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PREFACE TO THE
SECOND EDITION

This second edition has the same objectives as the first, namely, an
introduction to the finite element method as applied to lincar, one- and
two-dimensional problems of engineering and applied sciences. The revisions
are mainly in the form of additional details, expansion of the topics discussed,
and the addition of a few topics to make the coverage more complete.

The major organizational change from the first edition is the division of
its five chapters into fourteen chapters here, These chapters are grouped into
four parts. This reorganization should aid instructors in selecting suitable
material for courses. Other organizational changes include putting problem
sets at the ends of the chapters, providing a chapter summary for each, and
reviewing pertinent equations and text in each chapter instead of referring to
several chapters back. In addition, example problems in Chapters 3 and 8 are
presented in separate sections on heat transfer, fluid flow, and solid mechanics.

Additional details are provided on the construction of the weak forms,
time approximations (e.g., accuracy and stability of schemes, and mass
lumping), alternative finite element formulations, and nonlinear finite element
models. The new topics include sections on trusses and frames, the Timosh-
enko beam element, eigenvalue problems, and classical plate bending ele-
ments. All these changes are also reflected in the revised computer programs
FEMI1DV2 and FEM2DV2 (revised versions of the FEMID, FEM2D and
PLATE programs in the first edition). Therefore the sections on computer
implementation and applications of FEM1DV2 and FEM2DV2 have also been
modified extensively. These changes are accompanied by the addition of
several figures, tables, and examples.

These extensive changes have resulted in a second edition that is 60%
larger. In the interest of keeping the cost of the book within reasonable limits

XV



Xvi  PREFACE TO THE SECOND EDITION

while retaining the basic approach and technical details, certain portions of the
original manuscript have been omitted. More specifically, answers to selective
problems have been included at the end of the problem statements themselves,
rather than in a separate section. Interested readers and instructors can obtain
a copy of the excutable programs on a diskette from the author. Fortran source
programs can also be purchased from the author. ‘

There is no doubt that this edition is more complete and thorough than
the first. It can be used as a textbook for an introductory and/or intermediate
level course on the finite element method at senior undergraduate as well as
graduate levels. Students of engincering and applied sciences should feel
comfortable with the coverage in the book.

The author gratefully acknowledges help in reading the manuscript and
suggestions for constructive changes from several colleagues. These include:
Hasan Akay, Purdue University at Indianapolis, Norman Knight, Jr, Clemson
University; J. K. Lee, Ohio State University; William Rule, University of
Alabama; Martin Sadd, University of Rhode Island; John Whitcomb, Texas
A &M University, and the author’s research students: Ronald Averill, Filis
Kokkinos, Y. S. N. Reddy, and Donald Robbins. It is a great pleasure to
acknowledge typing of the manuscript by Mrs Vanessa McCoy, without whose
patience and cooperation this work would not have been completed.

J. N. Reddy



PREFACE TO THE
FIRST EDITION

The motivation which led to the writing of the present book has come from my
many years of teaching finite-element courses to students from various fields of
engineering, meteorology, geology and geophysics, physics, and mathematics,
The experience gained as a supervisor and consultant to students and
colleagues in universities and industry, who have asked for explanations of the
various mathematical concepts related to the finite-element method, helped me
infroduce the method as a variationaily based technique of solving differential
equations that arise in various fields of science and engineering. The many
discussions I have had with students who had no background in solids and
structural mechanics gave rise to my writing a book that should fill the rather
unfortunate gap in the literature. |

The book is designed for senior undergraduate and first-year graduate
students who have had a course in linear algebra as well as in differential
equations. However, additional courses (or exposure to the topics covered) in
mechanics of materials, fluid flow, and heat transfer should make the student
feel more comfortable with the physical examples discussed in the book.

In the present book, the finite-element method is introduced as a
variationally based techmique of solving differential equations. A continuous
problem described by a differential equation is put into an equivalent
variational form, and the approximate solution is assumed to be a linear
combination, J, ¢,¢;, of approximation functions ¢,. The parameters ¢; are
determined using the associated variational form. The finite-element method
provides a systematic technique for deriving the approximation functions for
simple subregions by which a geometrically complex region can be repre-
sented. In the finite-element method, the approximation functions are piece-
wise polynomials {i.e., polynomials that are defined only on a subregion, called
an element).

xvii



Xvill PREFACE TO THE FIRST EDITION

The approach taken in the present book falls somewhere in the middle of
the approaches taken in books that are completely mathematical and those
approaches that are more structural-mechanics-oriented. From my own ex-
perience as an engineer and seli-taught applied mathematician, I know how
unfortunate outcomes may be arrived at if one follows a “formuia™ without
deeper insight into the problem and its approximation. Even the best theories
lead ultimately to some sort of guidefines (e.g., which variational formulation
is suitable, what kind of element is desirable, what is the quality of the
approximation, etc.). However, without a certain theoretical knowiedge of
variational methods one cannot fully understand various formulations, finite-
element models, and their limitations.

In the present study of variational and finite-clement methods, advanced
mathematics are intentionally avoided in the interest of simplicity. However, a
minimum of mathematical machinery that seemed necessary is included in
Chapters 1 and 2. In Chapter 2, considerable attention is devoted to the
construction of variational forms since this exercise is repeatedly encountered
in the finite-clement formulation of differential equations. The chapter is
concerned with two aspects: first, the selection of the approximation functions
that meet the specified boundary condtions; second, the technique of obtaining
algebraic equations in terms of the undetermined parameters. Thus, Chapter 2
not only equips readers with certain concepts and tools that are needed in
Chapters 3 and 4, but it also motivates them to consider systematic methods of
constructing the approximation functions, which is the main feature of the
finite-element method.

In introducing the finite element method in Chapters 3 and 4, the
traditional solid mechanics approach is avoided in favor of the “differential
equation” approach, which has broader interpretations than a single special
case. However, when specific cxamples are considered, the physical back-
ground of the problem is stated. Since a large number of physical problems are
described by second- and fourth-order ordinary differential equations (Chapter
3), and by the Laplace operator in two dimensions (Chapter 4), considerable
attention is devoted to the finite-element formulation, the derivation of the
interpolation functions, and the solution of problems described by these
equations. Representative examples are drawn from various fields of engineer-
ing, especially from heat transfer, fluid mechanics, and solid mechanics. Since
this book is intended to serve as a textbook for a first course on the
finite-clement method, advanced topics such as nonlinear problems, shells, and
three-dimensional analyses are omitted.

Since the practice of the finite-element method ultimately depends on
one’s ability to implement the technique on a digital computer, examples and
exercises are designed to let the rcader actually compute the solutions of
various problems using computers. Ample discussion of the computer im-
plementation of the finite-element method is given in Chapters 3 and 4. Three
model programs (FEM1D, FEM2D, and PLATE) are described, and their
application is illustrated via several examples. The computer programs are very
easy to understand because they are designed along the same lines as the
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theory presented in the book. The programs are available for mainframe and
IBM PC compatibles from the author for a small charge.

Numerous examples, most of which are applications of the concepts to
specific problems in various fields of engineering and applied science, are
provided throughout the book. The conclusion of the examples are indicated
by the symbol B. At approprate intervals in the book an extensive number of
exercise problems is included to test and extend the understanding of the
concepts discussed. For those who wish to gain additional knowledge of the
topics covered in the book, many reference books and research papers are
listed at the end of each chapter.

There are several sections that can be skipped in a first reading of the
book (such sections are marked with an asterisk); these can be filled in
wherever needed later. The material is intended for a quarter or a semester
course, although it is better suited for a semester course.

The following schedule of topics is suggested for a first course using the
present textbook:

Undergraduate Graduate
Chapter 1 Self-study Chapter 1 Self-study
Chapter 2 Section 2.1 (self) Chapter 2 Section 2.1 (self)
Section 2.2 Section 2.2
Sections 2.3.1-2.3.3 Section 2.3
Chapter 3 Sections 3.1-3.4 Chapter 3  Sections 3.1-3.7
Sections 3.6-3.7
Chapter 4 Sections 4.1-4.4 Chapter 4 Sections 4.1-4.8
Section 4.7

Sections 4.8.1-4.8.4  Chapter 5 Term Paper

Due to the intimate relationship between Sections 3.5 and 4.6, 3.6 and 4.7, and
3.7 and 4.8, they can be covered simultaneously. Also, it is suggested that
Sections 3.6 and 3.7 (hence, 4.7 and 4.8) be covered after Section 3.2.

The author wishes to thank all those students and colleagues who have
contributed by their advice and criticism to the improvement of this work. The
author is also thankful to Vanessa McCoy for skillful typing of the manuscript,
to Mr. N. 8. Putcha and Mr. K. Chandrashekhara for proofreading the pages,
and to the editors Michae! Slaughter and Susan Hazlett for their help and
cooperation in publishing the mauscript.

J. N. Reddy

Tejashwina vadheetamasthu
{May what we study be well studied)
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CHAPTER

1

INTRODUCTION

1.1 GENERAL COMMENTS

Virtually every phenomenon in nature, whether biological, geological, or
mechanical, can be described with the aid of the laws of physics, in terms of
algebraic, differential, or integral equations relating various gquantities of
interest. Determining the stress distribution in a pressure vessel with oddly
shaped holes and numerous stiffeners and subjected to mechanical, thermal,
and/or acrodynamic loads, finding the concentration of pollutants in seawater
or in the atmosphere, and simulating weather in an attempt to understand and
predict the mechanics of formation of tornadoes and thunderstorms are a few
examples of many important practical problems.

Most engineers and scientists studying physical phenomena are involved
with two major tasks: :

1. Mathematical formulation of the physical process
2. Numerical analysis of the mathematical model

The mathematical formulation of a physical process requires background in
related subjects (e.g., laws of physics) and, most often, certain mathematical
tools. The formulation results in mathematical statements, often differential

3



4 PRELIMINARIES

equations, relating quantities of interest in the understanding and/or design of
the physical process. Development of the mathematical model of a process is
achieved through assumptions concerning how the process works. In a
numerical simulation, we use a numerical method and a computer to evaluate
the mathematical model and estimate the characteristics of the process.

‘While the derivation of the governing equations for most problems is not
unduly difficult, their solution by exact methods of analysis is a formidable
task. In such cases, approximate methods of analysis provide alternative means
of finding solutions. Among these, the finite difference method and the
variational methods such as the Rayleigh—Ritz and Galerkin methods are most
frequently used in the literature.

In the finite difference approximation of a differential equation, the
derivatives in the latter are replaced by difference quotients (or the function is
expanded in a Taylor series) that involve the values of the solution at discrete
mesh points of the domain. The resulting algebraic equations are solved, after
imposing the boundary conditions, for the values of the solution at the mesh
points.

In the solution of a differential equation by a variational method, the
equation is put into an equivalent weighted-integral form and then the
approximate solution over the domain is assumed to be a linear combination
(X, ¢97) of appropriately chosen approximation functions ¢; and undetermined
coefficients, ¢, The coefficients ¢; are determined such that the integral
statement equivalent to the original differential equation is satisfied. Various
variational methods, e.g., the Rayleigh-Ritz, Galerkin, and least-squares
methods, differ from each other in the choice of the integral form, weight
functions, and/or approximation functions. A more complete discussion of
variational methods will be given in Chapter 2. They suffer from the
disadvantage that the approximation functions for problems with arbitrary
domains are difficult to construct.

The finite element method overcomes the disadvantage of the traditional
variational methods by providing a systematic procedure for the derivation of
the approximation functions over subregions of the domain. The method is
endowed with three basic features that account for its superiority over other
competing methods. First, a geometrically complex domain of the problem is
represented as a collection of geometrically simple subdomains, called finite
elements. Second, over each finite element, the approximation functions are
derived using the basic idea that any continuous function can be represented
by a linear combination of algebraic polynomials. Third, algebraic relations
among the undetermined coefficients (i.e., nodal values) are obtained by
satisfying the governing equations, often in a weighted-integral sense, over
each element. Thus, the finite element method can be viewed, in particular, as
an element-wise application of the Rayleigh—Ritz or weighted-residual meth-
ods. In it, the approximation functions are often taken to be algebraic
polynomials, and the undetermined parameters represent the values of the
solution at a finite number of preselected points, called nodes, on the
boundary and in the interior of the element. The approximation functions are
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derived using concepts from interpolation theory, and are therefore called
interpolation functions. One finds that the degree of the interpolation functions
depends on the number of nodes in the element and the order of the differential
equation being solved.

1.2 HISTORICAL BACKGROUND

The idea of representing a given domain as a collection of discrete parts is not
unique to the finite element method. It was recorded that ancient mathe-
maticians estimated the value of 7 by noting that the perimeter of a polygon
inscribed in a circle approximates the circumference of the latter, They
predicted the value of & to accuracies of almost 40 significant digits by
representing the circle as a polygon of a finitely large number of sides. In
modern times, the idea found a home in aircraft structural analysis, where, for
example, wings and fuselages are treated as assemblages of stringers, skins,
and shear panels. In 1941, Hrenikoff introduced the so-called framework
method, in which a plane elastic medium was represented as a collection of
bars and beams. The use of piecewise-continuous functions defined over a
subdomain to approximate an unknown function can be found in the work of
Courant (1943), who used an assemblage of triangular elements and the
principle of minimum total potential energy to study the St Venant torsion
problem. Although certain key features of the finite element method can be
found in the works of Hrenikoff (1941) and Courant (1943), its formal
presentation is attributed to Argyris and Kelsey (1960) and Turner, Clough,
Martin, and Topp (1956). The term “finite element” was first used by Clough
in 1960. Since its inception, the literature on finite element applications has
grown exponentially, and today there are numerous journals that are primarily
devoted to the theory and application of the method. A review of the historical
developments and the basic theory of the finite element method can be found
in more than three dozen textbooks that are exclusively devoted to its
introduction and application. The selective finite element books listed in
References for Additional Reading at the end of this chapter are only for
additional information on certain topics (e.g., three-dimensional problems,
shells, structural dynamics, plasticity, and mathematics of finite elements). For
the beginner, it is not necessary to consult these; the present book provides
complete details of the method as applied to linear field problems, with
examples from fluid mechanics, heat transfer, and solid mechanics.

1.3 THE BASIC CONCEPT OF THE
FINITE ELEMENT METHOD

1.3.1 General Commenis

The most distinctive feature of the finite element method that separates it from
others is the division of a given domain info a set of simple subdomains, called
finite elements. Any geometric shape that allows computation of the solution or
its approximation, or provides necessary relations among the values of the



6 PRELIMINARIES

solution at selected points, called nodes, of the subdomain, qualifies as a finite
element. Other features of the method include seeking continuous, often
polynomial, approximations of the solution over each element in terms of
nodal values, and assembly of element equations by imposing the interelement
continuity of the solution and balance of interelement forces. Here the basic
ideas underlying the finite element method are introduced via two simple
examples:

1. Determination of the circumference of a circle using a finite number of line
segments

2. Determination of the center of mass (or gravity) of an irregular body

The first example is an expansion of an article written by the author in 1978 for
a student magazine at the University of Oklahoma. Ideas. expressed in the
second can be found in books on statics of rigid bodies.

1.3.2 Approximation of the Circumference of a Circle

Consider the problem of determining the perimeter of a circle of radius R (see
Fig. 1.1a). Ancient mathematicians estimated the value of the circumference

(a)

Element

Node

(2)

Se

p !
; }‘\f; Element length A, FIGURE 1.1
L Approximation of the circum-

y R , ference of a circle by line elements:
AN S (a) Circle of radius R; (b) uniform
Sl and nonuniform meshes used to

represent the circumference of the
{c) circle; (¢) a typical element.
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by approximating it by line segments, whose lengths they were able to
measure. The approximate value of the circumference is obtained by summing
the lengths of the line segments used to represent it. Although this is a trivial
example, it illustrates several (but not all) ideas and steps involved in the finite
element analysis of a problem. We outline the steps involved in computing an
approximate value of the circumference of the circle. In doing so, we introduce
certain terms that are used in the finite element analysis of any problem.

1.

Finite element discretization. First, the domain (i.e., the circumference of
the circle) is represented as a collection of a finite number n of subdomains,
namely, line segments. This is called discretization of the domain. Each
subdomain (i.e., line segment) is called an element. The collection of
elements is called the finite element mesh. The elements are connected to
each other at points called nodes. In the present case, we discretize the
circumference into a mesh of five (n =5) line segments. The line segments
can be of different lengths. When all clements (i.e., line segments) are of
the same length, the mesh is said to be uniform; otherwise, it is called a
nonuniform mesh (see Fig. 1.15).

Element equations. A typical element (i.e., line segment, Q°) is isolated and
its required propetties, i.e., length, are computed by some appropriate
means. Let /. be the length of element Q° in the mesh. For a typical
element Q°, A, is given by (see Fig. 1.1¢)

h.=2R sin 16, (1.1)

where R is the radius of the circle and 6, < is the angle subtended by the
line segment. The above equations are called element equations. Ancient
mathematicians most likely made measurements, rather than using (1.1), to
find A,.

Assembly of element equations and solution. The approximate value of the
circumference (or perimeter) of the circle is obtained by putting together
the element properties in a meaningful way; this process is called the
assembly of the element equations. It is based, in the present case, on the
simple idea that the total perimeter of the polygon (assembled elements) is
equal to the sum of the lengths of individual elements:

' P,=2h, (1.2)
e=%

Then F, represents an approximation to the actual perimeter, p. If the mesh
is uniform, or &, is the same for each of the elements in the mesh, then
8, =2x/n, and we have

1
P, = n(ZR sin —) (1.3)

n
Convergence and error estimate. For this simple problem, we know the
exact solution: p =2sxR. We can estimate the error in the approximation
and show that the approximate solution P, converges to the exact p in the
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limit as n—o Considér the typical element Qf. The error in the
approximation is equal to the difference between the length of the sector
and that of the line segment (see Fig. 1.1c):

JEe'2 |Se _hei (14)

where S, = R0, is the length of the sector. Thus, the error estimate for an
element in the mesh is given by

E,= R(2—Jr-2 sin ’—‘) (1.5)
n n
The total error (called global error) is given by multiplying E. by n:
E=2R(x—nsin%‘)=an-P,, , (1.6)

We now show that E goes to zero as n—> o, Letting x = 1/n, we have

P =2RnsinZ=2R 0
n X
and
lim P, = lim (2R s ’”) = lim (ZﬂR cos 7 ) =27R (1.7)
H—r x>0 X x—=0 1

Hence, E, goes to zero as n—> %, This completes the proof of convergence.

In summary, it is shown that the circumference of a circle can be
approximated as closely as we wish by a finite number of piecewise-linear
functions. As the number of elements is increased, the approximation
improves, i.e., the error in the approximation decreases.

1.3.3 Approximate Detersnination of the Center of Mass

Another elementary example to illustrate the finite element concept is
provided by the calculation of the center of mass of a continuous body. It
should be recalled, from a first course on statics of rigid bodies, that the
calcutation of the center of an irregular mass or the centroid of an irregular
volume makes use of the so-called method of composite bodies, in which a
body is conveniently divided (mesh discretization) into several parts (elements)
of simple shape for which the mass and the center of mass (element properties)
can be computed readily. The center of mass of the whole body is then
obtained using the moment principle of Varignon (a basis for the assembly of
element properties):

(mi+ma+. .. +m)X =mFE +maipt+. . Mm%, (1.8)

where X is the x coordinate of the center of mass of the whole body, m, is the
mass of the eth part, and %, is the x coordinate of the center of mass of the eth
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part. Similar expressions hold for the y and z coordinates of the center of mass
of the whole body. Analogous relations hold for composite lines, arcas, and
volumes, wherein the masses are replaced by lengths, arcas, and volumes,
respectively. )

When a given body is not expressible in terms of simple geometric shapes
(elements) for which the mass and the center of mass can be represented
mathematically, it is necessary to use a method of approximation to represent
the properties of an element. As an example, consider the problem of finding
the centroid (X, ¥) of the irregular area (region) shown in Fig. 1.2, The region
can be divided into a finite number of rectangular strips (elements), a typical
element having width /. and height b,. The area of the eth strip is given by
A,=h.b,. The area A, is an approximation of the true area of the element
because b, is an estimated average height of the element. The coordinates of
the centroid of the region are obtained by applying the moment principle:

EAefe EAeye
€ P: €

X= ,
LA, LA,

where ¥, and §, are the coordinates of the centroid of the eth element with
respect to the coordinate system used for the whole body. When the center of
mass is required, A, in the above equations is replaced by the mass m, = p,A,,
p. being the mass density of the eth element; for a homogeneous body, p, is
the same for all elements.

It should be noted that the accuracy of the approximation will be
improved by increasing the number of strips (decreasing their width) used.
Rectangular elements are used in the present discussion for the sake of
simplicity only; one may choose to use elements of any size and shape that
approximate the given area to a satisfactory accuracy. For example, a
trapezoidal element will require two heights to compute the area:

Ae = %he(be + be+1)

e
y _ ~ R
I [ be |
bg T be+1
|k 1L
i b
X
X
FIGURE 1.2

Approximate determination of the mass or geometric centroid of an irreguiar region by dividing it
into a set of rectangular or trapezoidal subregions.
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where b, and b,.; are the left and right heights, respectively, of the eth
element.

The two examples considered above illustrate how the idea of piecewise
approximation is used to approximate irregular geometries and calculate
required quantities. In the first example, the circumference of a circle is
approximated by a collection of line segments, whose measure is available. In
the second, the geometric centroid or mass centroid of an irregular domain is
located by approximating its geomelry as a collection of strips that allow
computation of their areas. Rectangles and trapezoids provide examples of the
element geometries. Thus, subdividing a geometrically complex domain into
parts that allow the evaluation of desired quantities is a very natural and
practical approach. The idea can be extended to approximate functions
representing physical quantities. For example, the temperature variation in a
two-dimensional domain can be viewed as a curved surface, and it can be
approximated over any part of the domain, i.e., over a subdomain or element,
by a function of desired degree. Figure 1.3 shows a cufved surface over a
triangular subregion approximated by a planar surface, i.e., a linear polyno-
mial. Such ideas form the basis of finite element approximations. The next
example illustrates this idea for a one-dimensional continuous system.

