved features

This part includes Part 1 but the Saving Calculator has more features as you can see from
the GUI below.

11.1 The SavingCalculator: all necessary input values are provided by the user. The

calculator performs more calculations and the results are displayed on the GUI

This is a ListBox, but you

can use a label instead

 Assignment 3

 12(13)

12. BMR Calculator

In our daily life, we need to calculate data to make decisions. There are many areas where a

simple calculator facilitates the computation of values greatly. Examples of calculators are

geometric calculator, date and time calculator, age calculator, marriage calculator and hundreds

of other types.

In this part of the assignment, we are going to add a new feature to our application for calculating

a health factor called BMR-(Basic Metabolic Rate), controlling daily calories.

Most people should think of their weight and the daily calories they take to keep themselves

healthy. Our BMI and BMR Calculators will help them with these issues.

BMR (Basal Metabolic Rate) is an equation for estimating the number of calories you need to

consume each day. The calculation is done according to the Mifflin - St Jeor equation. You can

use the following formulas to solve the problem:

12.1 BMR values:

BMR = 10 * weight (kg) + 6.25 * height (cm) - 5 * age (y)

BMR Female = BMR -161
BMR Male = BMR + 5

12.2 BMRs to keep your current weight

maintainWeightBMRs = BMR * activity level factor (last column in table below).

(BMR calculated as in above)

12.3 Activity Level and multiplier factor

The values are to be taken from the table.

12.4 Lose or gain weight:

To lose 0.5 (500 g), you need to cut off 500 and to lose 1 kg, 1000 calories from daily

intake.

To lose 500 gr (0.5 kg) a week = maintainWeightBMRs – 500

To lose 1000 gr (1 kg) a week = maintainWeightBMRs –1000

To add 500 gr (0.5 kg) a week = maintainWeightBMRs + 500

To add 1000 gr (1 kg) a week = maintainWeightBMRs +1000

Group Level Name Description Factor

0 Sedentary Little or no exercise 1.2

1 Lightly active Exercise 1 to 3 times a week 1.375

2 Moderately active Exercises 4 to 5 times a week 1.550

3 Very active Exercises 6 to 7 times a week. 1.725

4 Extra active Hard exercise or physical job 1.9

 Assignment 3

 13(13)