1.3.4 Solution of Differential Equation

Consider the temperature variation in a composite cylinder consisting of two
coaxial layers in perfect thermal contact (see Fig. 1.4). Heat dissipation from a
wire (with two insulations) carrying an electric current and heat flow across a
thick-walled composite circular cylindrical tube are typical examples. The
temperature T is a function of the radial coordinate r. The variation of 7 with r
is, in general, nonuniform. We wish to determine an approximation T.(r) to
T(r) over the thicknesses of the cylinder. The exact solution is determined by
solving the differential equation

s (rk%) =q(r) | (1.9a)

‘\i_/Plane surface

FIGURE 1.3

Approximation of curved surface {or a nonuniform
function) over a triangular region by a planar
surface.
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L FIGURE 1.4
R " (a) Coaxial (composite) cylinder made of
two different materials. (b) Finite element
Element . U
representation of a radial line of the
{b) cylinder.

subject to appropriate boundary conditions, for example, insulated at r =R,
and subjected to a temperature T, at r =R,

kr;=0 at r=R;; T()=T, atr=R, (1.9b)

where k is the thermal conductivity, which varies from layer to layer, R; and R,
are the inner and outer radii of the cylinder, and ¢ is the rate of energy
generation in the medium. Note that the temperature is independent of the
circumferential coordinate (because of the axisymmetric geometry, boundary
conditions, and loading), and it has the same variation along any radial line.
When it is difficult to obtain an exact solution of the problem (1.9), either
because of complex geometry and rmaterial properties or because g{r) is a
complicated function that does not allow exact evaluation of its integral, we
seek an approximate one. In the finite element method, the domain (R, R,) is
divided into N subintervals, and the approximate solution is sought in the form

Ti(r) =2 T}p}r) (Ry<r<R,+h,; first interval)
j=1

T{r)=2, TiyXr) (Ri+hy<r=R,+h,+h,; second interval) (1.10)
i—1

7

Tu(r) = > T¥yM(r) (Ri+hy+ -+« + hy_y<r=<R,; Nth interval)
j=1
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where h, denotes the length of the eth interval, 7% is the value of the

temperature T,(r) at the jth geometric point of the eth interval, and y are
polynomials on the eth interval. The continuous function T'(r) is approximated
in each interval by a desired degree of polynomial, and the polynomial is
expressed in terms of the values of the function at a selected number of points
in the interval. The number of points is equal to the number of parameters in
the polynomial. For example, a linear polynomial approximation of the
temperature over the interval requires two values, and hence two points are
identified in the interval. The endpoints of the interval are selected for this
purpose because the two points also define the length of the interval (see Fig.
1.5a). For higher-order polynomial approximation, additional points are
identified interior to the interval (see Fig. 1.5b). The intervals are called finite
elements, the points used to express the polynomial approximation of the
function are called nodes, T¢ are called nodal values, and v are called finite
element approximation functions. The nodal values T¢ are determined such
that T,(r) satisfies the differential equation (1.9a) and boundary conditions
(1.9b) in some sense. Usually, the differential equation is satisfied in a
weighted-integral sense, and boundary conditions on the function itself are
satisfied exactly.

The piccewise (i.e., element-wise) approximation of the solution allows
us to include any discontinuous data, such as the material properties, and to
use meshes of many lower-order elements or a mesh of few higher-order
¢lements to represent farge gradients of the solution. Polynomial approxima-
tions of the form (1.10) can be derived systematically for any assumed degree
of variation,

The satisfaction of the differential equation in a weighted-integral sense
leads, for steady-state problems, to algebraic relations among nodal tempera-
tures 77 and heats Q7 of the element. The algebraic equations of all elements
are assembled (i.e., related to each other) such that the temperature is
continuous and the heats are balanced at nodes common to clements. The

T¢ { e
L
' Sw—-

{2)

T(r)
F}/{Lﬁ'\i Quadratic, 7.,

i T3l |78

|
1 3

hZ ’ FIGURE 1.5
‘ () Linear approximation of a function T(r). (b) Quadratic

(b} approximation of a function 7'(r).
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assembled equations are solved for the nodal values after imposing the
boundary conditions of the problem,

135 Some Remarks

In summary, in the finite element method, a given domain is divided into
subdomains, called finite elements, and an approximate solution to the
problem is developed over each of these. The subdivision of a whole into parts
has two advantages:

L. It allows accurate representation of complex geometrics and inclusion of
dissimilar materials,

2. It enables accurate representation of the solution within each element, to
bring out local effects (e.g., large gradients of the solution).

The three fundamental steps of the finite element method that are
iltustrated via the examples are:

1. Divide the whole into parts (both to represent the geometry and solution of
the problem).

2. Over each part, seek an approximation to the solution as a linear
combination of nodal values and approximation functions.

3. Derive the algebraic relations among the nodal values of the solution over
each part, and assemble the parts to obtain the solution to the whole.

Although the above examples illustrate the basic idea of the finite
element method, there are several other features that are either not present or
not apparent from the discussion of the examples.

Some remarks are in order.

1. One can discretize a domain, depending on its shape, into a mesh of more
than one type of element. For example, in the approximation of an
irregular domain, one can use a combination of rectangles and triangles,

2. If more than one type of element is used in the representation of the
domain, one of each kind should be isolated and its equations developed.

3. The governing equations are generally more complex than those con-
sidered in the first two examples. They are usually differential equations,
In most cases, the equations cannot be solved over an element for two
reasons. First, they do not permit the exact solution. It is here that the
variational methods come into play. Second, the discrete cquations
obtained in the variational methods cannot be solved independent of the
remaining elements, because the assemblage of the elements is subjected
to certain continuity, boundary, and/or initial conditions.

4. There are two main differences in the form of the approximate solution
used in the finite element method and that used in the classical variational
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methods (i.e., variational methods applied to the whole domain). First,
instead of representing the solution u as a linear combination (¢ = X; ¢;¢;)
in terms of arbitrary parameters ¢; as in the variational methods, in the
finite element method the solution is often represented as a linear
combination (i = ¥;upy;) in terms of the values u; of u (and possibly its
derivatives as well) at the nodal points. Second, the approximate functions
in the finite element method are often polynomials that are derived using
interpolation theory. However, the finite element method is not restricted
to the use of approximations that are linear combinations of nodal values
u; and interpolation functions 1, that are algebraic polynomials. One can
use, in addition to nodal values, nogeless variables (as in the Rayleigh-
Ritz method) to represent the approximation of a function.

The number and the location of the nodes in an element depend on (a) the
geometry of the element, (b) the degree of the polynomial approximation,
and (c) the integral form of the equations. By representing the required
solution in terms of its values at the nodes, one -obtains directly the
approximate solution at the nodes.

The assembly of elements, in a gencral case, is based on the idea that the
solution (and possibly its derivatives for higher-order equations) is
continuous at the interelement boundaries.

In general, the assemblage of finite elements is subjected to boundary
and/or initial conditions. The discrete equations associated with the finite
element mesh are solved only after the boundary and/or initial conditions
have been imposed.

There are three sources of error in a finite element solution: (a) those due
to the approximation of the domain (this was the only error present in the
first two examples); (b) those due to the approximation of the solution;
and (c) those due to numerical computation (e.g., numerical integration
and round-off errors in a computer). The estimation of these errors, in
general, is not a simple matter. However, under certain conditions, they
can be estimated for a given element and problem (see Chapter 5).

The accuracy and convergence of the finite element solution depends on
the differential equation, its integral form, and the element used.
«“Accuraty” refers to the difference between the exact solution and the
finite element solution, while “‘convergence” refers to the accuracy as the
number of elements in the mesh is increased.

For time-dependent problems, a two-stage formulation is usually followed.
In the first stage, the differential equations are approximated by the finite
clement method to obtain a set of ordinary differential equations in time.
In the second, the differential equations in time are solved exactly or

_ further approximated by either variational methods or finite difference

11.

methods to obtain algebraic equations, which are then solved for the nodal
values (see Chapter 6).

When the continuity conditions of assembly are replaced by contact
conditions, the method is known as the discrete element method (DEM). In
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the discrete element method, individual elements can have finite motions
(e.g., displacements and rotations). Such methods have applications in
rock mechanics (mining and tunneling), ice mechanics, and other fields
where a continuum is disintegrated during deformation or the original
medium is a collection of individual particles (e.g., granular media and
molecular biology).

1.4 THE PRESENT STUDY

This is 2 book on the finite element method and its applications to linear
problems in engineering and applied sciences. Most introductory finite element
textbooks written for use in engineering schools are intended for students of
solid and structural mechanics, and these introduce the method as an offspring
of matrix methods of structural analysis. A few texts that treat the method as a
variationally hased technique leave the variational formulations and the
associated methods of approximation either to an appendix or to self-study by
the student. This book is written to introduce the finite element method as a
numerical technique that employs the philosophy of constructing piecewise
approximations of solutions to problems described by differential equations.
This viewpoint makes the student aware of the generality of the finite element
concept, irrespective of the student’s background. It also enables the student
to see the mathematical structure common to various physical theories, and
thereby to gain additional insight into various engineering problems.

1.5 SUMMARY

In a numerical simulation of a physical process, we employ a numerical
method and computer to evaluate a mathematical model of the process. The
finite element method is a powerful numerical technique devised to evaluate
complex physical processes. The method is characterized by three features:

1. The domain of the problem is represented by a collection of simple
subdomains, called finite elements. The collection of finite elements is
called the finite element mesh.

2. Over each finite element, the physical process is approximated by functions
of desired type (polynomials or otherwise), and algebraic equations relating
physical quantities at selective points, called nodes, of the element are
developed,

3. The element equations are assembled using continuity and/or “balance” of
physical quantities.

In the finite element method, in general, we seek an approximate
solution u to a differential equation in the form

n m
u = E up; + z ¢,
=1 j=1
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where u; are the values of u at the element nodes, y; are the interpolation
functions, c; are the nodeless coefficients, and ¢; are the associated approxima-
tion functions. Direct substitution of such approximations into the governing
differential equations does not always result, for an arbitrary choice of the data
of the problem, in a necessary and sufficient number of equations for the
undetermined coefficients u#; and ¢;. Therefore, a procedure whereby a
necessary and sufficient number of equations can be obtained is needed. One
such procedure is provided by a weighted-integral form of the governing
differential equation. Chapter 2 is devoted to the study of weighted-integral
formulations of differential equations and their solution by variational methods
of approximation.

There is only onc method of finite elements, and it is characterized by the
three features stated above, Of course, there can be more than one finite
element model of the same problem. The type of model -depends on the
differential equations and methods used to derive the algebraic equations (i.e.,
the weighted-integral form used) for the undetermined, coefficients over an
clement. Although the Rayleigh—Ritz method and polynomial approximations
are used frequently to generate the finite element equations, any appropriate
method or combination of methods, can be used, in principle, to generate the
algebraic equations. In this spirit, the collocation method, subdomain method,
boundary integral methods, and so on can be used to generate the algebraic
equations among discrete values of the primary and secondary variables.
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CHAPTER

2

INTEGRAL
FORMULATIONS
AND
VARIATIONAL
METHODS

2.1 NEED FOR WEIGHTED-INTEGRAL FORMS

In the finite element method, we use an integral statement to develop algebraic
relations among the coefficients ; of the approximation

U= Z'l Uy 2.1)

where u represents the solution of a particular diﬁeremtion. The use of
an integral statement equivalent to the governing differential equation is
necessitated by the fact that substitution of (2.1) into the governing differential
equation does not always result in the required number of lineafgl independent
algebraic equations for the unknown coefficients ;. One way to insure that
there are exactly the same number n of equations as there are unknowns i$ to
require weighted integrals of the error in the equation to be zero. A more -
detailed discussion of this idea is given in the next few paragraphs.

Suppose that we wish to determine an approximate solution of the _

18
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equation .
d ( du

el Crn )-}-u 0 for 0<x<1 (2.2q)

w1 (2

We seek an approximate solution, over the entire domain Q= (0, 1), in the
form

=0 - (2.2b)

x=1

u=Uy= 2‘,1 i (x) + dolx) (2.3)

where the ¢; are coefficients to be determined, and ¢;(x) and ¢o(x) are
functions preselected such that the specified boundary conditions of the
problem are satisfied by the N-parameter approximate solution Uy. For
example, we could take N =2 and write the approximate solution of (2.2) in
the form (¢, =x*—2x, ¢ =x>—3x, Po=1)
u=Uy=c{(x*—2x) +c,(x* - 3x) + 1

which satisfies the boundary conditions (2.2b) of the problem for any values of
¢; and ¢, The constants ¢; and ¢, are to be determined such that the

approximate solution Uy in (2.3) satisfies {2.2a) in some sense. If we require
Uy to satisfy (2.2a) in the exact sense, we obtain

du, dzU
—d_xN Ir 2N+ Uy =—2¢5(x — 1) — 3c,(x* — 1) — 2¢,x — 6c,x2
+o(x? -2+ ey(x® —3x)+1=0
Since this expression must be zero for any value of x, the coefficients of the
various powers of x must be zero:

14+2¢;+3¢,=0
—(6¢c, +3c,) =0
¢;—9,;=0
;=0
The above relations are inconsistent; hence, there is no selution to the

equations. On the other hand, we can require the approximate solution U to
satisfy the differential equation (2.24) in the weighted-integral sense,

1
J‘ wRdx =0 (2.4a)
o

where R is called the residual,

dU, a2,
R= =y g U
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and w is called a weight function. From (2.4a), we obtain as many linearly
independent equations as there are independent functions for w. For example,
if we take w=1 and w=x, we obtain

1
0= f LR dx = (1 + 2¢, + 3¢5) + 3(—6cy — 365) + 3er — 9¢5) + 1z
0

1
0 = J’ xR dx = 12(1 + 26'[ + 3C2) -+ 'lg(—éﬂl - 3(','2) - %(Cl —— 962) -+ %cz
0

or

%Cl+%02= 1 (2-4b)

je+ 3z = 3 .
which provide two linearly independent equations for ¢, and ¢, (giving ¢, = z
and ¢, = —55). ‘

Thus, integral statements of the type in (2.4a) provide means for
obtaining as many algebraic equations as there are unknown coefficients in the
approximation. This chapter deals with the construction of different types of
integral statements used in different variational methods. A variational method
is one in which approximate solutions of the type u = %, ¢P; + o are sought,
and the coefficients ¢; are determined, as shown above, using an integral
statement. The variational methods differ from each other in the choice of the
weight function w and the integral statement used, which in turn dictates the
choice of the approximation functions ¢;. In the finite element method, a given
domain is viewed as an assemblage of subdomains (i.e., elements), and an
approximate solution is sought over each subdomain in the same way as in
variational methods. Therefore, it is informative to study variational methods
before we study the finite element method.

Our goal in this chapter is to illustrate the basic steps in the integral
formulations and the associated approximations of various boundary problems.
Toward this goal, we first introduce necessary terminology and notation.

2.2 SOME MATHEMATICAL CONCEFTS
AND FORMULAE

2.2.1 Boundary, Initial, and Eigenvalue Problems

DOMAIN AND BOUNDARY. The objective of most analyses is to determine
anknown functions, calied dependent variables, that satisfy a given set of
differentia! equations in a given domain or region and some boundary
conditions on the boundary of the domain. A domain is a collection of points
in space with the property that if P is a point in the domain then all points
sufficiently close to P belong to the domain. This definition implies that a
domain consists only of internal points. If any two points of the domain can be

joined by a line lying entirely within it then the domain is said to be convex
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and simply connected. 'The boundary of a domain is the set of points such that,
in any neighborhood of each of these points, there are points that belong to
the domain as well as points that do not. Note from the definition that the
points on the boundary do not belong to the domain. We shali use the symbol
Q to denote an arbitrary domain and I to denote its boundary.

A function of several variables is said to be of class C™(£2) in a domain
if all its partial derivatives up to and including the mth order exist and are
continuous in Q. Thus, if fis of class C° in two dimensions then f is continuous
(i.e., 9f/3x and 8f /3y exist but may not be continuous). The letters x and y
will always be used for rectangular coordinates of a point in two dimensions.

When the dependent variables are functions of one independent variable
(say, x), the domain is a line segment (i.e., one-dimensional) and the
endpoints of the domain are called boundary points. When the dependent
variables are functions of two independent variables (say, x and y), the
(two-dimensional) domain is a surface (most often a plane) and the boundary
is the closed curve enclosing it. It is not uncommon to find problems in which
the dependent variable and possibly its derivatives are specified at points
interior to the domain {e.g., bending of continuous beams).

A differential equation is said to describe a boundary value problem if
the dependent variable and possibly its derivatives are requm:d to take
specified values on the boundary, An initial value problem is one in which the
dependent variable and possibly its derivatives are specified initially (i.e., at
time ¢=0). Initial value problems are generally time-dependent problems.
Exampiles of boundary and initial value problems are given below.

BOUNDARY VALUE PROBLEM

d ¢ du
< X <<
dx(ad) =f for 0<x<1 (2.5)
du
o-ar (:29).- |
u(0) 0 adx . 8o (2.6)
INITIAL VALUE PROBLEM
2
u
d2+au =f for 0<t=y, 2.7
du
u{0) = uy, (E) T (2.8)
BOUNDARY AND INITIAL VALUE PROBLEM
3 Ju cu O0<x<1
[ —_— r .
x ( ax) P3 flx, £y for {0<tsr0 (29)

w(0, 1) = dof), (a%)\x;ga(r), u(x, )=o) (2.10)
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The conditions in (2.6) are called boundary conditions, while those in
(2.8) are called initial conditions. When any of the specified values (i.e., do, 8o,
u,, and v,) are nonzero, the conditions are said to be nonhomogeneous;
otherwise, they are said to be homogeneous. For example, u(0)=4d, is a
nonhomogenous boundary condition, and the associated homogeneous bound-
ary condition is u(0) = 0. The set of specified quantities (e.g., @, go, do, £, to,
and ) is called the data of the problem. Differential equations in which the
right-hand side f is zero are called homogeneous differential equations.

EIGENVALUE PROBLEM. The problem of determining the values of the
constant A such that

—i(ag’—l{)=lu for 0<x <1
dx \ dx
p (2.11)
u
0y=0, ( —) =0
u(0) ‘il

is called the eigenvalue problem associated with the differential equation (2.5).
The values of A for which (2.11) can be satisfied are called eigenvalues, and the
associated functions u are called eigenfunctions.

The classical (or exact) solution of a differential equation is the function
that identically satisfies the differential equation and the specified boundary
and/or initial conditions.

2,2.2 Integral Relations

Integration by parts is frequently used in the integral formulation of
differential equations. In two-dimensional cases, integration by parts is better
known as the gradient and divergence theorems. In this section, we derive
some useful identities for future use.

INTEGRATION-BY-PARTS FORMULAE. Let u, v, and w Dbe sufficiently
differentiable functions of the coordinate x. Then the following integration-by-
parts formula holds:

b du ] b 5
L wad\x—-‘; wdv=-—J. vdw + [wy],

- f ’ u% dx + w(b)u(b) — w(a)v(a) 2.12)

This identity can easily be established. First, note the following identity from
the product rule of differentiation:
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Therefore
dv d dw

wa—dx(wv)~-&;v

Integrating both sides over the interval (g, b), we obtain

JVde L[;x( )—@v]dx

b d
=f —(wu)dx — %}fudx
=[wv] - f X v dx
which is the same as (2.12).
Next, consider the expression
s )
w— —
. dx \dx
b dv du
a® Tk

Using {2.12), we obtain

1

u dw dx + w(b)u(b) — w(a)v(a)

_"L dx
I

b du dw du
— | ————dx+w{b)— —
[t w(®) 5 B) - W) L @
or
b du dw b d*u du du
=) drdx x = ) lg—&—x—z-dx-i-w(a)z(a)—w(b)a(b)
Similarly,
b diw b d? rdPw
[oGgra=] v (Ge) @
b dfu _d*w
= i Ua—idx, where u=§
Using (2.13a) with w = v, we can write the right-hand side as
du dv

-[[E a6 S 6) - v@ @

We use (2.13b) with w = u and u = v to write (2.144) as

(2.13a)

(2.13b)

(2.14a)

J'b Z; x+u(a)—(a) u(b)—(b)+ (b)——(b)—v(a)—(a) (2.14b)
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and, finally, replacing u by its actual value u = d®w/dx?, we arrive at

b dfw b d?w d*u d*w,  dv d*w . dv
) et w0 a@ e Ou®

+ v(b) % (b) —v(a) %xL: (a) (2.15)

Equations (2.13a) and (2.15) are useful in the weak formulation (see Section
2.3) of second- and fourth-order differential equations, respectively.

Let V and V? denote, respectively, the gradient operator and the
Laplacian operator in the two-dimensional cartestan rectangular coordinate
system (x, y):

.8 .8 F &

Veie—+j—, W=V.V=

o= (2.16
3x 3y <’>‘Jc2+<5‘y2 (2.16)

where 1 and § denote the unit basis vectors along the x and y coordinates,
respectively. The caret «*» qver the vectors indicates that they are of unit
length. ¥ F(x,y) and G(x, y) are scalar functions of class C°(Q) in the
two-dimensional domain Q, the following gradient and divergence theorems
hoid.

GRADIENT THEOREM
J gradFdxdyEJ VFdxdy=§ fFds
Q Q T
or (2.17a)

5 OF 931‘) _ 3 3
L(l 8x+J 2 dxdy—f_(nxl+ny])Fds

The second equation implies (because two vectors are equal if and only if their
components are equal) that the following relations hold:

aF aF
—dxd =ff;ands, j—~dxd =j€ans 2.17b
Q Ox g T o 3y Y e ( )

DIVERGENCE THEOREM
f didexdij V-dedy=§ﬁ-Gds
Q2 €2 T
or (2.18)

aG, 9G

——+—-X) d =3§ G, +n,G,)ds
L(Sx 3y dedy r(n « ¥ 1, Gy)

Here the dot denotes the scalar product of vectors, it denotes the unit vector

normal to the surface T of the domain Q, n, and n, (G, and G,) are the

rectangular components of fi (G), and the circle on the boundary integral
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Boundary T"

Domain Q * -

(T=T,+T+T,+T,)

() FIGURE 2.1

indicates that the integration is taken over the entire boundary (sece Fig. 2.1).
The direction cosines n, and n, of the unit vector it can be written as

n,=cos{x, ), n,=cos(y,f) (2.19)
where cos (x, fi) is the cosine of the angle between the positive x direction and
the unit vector .

The following identities, which can be derived using the gradient and

divergence theorems, will be useful in the sequel. Let w and G be scalar
functions defined in a two-dimensional domain €. Then

f (VG)wdx dy = —f (V)G dx dy + j fwG ds (2.20a)
Q 1] I

and

8
—f (V*G)wdx dy = f Vw - VG dx dy —3@ 9G , ds (2.200)
2 : Q r an

where 3/8n denotes the normal derivative operator,

2] 2] 3
—=RV=pn,

n P +n, '5; (2.21)
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The following component form of (2.20a}, with an appropriate change of
variables, is useful in the sequel:

aG aw
Lwa—xdxdy— w—J:Q(,:)—Xde a'y+j§ﬂn,des (2.224)

aG ow
w—dxd =—J—ded +§;n wGds 2.22b
J’Q ay Y o 9y Y P’ ( )

Equations (2.22a, b) can easily be established by means of (2.17b).

2.2.3 Functionals

An integral expression of the form “

b du

I(w) =J‘ F(x,u,udx, u=ulx), u'r=--

A dx
where the integrand F(x, u, u’) is a given function of the arguments x, &, and
du/dx, is called a functional. The value I(u) of the integral depends on u;
hence the notation I{(u) is appropriate. However, for a given u, I{u) represents
a scalar value. We shall use the term functional to describe functions defined
by integrals whose arguments themselves are functions. Loosely speaking, a
functional is a “function of functions.” Mathematicaily, a functional is an
operator ] mapping u into a scalar I{u).

A functional /(1) is said to be linear in u if and only if it satisfies the
relation

au + pv) = od(u) + pl(v) (2.23)

for any scalars @ and 8 and dependent variables « and v. A functional Bu, v)
is said to be bilinear if it is linear in each of its arguments « and v:

B(au, + Buy, v) = aB(u,, v) + BB(us, v)

(linearity in the first argument) (2.24)
B(u, av, + puy) = aB(u, v,) + BBy, v2)

(linearity in the second argument)

where u, u,, U, v, vy, and v, are dependent variables. A bilinear form
B(u, v) is said to be symmetric in its arguments u and v if

B(u, v)=B(v, u) (2.25)

for.all 1 and v.
An example of a linear functional is

(v)= J;L uf dx + i—z (L)M,
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where f=f(x) and M, are known quantities. An example of a bilinear
functional is

dv dw

L
B y= [ o222
(v, w) oadxdxdx

where @ = a{x) is a known function.

2.2.4 The Variational Symbol

Consider the function F = F(x, 4, u"). For an arbitrary fixed value of the
independent variable x, F depends on # and u’. The change av in u, where «
is a constant and v is a function, is called the variation of u and is denoted by
Su:

Su = av (2.26)

The operator & is called the variational symbol. The variation du of a function
u represents an admissible change in the function u(x) at a fixed value of the
independent variable x. If u is specified at a point (usually on the boundary),
the variation of u is zero there because the specified value cannot be varied.
thus the variation of a function u should satisfy the homogeneous form of the
poundary conditions for u. The variation du in u is a virtual change.
Associated with this change in u (i.e., u going to u + av), there is a change in
F. In analogy with the total differential of a function of two variables, the firs
variation of F at u is defined by

oF . 8F _
OF = E Su + @ du (2.27)
Note the analogy between the first variation, (2.27), and the total differential
of F,

oF

dF =
ox

aF aF

dx + e du + P du (2.28)
Since x is not varied during the variation of u to u + du, dx=0 and the
analogy between 3F and dF becomes apparent. That is, & acts as a differential
operator with respect to dependent variables. It can easily be verified that the
laws of variation of sums, products, ratios, powers, and so forth are completely
analogous to the corresponding laws of differentiation. For example, if
F, = F(u) and F, = F;(u) then

S(F £ E)=0FR + 6K

8(FE)=F, 8F, + F, F,

s (g_@) _RoFR-F ok (2.29)
B F3

L
2.
3.
4. S[(F)")=n(F)"" 8K
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Furthermore, the variational operator can commute with differential and
integral operators (as long as the coordinates x and y are the fixed, Lagrangian
coordinates): :

d d du s ofdu
a;(éu) :E(afv) e =av'= ou' = 6(dx) (2.30a)
6 r u(x) a'x=fb Su(x) dx (2.308)

2.3 WEAK FORMULATION OF
BOUNDARY VALUE PROBLEMS

2.3.1 Imtroduction

Recall from Section 2.1 that the motivation for integral formulations of
boundary value problems comes from the fact that variational methods of
approximation, e.g., the Ritz, Galerkin, least-squares, collocation, or, in
general, weighted-residual methods, are based on weighted-integral statements
of the governing equations. Since the finite element method is a technique for
constructing approximation functions required in an element-wise application
of any variational method, it is necessary to study the weighted-integral
formulation and the weak formulation of differential equations. In addition to
the above reason, weak formulations also facilitate, in a natural way, the
classification of boundary conditions into natural and essential boundary
conditions, which play a crucial role in the derivation of the approximation
functions and the selection of the nodal degrees of freedom of the finite
element model. ’

In this section, our primary objectives will be to construct the weak form
of a given differential equation and to classify the boundary conditions
associated with the equation. A weak form is a weighted-integral statement of
a differential equation in which the differentiation is distributed among the
dependent variable and the weight function and includes the natural boundary
conditions of the problem. '

2.3.2 Weighted-Integral and Weak Formulations
Consider the problem of solving the differential equation
d

__a[ (x)fi—:]zq(x) for 0<x<L (2-313)

for the solution u(x), subject to the boundary conditions

u(0) = ug, (a %)

=0 {2.31h)
L

x=
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Here a and g are known functions of the coordinate x, u, and Qg are known
values, and L is the length of the one-dimensional domain. The functions a
and g, and constants u, and {,, along with the length L of the domain, are the
data of the problem. The solution u is the dependent variable of the problem.
When the specified values are nonzero (up#0 or Qu#0), the boundary
conditions are said to be nonhomogeneous; when the specified values are zero
the boundary conditions are said to be homogeneous. The homogeneous form
of the boundary condition u{0) = u, is (0) =0, and the homogeneous form of
the boundary condition (@ du/dx)|,.. = Q¢ is {a du/dx)|—,. = 0.

Equations of the type (2.31a) arise, for example, in the study of heat
conduction in a heat exchanger fin or a long axisymmetric cylinder. Other
examples are included in Table 3.2. In the former case, a = kA, with k being
the thermal conductivity and A the cross-sectional area, and L being the length
of the fin. For the axisymmetric case, ¢ = 2wLkx, x being the radial coordinate
rand L the length of the cylinder (see Fig. 1.4). In both cases, g denotes the
heat generation term, u, is the specified temperature, and Qg is the specified
heat. Other physical problems are also described by the same equation, but
with different meanings for the variables (see Table 3.2).

It should be recalled that the sole purpose of developing a weighted-
integral statement of a differential equation is to have the means to obtain N
linearly independent algebraic relations among the coefficients ¢; of the
approximation

N
u=Uy= 121 cipi(x) + polx) (2.32)
This is accomplished by choosing N linearly independent weight functions in
the integral statement, as will be seen shortly.
There are three steps in the development of the weak form, if it exists, of
any differential equation. These steps are illustrated by means of the model
differential equation and boundary conditions in (2.31).

Step 1. Move all expressions of the differential equation to one side, multiply
the entire equation with a function w, called the weight function, and integrate
over the domain Q = (0, L) of the problem:

O=J:w[—£(a%)-—q]dx (2.33)

We shall call the statement in {2.33) the weighted-integral or weighted-residual
statement equivalent to the original equation (2.31a). The expression in the
square brackets is not identically zero when u is replaced by its approximation.
Mathematically, (2.33) is a statement that the error in the differential equation
(due to the approximation of the solution) is zero in the weighted-integral
sense, When u is the exact solution, (2.33) is trivial, The integral statement
(2.33) allows us to choose N linearly independent functions for w and obtain N
equations for ¢;, ¢, . . ., cy of (2.32).
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Note that the weighted-integral statement of any differential equation can
be developed. The weight function w in (2.33) can be any nonzero, integrable
function. In general, the weight function w in the integral statement is subject
to less stringent continuity requirements than the dependent variable u. The
weighted-integral statement is equivalent only to the differential equation, and
it does not include any boundary conditions.

Step 2. While the weighted-integral statement (2.33) allows us to obtain the
necessary number N of algebraic relations among ¢; for N different choices of
the weight function w, it requires that the approximation functions ¢, be such
that Uy [see (2.32)] is differentiable as many times as called for in the original
differential equation and satisfies the specified boundary conditions. If this is
not a concern, one can proceed with the integral statement (2.33) and obtain
the necessary algebraic equations for ¢; Approximate methods based on
weighted-integral statements of the form (2.33) are known as weighted-residual
methods (see Section 2.4.3). If the differentiation is distributed between the
approximate solution Uy and the weight function w, the resulting integral form
will require weaker continuity conditions on ¢;, and hence the weighted-
integral statement is called the weak form. As will be seen shortly, the weak
formulation has two desirable characteristics. First, it requires weaker (i.e.,
less) continuity of the dependent variable, and often it results in a symmetric
set of algebraic equations in the coefficients. Second, the natural boundary
conditions of the problem are included in the weak form, and therefore the
approximate solution Uy is required to satisfy only the essential boundary
conditions of the problem. These two features of a weak form play an
important role in the development of finite element models of a problem.

The equal distribution of differentiation among the weight function and
the dependent variable is possible only if the derivatives appearing in the
differential equation are of even order, as is the case with most problems
studied in this book. The trading of differentiability from the dependent
variable to the weight function is dictated by the need to include physically
meaningful boundary terms into the weak form, regardless of the effect on the
continuity requirements. On the other hand, trading of differentiation from the
dependent variable to the weight function should not be performed if it leads
to boundary terms that are not physically meaningful. '

Returning to the integral statement (2.33), we integrate the first term of
the expression by parts to obtain

o=, {v]- e (oG] wa) o

Lrdw du dut®
= | {(Fa- ~ | wa== 2.34
,L(dxadx "'q) dx [wadx]o (2.34)

where the integration-by-parts formula [see (2.12) or (2.13q)]

L L
I wdy = —j vdw + [wy]§ (2.35)

Q o
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with v = —adu/dx is used on the first term to arrive at the second line of
(2.34). The reader is asked to verify (2.34) either directly or by the use of
(2.35). Note that now the weight function w is required to be differentiable at
least once. ,

An important part of Step 2 is to identify the two types of boundary
conditions associated with any differential equation: natural and essential. The
classification is important for both the variational methods of approximation
considered in this chapter and the finite clement formulations presented in
Chapters 3-5. The following rule is used to identify the natural boundary
conditions and their form. After trading differentiation between the weight
function and the variable, i.e., after completing Step 2, examine all boundary
terms of the integral statement. The boundary terms will involve both the
weight function and the dependent variable, Coefficients of the weight function
and its derivatives in the boundary expressions are termed the secondary
variables (SV). Specification of secondary variables on the boundary constit-
utes the natural boundary conditions (NBC). For the case at hand, the
boundary term is w(a du/dx). The coefficient of the weight function is a du/dx.
Hence the secondary variable is of the form {see (2.34)] a du/dx.

The secondary variables always have physical meaning, and are often
quantities of interest. In the case of heat transfer problems, the secondary
variable represents heat, . We shall denote the secondary variable by

Q= (a g)nx (2.36)

where n, denotes the direction cosine,

1, = cosine of the angle between the x axis and the
normal to the boundary

For one-dimensional problems, the normal at the boundary points is always
along the length of the domain. Thus, n, = —1 at the left end and n, =1 at the
right end of the domain: n,(0)=—1 and n(L)=1.

The dependent variable of the problem, expressed in the same form as
the weight function appearing in the boundary term, is called the primary
variable (PV), and its specification on the boundary constitutes the essential
boundary condition (EBC). For the case under consideration, the weight
function appears in the boundary expression [see (2.34)] as w. Therefore, the
dependent variable u is the primary variable, and the essential boundary
condition involves specifying i at the boundary points.

It should be noted that the number and form of the primary and
secondary variables depend on the order of the differential equation. The
number of primary and secondary variables is always the same, and with each
primary variable there is an associated secondary variable (e.g., displacement
and force, temperature and heat, and so on). Only one of the pair, either the
primary or the secondary variable, may be specified at a point of the boundary.
Thus, a given problem can have its specified boundary conditions in one of
three categories: (i) all specified boundary conditions are EBC; (ii) some of the
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specified boundary conditions are EBC and the remaining are NBC; or (iii) all
specified boundary conditions are NBC. For a single second-order equation, as
in the present case, there is one primary variable u and one secondary variable
0. At a boundary point, only one of the pair (&, Q) can be specified. For a
fourth-order equation, such as that for the classical (i.e., Euler—Bernoulli)
theory of beams, there are two of each kind (i.e., two PVs and two SVs), as
will be illustrated later (see Example 2.2). In general, a 2mth-order differential
equation has m PVs and m SVs, i.e., m pairs of primary and secondary
variables.
In the notation of (2.36), (2.34) takes the form

O—J'L(a@@—w )d —[9 -@]L
A dx dx a)x }adx o

—jL(ad—ng—lv )dx—(w _d_u ) —(wafi—{n)
o Vaxde 2 o\
dw du

zf@azrw@a_m@r@gh (2.37)

x=L

Equation (2.37) is called the weak form of the differential equation (2.31).
“Weak” refers to the reduced (i.e., weakened) continuity of u, which is
required to be twice-differentiable in the weighted-integral form (2.33) but
only once-differentiable in (2.37).

Step 3. The third and last step of the weak formulation is to impose the actual
boundary conditions of the problem under consideration. It is here that we
require the weight function w to vanish at boundary points where the essential
boundary conditions are specified; i.e., w is required to satisfy the
homogeneous form of the specified essential boundary conditions of the
problem. This requirement on w might seem arbitrary for a reader not familiar
with variational calculus. In weak formulations, the weight function has the
meaning of a virfual change (or variation) of the primary variable. If a primary
variable is specified at a point, the virtual change there must be zero. For more
detailed discussions of this, the reader may consult books on variational
methods [see Reddy (1986)]. For the problem at hand, the boundary
conditions are given in (2.31b). By the rules of classification of the boundary
conditions, u = u, is the essential boundary condition and (a du/dx)|.-r = Qo
is the natural boundary condition. Thus, the weight function w is required to
satisfy

w(0)=0, because u{(0)=u,

(%)
x=L B dx

Since w{0)=0 and

0w =(an) -0

x=L
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(2.37) reduces to the expression
Ly dwdu
S AT |
J; a dx d wq | dx —w{L)Qy (2.38)

which is the weak form equivalent to the original differentiatl equation (2.314)
and the natural boundary condition {2.31d). This completes the steps involved
in the development of the weak or variational form of a differential equation.

The terms “variational form” and “weak form” will be used interchan-
geably. The weak form of a differential equation is a weighted-integral
statement ¢quivalent to the differential equation and the specified natural
boundary conditions of the problem. Note that the weak form exists for all
problems—linear or nonlinear—that are described by second- and higher-order
differential equations. When the differential equation is lincar and of even
order, the resulting weak form will have a symmetric bilinear form in the
dependent variable u and weight function w.

In summary, there are three steps in the development of a weak form. In
the first, we put all expressions of the differential equation on one side (so that
the other side is equal to zero), then multiply the entire equation by a weight
function and integrate over the domain of the problem. The resulting
expression is called the weighted-integral form of the equation.fIn the second
step, we use integration by parts to distribute differentiation evenly between
the dependent variable and the weight function, and use the boundary terms to
identify the form of the primary and secondary variables. In the third step, we
modify the boundary terms by restricting the weight function to satisfy the
homogeneous form of the specified essential boundary conditions and replac-
ing the secondary variables by their specified values.

It should be recalled that a weighted-integral statement or the weak form
of a differential equation is needed to obtain as many algebraic equations as
there are unknown coefficients in the approximation of the dependent
variables of the equation. For different choices of the weight function, different
algebraic equations can be obtained. Because of the restrictions placed on the
weight function in Step 3 of the variational formulation, it must belong to the
same space of functions as the approximation functions (i.e., w ~ ¢).

2.3.3 Linear and Bilinear Forms and
Quadratic Functionals

1t is informative, although hot necessary for the use of variational methods or
the finite element method, to see the relation between the weak form and the
minimum of a quadratic functional associated with the differential equation.
The weak form (2.38) contains two types of expressions: those involving both
the dependent variable « and the weight function w, and those involving only
the latter. We shall denote these two types of expressions by B(w, ) and /(w),



34 PRELIMINARIES

respectively:
B{w, u) = - a dw du dx, l(w)= fL wq dx -+ w(L)Qp (2.39)
o dx dx o
Hence, the weak statement (2.38) can be expressed in the form
0= B(w, u) —l(w) (2.40)

which is termed the wvariational (or weak) problem associated with the
equations (2.31). Using the definitions of linear and bilinear forms from
Section 2.2.3, it can be verified that B(w, u) is bilinear and symmetric in w and
u and that I(w) is linear [see (2.23) and (2.24)]. The variational problem
associated with (2.31a, b) can be stated as one of finding the solution u such
that

B(w, u) = I(w) ’ (@.41)

holds for any w that satisfies the homogeneous form of the specified essential
boundary conditions and continuity conditions implied by the weak form. The

function w can be viewed as a variation (or increment) of the actual solution

*,

u=u*+w (2.42)

and u is the variational solution, i.e., the solution of (2.41), Since both u and
u* must satisfy any specified essential boundary condition (in addition, u* aiso
satisfies any specified natural boundary condition), it follows that w must
satisfy the homogeneous form of the specified essential boundary condition.
Thus, in the notation of (2.26), w is the variation (see Section 2.2.4) of the
solution:

w = ou
Then (2.40) can be written as
0= B(6u, u) —1(ou)
If B(+, +) is symmetric, we can write
= 3[3B(u, w)] - S[i(u)]
= 8I(u) (2.43a)

where

Ku)=3B(u, u) — (1) (2.43b)

In arriving at the second line of (2.43a), the following identities are used:

B(éu, u)= j a@@d =6J;L2 (du)]dx

dx

~15 f aéfff‘fffd 1 5(B(u, u)] (2.44a)
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. L
(Bu) = J' Suqdx+ du(L) Q,
o

= g dx +u(L)Q0) = 8110} (2.44b)

Note that the key step in the derivation of the functional I{x) from the
weak form is the linearity and symmetry of the bilinear form B(w, u). The
relation B(éu, u) =% 8B(u, u) holds only if B(w, u) is bilinear and symmetric
in w and u. Thus, whenever B{w, u) is bilinear and symmetric, and /(i) is
linear, the associated quadratic functional is given by (2.43b). When B(w, u) is
not linear in w and 4, but is symmetric, the functional /(#} can be derived, but
not from (2.43b). The interested reader can consult the books by Oden and
Reddy (1976) and Reddy (1986).

Equation (2.43a) represents the necessary condition for the functional
I{u) to have an extremum value, For solid mechanics problems, I(u)
represents the total potential energy functional, and (2.43a) is the statement of
the fotal potential energy principle:

Of all admissible functions u, that which makes the total potential energy I(x) a
minimum also satisfies the differential equation and natural boundary condition in
(2.31).

In other words, the weak form of a differential equation is the same as the
statement of the total potential energy principle. For problems outside solid
mechanics, the functional /(1) may not have the meaning of energy, but it is
still useful for mathematical analysis (e.g., in considering the existence and
uniqueness of solutions).

As noted earlier, every differential equation admits a weighted-integral
statement, and a weak form exists provided the equation is of order two or
higher. However, not all equations admit the functional formuiation. In order
for the functional to exist, the associated bilinear form should be symmetric in
its arguments. On the other hand, variational methods and the finite element
method do not require a functional; an integral statement or a weak form of
the equation to be solved is sufficient. If one has a functional at hand, the weak
form is obtained by taking its first variation.

2.3.4 Examples

Now we consider some representative examples of differential equations in one
and two dimensions, and formulate their variational equations. These ex-
amples are of primary interest in the study of the finite element method.

Example 2.1. Consider the differential equation

d { du N
—— gl = <x< .
T ( dx) eu+x°=0 for 0<x<1 (2.45a)
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subject to the boundary conditions

du
0) =0, ( 2| -1 2.45b
w@=0, (a5)| (2.455)
The data are [cf. {231)) g = —x%, Qp=1, and u,=0.

Following the three steps outlined above for the construction of variational
statements, we obtain

(1) ej [ (a—)—cu+x2]dx

(2) 0= j(——~—cwu+wx)dx—(wa%)i

From the boundary term, it is clear that the specification of u is an essential boundary
condition, and the specification of adu/dx is a natural boundary condition.. Since
adufdr=13at x=1and w=0 at x =0 (because u is specified thére), we obtain the
weak form

(2.46)

1 1 f
(3 6= (a é;—g@— cwu) dx + f wx® dx — w(l) (2.47a)
Q 0

0= B(w, u)—{(w) {2.47b)

where

i
B(w, u)= j (a dwdu _ cwu) dx
o\ dedx
L (2.47¢)
I(w) = —f wx” dx + w(l)

0

Since B(-,-) is bilinear and symmetric, and I(-) is linear, we can compute the
quadratic functional from (2.43):

(i) =% J: [a(%)z -t + Zuxz] dx —u(1) (2.48)

Equations of the type of (2.45) arise in the study of the deflection of a cable or of
heat transfer in a fin {c =0). In the former case, # denotes thé transverse deflection and
a the tension in the cable. The first two terms in the quadratic functional represent the
elastic strain energy, while the last term represents the work done by the distributed
force in moving through the displacement u.

" The next example illustrates the variational formulation of a fourth-order
differential equation in one dimension.

Example 2.2. Consider the problem of finding the solution w to the differential
eguation

dd—;[b(x)%]—f(x)=0 for 0<x<L (2.49)

o (505

subject to the boundary conditions

vo=(G)] -0 %)

=0 (2.50)

x=L
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This equation arises, for example, in the study of the elastic bending of beams (under
the Euler—Bernoulli hypothesis). In this case, w denotes the transverse deflection of the
beam, L is the total length of the beam, b(x)=0 is the flexural rigidity of the beam
(i.e., the product of modulus of elasticity £ and moment of inertia I: b = EI), f(x) is
the transverse distributed load, and .M, is the bending moment. The solution w is the
dependent variable of the problem, and all other quantities (L, b, f, M) that are known
in advance are the data of the problem.

Since the equation contains a fourth-order derivative, we should integrate it twice
by parts to distribute the derivatives equally between the dependent varaible w and the
weight function v. In this case, v must be twice differentiable and satisfy the
homogeneous form of EBC., Multiplying (2.49) by v, and integrating the first term by
parts twice with respect to x, we obtain {see (2.15)]

0= f: u[g; (b %) —f} de (2.51)
o= [[(-5) & () ~wr] e+ o (GE]]

L

Ly dvdw d { dw\ dv, dw
[ o )0
J; ( wrde V)b er) T w e
From: the last line, it follows that the specification of w and dw/dx constitutes the
essential (geometric or static} boundary conditions, and the specification of

(2.52)

0

d [ d’w
I (b Ex—z—) =V (shear force) (2.53a)
and
d’wy .
b —&x—z—) =M (bending moment) (2.53b)

constitutes the natural boundary conditions. In the present case, the specified essential
boundary conditions are {(because of the clamped condition)

- (29

Hence, the weight function v is required to satisfy the conditions

0-(2)

The natural boundary conditions are

=0

x=0

=0 (2.54)

x=0

d { dw a*w
FAC a:i‘)LL =0, (vg) o Mo (2.55)
Using (2.54) and (2.55) in (2.52), we obtain
L dPudiw dv
o= (pEELY_ i :
L ( e Y ) dx (dx) e (2.56a)

or

B(v, w)=Kv) (2.56b)
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where
I dZU d2
B(U,W)=JO bEd 2dx
L . (2.56¢)
I(v)= L ofd + (5) M

The quadratic form, commonly known as the fofal potential energy of the beam, is
obtained using (2.56¢) and (2.43b):

1= [ e (2)

Note that for the fourth-order equation, the essential boundary conditions
involve not only the dependent variable but also its first derivative. As pointed out
earlier, at any boundary point, only one of the two boundary conditions (essential or
natural) can be specified. For example, if the transverse deflection is specified at a
boundary point then.one cannot specify the shear force V at the same point, and vice
versa. Similar comments apply to the slope dw/dx and the bending moment M. Note
that in the present case, w and dw/dx are the primary variables, and V and M are the
secondary variables.

My (2.57)

x=L

The next example is concerned with a second-order differential equation
governing conductive and convective heat transfer in two dimensions. It should
be noted that the boundary condition for a convective boundary contains both
primary and secondary variables.

Example 2.3. Consider steady heat conduction in a two-dimensional domain £,
enclosed by lines AB, BC, CD, DE, EF, FG, GH, and HA (see¢ Fig. 2.2). The

governing equation is
GZT & .
( 1) qo In {2.58)

where g, is the uniform heat generation, k is the conductivity of the isotropic material
of the domain, and T is the temperature. We wish to construct the weak form of the

¥
A Insulated {i.e., § = 0}
or _ _ T
an ax Exposed to ambient
temperature {convection)
aT
k Tax = 4(y) 8T
* | k= = BT~ T.)
dx
- X
B —— a —{c
T="T ()
FIGURE 2.2

Conduction and convection heat transfer in two-dimensional domains.
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equation Equation (2.58), known as the Poisson equation, arises in many fields of

engineering (see Table 8.1).
Proceeding as descnbed earlier, we have

2
0= jw[ (8T z; —qﬂ]a’xdy

where w denotes the weight function. Using (2.22) {with G = 8T/8x in {2.224) and
G = 3T/ 8y in (2.22b)], we obtain

aw aT aw 87) ] f}; ( ar )
d — ds .
0= f [ (Bx ax Tay ay) | By m kGt g (2.59)

The reader should verify the last step [i.c. the application of (2.22)]. From the
boundary expression, it follows that the secondary variable of the problem is of the

form
arT aT aT
() s
ox nta, ay n 1
and the primary variable is T. The secondary variable g, denotes the total flux across
(i.e., along the normal to) the boundary. In general, g, is composed of fluxes due to
conduction, convection, and radiation.

The boundary I' of the domain consists of several line segments, ‘and they are
subject to different types of boundary conditions (see Fig. 2.2):
onT=AB(n,=-1,n,=0): specified heat flux, §{y)
onT,=BC(n,=0,n=~1) specified temperature, Tp(x)
onl;=CD(n.=1,n,=0) convective boundary with ambient (2.60)

temperature 7. and film coefficient §3;
kaTlen+B(T—-T.)=0
on I'; = DEFGHA: insulated boundary, 8T/én =0
Using the boundary information, the boundary integral in (2.59) can be simplified as
follows {(note that w =0 on I}

§1v(k§l)ds=f wq,,ds+f O(kwaw— ds
- on r, I on

—L w[ﬁ(r—r,,)]ds+f w0 ds

- f w(0, )4 (y) dy — B f wia, Y[T(a, y)~ Tldy  (2.61)

Substituting (2.61} into (2.59), we obtain the weak form

awadT awa
0= f [ (ax oy aj) W‘-’o] dxdy + f w(0, y)4{y) dy

B f wia, YT, y) ~ T.] dy 2.62)

Collecting terms involving both w and 7" into B( -, - ), and those invelving only w into
{(+), we can write (2.62) in the form

B(w, T)=1(w) (2.63a)
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where

' AwadT dwad b
B(w, T}= Lk(a_anr 53}) dx dy + ﬁJ; w{a, y)T(a, y) dy

. , (2.63b)
(0= [ waodsdy= [ w0, A0V dy + B | wia NT.

The quadratic functional is given by

1o =§L [(‘29 * (2—3] drdy— | Tgodsdy
¥ f T4 dy +F f: HT(a,y)—2T(a, Y)T]dy  (2.63¢)

Note that the boundary integrals in this example are defined along the y and x
axes, respectively. This is because the boundaries are parallel to either the x or the y
axis.

r

2.4 VARIATIONAL METHODS OF APPROXIMATION
2.4.1 Introduction

Our objective in this section is to study the variational methods of approxima-
" tion. These include the Rayleigh-Ritz, Galerkin, Petrov—Galerkin, least-
squares, and collocation methods. In all these, we seck an approximate
solution in the form of a linear combination of suitable approximation
functions ¢; and undetermined parameters c;: ¥, ¢;¢;. The parameters ¢; are
determined such that the approximate solution satisfies the weighted-integral
form or weak form of the governing equation or minimizes the quadratic
functional associated with the equation studied. Various methods differ from
each other in the choice of weight function w and approximation functions ¢.
The primary objective of this section is to present a number of classical
variational methods. The finite element method makes use of variational
methods to formulate the discrete equations over an element. As we shall see
in Chapters 3-14, the choice of the approximation functions in the finite
element methods is different from that in the classical variational methods.

2.4.2 The Rayleigh-Ritz Method

In the Rayleigh-Ritz method, the coefficients ¢; of the approximation are
determined using the weak form of the problem, and the choice of weight
functions is restricted to the approximation functions, w = ¢;. Recall that the
weak form contains both the governing differential equation and the natural
boundary conditions of the problem, and it places less stringent continuity
requirements on the approximate solution than the original differential
equation or its weighted-integral form, The method is described below for a
linear variationa! problem.
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Consider the variational problem of finding the solution u such that
B(w, u)y=I{w) (2.64)

for all sufficiently differentiable functions w that satisfy the homogeneous form
of any specified essential boundary conditions on u. When the functional B is
bilinear and symmetric and / is linear, the problem in (2.64) is equivalent to
minimization of the quadratic functional

I(w) = 3B(u, u) — I(u) (2.65)

In the Rayleigh—Ritz method, we seek an approximate solution to (2.64)
in the form of a finite series

Uy = Z qu()J + (PO (2.66)
j=1

where the constants ¢;, called the Ritz coefficients, are chosen such that (2.64)
hoids for w=¢,; (i=1,2,..., N); i.e., (2.64) holds for N different choices of
w, so that N independent algebraic equations in ¢; are obtained. The
requirements on ¢; and ¢, will be discussed shortly. The ith algebraic equation
is obtained by substituting ¢; for w:

N

B(#0 2 o+ 00) =1) (=1,2,...,N)

j=1

If B is bilinear, the summation and constants ¢; can be taken outside the
operator. We have

N
2, B(9i, #));=1(9) = B(gn $o) (2.67a)
ar

N
E Bijcj = E‘: Bij = B(‘PEJ ¢j)r E = l(d)!) - B((lti) ¢D) (2 67b)

which represents the ith algebraic equation in a system of N linear algebraic
equations in N constants ¢;. The columns (and rows) of the matrix coefficients
B, = B(¢;, ¢;) must be linearly independent in order that the coefficient
matrix in (2.67} can be inverted.

For symmetric bilinear forms, the Rayleigh-Ritz method can also be
viewed as one that seeks a solution of the form in (2.66) in which the
parameters are determined by minimizing the quadratic functicnal correspond-
ing to the symmetric bilinear form, that is, the functional I(x) in (2.65). After
substituting wy from (2.66) for u into (2.65) and integrating, the functional ()
becomes an ordinary (quadratic) function of the parameters ¢, ¢, . ... Then
the necessary condition for the minimization of I(cy, c3, ..., cy) is that its
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partial derivatives with respect to each of the parameters be zero:

3 al al
Lo =0 = -0

P ) YY) se oy 2.68
361 aCZ acN ( )

Thus there are N linear algebraic equations in N unknowns, ¢ (j=
1,2,..., N). These equations are exactly the same as those in (2.67) for all
problems for which the variational problem (2.64) is equivalent to 8/ =0. Of
course, when B(+, ) is not symmetric, we do not have a quadratic functional.
In other words, (2.67) is more general than (2.68), and they are the same when
B( -, -) is bilinear and symmetric. In most problems of interest in the present
study, we shall have a symmetric bilinear form.

Returning to the Rayleigh—Ritz approximation u, in (2.66), we note that
u, must satisfy the specified essential boundary conditions of the problem; any
specified natural boundary conditions are already included in the variational
problem (2.64). The particular form of uy in (2.66) facilitates satisfaction of
specified boundary conditions. If we were to use the form

Uy =2, ¢ (x)
i=1

then it would not be easy to satisfy nonhomogeneous boundary conditions. For
example, suppose that uy is required to satisfy the condition un{x,) = o at a
boundary point x = xq:

N

Z Cj¢j(xo) = HUp

i=1

Since ¢; are unknown parameters to be determined, it is not easy to choose
¢;(x) such that this relation holds. If uo="0 then any ¢; such that ¢;(x}=0
would meet the requirement. By writing the approximate solution uy in the
form (2.66), a sum of homogencous and nonhomogeneous parts, the non-
homogeneous essential boundary conditions can be satisfied by ¢, @o(xo) =
ug, and ¢; are required to satisfy the homogeneous form of the same boundary
condition, @¢;(x¢)=0. In this way, uy satisfies the specified boundary
conditions:

N
un{xo) = ; pi{xo) + Polxo)

0+ u,

If all specified essential boundary conditions ar¢ homogeneous (i.e., the
specified value v, is zero) then ¢, is taken to be zero and ¢; must still satisfy
the same conditions, ¢;{xo)=0. Since ¢, satisfy the homogenebus essential
boundary conditions, the choice w = ¢, is consistent with the requirements of a
weight function. The approximation functions ¢, satisfy the following
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conditions:

1. (a) ¢; should be such that -B(¢;, ¢;) is well defined and nonzero
[i.e., sufficiently differéntiable as required by the bilinear form
B(-, )} o
(b) ¢, must satisfy at least the homogeneous form of the essential
boundary conditions of the problem, (2.69)

2. For any N, the set {¢;}/L, along with the columns (and rows) of
B(¢;, ¢;) must be linearly independent.

3. {¢;} must be complete. For example, when ¢; are algebraic
polynomials, completeness requires that the set {¢,} should contain
all terms of the lowest order admissible, and up to the highest order
desired,

The only role that ¢, plays is to satisfy the specified nonhomogencous
essential boundary conditions of the problem. Any low-order function that
satisfies the specified essential boundary conditions should be used. If all
specified essential boundary conditions are’homogeneous then ¢, =0 and

E= l(d’i) — B(¢s, $o) = [(‘f-’i) (2-70)

Next, we consider a few examples of the application of the Rayleigh—Ritz
method.

Example 2.4. Consider the differential equation [cf. Example 2.1, with a = ¢ = 1]

d*u )
"avg—uﬁ-x =0 for 0<x<1 (2.71)
‘We consider two sets of boundary conditions:

setl: w(0)=0, u(1)=0 (2.72a)

=1 (2.72b)

x=1

du
set2:  u(0)=0, (?d; )

Set 1. The bilinear functional and the linear functional are [see (2.47¢)]

1 d 1
BOw, 1) = fo (E"’%—W) dx,  I(w)=— fu wx? d @2.73)
Since both boundary conditions [1(0) =u(1) =0] are of the essential type, we must
select @, in the N-parameter Ritz approximation to satisfy the conditions ¢,(0)=
$i(1) = 0. We choose the following functions: ¢, =0 and

Pr=x(1~x), . $=x(I-x), ..., Py=2x"1-x) (2.74)

It should be pointed out that if one selects, for example, the functions ¢, =x¥1-x),
$2=x°(1 —x), etc. [not including x(1 — x)], requirement 3 in the conditions (2.69) is
violated, because the set cannot be used to generate the linear term x if the exact
solution contains it. As a rule, one must start with the lowest-order admissible function
and include all admissible, higher-order functions up to the desired degree.
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The N-parameter Rayleigh--Ritz solution for the problem is of the form

N
Un =i+ Cotprt .. FCny = 2, O (2.75)

j=1

Substituting this into the variational problem B(w, u) = {(w), we obtain

[[4(3649) - 03 00) =~ [ 8

2 ¢ J: (ﬁi&%%_ qb,(j),-) dx = —J: bx? dx

or

N
2, B9 ¢)=1($) (2.76a)
i

where the coefficients B(¢;, ¢,) and /(¢;) are defined by

B 0= (S gg)ar, tp)==[ voas Qo)

The same result can be obtained using (2.65) {instead of (2.64)]. We have

1 2
1(11)2%L [(%) —uz+2xzu]dx

Substituting for u == uy from {2.75) into the above functional, we obtain
1 1 N d¢ 2 N 2 N
1(c) = ‘j [(2 Cf‘_‘f) - (2 CJ‘PJ) + 212(2 Cf‘f’j)] dx 2.77)
2 Jee 1 dx =1 f=1

The necessary conditions for the minimization of I, which is a quadratic function of the
variables ¢;, €2, . . . , Cy, 8I€

2 on[[2(522)-o(Gon)ror]s

=1 =1
N
=2 Bye;— E
=t

where

[ (L0288
(]

1
— h. = — 24
U ) as, F=- | wids

which are the same as those in (2.76). Equations (2.76a, b) hold for any choice of
admissible approximation functions ¢;.

For the choice of approximation functions in (2.74), the matrix coefficients
B;=B(¢,, ¢,) and vector coefficients F,={(¢,)} — B{(¢,, o) =I(¢:) can be computed
using

G =x'(1~x)=x"—x
%z i1 = (7 +
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We have _
By= [ (= G DR = o - (e ) e
B 2 . 2 :
ST G T D0+ iG] +3) (2.78a)
! 200 i+l ___1—
F":"LI(" X7 dx= G+0@d+10) (2.78b)

Equation (2.76) can be written in matrix form as
[Bl{c} ={F} (2.79)
For example, when N =2, (2.79) becomes
1 [126 63:[{::1} __1 {3}
4201 63 52ile, 60 12
and the use of Cramer’s rule to solve the equations gives
o= —15=-0.0813, ¢;=-%=-01707.
The two-parameter Rayleigh—Ritz solution is given by
Uy =iy + 20 = (—B)x —x) + —#Fx*-x%)
= ~15(10x + 11x* - 21x%)
The exact solution of (2.71) and (2.72a) is given by
u(x) = sinx +:hsli;1 (1—x) 4yt

-2 (2.80)

The values of the Ritz coefficients for various values of N can be obtained by solving
(2.79). A comparison of the Rayleigh—Ritz solution (2.75) with the exact solution
(2.80}) is presented in Table 2.1 and Fig. 2.3,

Set 2. For the second set of boundary conditions (2,72b), the bilinear form is the
same as that given in (2.73) and (2.76b). The linear form is given by (¢ =0)

1
Kw)= —f wx® dx + w(1) ' (2.81a)
(13
and we therefore have

1
E=— f ¥y dx + pu(1) (2.816)
0
In this case, the ¢, should be selected to satisfy the condition ¢,(0) =0, because
the only EBC is at x = 0. The following choice of ¢, meets the requirements:
$i=x' (2.82)

The coeficients By and F can be computed using (2.82) in (2.768) and {2.814)
respectively:

' 2 if 1
B :J‘ ji i =2 LI d. = _
y=), W X = T T
1 1 (2.83)
E=—j X dr 1= 31
0 i+3
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TABLE 2.1
Comparison of the Rayleigh—Ritz and exact solutions of the
equation
d*u 2 )
—&?—u+x =0 for 0<x<1; u(@=u(l)=0
Rayleigh-Ritz solution, —
Ritz ayleig| z solution, —10u Exact
coefficientst x N=1 N=2 N=3 solution
N=1 0.0 0.0 0.0 0.0 0.0
¢;=-0.1667 0.1 0.1500 0.0885 0.0954 0.0955
N=2 0.2 02667 0.1847  0.1890  0.1890 ,
¢, =—0.08t3 0.3 0.3500 0.2783 0.2766 0.2764. b
c,=—0.1707 0.4 0.4000 0.35%0 6.3520 0.3518
N=3 0.5 0.4167 0.4167 0.4076 0.4076
cy=-0.0952 0.6 0.4000 0.4410 6.4340 0.4342
c=—0.1005 0.7 0.3500 0.4217 0.4200 0.4203
c;=—0.0702 0.8 0.2667 0.3486 0.3529 0.3530
6.9 0.1500 0.2115 0.2183 0.2182
1.0 0.0 0.0 0.0 0.0

t The four-parameter Rayleigh-Ritz solution coincides with the exact solution up 1o four

decimal places.

0.0
—_ Three-parameter solution
and exact
011 --- Two-parameter solution
' —~ One-parameter solution

-0.24
u(x) 1
—0.34
—0.4 4
0S5 +1T——v—7— T T

0.0 0.2

FIGURE 2.3

Comparison of the Rayleigh~Ritz
solution with the exact solution of
(2.71) and (2.72a). The three-
parameter solution and the exact
solution do not differ on the scale
of the plot.
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TABLE 2.2
Comparison of the Rayleigh-Ritz and exact solutions of the

equation

d*u . du
——=—u+x’=0 for 0<x<1; wu(0)=0, (__) = 1
dx dx x=1
Rayleigh—Ritz solution, 1
Ritz Exact
coefficientst X N=1 N=2 N=3 solution
N=1: 0.0 0.0 6.0 0.0 0.0
c; =1.1250 0.1 0.1125 0.1280 0.1271 0.1262
N=2 ' 0.2 0.2250 0.2530 0.2519 0.2513
¢; = 12950 0.3 0.3375. 0.37M9 0.3740 0.3742
¢, =—0.15108 0.4 0.4500 0.4938 0.4934 0.4944
N=3% 0.5 0.5625 0.6097 0.6099 6.6112
¢;= 12831 0.6 0.6750 0.7226 0.7234 0.7244

¢, =—0.11424 0.7 0.7875 0.8325 0.8337 0.8340
¢y = —0.02462 0.8 0.9000 0.9393 0.9407 0.9402
0.9 L0125 1.0431 1.0443 1.0433
1.0 1.1250 1.1439 1.1442 1.1442

t The four-parameter Rayleigh-Ritz solution coincides with the exact solution up o four
decimal places.
The exact solution in the present case is given by

_2cos(l—x)—sinx
cos i

u(x) +x* -2 (2.84)
A comparison of the Rayleigh-Ritz solution with the exact solution is presented in
Table 2.2.

Example 2.5, Consider the problem of finding the transverse deflection of a cantilever
beam under a uniform transverse load of intensity f, per unit length and end moment
My using Euler—Bernoulli beam theory (see Example 2.2). The governing equations of
this theory are

d* d*w O<x<L
dx* (Elfix_z) ~h=0 for {EI> 0 (2.8
dw dhy d d*w
=} — = E —— = R — = .
w(0) (cir) o ( I drz) Mo [dx (EI dxzn L0 (289)

The variational form of (2.85) (which includes the specified NBC) was derived in
Example 2.2, and is given by (2.56).
We now construct an N-parameter Ritz solution using the variational form,
(2.56), B(v, w) =I(v), where
&’y d*w

B(v, w)=J;LEIFde, 1(v)=LLﬁ,vdx+ (Mﬂgf) 2.87)

x=L
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Note that the specified EBC, w{0) =0 and (dw/dx)|,_, are homogeneous. Therefore,
$o=0. We select algebraic approximation functions ¢, that satisfy the continuity
conditions and boundary conditions ¢{0)= ¢/(0)=0. The lowest-order algebraic
function that meets these conditions is ¢, =x. The next function in the sequence is
¢, =x". Thus we have

(P] =x2, ¢2=x3, ey (j)N:xN-‘-’

The N-parameter Rayleigh--Ritz approximation is

wy(x} = 21 b, P = x/* (2.88)

Substituting (2.88) for w and v = ¢ into (2.87), we obtain

- " E@j(i + (j + L
E G D!
J- IG 4 Dix M+ 1) dx = Tri=1

12 2.89
E= ﬁ’(L) == My(i -+ 1)L 8%

For N =2 (i.e., the two-parameter solution), we have

EI{4Lc, +6L%,) = Y L* + 2M,L
EI(6L%c, + 121.°c,) = i L* + 3M,L?

4L 617 cl} foL3{ } {2}
E X
I[GLZ 12L3]{c 12 3L ML,y (2.906)

Solving for ¢, and c,, we obtain

(2.900)

or, in matrix form,

5HLY + 12M, c__——j;]L
24E[ T 12EI

€=

and the solution (2.88) becomes

SHl?+12M, 2 ol

wle) = T aE

(2.91)

For the three-parameter approximation (N = 3), we obtain the matrix equation

4 6L 8L* |{c L2+ 2M,
EIl 6L 120 18L° |§c,p =13 WHI?+3M,L (2.92)
8L* 18L* #r* ||, 1 L* + 4M,L?

The solution of this when substituted into (2.88) for N =3, gives

2

Myx
—4Lx +xH)+

W) = 2EI

2.93
24EI (2.93)
which coincides with the exact solution of (2.85) and (2.86). If we try to compute the
four-parameter solution without knowing that the three-parameter solution is exact, the
parameters ¢; (j > 3) will be zero. Figure 2.4 shows a comparison of the Rayleigh—Ritz
solution with the exact solution.
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—— Three-parameter solution
1---- Two-parameter sclution
_|—— One-parameter solution

PP
e ——

0.0 -

w x 10%
W o 103 ,
T dx —1.04 ——-x10

—2.0 4 fO ________

~3.0 - T T T T v T T T v

0.0 0.2 0.4 0.6 0.8 1.0 1.2
xfL
FIGURE 2.4

Comparison of the Rayleigh—Ritz solution with the exact solution of a cantilever beam under a
uniform transverse load (Euler—Bernoufli beam theory).

The next example deals with two-dimensional heat conduction in a
square region. Note that the dependent variable, namely the temperature, is
denoted by T, consistent with the standard notation used in heat transfer
books.

Example 2.6. Consider the Poisson equation in a unit square region:

—kVT =g, in Q={(x,y):0<(x, y)<1} (2.94a)
T=0  onsidesx=1and y=1
ar (2.94b)

'5;;=0 onsides x=0 and y=0

where q, is the rate of uniform heat generation in the region. The variational problem is
of the form (see Example 2.3)

B(w, T) = I(w) (2.95a)

where the bilinear and linear functionals are

B(w, T)= J’J‘ (é’waT ow 3T dx dy

dx &x ay 8
(2.95b)
18 = f f wao dx dy
0 J0
We consider an N-parameter approximation of the form
N
Ty= 2, cyeosaxcosayy, @ =3(2—x (2.96)
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Note that {2.96) involves a double summation. Since the boundary conditions are
homogencous, we have ¢o=0. Incidentally, ¢; also satisfies the natural boundary
conditions of the problem. While the choice ¢, =sininx sininy meets the essential
boundary conditions, it is not complete, because it cannot be used to generate the
solution that does not vanish on the sides x =0 and y = 0. Hence, ¢, are not admissible.

The coefficients B, and F can be computed by substituting (2.96) into (2.95b).
Since the double Fourier series has two summations [see (2.96)], we introduce the
notation

1 1
Banon =k J; L [{a; sin a;x cos a;y)(ax sin aex cos a;y)

+ (o cos ayx sin a;y)(a; cos wx sin a;y)] dx dy

_f0 if i#k or j#!
_{%k(a%+ o)) ifi=k and j=1I (2.97a)
7
1 p1
Ef=‘1°f f cos arx €05 &gy dx dy = qu sin &, sin a (2.97b)
¢ ~0 11 .

In evaluating the integrals, the following orthogonality conditions were used

o _ 0 if i#j
Lsma,-xsmcr,-xcix—{% i i=j
1 0 if i#j
J;cosaf,-xcosa,-xdx—{% i i

Owing to the diagonal form of the coefficient matrix {2.97a), we can readily solve for
the coefficients ¢

F;  dq, sing;sin g

G B k. 2.98)
" Buyy Kk (& + o) (2.98)
The one- and two-parameter Rayleigh—Ritz solutions are
32q
= kn“o cos jax cos iny (2.99)
T,= % [0.3285 cos 1zx cos 3y — 0.0219{cos 2mx cos iny
+ cos 3mx cos 3my) + 0.0041 cos dax cos 3my] (2.100)

If algebraic polynomials are to be used in the approximation of T, one can choose
$1=(1—x)(1—y) or ¢,={1—x%(1—y?), both of which satisfy the (homogeneous)
essential boundary conditions. However, the choice ¢; = (1 —x*)(1 — y*) also meets the
natural boundary conditions of the problem. The one-parameter Ritz solution for the
choice ¢, = (1 —x3)(1 —y?) is

3o 2 2
=——{(1- - 2.101
T, y) = e =21 -y7) (2.101)
The exact solution of (2.94a, b) is

T(x, y) =% [(1 )44 (1) cos &, y cosh a’,,x] (2.102)

et o7 cosh a,
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0.4
Solutions:
— Analytical (2.102) e
03 T~ " —-— One-parameter { 2.10D) VAR
i ~. R
N —= One-parameter /1\&“' o
< For s
s —-— Two-parameter  >(2.96) AT e
E .
=) -~-- Three-parameter R
&) | .
= 0.2 i
u’)’- ’ ’
¥ "_,s B¢ N
0.1 4 AN P P
. Y
I
0.0 ————r———————y
0.0 0.2 0.4 0.6 0.8 L0 1.2
FIGURE 2.5

Comparison of the Rayleigh~Ritz solutions with the analytical solution of the Poisson equation
(2.94} in two dimensions,

where a, = }(2n - 1)a. The Rayleigh-Ritz solutions (2.99), (2.100), and (2.101) are
compared with the exact solution (2.102) in Fig. 2.5. The analytical solution is
evaluated using 20 terms of the series (2.102),

2.4.3 The Method of Weighted Residuals

As noted in Section 2.3.2, one can always write the weighted-integral form of a
differential equation, whether the equation is linear or nonlinear (in the
dependent variables). The weak form can be developed if the equations are
second-order or higher, even if they are nonlinear. However, it is not always
possible to construct a functional whose first variation is equal to the
variational form. The Rayleigh-Ritz method can also be applied to all
problems, including nonlinear problems, that have weak forms. In this
method, the weight functions are necessarily equated to those used in the
approximation. The weighted-residual method is a generalization of the
Rayleigh—Ritz method in that the weight functions can be chosen from an
independent set of functions, and it requires only the weighted-integral form to
determine the parameters. The method of weighted residuals can be used to
approximate the weighted-integral form of any equation. Since the latter form
does not include any of the specified boundary conditions of the problem, the
approximation functions should be selected such that the approximate solution
satisfies both the natural and essential boundary conditions. In addition, the
weight functions can be selected independently of the approximation functions,
but are required to be linearly independent (so that the resulting algebraic
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equations are linearly independent). This flexibility is advantageous in certain
nonlinear problems.

In this section, we discuss the general method of weighted residuals first,
and then consider certain special cases that are known by specific names (e.g.,
the Galerkin and least-squares methods). Although a limited use of the
weighted-residual method is made in this book (see Chapter 14), it is
informative to have a knowledge of this method for use in the formulation of
certain nonlinear problems readers might encounter in their work.

The methed of weighted residuals can be described in its generality by
considering the operator equation

AW)=f in Q, (2.103)

where A is an operator -(linear or nonlinear), often a differential operator,
acting on the dependent variable u, and f is a known function of the
independent variables. Some examples of such operators are provided by

P

1. A(w)= _4 (a@) +cu

i \" 4
s £659
3, Au)= —[58; (kx%) +a% (kyZ—:)] (2.104)

4, A{u)= —j{ ( —j—i—)

du du d*u 3 jOu v
5. A =U— Ut (—— —)
(W v)=u 3x 3y &x* dy\dy ax

For an operator A to be linear in its arguments, it must satisfy the
relation

Alau + Bv) = ad(u) + BA(v) (2.105)

for any scalars & and § and dependent variables # and v. It can be easily
verified that all operators in (2.104), except for 4 and 5, are linear. When an
operator does not satisfy the condition (2.105), it is said to be nonlinear.

The function « is not only required to satisfy the operator equation
(2.103), it is also required to satisfy the boundary conditions associated with
the operator equation. From the examples considered so far, the boundary
conditions associated with the operators defined in 1, 2, and 3 of (2.104) are
obvious {see Examples 2.1-2.3].

 In the weighted-residual method, the solution u is approximated, in much
the same way as in the Rayleigh—Ritz method, by the expression

Uy = g: C](pj + (P[) (2. 106)
j=1
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except that the requirements on ¢, and ¢; for the weighted-residual method
are more stringent than those for the Rayleigh—Ritz method. Substitution of
the approximate. solution uy into the left-hand side of (2.103) gives a function
= A(uy) that, in general, is not equal to the specified function f. The
dlfference A(uy) —f, called the residual of the approximation, is nonzero:

N

R= AW —f = A(Z o8+ 90) £ #0 (2.107)

Note that the residual R is a function of position as well as of the parameters
¢ In the weighted-residual method, as the name suggests, the parameters ¢;
are determined by requiring the residual R to vanish in the weighted- mtegra[
sense:

f wix, yY)R(x, ¥, ¢)dxdy=0 (i=1,2,...,N) (2.108)
&

where Q is a two-dimensional domain and ; are weight functions, which, in
general, are not the same as the approximation functions ¢;. The set {4} must
be a linearly independent set; otherwise, the equations provided by (2.108) will
not be linearly independent and hence will not be solvable.

The requirements on ¢, and ¢; for the weighted-residual method are
different from those for the Rayleigh—Ritz method, which is based on the weak
(integral) form of the differential equation. The differentiability requirement
on ¢; in the weighted-residual method is dictated by the integral statement
(2.108), as opposed to the weak form in the Rayleigh—Ritz method. Thus, ¢;
must have nonzero derivatives up to the order appearing in the operator
equation (2.103). Since the weighted-integral form (2.108) does not include
any of the specified (either essential or natural) boundary conditions, we must
also require u, in (2.106) to satisfy all specified boundary conditions of the
problem, Consequently, ¢, is required to satisfy all specified boundary
conditions, and ¢, are requlred to satisfy the homogeneous form of all

specified bbundary conditions of the problem. These requirements on ¢, and
¢; will increase the order of the polynomial expressions used for the
weighted-residual method. In general, the ¢; used in this method are
higher-order functions than those used in the Rayleigh—Ritz method, and the
functions used in the latter may not satisfy the continuity (i.e. differentiability)
requirements of the weighted-residual method. Various special cases of the
weighted-residual method are discussed in the following paragraphs.

THE, PETROV-GALERKIN METHOD. The weighted-residual method is re-
ferred to as the Petrov—Galerkin method when vy # ¢, When the operator A
is linear, (2.108) can be simplified to the form

S [ wAwpdas o= [ wir-acoorasay
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or

N

> Ay =F (2.109)
Note that the coefficient matrix [A] is not symmetric:

Ay= f Y A() dx dy # Ay (2.110)
Q

THE GALERKIN METHOD. For the choice of weight function 1, equal to the
approximation function ¢y, the weighted-residual method is better known as
the Galerkin method. The algebraic equations of the Galerkin approximation

are
I's

N
> Aye;=F (2.111a)
where

Ay= L G:A(p)dxdy, E= L oilf — A(Po)]dxdy  (2.111b)

Once again, we note that A, is not symmetric.

In general, the Galerkin method is nof the same as the Rayleigh-Ritz
method. This should be clear from the fact that the former uses the
weighted-integral form whereas the latter uses the weak (or variational) form
to determine the coefficients ¢;, Consequently, the approximation functions
used in the Galerkin method are required to be of higher order than those in
the Rayleigh—Ritz method.

If the equation permits, and one wishes, the differentiation can be
transferred from the solution u to the weight function w = ¢;; and one thereby
obtains the weak form to relax the continuity requirements on the approxima-
tion functions and include the specified natural boundary conditions of the
problem.

The Rayleigh—Ritz and Galerkin methods yield the same solutions in two
cases: (i) when the specified boundary conditions of the problem are all of the
essential type, and thercfore the requirements on ¢; in the two methods
become the same and the weighted-integral form reduces to the weak form;
and (i) when the approximation functions of the Galerkin method are used in
the Rayleigh-Ritz method. The reader is urged to keep the distinction
between the Rayleigh—Ritz and Galerkin methods in mind.

THE LEAST-SQUARES METHOD. In this method, we determine the para-
meters ¢; by minimizing the integral of the square of the residual (2.107):

3 2
30, LR (x, ¥, ¢y dx dy =0
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or

JR
— Rdxdy=0 (2.1124)
o O¢;

Comparison of (2.112a) with (2.108) shows that 1, = dR/dc;. If A is a linear
operator, ;= A(¢;), and (2.112a) becomes

,2 [ L A(S)A(P) dx dy]cj - L A(DIf — A(o)] dx dy
or
i Ayey =k (2.112b)
where

Ay= LA(Q),-)A(%.) deM E= fﬂA(q‘)f)[f—A(q)o)]dxdq (2.112¢)

Note that the coefficient matrix A is symmetric, but it involves the same order
of differentiation as in the governing differential equation.

THE COLLOCATION METHOD. In the collocation method, we seek an
approximate solution uy to (2.103) in the form of (2.106} by requiring the
residual in the equation to be identically zero at N selected points x° = (x/, y)
(i=1,2,...,N)in the domain Q:

R(x',y,e¢)=0 (i=1,2,...,N) (2.113)

The selection of the points x' is crucial in obtaining a well-conditioned system
of equations and ultimately in obtaining an accurate solution. The collocation
method can be shown to be a special case of (2.108) with ¥, = 8(x — x*), where
d(x) is the Dirac delta function, which is defined by

| wsa-tdrdy =1 (2.114)
With this choice of weight functions, the weighted-residual statement becomes

f S(x—x)R(x,c)dxdy=0

Q

or
R, ¢)=0 (2.115)

We consider an example to illustrate the use of various cases of the
weighted-residual method.
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Example 2.7. Consider the differential equation [see Example 2.4 with Set 2 boundary
conditions):
Zu .
—E—u-i-xzr-l], u@=0, w(l)=1 (2.116)

For a weighted-residual method, ¢, and ¢, should satisfy the following conditions:

do(0)=0, Pi(1)=1 (satisfy actual boundary conditions)

¢ (0)=0, $/(1)=0 (satisfy homogeneous form of the

specified boundary conditions)

For a choice of algebraic polynomials, we assume ¢o(x)=a +bx and use the two
conditions on ¢, to determine the constants ¢ and b, We obtain

Polx) =x , ~
Since there are two homogeneous conditions, we must assume at least a three-
parameter polynomial to obtain a nonzero function, ¢, =g+ bx +e¢x’. Using the
conditions on ¢,;, we obtain

$1=—cx(2—x)

The constant ¢ can be set equal to unity because it will be absorbed into the parameter
¢;. For ¢, we can assume one of the forms

¢:=a+bx+dx® or ¢,=a+ox’+dy’

with d #0; ¢, does not contain all-order terms in either case, but the approximate
solution is complete because {¢;, ¢,} contains all terms up to degree three. For the

first choice of ¢, we obtain
Soogd

¢ =x*(1-5x)
The residual in the approximation of the equation is
N dz N
R=— (0+2 ¢ dx‘f‘) —(¢0+2cf¢,.) +x°
i=1 i=1

=0 (2—2x + X))+ ey(—2 +4x —x2+ 20 — x + 12 2.117)

We next consider various methods.
The Petrov—-Galerkin method. Let the weight functions be

h=x, Y,=x (2.118)
Then
1 t
fodx=o, szkdﬁo
(1] 0
or
Bo+&e—5=0, He+He,—%=0 (2.119)
Solving for ¢;, we obtain ¢, =35 and ¢, = — #5; the solution becomes

Upe = 1.302053x — 0.173021x7 -- 0.014663x> (2.120)
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The Galerkin method. Taking ¥, = ¢;, we have
1 I
f x(2—x)Rdx =0, J P(1-4)Rdx=0
o o

or
%Cl + %Cz - gﬁ == Oa %cl + %CZ - % = O (2' 121)

Hence, the solution becomes (with ¢, = i55, ¢ = 35%),
He = 1.28%4x —0.1398x% — 0.00325x3 (2.122)

The least-squares method. Taking 1; = 3R/3¢;, we have
1 1
f(2—2x+x2)fedx=o, —f (2—4dx+x7~ 2R dx =0
(1] 0

or
Bo—90—8=0, g, +Fe+%=0 (2.123)
The least-squares approximation of (2.116) is given by (with ¢, = £ and ¢, = 153%)
;s = 1.2601x — 0.08017x% — 0.03325x° (2.124)

The collocation method. Choosing the points x =3 and x =% as the collocation

points, we evaluate the residuals at these points and set them equal to zero:
RGE)=0: 117¢,~61c, =18

(Z) P (2.125)

R(E)=0: 90c,+34c, =18

The solution is given by (¢, = 5% and ¢, =355

te=1.3612x — 0.12927x* — 0.03422x> (2.126)

The four approximate solutions are compared in Table 2.3 with the exact solution
(2.84). For this problem, the Petrov—Galerkin method gives the most accurate solution.

2.5 SUMMARY

In this chapter, we have studied two major topics that are of immediate
interest in the study of the finite element method in the forthcoming chapters:

1. Weighted-integral and weak formulations of differential equations

2. Solution of boundary value problems by the Rayleigh—Ritz and weighted-
residual (e.g., the Galerkin, least-squares, and coliocation) methods

The weighted-integral statements are required in order to generate the
necessary and sufficient number of algebraic equations to solve for the
parameters ¢; in the approximate solution. Thus the algebraic equations are
equivalent to minimizing the error introduced in the approximation of the
differential equation in a weighted-integral sense.

In studying the two topics, a three-step procedure for developing the
weak form of a differential equation is presented, and procedures for obtaining
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TABLE 2.3
Comparison of the Rayleigh—Ritz, weighted-residual,

and exact solutions of the boundary value problem in
(2.116)

Solution, u(x)f

x Uexact Urk Upe te] Urs e

0.0 0.0000 0.0000 0.0000 00000 00000 0.0000
0.1 0.1262 01280 0.1285 0.1275 01252  0.1343
0.2 02513 0.2529 0.2536  0.2523  (.2485  0.2668
03 03742 03749 03734 03741 03699  0.3958
0.4 04943 0.4938 0.4941 0.4932 0.4891 0.5216
6.5 0.6112 0.6097 0.6096 0.6093 0.6058  0.6440
0.6 07244 07226 07221 07226 07200 0.7628
0.7 08340 0.8324 0.8317 0.8329 0.8314 0.8778
0.8 09402 09393 0.9384 0.9404 0.9397 0.9887
0.9 1.0433 10431 1.0424 1.0448 1.0449  1.08954 ‘
10 11442 L1439 1.1437 1.1463 11467 1,1977

t Subscripts are as follows: RR, Rayleigh-Ritz; PG, Petrov—Galerkin;
G, Galerkin; LS, least-squares; €, collocation.

algebraic equations in terms of the unknown parameters of the approximate
solution are developed. These topics are immediately applicable in the finite
element method, which is a piecewise (or element-wise) application of a
variational method. Thus, the material covered in this chapter constitutes the
heart of the finite element method. A few remarks are in order on the
variational methods of approximation studied here.

The traditional variational methods (e.g., the Rayleigh—Ritz, Galerkin,
and least-squares) presented in Section 2.4 provide a simple means of finding
spatially continuous approximate solutions to physical problems. The ap-
proximate solutions obtained via these methods are continuous functions of
position in the domain. :

The main disadvantage, from the practical point of view, of variational
methods that prevents them from being competitive with traditional finite
difference methods is the difficulty encountered in selecting the approximation
functions. Apart from the properties the functions are required to satisfy, there
exists no unique procedure for constructing them. The selection process
becomes more difficult or even impossible when the domain is geometrically
compiex and/or the boundary conditions are complicated.

From the preceding discussion, it is apparent that the variational methods
can provide a powerful means of finding approximate solutions—provided one
can find a way to systematically construct approximation functions, for almost
any geometry, that depend only on the differential equation being solved and
not on the boundary conditions of the problem. This property enables one to
develop a computer program for a particular class of problem (each problem in
the class differs from the others only in the data), that is, a general-purpose



INTEGRAL FORMULATIONS AND VARIATIONAL METHObs 59

computer program. Since the functions must be constructed for a geometrically
complex domain, it seems that (recall the discussion of the method of
composites for the deten_nination of the center of mass of an irregular shape
from Chapter 1) the region must be represented {(or approximated if required)
as an assemblage of simple geometric shapes for which the construction of
approximation functions becomes simpler. The finite element method to be
discussed in the forthcoming chapters is based on these ideas.

In this method, a given domain is represented (discretized) by a
collection of geometrically simple shapes (elements), and on each element of
the collection, the governing equation is formulated using any one of the
variational methods. The approximation functions are systematically generated
for each (typical) element using the essential boundary conditions. The
elements are connected together by imposing the continuity of the dependent
variables across the interelement boundaries. The remaining chapters of this
book are devoted to the introduction of the finite element method and its use
in the analysis of several model differential equations representing mathemati-
cal models for many physical processes,

PROBLEMS

Sections 2.1-2.3

In Problems 2.1-2.9, construct the weak forms and, whenever possible, quadratic
functionals.
2.1. One-dimensional heat conduction [convection:

d

du
T (ad—x)+cu-q for 0<x <1

u{0) = uy, {a%+ Blu— um)}

=0, atx=1
x=1
where a and g are functions of x, and B, ¢, u.,, and Q, are constants,
2.2. Beam on elastic foundation: :
d ¢ d&°
e (b;f)-kkw =f for 0<x<L
2

d
w=b-&i§=0 at x=0, L

where b = EI and f are functions of x, and & is a constant (foundation modulus),
2.3, Longitudinal deformation of a bar with an end spring:

'—f—{( @)— for 0<x <L
ol\ag)=a for 0<x

=r

x=L

(0} =0, (a%‘Jr ku)

where g and g are functions of x, and & and P are constants.
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2.4, The Timoshenko (shear-deforinable) beam theory:

_i [GKA(d_w.I_ \p)] =f
dx dx
for 0<x <L
-4 (Eriig) + GKA(‘—"EW) =0
de \" dx dx N
aw d¥
w(@=w(L)=0 ey | I EIdx FLO
where G, K, A, E, I, and f are functions of x.
2.5. A nonlinear equation:
d{ du
e mmem — = <x <
dx(udx)+f 0 for 0<x<1
du
(a) x=0—0, u(1) =32

2.6. The Euler—Bernoulli—von Kdrmdn nonlinear theory of beams:

APl e ossee
)-s

_di(b@)_i{ ﬂ[@g(d_wr
d* \"x?) " dx M Lax "2 \dx

dw d*w
u=w=0 atx=0,L; (E)Fﬂ:O; (ba?)

whers a, b, ¢, and f are functions of x, and M, is a constant. Here u denotes the
axial displacement and w the transverse deflection of the beam.

=M,

x=L

2.7. A second-order equation;

d du Bu g du du ,
'—5 (ﬂ“a_x"'a!za) _a_y(azla_x‘i‘azza) +f=0 in ©Q

u=u, onl;

(a au+a au)n + (a 8u+ 3“)— ta on I
- — |n. —tan—|n,=
11 o 2 ay 2t ar 22 ay 'y a e
where ay=a; (I, j=1,2) and f are given functions of position (x,y) in a
two-dimensional domain Q, and g and ¢, are known functions on portions I'; and
T, of the boundary I': Ty + T, =T,
2.8. Navier-Stokes equations for tweo-dimensional flow of viscous, incompressible
fluids (primitive variables):
u%-i- UEE— —}-aP+ v(azu+@)‘
ox 8y pox a* ay?
v v 18P v v
—+v—= —+—3 in Q i
“ax 7Y gy pdy V(8x2 ayz) (" . @
du dv_
ax 8y J
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U=y, U=Y, onl (ii)
NETRE 1
V(—nx +—un,,) —~=Pp,=F
ax Ay fo} r
v 5 1 on I, (iii)
W5 +5n,) w;Pny =7,
2.9. Two-dimensional flow of viscous, incompressible fluids (stream function—vorticity
formulation):
-V -£=0
g4 203E_0p3L_ b in Q@
dx 3y Jydx

Assume that all essential boundary conditions are specified to be zero.

Section 2.4

2,10, Compute the coefficient matrix and the right-hand side of the N-parameter
Rayleigh—Ritz approximation of the equation

—dix[(l+x)%] =0 for 0<x<1

w(0)=0, u(l)=1

Use algebraic polynomials for the approximation functions. Specialize your resuit
for N =2 and compute the Ritz coefficients.

Answer! ¢, =15 and ¢; = — &y,
Use trigonometric functions for the two-parameter approximation of the equation
in Problem 2.10, and obtain the Ritz coefficients.

A steel rod of diamster D =2cm, length L =25cm, and thermal conductivity
k=50Wm ' °C™" is exposed to ambient air at T, =20°C with a heat-transfer
coefficient f =64 W m >°C"', Given that the left end of the rod is maintained at
a temperature of T;=120°C and the other end is exposed to the ambient
temperature, determine the temperature distribution in the rod using a two-
parameter Rayleigh—Ritz approximation with polynomial approximation func-
tions. The equation governing the problem is given by (see Problem 2.1}
d*6

—&?+ c8=0 for 0<<x<<25cm

where 8 =T — T., T is the temperature, and ¢ is given by

_BP_ BaD _4p
Ak 1xD% kD

2.11

2.12

=256m™>

c

P being the perimeter and A the cross-sectional area of the rod. The boundary
conditions are ’

=90

x== L

§(0) = T(0) - T, = 100°C, (kg;9 + ,39)

Answer: For L=0.25m, ¢o=100, ¢;=x', the Ritz coefficients are ¢, =
—1019.469, ¢, = 2508.217.
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2.13. Set up the equations for the N-parameter Rayleigh—Ritz approximation of the
following equations associated with a simply supported beam and subjected to a
uniform transverse load f = fy:

&2 d*w
d—x-z(EI'Er—z‘) =fy for 0<x<<L

2

d
WmEIin:=O at x=0, L

{a) Use algebraic polynomials.
{(b) Use trigonometric functions.
Compare the two-parameter Rayleigh-Ritz solutions with the exact solution,
Answer: (a} ¢;=—TaL, ¢;= —2a (&= tafl).
2.14. Repeat Problem 2.13 for f = f; sin {mx/L).

2.15. Repeat Problem 2.13 for f = F8(x — L), where &§(x) is the Dirac delta function
(i.e., a point load F is applied at the center of the beam).

2.16. Develop the N-parameter Rayleigh—Ritz solution for a simply supported beam
under uniform transverse load using Timoshenko beam theory. The governing
equations are given in Problem 2.4. Use trigonometric functions to approximate
w and W,

2.17. Solve the Poisson equation governing heat conduction in a square region (see
Example 2.6):

—kV*T =g,
T=0 onsidesx=1and y=1

8T
- 0 (insulated) onsides x=0 and y =0

using a one-parameter Rayleigh—Ritz approximation of the form
T(x, y) = (1 - x)(1-y?)

5
Answer: ¢, = -fgﬁ .

Solve Problem 2.12 using a two-parameter Galerkin a;'aproxjmation with algebraic
approximation functions.
2.19. Consider the {Neumann) boundary value problem

d2
~E22_F for0<x<L

= (dx)
x=0

2.18

=0

x=L

()
dx
Find a two-parameter Galerkin approximation of the problem using trigonometric

approximation functions, when (@) f = fycos (z2x/L) and (b) f = f,.
Answer: (@) ¢;=cos (inx/L), ¢, =fL/#%, ¢,=0for i #1.

2,20. Find a one-parameter approximate solution of the nonlinear equation

CdPu fduy?
Uy + e 4 for 0<x <1
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subject to the boundary conditions «(0) = 1 and #{1} =0, and compare it with the
exact sofution u,=1—x> Use (a) the Galerkin method, (b) the least-squares
method, and (c) the Petrov—Galerkin method with weight function w = 1.
Answer: (a} (c)=1, {c1):=—2.
2.21. Give a one-parameter Galerkin solution of the equation

—Vu=1 in Q (=unilsquare)
u=0 onT

Use {a) algebraic and (b) trigonometric approximation functions. What would be
the one-parameter Rayleigh—Ritz solution of this problem?

1
L (i) odd)

Answer: (b) Cy = ;m

¢y = sin imx sin jmy

2.22. Repeat Problem 2.21 for an equilateral triangular domain.
Hint: Use the product of equations of the lines representing the sides of
the triangle for the approximation function.
Answer: ¢;=—1.
2.23. Consider the differential equation
d’u
—-Ex—5=cosnx for 0<x <1
subject to the following three sets of boundary conditions:
{1y w(@®=0, u(l)=0

@ u(0)=0, (gif) B
=0

o (@0 G

Determine a three-parameter solution, with trigonometric functions, using {a) the
Rayleigh—Ritz method, {b) the least-squares method, and (c) collocation at x = 5,
1, and 3, and compare with the exact solutions:

() wy=n*(cosmx +2x —1)

2y ug=a"Ycosmx —1)

(3) wug=m"*cosmx

4
Answer: (1) ¢;= m .
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CHAPTER

3

SECOND-ORDER
BOUNDARY VALUE
PROBLEMS

3.1 INTRODUCTION

The traditional variational methods (e.g., the Rayleigh—Ritz, Galerkin, and
least-squares) described in Chapter 2 cease to be effective because of a serious
shortcoming, namely, the difficulty in constructing the approximation func-
tions. The approximation functions, apart from satisfying continuity, linear
independence, completeness, and essential boundary conditions, are arbitrary;
the selection becomes even more difficult when the given domain is geometri-
cally complex. Since the quality of the approximation is directly affected by the
choice of the approximation functions, it is discomforting to know that there
exists no systematic procedure to construct them. Because of this shortcoming,
despite the simplicity in obtaining approximate solutions; the traditional
variational methods of approximation were never regarded as competitive
computationally when compared with traditional finite difference schemes.

Ideally speaking, an effective computational method should have the
following features: .

1. It should have a sound mathematical as well as physical basis (i.e., yield
convergent solutions and be applicable to practical problems).

2, It should not have limitations with regard to the geometry, the physical
composition of the domain, or the nature of the “loading.”

67
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3. The formulative procedure should be independent of the shape of the
domain and the specific form of the boundary conditions.

4. The method should be flexible enough to allow different degrees of
approximation without reformulating the entire problem.

5, It should involve a systematic procedure that can be automated for use on
digital computers.

The finite element method is a technique in which a given domain is
represented as a collection of simple domains, called finite elements, so that it
is possible to systematically construct the approximation functions needed in a
variational or weighted-residual approximation of the solution of a problem
over each element. Thus, the finite element method differs from the traditional
Rayleigh-Ritz, Galerkin, least-squares, collocation, and- other weighted-
residual methods in the manner in which the approximation functions are
constructed. But this difference is responsible for the following three basic
features of the finite element method:

1. Division of whole into parts, which allows representation of geometrically
complex domains as collections of geometrically simple domains that enable
a systematic derivation of the approximation functions.

2. Derivation of approximation functions over each element; the approxima-
tion functions are often algebraic polynomials that are derived using
interpolation theory.

3. Assembly of elements, which is based on continuity of the solution and
balance of internal fluxes; the assemblage of elements represents a discrete
analog of the original domain, and the associated system of algebraic
equations represents a numerical analog of the mathematical model of the
problem being analyzed.

These three features, which constitute three major stéps of the fiinite element
formulation, are closely related. The geomeiry of the clements used to
represent the domain of a probiem should be such that the approximation
functions can be uniquely derived. The approximation functions depend not
only on the geometry but also on the number and location of points, called
nodes, in the element and the quantities to be interpolated (e.g., solution, or
solution and its derivatives). Once the approximation functions have been
derived, the procedure to obtain algebraic relations among the unknown
coefficients {which give the values of the solution at the nodes of the finite
elements) is exactly the same as that used in the Rayleigh—Ritz and
weighted-residual methods. Hence, a careful reading of Chapter 2 makes the
present reading easier.

The finite element method not only overcomes the shortcomings of the
traditional variational methods, but it is also endowed with the features of an
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TABLE 3.1 -
Steps involved in the finite element analysis of a typical problem

1. Discretization {or represenfation} of the given domain into a collection of preselected finite
elements, (This step can be postponed, until after the finite element formulation of the eguation
is completed.}

a. Construct the finite element mesh of preselected elements.

b. Number the nodes and elements.

¢. Generate the geometric properties (e.g., coordinates and cross-sectional arcas) needed for
the problem.

2. Derivation of element equations for all typical elements in the mesh.

a. Construct the variational formulation of the given dilferential equation over the typical
element,
b. Assume that a typical dependent variable u is of the form

It
=2 U
f=1
and substitute it into Step 2 to obtain element equations in the form
(KN} = {F}

¢. Derive or select, if already available in the literature, element interpolation functions v, and
compute the element matrices.

3. Assembly of element equations to obtain the equations of the whole problem.

a. Identify the interelement continuity conditions among the primary variables (relationship
between the local degrees of freedom and the global degrees of freedom—connectivity of
elements) by relating element nodes to global nodes.

b. Identify the “equilibrium” conditions among the secondary variables (relationship between
the Iocal source or force components and the globally specified source components).

¢. Assemble element equations using Steps 3a and 3b.

4. Imposition of the boundary conditions of the problem.
a. Identify the specified global primary degrees of freedom.
b. Identify the specified global secondary degrees of freedom (if not already done in Step 35).

5. Solution of the assembled equations,

6. Postprocessing of the results.
a. Compute the gradient of the solution or other desired quantities from the primary degrees of
freedom computed in Step 5,
b. Represent the results in tabular and/or graphical form.

effective computational technique. The basic steps involved in the finite
element analysis of a problem are given in Table 3.1.

 In the sections that follow, our objective will be to introduce many
fundamental ideas that form the basis of the finite element method. In doing
$0, we postpone some issues of practical and theoretical complexity to later
sections of this chapter and to Chapters 4-14. The basic steps of a finite
element analysis are introduced via a model second-order differential equation,
which is representative of many one-dimensional systems.
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3.2 BASIC STEPS OF THE
FINITE ELEMENT ANALYSIS

3.2.1 Model Boundary Value Problem

Consider the problem of finding the function u(x) that satisfies the differential
equation

d ( du
ki —a= <L .
o (a dx) +ceu—qg=0 for 0<x 3.1)

and the boundary conditions

u(0) = uy, (a fi_z)

where a=a(x), c=c(x), g =¢q(x), uo, and Q, are the data (i.e., known
quantities) of the problem. Equation (3.1) arises in connection with the
analytical description of many physical processes. For example, conduction
and convection heat transfer in a plane wall or fin (1-D heat transfer), flow
through channels and pipes, transverse deflection of cables, axial deformation
of bars (see Fig. 3.1a), and many other physical processes are described by
(3.1). Table 3.2 contains a list of several field problems described by (3.1)

0 | - TS

x=L

g{x)
% = (a gﬁ)
/.—- X . dx x = L
(a)
n q(x)
u=ug=0 a %E Qo
(b}
e

Jrhetehs pohed by

®[2 @....e®e+1..® N+1
Node number \Element number
{c)
FIGURE 3.1

Finite element discretization of a one-dimensional domain: () physical problem; (b) mathematical
idealization; {c) finite element discretization.
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when ¢(x)} = 0. The mathematical structure common to apparently different
fields is brought out in this table. Thus, if we can develop a numerical
procedure by which (3.1) can be solved for all possible boundary conditions,
the procedure can be used to solve all field problems listed in Table 3.2, as well
as many others. This fact provides us with the motivation to use (3.1) as the
mode] second-order equation in one dimension. A step-by-step procedure (see
Table 3.1) for the formulation and solution of (3.1) by the finite element
method is presented next,

3.2.2 Discretization of the Domain

The domain of the problem in the present case consists of all points between
x=0and x=L: Q=(0, L); see Fig. 3.1(b). The domain Q is divided into a
set of line elements, a typical element being of length k. and located between
points A and B. The collection of such elements is called the finite element
mesh of the domain (see Fig. 3.1c). The reason for dividing the domain into
finite elements is twofold: first, to represent the geometiy of the domain; and,
second, to approximate the solution over each element of the mesh in order to
better represent the solution over the entire domain. Approximation of the
domain in the present case is not a concern, since it is a straight line. If the
domain is a curve then approximation by a set of straight or curved line
elements is necessary to represent it. Approximation of the solution over each -
element of the mesh is simpler than its approximation over the entire domain.
Recall that in the traditional variational methods, the solution is required to
satisfy the boundary conditions of the problem. This places severe restrictions
on the choice of approximation functions, especially when discontinuities exist
in the geometry, material properties, and/or Ioading of the problem (see
Chapter 2 for details).

To connect the elements and impose continuity of the solution at nodes
common to elements, we identify the endpoints of each line element as the
element nodes. Depending on the degree of polynomial approximation used to
represent the solution, additional nodes may be identified inside the element.
The nodes play the role of interpolation points, as will be seen shortly, in
constructing the approximation functions over an element.

The number of elements used in a problem depends mainly on the
element type and accuracy desired. Whenever a problem is solved by the finite
element method for the first time, one is required to investigate the
convergence characteristics of the finite element approximation by graduaily
refining the mesh (i.e., increasing the number of elements) and comparing the
solution with those obtained by higher-order elements. The order of an
element refers to the degree of polynomial used to represent the solution over
the element. '

3.2.3 Derivation of Element Equations

The derivation of finite element equations, i.e., algebraic equations that relate
the primary variables to the secondary variables at the nodes of the elements,
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involves three steps:

1. Construct the weighted-residual or weak form of the differential equation.
2, Assume the form of the approximate solution over a typical finite element.

3. Derive the finite element equations by substituting the approximate
solutior into the weighted-residual or weak form.

A typical element €° = (x4, x5), whose endpoints have the coordinates
x=x, and x =xp, is isolated from the mesh (see Fig. 3.24). We seek an
approximate solution to the governing differential equation over the element,
using the Rayleigh~Ritz method discussed in Chapter 2. In principle, any
method that allows the derivation of necessary algebraic relations among the
nodal values of the dependent variabie can be used. In this book we develop
the algebraic equations using the Rayleigh—Ritz method, which is based on the
weak form of the differential equation. The equations resulting from the
application of a variational method are relations between the primary variables
(i.e., those involved in the specification of the essential boundary conditions)
and the secondary variables (i.e., those involved in the specification of the
natural boundary conditions). The three steps in the derivation of finite
element equations of a typical element of the mesh are discussed next.

STEP 1: WEAK FORM. In the finite element method, we seek an approximate
solution to (3.1} over each finite element. The polynomial approximation of

A xp .
2;——3‘.4—'—4*—}:;“—-{
T L O — § =y — 1
X A[——-f Bl A
£=0 =4,

{a)

uxa) = wi  ulxg) = o

)]
FIGURE 3.2,
Finite element discretization of a one-dimensional domain for the model problem in (B.1). (@) A
typical finite element from the finite element mesh in Fig. 3.1{c); x = global coordinate, ¥-local
coordinate. (b) A typical element, with the definition of the primary (1} and secondary ()
variables at the element nodes,
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the solution within a typical finite element Q° is of the form

Ue= E::l ufPix) (3.3)

where uf are the values of the solution at the nodes of the finite element and
p; are the approximation functions over the element. The coefficients ] are
determined such that (3.1) is satisfied in a weighted-integral sense. As
discussed in Chapter 2 (which should be consulted for additional details), the
necessary and sufficient number of algebraic relations among the uj can be
obtained by recasting the differential equation (3.1) in a weighted-integral

form:
*e d{ du ’ - .
0 - B m( —) h ] )
L w[ I a +eu—gldx (3.4)

where w(x) denotes the weight function and Q° = (x4, xp) is the domain of a
typical element (see Fig. 3.2a). For u=~=U* and each independent choice of w,
we obtain an independent algebraic equation relating all uf of the element. A
total of n independent equations are required to solve for n values ui. When w
is selected to be ¢ and (3.4) is used to obtain the ith equation of the required
n equations, the resulting finite element model (i.e., system of algebraic
equations among the nodal values) is termed the Galerkin finite element model.
Since (3.4) contains the second derivative of U¢, the approximation functions
5 must be twice differentiable. In addition, if the secondary variables are to
be included in the model, 9§ must be at least cubic. Similar arguments apply
for cases of the weighted-residual methods discussed in Chapter 2. For
additional details of the weighted residual finite element models, see Reddy
(1986) and Chapter 14.

To weaken the continuity required of the functions Pi(x), we trade the
differentiation in (3.4) from u to w such that both u and w are differentiated
equally, once each in the present case. The resulting integral form is termed
the weak form of (3.1). This form is not only equivalent to (3.1) but it also
contains the natural boundary conditions of the problem. The three-step
procedure of constructing the weak form of (3.1) was presented in Chapter 2,
and is revisited in the next few paragraphs.

The first step is to multiply the governing differential equation with a
weight function w and integrate over a typical element. The second step is to
trade differentiation from u to w, using integration by parts. This is achieved as
follows. Consider the identity

_w[_d_(affg)]__i( dy dw du ' Gsa)
a1 T\ ) T ax dx -4

which is simply the product rule of differentiation applied to the product of two

functions, a du/dx and w. Integrating this identity over the element domain,
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we obtain _
xp d/ du *s d du %5 dwdu
—L w{d-—x(ad—x)] dx = —L a(wag;) dx +L angmadx
A .
dus 5 dwdu
= —|wa— ——d :
[wa deA-i-L Crmirall (3.56)
Substituting (3.5b) into (3.4), we arrive at the result [cf. (2.34)]
*2 ¢ dwdu du’|s
Ov-J;A (azi—;a+cwu— wq) dx—[waa]xﬂ (3.6)

The third and last step is to identify the primary and secondary variables
of the variational (or weak) form. This requires us to classify the boundary
conditions of each differential equation into essential (or geometric) and
natural (or force) boundary conditions. The classification is made uniquely by
examining the boundary term appearing in the weak form (3.6),

As a rule, the coefficient of the weight function in the boundary expression is
calied the secondary variable, and its specification constitutes the natural
boundary condition. The dependent unknown in the same form as the weight
function in the boundary expression is termed the primary variable, and its
specification constitutes the essential boundary condition. For the model
equation at hand, the primary and secondary variables are

du

d —_
U an a dx

=Q

In writing the final form of the variational {or weak) statement, we
assume that all boundary conditions at the element level are of the natural
type, so that they can be included in the variational statement:

o), ol

3.7

X4 Xg

The primary and secondary variables at the nodes are shown on the typical
element in Fig. 3.2(b). Students of engineering recognize that this figure is the
free-body diagram of the typical element, with its internal forces (i.e.,
reactions) Of and Q3. The quantities Q7 = Q4 and Q5= QO have the meaning
of forces in the axial deformation of bars; Qf is a compressive force while Q5 is
a tensile force (algebraically, both are positive, as shown in Fig, 3.2b). For
heat conduction problems (f and Q5 denote the heats conducting into the
body. The arrow on the second node should be reversed for heat transfer
probiems, because the Fourier heat conduction law relating the gradient of
temperature to the heat flux contains a negative sign (implying heat flows from
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hot to cold). For additional details on heat transfer, sce Section 3.3.1. With the
notation in (3.7), the variational form becomes

dx

0=J ”(a@%+cwu‘—wq) dx — w(x,)Q4 — w(xp)Q5p (3.8)

This completes the three-step procedure of constructing the weak form,
The weak form in (3.8) contains two types of expressions: those containing
both w and u; and those containing onty w. We group the former type into a
single expression, called the bilinear form:

%2 [ dwdu
B(w, u)= (——— ) 3.
(w, u) J;A a dx+cwu dx (3.9a)

We denote all terms containing only w (but not u) by I(w), called the linear
form:

i) = j * g dt +w(x) 0+ w(xs)Qn (3.9b)

Xh

The variational statement (3.8) can now be expressed as
B(w, u)=1(w) (3.10)

which is called the variational problem associated with (3.1). As will be seen
later, the bilinear form results directly in the element coefficient matrix, and
the linear form leads to the right-hand-side column vector of the finite element
equations.

Those who have a background in applied mathematics or solid and
structural mechanics will appreciate the fact that the variational problem (3.10)
is nothing but the statement of the minimization of a quadratic functional or of
total potentiaf energy {x):

81=10

where & is the variational symbol (see Section 2.3.3) and I is the quadratic
functional defined by [see (2.43b)]

I(w)=3B(u, u) —(u) (3.11)

Equation (3.11) holds only when /(x) is linear in 4, and B(w, u) is bilincar and
symmetric in & and w,

B(w, u) = B(u, w)

When (3.1) describes the axial deformation of a bar, 1B(u, u) represents the
elastic strain energy stored in the bar, /{(u) represents the work done by
applied forces, and I(u) represents the total potential energy of the bar
clement. It is important to note that finite element formulations do not require
the existence of the functional I{x). What is needed is a way to obtain exactly
n algebraic equations among the u; of (3.3) such that the governing differential
equation is satisfied over the element in some meaningful way. In the present
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study, we use the weak form of the differential equation, i.e., (3.8) or (3.10),
and the Rayleigh-Ritz method to obtain the n algebraic equations among the
nodal variables uf and Q7.

STEP 2: APPROXIMATION OF THE SOLUTION. Recall that the weak form
over an element is equivalent to the differential equation and the natural
boundary conditions of the element. The essential boundary conditions of the
element, say u(x,) =u, and u(xp) =up, are not included in the weak form.
Hence, they must be included in the approximation of u(x). Thus, the
approximation of u(x) must be an interpolant, i.e., must be equal to 1, at x,
and 1z at xp. Since the weak form contains the first-order derivatives of u, any
continuous function would be a candidate for the finite element solution. Let
us denote the finite element solution over element Q° = (x,, x3) by U®. Then
we seek the approximate solution U* in the form of algebraic polynomials. The
reason for this choice is twofold: first, the interpolation theory of numerical
analysis can be used to develop the approximation functions systematicaily
over an element; second, numerical evaluation of integrals of algebraic
polynomials is easy.

As in variational methods, the approximation solution U* maust fulfill
certain Tequirements in order that it be convergent to the actual solution u as
the number of elements is increased. These are:

1, The approximate solution should be continuous over the ele-
ment, and differentiable, as required by the weak form.

2. It should be a complete polynomial, i.e., include all lower-order
terms up to the highest order used.

3. It should be an interpoiant of the primary variables at the nodes
of the finite element.

(3.12)

The reason for the first requirement is obvious; it ensures a nonzero coefficient
matrix. The second requirement is necessary in order to capture all possible
states, i.e., constant, linear and so on, of the actual solution. For example, if a
linear polynomial without the constant term is used to represent the tempera-
ture distribution in a one-dimensional system, the approximate solution can
never be able to represent a uniform state of temperature in the element. The
third requirement is necessary in order to satisfy the essential boundary
conditions of the element and to enforce continuity of the primary variables at
points common to several elements.

For the variational statement at hand, the minimum polynomial order is
linear. A complete linear polynomial is of the form

U =a +bx (3.13)

where a and b are constants. This expression meets the first two requirements
in (3.12). To satisfy the third

Us(xa) =ui, Ulxg)=us (3.14)



T8  FINITE ELEMENT ANALYSIS OF ONE-DIMENSIONAL PROBLEMS
we express the constants 2 and b in (3.13) in terms of u] and u3. Equations
(3.14) provide two relations between (a, b) and (uf, u3):

ui=a-+bx, (3.15)
us=a-+ bxg ’

=0 o) (3.15)

Inverting (3.15b} by Cramer’s rule, we obtain

or, in matrix form,

us 1 1 1
a= |5 J1 T = sy g = (o + o)
U; Xp 1 xpl k. h, p ™~
3 1 . 1 (3.15¢)
us x :
b=|1 s /‘1 ol =, (i) =g (Bl s

where b, = x5 —x, and

o =(-1yx;, Bi=(-1); =xi=x4 ¥5=xs (3.154)
In (3.15d), i and j permute in a natural order:

if i=1 then j=2; if i=2 then j=1
The af and B¢ are introduced to show the typical form of the interpolation

functions. Substitution of (3.15¢) into (3.13) yields

1
U (w) = - [t + ) + (B5us + Pus)a]

i
=h— (af + fix)us +h_ (o5 + Box)us
That is,
V 2
Us(x) = 5(x)ui + p5(x)us = 21 eI (3.16a)
i=
where
P == (05 + i) =275 ) = (ag + Bix) =
1 gt )= Palx T\ 22—
(3.16b)

which are called the linear finite element approximation functions.
For the linear interpolation (3.16), we label the endpoints as nodes 1 and
2, and rename the secondary variables as

0\=05 0,=0% (3.17)
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The global node numbers for elements connected in series can be related to
the element node numbers. For linear elements, the global node numbers of
element Q° are e and.e + 1, and the global coordinates of the element nodes
are x, and X, (i.e., x4 =x, and Xp = x,41).

Note that the element interpolation functions 7 in (3.16b) are expressed
in terms of the global coordinate x (i.e., the coordinate of the problem), but
they are defined only on the element domain Q° = (x4, x5} = (x., X.4). If we
choose to express them in terms of a coordinate ¥ with origin fixed at node 1 of
the element, 7 of (3.16b) take the forms

X

VR =10, )= (3.18)

X
he

The coordinate % is termed the local or element coordinate. The functions ¥
are shown in Fig. 3.3(a). Note that 1§ is equal to 1 at node 1 and zero at node
2, and 5 is equal to 1 at node 2 and zero at node 1. These properties of ¥7§ are
known as the interpolation properties.

The global interpolation functions ®; can be defined in terms of the
element interpolation functions corresponding to the global node I {see Fig,

I
Global node numbers Typical element
& = g i lforx, s x <z
Y forx = x <z

(b}

FIGURE 3.3
{a) Local and (b) global interpolation functions for the two-node {linear) element {x,=x,,
xB=xe+1)'
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3.3b). Since U*(x) of (3.16a) is an interpolant of u(x) over the element £°, ¢}
are also called interpolation functions. Interpolation functions derived using the
dependent unknown—not its derivatives—at the nodes (i.c., interpolation
functions with C° continuity) are called the Lagrange family of interpolation
functions. When the dependent unknown and its derivatives at the nodes are
used to derive the interpolation functions, the resuiting interpolation functions
are known as the Hermite family of interpolation functions (see the classical
beam element in Chapter 4).

Note that ¢ are derived systematically; starting with an assumed degree
of algebraic polynomial for the dependent unknown and determining the
coefficients of the polynomial in terms of the primary degrees of freedom, we
expressed the dependent variable as a linear combination of approximation
functions and the primary nodal variables. The key in the procedure is tg select
the number and the location of nodes in the element so thaf the geometry of
the latter is uniquely defined. The number of nodes must be sufficient to allow
the assumed degree of interpolation of the solution in terms of the primary
variables. For a linear polynomial approximation, two nodes with one primary
unknown per node are sufficient to define the geometry of the element,
provided the two nodes are the endpoints of the element. Since a quadratic
polynomial is uniquely defined by three parameters, a total of three nodal
points must be identified in the element. To define the geometry of the
element, two of the nodes must be the endpoints of the element. The third can
be identified inside the element.

Returning to the linear approximation (3.13), which is recast as (3.16a),
we note that the true solution is approximated over each element by a linear
polynomial U¢(x) (sce Fig. 3.4g). The error in the approximation, E=
u(x) — U%(x), can be reduced by either decreasing the element size A, or
increasing the degree of the approximation (see Fig. 3.4b).

A quadratic approximation is of the form

Us(x)=a+bx +cx* (3.19)

which requires three nodes in order to rewrite U° in terms of the values of u(x)
at the nodes. Two of the nodes are identified as the endpoints of the element
to define the geometry, and the third node is taken interior to the element. In
theory, the third node can be placed at any interior point. However, the
midpoint of the element, being equidistant from the end nodes, is the best
choice. Other choices (¢.g., quarter-point) are dictated by special considera-
tions (e.g., to have a certain degree of singularity in the derivative of the
solation). Thus, we identify three nodes in the element of length k. (see Fig.
3.54) and rewrite U%(x) in terms of the three nodal values, (uf, u3, u3). We
have

u§ = Ue(x§) = a + bxi + c(x})*
ug = Ue(x8) = a + bxs + c(x5)* (3.20a)
uj=Us(x5)=a+bx3+ c(x8)?
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1 —— Exact solution
u(x) L .
| ~--- Six-linear-element solution
- — Three-lincar-element solution =%~
x
(@)
} . .
u(x) 1 — —— Linear-element solution e
------ Quadratic-element ,7" AN S,
solution ,? \ N
S NN
e \
T T T 2 T T ¥ X
1 2 N s 6 7
i ////
’/
L
i
(b)
FIGURE 34

Refinements of finite element solutions; (#) mesh refinement using linear elements; (b} quadratic
element solution using three elements.

or, in matrix form,

us 1 x5 (x5 |[a
use=|1 x5 (x5 Wb (3.206)
s 1 x% (x5 1le

where x{ is the global coordinate of the ith node of the element Q°. Inverting
the above relations, we obtain

Z ofuf,  of =xi(xe)* — xi(x)?

2 Brui,  Bi=(xy — (x2)? (3.21)

[
NGB
&

3
2 vl yi=—(-x0), D

~
Il
-
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FIGURE 3.5

One-dimensional Lagrange quadratic element and its interpolation functions: (a) geometry of the
element; (b) interpolation functions; {c) global interpolation functions corresponding to the
quadratic interpolation functions. Here I derotes the global node number, e the element number,

W2}
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and 7 the element node number.

and (3.19) takes the form

3
U*(x) = w35 + gs0eus + wiaus = 2, witu]
j=1
where ¥ are the quadratic Lagrange interpolation functions,

1
Vi) =g (ef + Bix + v (1=1,2,3)
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Here D¢ denotes the determinant of the matrix in (3.20b), and af, , and ¥§
are defined by (3.21). The subscripts used in (3.21) permute in a natural order:

if i=1 then j=2 and k=3
if i=2 then j=3 and k=1 {3.24)
if i=3 then j=1 and k=2
For example, a3, B3, and ¥ are given by
= xS -GG, BS= G- 08, ri=xs-x

The quadratic interpolation functions can be expressed in terms of a local
coordinate X, with origin fixed at node 1, the left end of the element. The
global coordinate x is related to the local coordinate £ by the relation

x=xi+%x (3.25)

where x5 = x, is the global coordinate of the first node of the element Q¢ For
a quadratic element with the interior node, node 2, located at £ = ah,, we

have
=1 -23

=t E( %

Wix) = a(l—a)h (1 h) (3-26)
ey E(_1X

Vi) = (1-—cr)h(1 arh)

where 0<<a <1 and x{=x$+ ah,.. For a=1, i.e., when node 2 is placed at
the midpoint of the element, (3.26) becomes

=12

ﬁé(f) =4 i— (1 - %) (3.27)

Plots of the quadratic interpolation functions are given in Fig. 3.5(b). The
function 1{ is equal to 1 at node / and zero at the other two nodes, but varies
quadratically between the nodes.

All Lagrange family of interpolation functions satisfy the following
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properties, known as the interpolation properties:

(0 i i
n 7 dws (3.28)
@ S w=1 hence =0
j=1 j=1 dx

where n —1 is the degree of interpolation polynomials and x; is the global
coordinate of node j in the clement Q°. Tt can be verified that the linear
interpolation functions in (3.16) and quadratic interpolation functions in (3.26)
and (3.27) satisfy the two properties in (3.28). The first is a direct result of the
requirement U°(x{) = uf, and the second comes from the inclusion of a
constant term in the polynomial. For example, if the approximation U? is to
represent a uniform state of solution, U°¢ = U% = constant, then all uf = Uj, and
we have .

Ug= 21 Ugps(x)
£
or
1= 2, 9j(x)
j=1

The interpolation properties (3.28) can be used to construct the Lagrange
interpolation functions of any degree. For example, the quadratic interpolation
functions (3.27) can be derived using property (1) of (3.28). Since yi(x) must
vanish at nodes 2 and 3, i.e., at £ = 3k, and x = h,,, it is of the form

P5(F) = C(@ — 3h.) (X — he)
The constant C is to be determined such that 1 is equal tolatx=0:
1=C{O—-3h)0—h) or C= 2/h2
This gives

2 X 2

yi) = 26— g - = (1) (1-5)

which is the same as in (3.27). The other two interpolation functions can be
derived in a similar manner.

Although a detailed discussion is presented here on how to construct the
Lagrange interpolation functions for one-dimensional elements, they are
readily available in books on numerical analysis, and their derivation is
independent of the physics of the problem to be solved. Their derivation
depends only on the geometry of the element and the number and location of
the nodes. The number of nodes must be equal to the number of terms in the
polynomial. Thus, the interpolation functions derived above are useful not
oanly in the finite element approximation of the problem at hand, but also in all
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problems that admit Lagrange interpolation of the variables, i.e., all problems
for which the primary variables are the dependent unknowns of the governing
equations.

STEP 3: FINITE ELEMENT MODEL. The weak form (3.8) or (3.10) is
equivalent to the differential equation (3.1) over the element Q° and also
contains the natural boundary conditions (3.7). Furthdr, the finite element
approximations (3.16a) or (3.22) satisfy the essential boundary conditions
(3.14) of the element. The substitution of (3.16a) or (3.22) into (3.8) will give
the necessary algebraic equations among the nodal values ¥ and QF of the
element Q¢ In order to formulate the finite element model based on the weak
form (3.8), it is not necessary to decide a priori the degree of approximation of
0. The model can be developed for an arbitrary degree of interpolation:

u=U= i uiyi(x) (3.29)

j=1

where v are the Lagrange interpolation functions of degree n —1. When
n>2, the weak form in (3.8) must be modified to include nonzero secondary
variables, if any, at interior nodes:

Xg d d Xg n
0 =f (ad_w?—i_ cwu) dx — f wq dx — >, w(x)) Qs (3.30)

i=1

where x§ is the global coordinate of the ith node of element Q°. If nodes 1 and
n denote the endpoints of the element then Qf and O}, represent the unknown
point sources, and all other Qf are always known (i.e., applied point sources).
Following the Rayleigh-Ritz procedure developed in Section 2.4.2, we
substitute (3.29) for u and 95, 95, .. ., ; for w into the weak form (3.30) to
obtain # algebraic equations:
X p d n d e n "
0= [ (2 ") vl i) - via | s - 3 vitnes
= F=1 j=1

| 92 [[a ‘Z‘ﬁ (3w 52) + eva( 3, i) ~ vwia | ax = 3 wicepey

7=

0= f [ dw’ (2 ;_‘:’)Hw;(Zu w,(x)) ]dx~2 WEDO;

(ith equation)

0= [ [ (2 w2 ) + evi( 3, wiwi)) - wia | - 3 wacenos

" X =1 f=1

(3.31a)
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Note that the numbering of the algebraic equations follows that of the primary
variables in the element. The ith algebraic equation can be written as

=S K~ fi-0f (i=1,2...,n). (3.31b)
j=1

where

k= [ (GG cwng) de=BCw v, 1= f”qw:fdxﬂ(w:i

XA

(3.31c)
Note that the interpolation property (1) of (3.28) is used to write
7

L

2 vNEs =05 (3.32)

= ‘

Equations (3.31a) can be expressed in terms of the coefficients K§, f7,
and QF as

KLl + Kius +. . K =f1+ 01

Ksu§+ Ksouts +. ..+ Ks,us =5+ Q5 (3.33a)

Ky + Koz + .+ Koy = 1+ Q5

In matrix notation, the linear algebraic equations (3.33a) can be written as

[K{u}={F} +{Q°} (3.33b)

The matrix [K°] is called the coefficient matrix, or stiffness matrix in structural
mechanics applications. The column vector {f°} is the source vector, or force
vector in structural mechanics problems. Note that (3.33) contains 2n
unknowns: (u$, u3, ..., ul) and (QF, 03, . .., QF), called primary and secon-
dary element nodal degrees of freedom; hence, it cannot be solved without
having an additional » conditions. Some of these are provided by the boundary
conditions and the remainder by balance of the secondary variables Q7 at
nodes common to several elements. This balance can be implemented by
putting the elements together (i.e., assembling the element equations). Upon
assembly and imposition of boundary conditions, we shall obtain exactly the
same number of algebraic equations as the number of unknown primary and
secondary degrees of freedom. The ideas underlying the assembly procedure
are discussed in the next section.

The coefficient matrix [K°], which is symmetric, and source vector {f°}
can be evaluated for a given element and data (a, ¢, and ¢). For element-wise-
constant values of a, ¢, and g (say, 4., c,, and g,) the coefficients Kf; and f7 can
easily be evaluated for a typical element. ‘ '
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dyidys |

Linear element. For a mesh of linear elements, the element Q° is located
=x
= H
dx

hetween the global nodes x4 = x, and x5 = x4, (see Fig. 3.2). Hence
Le+1
covis)dn fi=[ " qu

Xe+1
K= f (
Yol dx
or, in the local coordinate system ¥,
d‘!’: Tp,r_’_

A,
K..ﬂfo( sl
ayi_dy:

coprv) ds, 1= [ g

dx = di
Sl T S

where x = xi‘;'—!- % and
Wi(E)=%/h

The 1§ can be expressed in terms of ¥ as [see (3.18)]
YiE)=1-x/h,,
We can compute Kj; and f7 by evaluating the integrals, We have
ke 1 1 7 x
ki [ o) (5) + L) ()| e
11 JO [a he he +c.l1 he 1 he dx
= %5 +1c.h,
he 1y 1 AN
ko= [ a5 ) re(1-7 )7 ) @
{by symmetry)

a,
_'}—1:+%Cehe _KZI
11

X x)dx—h_+3c he

he
(ae

K§=f
0

hoh.
hy
) dx = %the: f2 = qe}:

LE

i
1

nodes, The coefficient matrix and column vector are
“1] + c.h. [
6 L1 2

K] =:_: [—1
-2}

+
“hn
= gt =q.h,

Similarly,
he
= [ a1,
Thus, for constant g,, the total source gk, is equally distributed to the two
2 1]
(3.34b)

Xe + xe+l) [
—1

&) =Z_( 2

-

1 —1]+
1

6

If a = a_x and ¢ = ¢,, the coefficient matrix [K®] can be evaluated as
c.h, [2 1]
1 2

(3.34a)

(3.35)
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A=A(x)  A=}A, + A.)
Ae+1=A(xe+!)

FIGURE 3.6

Approximation of an element with linearly
varying cross-section by an equivalent element,
with constant cross-section.

I Xet1 .‘v;

The reader should verify this. Note that when a is a linear function of x, this is
equivalent to replacing a in the coefficient matrix with its average value
[compare (3.34a) with (3.35)]:

l"""avg = %(xe + xe-i-l)ae (3 36)
For example, in the study of bars with linearly varying cross-section -
I

Ae-i-l - Ae .-.)
— X

e r

2= EA(x) = E(Ae +

this amounts to replacing the varying cross-section with a constant cross-
section within each element, the cross-sectional area of the constant section
being the average area of cross section of the linearly varying clement (see
Fig. 3.6). Here A, denotes the cross-sectional area at x, and A, is that at
X =Xes1.

When 4, ¢, and g are algebraic polynomials in x, the evaluation of Kj;
and f7 is straightforward. When they are complicated functions of x, numerical
evaluation of the integrals in [K°] and {f°} will be sought. A complete
discussion of the numerical evaluation of integrals is presented in Chapter 7.

When «a and ¢ are element-wise-constant and ¢ =0, the finite element
equations corresponding to the linear element are

I 4 R NI

a4 . 4 ye

h_e'ul_—];:!‘tZ:%the'FQl
(3.37h)

ae e ae e €

_h_eu1+h_eu2=%the+Q2

Quadratic element, For a quadratic-element mesh, the element Q° is located
between global nodes x4 =x,,_; and xg = x,,,;. Hence,

. X2e41 M% . e) _Jhe( dfl’fﬂi’_f 2 g) -
ij— Jx.hgl (ae dx dx + Cew:' wf dx - A aE d,f df + cfwi w} dx

X041 b,
pi= [ wigear= [ “vig.as
X2p--1

(3.38)

where the Lagrange quadratic interpolation functions (%) (i=1,2, 3) are
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given in '(3.27). Evaluating the integrals in (3.38), we obtain

[ 2
e (14 : he hz he hg

3 /%N 3F EA NI
+Ce[1-"l‘l‘;+2('h—e) :I[l—";:‘l'Z(;l:) ]}dx

S N A TR 5 A VAR 2

= O DRI

LR~

B
and so on. Similarly,
e (™ 3% /EN . .
fi= L g.|1— PR + Z(h— di = ¢q.h.=f5 (by symmetry)

he x i
fg ZL qe[4£4(1 _‘};")] di= nghz

Note that, for quadratic elements, the total source gk, is not distributed
equally between the nodes. The distribution is nor equivalent to that of two
linear elements of lengths 1k,. Therefore, the computation of f should be
based on the interpolation functions of that element. The sum of f§ for any
element should always be equal to the integral of g(x) over the element;

n EY:]

S = awax (3:39)

i=1 X4
In summary, for element-wise-constant values of a, ¢, and g, the element
matrices of a quadratic element are

P78 1] 4 2
K=5-| -8 16 -8 |+%<| 2 16 2 (3.400)
L1 -8 7 -1 2 4
1
A
(Fy="214 (3.40b)
1

3.24 Connectivity of Elements

In deriving the element equations, we isolated a typical element (the eth) from
the mesh and formulated the variational problem (or weak form) and
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developed its finite element model. To solve the total problem, we must put
the elements back into their original positions. In doing this before discretiza-
tion, we impose the continuity of the primary variables and balance of the
secondary variables at the connecting nodes between elements. Continuity of
the primary variables refers here to the single-valued nature of the solution;
balance of secondary variables refers to the equilibrium of point sources at the
junction of several elements. Thus, the assembly of elements is carried out by
imposing the following two conditions:

1. Continuity of primary variables at connecting nodes:

u=uitt (3.41a)
i.e., the last nodal value of the ¢lement Q° is the same as
the first nodal value of the adjacent element Q7. , ~

2. Balance of secondary variables at connecting nodes:

0  if no external point source is applied
0°+ Q5*1'={Q, if an external point source of magni-
tude Qg is applied

(3.41b)

In writing (3.41), it is assumed that elements are connected in a sequence. The
continuity of primary variables u§=u$"! and balance of secondary variables
05+ Q¢! for a mesh of linear elements is illustrated in Fig. 3.7. The balance
of secondary variables can be interpreted as the continuity of adu/dx (not

a dU¢/dx) at the point common to elements £2° and Q°*! (when no change in

Le+i(x)

{
O
jae]
C)d
e

(@
N A T A FIGURE 3.7
o N v 05*!  Assembly of two linear Lagrange ele-
o5 A ments: (z) continuity of the primary vari-

able; {b) balance of the secondary
() variables.
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a du/dx is imposed externally):

(o) =)

(a du)e_l- ( du)e+1 0
= —a= =
dx dx

Qe + Qe+1
The interelement continulty of the primary variables is imposed by

renaming the two variables uf and u$*! at x =x, as one and the same, namely
the value of u at the global node N:

up=uitt=Uy (3.43)

where N = {(n — 1)e + 1 is the global node number corresponding to node # of
the element Q° and node 1 of the element Q°*'. For example, for a mesh of E
linear finite elements (n =2), we have

ot

(3.42)

(3.44)

To enforce balance of the secondary variables @, (3.41b), it is clear that
we can set QF + Q5*! equal to zero or a specified value only if we have such
expressions in our equations. To obtain such expressions, we must add the nth
equation of the element Q° to the first equation of the element Q°*'; that is,
we add

n
E Kiui=fi+ QO
and

E Ke+1 e+1 fe+1+Q§+1

to give
2 (Kf,ju, +Ke+1 e+1) fe +fe+1 + (Qe + Qe+1)
j=1
=fa+fi7+ Qo (3.45)

This process reduces the number of equations from 2E to E+1. The first
equation of the first element and the last equation of the last element will
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remain unchanged, except for renaming of the primary variables. The
left-hand side of (3.45) can be written in terms of the global nodal values as

(Keus + Kopus + . ..+ Ko ul) + (K s + K tag™ o+ Ky s ™!
= (Kf,}UN + K§2UN+1 +...+ KinUN+n—1)
+ (K57 Unin + K3 Unin+ oo+ K3 Unizn2)
=KuUn + KipUpia t o+ Ky Unn
+ (Krem + Kiil_l) UN+n—1 + Ki_ZFlUN-Ht +...+ Kg;:lUN+2ﬂ*2 (3'46)
where N=(n~1)e + 1.
For a mesh of E linear elements (n =2), we have
KhU + KLU, =f1+ Q! (unchanged)
KU+ (K + K+ KpUs=f3+f1+ Q3 +01
KU, + (K + KU+ KLUy =3+ 1+ Q3+ QF
i (3.47a)
KE'\WUg oy H (K5 ¥ KR Up + KU =f5 T+ 05+ OF
KjUg + K5Ug,,=f5+ Q5 (unchanged)

These are called the assembled equations. They contain the sum of coefficients
and source terms at nodes common to two elements. Note that the numbering
of the global equations corresponds to the numbering of the global primary
degrees of freedom, U,. This correspondence carries the symmetry of element
matrices to the global matrix. Equations (3.47a) can be expressed in matrix
form as

(K, KL 1( t )
Ky Kh+K% K3, 0 U,
K3 KL+ K3, U,
............................................. < : >
0 KET+ kE  KE|| Ue
5 K3 Kfzg \UE+1J
(1) [ o )
f2+fi 05+ 0f
2+ 3 2 3
A AR Y
5+ fT Q51+ QF
E E
L f2 J \ Q2 J

Recall that all the above discussion of assembly is based on the
assumption that elements are connected in series. In general, several elements
can be connected at a node, and the elements do not have to be consecutively
numbered. In that case, the above idea still holds, with the change that
coefficients coming from all elements connected at one node will add up. For
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(constrained to move
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FIGURE 3.8
7 The geometry and finite element mesh of a bar
fe— h; —» hy = h, structure,

example, consider the structure consisting of three bar elements shown in Fig.
3.8. Suppose that the connecting bar is rigid (i.e., not deformable) and is
constrained to remain horizontal at all times. Then the continuity and force
balance conditions for the structure are

w=ui=w=U;, Qi+Qi+Q3=2pP (3.48)

To enforce these conditions, we must add the second equation of element 1,
the first equation of element 3, and the second equation of ¢lement 2:

(Kélui + Kzlzué) + (Krlslu:{ + K?zug) + (K%luf + K%zu%)
=f3+fI+15+0:+ 03+ 0% (3.49)

We note the following correspondence of local and global nodal values (see
Fig. 3.8):

ui=U,, ui=U, w=ui=ui="U,, w3 =U,
Hence, (3.49) becomes
KU+ KUy + (Koo + KL + KR)Us + KU =2+ f1+ 3+ Q5+ Q1 + 03
=fi+fi+fi+2P

The other equations remain unchanged, except for renaming of the primary
variables. The assembled equations are

Kii 0 K 0 U fi Q1

0 Kh Ki O U, fi ok

1 2 2 3 b ST Y & 1 3 2 (3.50)
K; K3 K Kplll fatfitf; G+ Q1+ Q5

0o 0 Ky Kullu g 03

where K = KL, + K}, + K2,

The coefficients of the assembled matrix can be obtained directly. We
note that the global coefficient K, is a physical property of the system, relating
global node I to global node J. For axial deformation of bars, K, denotes the
force required at node [ to induce a unit displacement at node J, while the
displacements at all other nodes are zero. Therefore, Ky, is equal to the sum of
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all K7 for which i corresponds to I and j corresponds to J, and i and j are the
tocal nodes of the element Q¢. Thus, if we have a correspondence between
clement node numbers and global node numbers then the assembled global
coefficients can readily be written in terms of the element coefficients. The
correspondence can be expressed through a matrix [B], called the connectivity
matrix, whose coefficient b; has the following meaning;

by is the global node number corresponding to the jth node of element

For example, for the structure shown in Fig. 3.8, the matrix [B] is of order
3% 2 (3 elements and 2 nodes per element):

1 3
B]=12 3
3 4 “

I

This array can be used in a variety of ways—not only for assembly, but also in
the computer implementation of finite element computations. The matrix [B]
is used to assemble coefficient matrices as follow:

K} =Ky, because local node 1 of element 1 corresponds to global node 1

KL, =K, because local nodes 1 and 2 of element 1 correspond to global
nodes 1 and 3, respectively '

and so on. When more than one element is connected at a global node, the
element coefficients are to be added. For example, global node 3 appears in all
three rows (i.e., elements) of the matrix {B], implying that all three elements
are connected at global node 3. More specifically, it indicates that node 2 of
element 1, node 2 of element 2, and node 1 of element 3 are the same as global
node 3. Hence

KL+ K%+ Kh=Kss

Assembly on paper can be carried out by examining the finite element
mesh of the problem. For the mesh shown in Fig. 3.8, we have

K,y = K3%,,  because global node 2 is the same as node 1 and global node 3 is
the same as node 2 of element 2

Koy=0, because global nodes 2 and 4 do not belong to the same element
Ky=Kh+ KL+ K4
and so on.

In summary, assembly of finite elements is carried out by imposing
interelement continuity of primary variables and balance of secondary vari-
ables [see (3.41)]. Renaming the elemental primary variables in terms of the
global primary variables and using the correspondence between the local and
global nodes allows the assembly. When certain primary nodal values are not
required to be continuous (by the variational formulation) across elements,
such variables may be condensed out at the element level before assembling
elements.
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3.2.5 Imposition of Boundary Conditions

Up to this point, the specific nature of the problem has not been used in the
development of the finite element model or in the assembly of finite elements.
In other words, the discussion,in Sections 3.2.1-3.2.4 is valid for any
differential equation that is a special case of the model equation (3.1). One
particular problem differs from others in the specification of the data and
boundary conditions. Here we discuss how to impose the boundary conditions
of a problem on the assembled set of algebraic equations. To this end, we use
the problem in Fig. 3.8. Its boundary conditions are evident from the
structure. The known primary degrees of freedom (i.e., displacements) are

up=U;=0, ui=0,=0, w=U=0 (3.51a)
The known secondary degrees of freedom (i.e., forces) are
Q3+ 05+ 07=2P (3.51b)

The forces Q], Q%, and Q3 are unknown (reaction forces), and they can be
determined in the post-computation, i.e., after the primary degrees of freedom
are determined.

Imposing the boundary conditions (3.51) on the assembled system of
equations (3.50) and for f7, we obtain

KLY O K, 0 U =0 h
0 K2 K2 0 U,=0 2
A S SN | il OO0 5 (3.52)
K21 KZI K22 + K22 + Kll Klz U3 2P
0 0 K3, K3 J\U,=0 03

This contains four equations in four unknowns: Us, Q}, 0%, and Q3.

3.2.6 Solufion of Equations

As a standard procedure in finite element analysis, the unknown primary
degrees of freedom are determined first by considering the algebraic equations
corresponding to the unknown primary variables. Thus, in the present case, we
consider the third equation in (3.52) to solve for Us:

KéIUI + K%l Uz + (K%z + K%z + K%l) U3 + K€2U4 = 2P
or
(K32 + K5 + KU =2P — (K31 Uy + K3, Us + KL Us) (3.53)

Equation (3.53) is called the condensed equation for the unknown Us. The
term in parentheses on the right-hand side is zero because all specified
displacements are zero in the present problem. Hence, the solution is given by

Us = 2P/(K3 + K + K3) (3.54a)

The unknown secondary variables are determined by considering the
remaining equations of (3.52), i.e., those that contain the unknown secondary
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variables:

U
1 Ky 0 Ky O U;
} = 0 K%1 K‘iz 0 U
3 0 0 ki Khil.]
Ui

K%ZUZ'

=4 KLU, ¢, because Uy, U, and U, are zero (3.54b)
K3.Us

It is possible, although not common with computer programs, to move ali
the unknowns to the left-hand side in (3.52) and solve for them all at once. But
this process requires more computational time in practical problems.

In general, the assembled finite element equations can be partitioned

conveniently into the following form: ,
(K"} [K2ff{Un _ [{(F) ‘
[[K"’"] [Kﬂ]]{{uﬂ}} - {{FZ}} (3.55)

where {U!'} is the column of known primary variables, {U?} is the column of
unknown primary variables, {F 13 is the column of wnknown secondary
variables, and {F?} is the column of known secondary variables. Writing (3.55)
as two matrix equations, we obtain

(KUY + (KPP U} = {F'} (3.564)
[KP{U"} + [KZHU?} = {F?} (3.56b)

From (3.56b), we have
{U%) = [K®| 7' ({F?) - [KYKU')) (3.56¢)

Once {U?} is known, {F'} can be computed from (3.56a).

3.2.7 Postprocessing of the Solution

The solution of the finite element equations gives the nodal values of the
primary unknown (c.g., displacement, velocity, or temperature). Postprocess-
ing of the results includes one or more of the following:

1. Computation of any secondary variables (e.g., the gradient of the solution}.

2." Interpretation of the results to check whether the solution makes sense (an
understanding of the physical process and experience are the guides when
other solutions are not available for comparison). -

3. Tabular and/or graphical presentation of the results.
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To determine the solution u as a continuous function of position x, we return
to the approximation (3.29) over each element:

n

p
Ulx) = §=:1 ;9 (x)

u(x)~ U(x) *Z,l uj Y} (x) (3.57)

LW@=§@@@

where N is the number of elements in the mesh. Depending on the value of x,
the corresponding element equation from (3.57) is used. The derivative of the
solution is obtained by differentiating (3.57):

(290

J=1 / dx

n d"PZ
d 2l
du_) 247 g (3.58)

5wt
\f 1 dx

Note that the derivative dU/¢/dx of the linear finite element solution U is
constant within each element, and it is discontinuous at the nodes because the
continuity of the derivative of the finite element solution at the connecting
nodes is not imposed:

1

e e+ 1
dau ¢dU
dx dx
The derivative calculated from different elements meeting at a node is always
discontinuous in all C® approximations (i.e., approximations in which only the
function values are interpolated), unless the approximate solution coincides
with the actual solution.

The secondary variables 7 can be computed in two different ways. In
(3.54b), we determined the unknown secondary variables Qi, 03, and Q3
from the assembled equations of the problem in Fig. 3.8. Since the assembled
equations often represent the equilibrium relations of a system, the QF
computed from them will -be denoted by (Qf)equu. The QF can also be
determined using the definitions in (3.7), replacing u with U, We shall denote
QF computed in this way by (Q7)q.s. Since (Q7)q. are calculated using the
approximate U°, they are not as accurate as (Q7).qqs. However, in finite
element computer codes, (Qf)y.s are calculated instead of (Q7)equy- This is
primarily because of computational aspects. Recall that, in arriving at the




98 FINITE ELEMENT ANALYSIS OF ONE-DIMENSIONAL PROBLEMS

result (3.54b), we used part of the assembled coefficient matrix. In the
numerical solution of simultaneous algebraic equations in a computer, the
original assembled coefficient matrix is often modified, and therefore the
coefficients needed for the determination of the secondary variables are not
available, unless they are saved in an additional array. For the problem in Fig.
3.8, we have

U,—U, FEA

dir
(Qi)dcf= *(EA E) I=O= —EA A, == 7’!_1_ Us= KizUa
dir
(Q %)def = (EA E“x“ ) = K%zUs
x=0
du u,—u
3 i = E ____) — 4 M3 o
(Q2)act ( A o on EA o .
EAU.
= _h—33 = K%Us P (3.59)

where k, and £, are the lengths of elements 1 and 3, respectively.

The s computed using the definitions (3.7) are the same as those
derived from the assembled cquations for the problem in Fig. 3.8. This
equality is not to be expected in general. In fact, when the source vector g is not
zero, the secondary variables computed from the definitions (3.7) will be in
error compared with those computed from the assembled equations. The error
decreases as the number of elements or the degree of interpolation is
increased.

This completes the basic steps involved in the finite element analysis of
the model equation (3.1). A few remarks are in order on the steps described
above for the model equation.

Remark 1, Although the Rayleigh-Ritz method was used to set up the
element equations, any other method, such as a weighted-residual (e.g., the
least-squares or Galerkin) method, could be used. '

Remark 2. Steps 1-6 (see Table 3.1) are common for any problem. The
derivation of interpolation functions depends only on the element geometry,
and on the number and position of nodes in the element. The number of nodes
in the element and the degree of approximation used are related.

Remark 3. The finite element equations (3.31) are derived for the linear
operator equation '

d{ d
Alu) =4, h A= ——( —) +
(uy=gq, where i Corn ¢
Hence, they are valid for any physical problem that is described by the
operator equation A{u) =g or its special cases. One need only interpret the
quantities appropriately. Examples of problems described by this operator are
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listed in Table 3.2, Thus, a computer program written for the finite element
analysis of (3.1) can be used to analyze any of the problems in this table. Also,
pote that the data a = a(x), ¢ =c(x), and ¢ = ¢(x) can be different in each of
the elements. )

Remark 4. Integration of the element matrices in (3.31¢) can be implemented
on a computer using numerical integration (sce Chapter 7). When these
integrals are algebraically complicated, one has no other choice but numerical
integration.

Remark 5. As noted in {3.48) and (3.515), the point sources at the nodes are
included in the finite element model via the balance of sources at the nodes.
Thus, in constructing finite element meshes, one should include nodes at the
locations of point sources. If a point source does not occur at a node, it is
possible to “distribute” it to the element nodes. Let Q, denote a point source
at point xy, x,<=xp=<xp The point source Q, can be represented as a
“function” by ’

q(x) = Qob(x — x)
where the Dirac delta function §(-) is defined by

fw F(x)d(x — xp) dx = F(xy)

The contribution of the function g{x) to the nodes of the element Q°=
(x4, x5) is computed from [see (3.31c)]

X g Xy
fi= [ awiw dr = [ 080~ x) i) dr = Quiten)  (3.60)
x4 XA

where i are the interpolation functions of the element Q° Thus, the point
source (J, is distributed to the element node i by the value Qgy(xs). Equation
(3.60) holds for any element, irrespective of the degree of the interpolation,
the nature of the interpolation {i.e., Lagrange or Hermite polynomials), or the
dimension (i.e., 1-D, 2-D, or 3-D) of the element. For linear Lagrange
interpolation functions in 1-13, (3.60) yields

Xp — Xy Xo—Xq

=0.’Q0, f;.=Q9

(3 (-4

fi=0Co = - )

where « = (xp — xo)/h, is the ratio of the distance between node 2 and the
source to the length of the element.

Remark 6. There are three sources of error that may contribute to the
inaccuracy of the finite element solution of a problem:

1. Domain approximation error, which is due to the approximation of the
domain.
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2. Computational errors, which are due to inexact evaluation of the
coefficients Kj and f7, or are introduced owing to the finite arithmetic in a
computer.

3, Approximation error, which is due to approximation of the solution by
piecewise polynomials.

Since the geometry of the problem is exactly represented, and the linear
approximation is able to represent the exact solution at the nodes (for
4 = EA = constant, ¢ =0, and f =0), the first and third type of errors are zero
in the problem of Fig. 3.8. The only error that can be introduced into the final
numerical results is possibly due to the computer evaluation of the coefficients
K§ and ff and the solution of algebraic equations. Additional discussion of the
errors in the finite element approximation is presented in Chapter 5.
rd

Remark 7. The approach used in matrix methods of structural analysis to solve
the problem in Fig. 3.8 is not much different than that presented here. The
difference lies only in the derivation of the element equations (3.37a). In
matrix methods of structural analysis, the element equations are obtained
directly from the definitions of stress and strain and their relationship. For
example, consider the free-body diagram of a bar element (see Fig. 3.2b).-
From a course on deformable bodies, we have

force = stress X area of cross section
stress = Young’s modulus X strain
strain = ¢longation/original length

The strain defined above is the average (or engineering) strain. Mathemati-
cally, strain is defined as ¢ = dujdx, u being the displacement, which includes
rigid body motion as well as elongation of the bar. Hence, the force at the left
end of the bar element is

e € e e € € eue_ue a, € &
e = A0 = AE*eS = A°E ‘h 2=~[’:(ui—-u2)

where o is the stress and E is Young’s modulus. Similarly, the force at the right
end is

af I4 &
= 7 (u§ — us)

-]

In matrix form, these relations can be expressed as

al 1 -1 {ui} {P‘i}

Ze = 3.61
h, [—1 1] us P3 (3.61)
which is the same as (3.37a) with P{= Qf +f;. Note that in deriving the
element equations, we have used knowledge of the mechanics of materials and

the assumption that the strain is constant (or the displacement is linear) over
the length of the element. Equations of the type (3.61) can also be derived for
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a spring element, a pipe-flow element, an electrical resistor element, and so on
(see the problems at the end of this chapter)}. If a higher-order representation
of the strain (or displacement) is required, we cannot write the force—
displacement relations (3.61) directly. We must use the principle of virtual
displacements, which is equivalent to the weak form of the governing
equation. For more details, see Reddy (1984).

Remark 8. Another interpretation of (3.37) can be given in terms of the finite
difference approximation. The axial force at any peint x is given by
P(x) = EA du/dx. Using the forward difference approximation, we approxim-
ate the derivative du/dx and write

—Pi=P(x)|,. = E°A[u(x. 1) — u(x)]/h. (3.62a)
Pi=P()l,,, = EA[ux.01) — u(x.)]/h. (3.620)

which are the same as (3.61), with uf =u(x.) and u§ = u(x,.,,). Note that no
approximation of u(x) itself is assumed in writing (3.62). To obtain the value
of u at a point other than the nodes (or mesh points), linear interpolation is
often used,

Remark 9. For the model problem considered, the element matrices [K°| in
(3.31b) are symmetric: Kj=Kj. This enables one to compute K (i=
1,2,...,n) for j=i only. In other words, one need compute only the
diagonal terms and the upper or lower diagonal terms. Because of the
symmetry of the element matrices, the assembled global matrix will also be
symmetric. Thus, one need store only the upper triangle, including the
diagonal, of the assembled matrix in a finite element program. Another
property characteristic of the finite element method is the sparseness of the
assembled matrix. Since K;; =0 if global nodes I and J do not belong to the
same element, the global coefficient matrix is banded, i.e., all coefficients
beyond a certain distance from the diagonal are zero. The maximum of the
distances between the diagonal element, including the latter, of a row and the
last nonzero coefficient in that row is called the half-bandwidth, and can be
computed from the equation

half-bandwidth = lm_axE ({b;; — by,] + 1) x NDF

where E is the number of elements in the mesh, NDF is the number of degrees
of freedom per node, n is the number of nodes per element, and b; are the
coefficients of the connectivity matrix. When a matrix is banded and
symmetric, one need store only the entries in the upper or lower band of the
matrix. Equation solvers written for the solution of banded symmetric
equations are available for use in such cases. The symmetry of the coefficient
matrix depends on the type of the differential equation, its variational form,
and the numbering of the finite element equations, The sparseness of the
miatrix is a result of the finite clement interpolation functions, which have
nonzero values only over an element of the domain.
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Remark 16. The balance (or “equilibrium”) of the secondary variables (or
“forces”) Qf at the interelement boundaries is expressed by (3.41b). This
amounts to imposing the condition that the secondary variable a du/dx at the
node, where # is the actual solution, be continuous. However, this does not
imply continuity of a dU¢/dx, where U* is the finite element solution. Thus, in
general, we have

Q5+ Q5t1=0 or Qp (3.63a)

(adUe) +(— due+i)
dx /iy, ¢ dx

Note. In most books on the finite elemerit method, this point is fot made clear to the
reader. These books consider the quadratic form (3.11) of the total problem and omit
the sum of the interelement contributions (for linear elements),

5 (3 om) @)

in the quadratic form of the problem. However, this amounts to imposing equilibrium
conditions of the form (3.63a). When the secondary variable is specified to be nonzero
(say, Qo) at an interelement boundary (say, at global node 2), we have

Q3+ Qi=0o (if)
In other books, Q, is included in the functional as Qulh, where U is the value of u at
global node 2.

To fix ideas, consider (3.1). The variational form of this equation over the entire
domain is given by (when ¢ =0)

but

#0 or Qo (3.63b)

Xe

0= J;L (a dudu_ vq) dx —v(x) (iii)

When u is approximated by functions that are defined only on a local interval (which is
the case in the finite element method), use of the above variational form implies the
omission of the sum of the interefement contributions of (i).

Since ¥ (e=1,2,3) is zero in any element Qf for e #f (see Fig. 3.3b), the
(global) finite element solution for the entire domain is given by

0= 3, (3, 91) = 3, 000 0

where @,(x) (I=1,2, 3, 4) are the piecewise-continuous global interpolation functions,

P& (x) for x; =X =X
PP(x)  for x;=x =Xy

@,00=] @

Substituting (iv) for « and v = @, into (jii), we obtain

o= ’ [al (2 uf‘{fxi) ~ g dx = B0 (vi)
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Since @, is nonzero only between x;_, and x,,,, the integral becomes

i f 4 dd, dd dd B
0=L—l [a-&-x"f(U,,l ,d; ’+U,d—t’+ UHlf)_d),q}dxH(D,(xz)Qo (vii)

and we have (for a three-element mesh)

*2 do ad dd
I=1. 0= o [a dxi (U‘ g—;‘ + U, Ez) - tblq] dx — D,(x)0,
3 dd dd dd d®
=2 0= o [a dxl (Ul Fx"l‘ + Uzﬁ"' U3 dxg) - @2(1} dx — @2(X2)QQ
Lr do do dd dd (Vi
X 4=
I=3 0=L [af(Uzd—;+U3E}+ U4"3;‘;)_q)3q] dx—‘bza(xz)Qﬂ

2

xy=L
=4 0= [a

3

dae dd ad

dx4 (Uara"f + U E“) - CIJM} dx — ©(x2)Qy

These equations, upon performing the integrations, yield (3.47), with the last column
(containing @s} in the latter replaced by

0

Do ,
0 (ix)

0

Although this procedure gives the assembled equations direcily, it is algebraically
complicated (especially for two-dimensional problems) and not amenable to simple
computer implementation.

3.2.8 Radially Symmetric Problems

The equations governing physical processes in cylindrical or spherical ge-
ometries ar¢ described analytically in terms of cylindrical or spherical
coordinates. When the geometry, loading, and boundary conditions are
dependent only on the radial direction and independent of the other two
coordinates, the governing equations are one-dimensional. The equations
governing radially symmetric problems in cylindrical geometries are of the
form [an analogue of (3.1)]

—%% [a(r) %] =q(r) for R,<r<R, (3.64)
where r is the radial coordinate, a and g are known functions of r, and u is the
dependent variable. Such équations arise, for example, in connection with
radial heat flow in a long circular cylinder of inner radius R; and outer radius
R,. The radially symmetric conditions require that both ¢ and ¢ be functions
only of r. Since the cylinder is long, the temperature distribution at any section
along its length (except perhaps at the ends) is the same, and it is sufficient to ,
consider any cross-section away from the ends, i.e., the problem is reduced
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from a 3-D problem to a 2-D one. Since a and g are independent of the
circumferential direction 0, the temperature distribution along any radial line
is the same, reducing the 2-D problem to a 1-D one, as described by (3.64).
In developing the weak form of (3.64), we multiply (3.64) with a weight
function w(r) and integrate over the volume of the cylinder of unit length.

1) 0=f w[—%ad;(a%)dq]rdrdedz
Vv

t 2w ers id/ du
= ———la+]- d
LJ; J'm w[ rdr(a dr) q]rdrdﬂ z

8 idy du
=72 _ =
.TIJ; w[ . r(a lr) q]ra’r

where (r,, r5) is the domain of the element along the radial direction. Next, J
we carry out the remaining two steps of the variational formulation:

™ dwdu dul™®
0= ki ol — =
2) 2 L (a o rwq) dar [w2:ra r]

A

rg d
3) 0=2nJ (aii‘—”ﬁ—rwq)drww(r,,)Q;—w(rB)Q; (3.654)
ry dr dr
where
o ] e
0= 2::( dr) , 2—2n(a dr) . (3.65b)

Ta

The finite element model is obtained by substituting the approximation
u(r)= 2, w i)
i=

into (3.65a):

[KHu} = {f}+{Q°} - (3.66a)

where ' :
K”—2xjrﬂa£ﬁ@idr f=~2nr eqr d 3.66b

i~ . dr dr * [ 5 lpl'qr r ( . )

and ¢ are the interpolation functions expressed in terms of the radial
coordinate r. For example, the linear interpolation functions are of the forms

W) = (s — ) he, W) ={r —ra)lhe (3.66¢)
The explicit forms of the coefficients Kj and f; fora=a.r and g =g, are
given below,
Linear element

2na,
k.

. ~1 25q.he | 31, + he
(K] = ] 4 { }

N R A F Y

Cat 3] |
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Quadratic element 7
3h,+14r, —(dh, + 161,) h,+2r,

2
[Ke}=~§15" —(4h, +16r) 16, +32r,  —(12h, + 16ry)
¢ h.+2ry = —(12h,+16r,) 11k, + 147,
Fa
2rq.h,
{7y =T L ar o 0m,
6
T -+ he

In the next section, we consider several examples to illustrate the steps
involved in the finite element analysis of one-dimensional second-order
equations arising in heat transfer, fluid mechanics, and solid mechanics. While
the notation used for the dependent variables, independent coordinates, and
data of probiems from various fields is different, the reader should keep the
common mathematical structure in mind and not get confused with the change
of notation from field to field or problem to problem.

3.3 APPLICATIONS
3.3.1 Heat Transfer

Heat flows from high-temperature regions to low-temperature regions. This
transfer of heat within the medium is called conduction heat transfer. The
Fourier heat conduction law for one-dimensional systems states that the heat
flow ( is related to the temperature gradient 87/8x by the relation (with heat
flow in the positive direction of x),
oT

O=—-kA W (3.67)
where k is the thermal conductivity of the material, A the cross-sectional area,
and T the temperature. The negative sign in (3.67) indicates that heat flows
downhill on the temperature scale. The balance of energy in an element of
length dx requires that

energy into the element + energy generated within the element
= change in internal energy + energy out of the element
—kA—I+qA dy = pcA—dx— [kAg+i(kA 1) dx]
dx Ox
or
3"

3 aT
2 kA—T)+A = peA 2L 3.68
ax( ax) TAI=peA, (3.68)

where g is the heat energy generated per unit volume, p is the density, ¢ is the
specific heat of the material, and ¢ is time. Equation (3.68) governs the
transient heat conduction in a slab or fin (i.e., a one-dimensional system) when
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the heat flow in the normal direction is zero. The following metric units will be
used: '

T  °C (celsius)

k W m~!1°C™! (watts per meter per degree Celsius)

g Wm™ (3.69)
p  kgm™?

c Jkg~'°C™" (joules per kilogram per degree Celsius or m?s72°C™1)

In the case of radially symmetric problems with cylindrical geometries,
(3.68) takes a different form (see Section 3.2.8). Consider a long cylinder of
inner radius R;, outer radius R,, and length L. When L is very large compared
with the diameter, it is assumed that heat flows in the radial direction r. Thus

the surface area for heat flow in the cylindrical system is (see Fig. 3.9)
’

A=2mrL (3.70)

Hence, the transient radially symmetric heat flow in the cylinder is governed
by

5/ 3 aT
(120 4 g = pea y
ar( AGy) tAI=peiy, (371a)

or

18, 8T\ oT | -
#_k_7)+ — et 3.71b
rar(rar 1= P% (3.718)

A cylindrical fuel element of a nuclear reactor, a current-carrying electrical
wire, and a thick-walled circular tube provide examples of one-dimensional
radial systems.
For the radial flow in a sphere, the cross-sectional area is
A=4n*?
and the governing equation takes the form

18/ ,9 aT
19 k?-’) L 3.
rzé‘r( rar) TAT G (3.72)

Perimeter P
Cross-sectional area A

Fin

FIGURE 3.9
Convective heat transfer in a fin.
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The boundary conditions for heat conduction involve specifying either
temperature T or the heat flow Q at a point:

T=T, or QE—kA%%xQU (3.73)

We know that when a heated surface is exposed to a cooling medium,
such as air or liquid, the surface will cool faster. We say that the heat is
convected away. The convection heat transfer between the surface and the
medium in contact is given by Newton’s law of cooling:

Q0 =pA(L - T.) (3.74)

where T, is the surface temperature, T, is the temperature of the surrounding
medium (the ambient temperature), A is the surface area, and f is the
convection heat transfer coefficient or film conductance (or film coefficient). The
units of B are Wm™°C™!, The heat flow due to conduction and convection at
a boundary point must be in balance with the applied flow Qy:

8T ,
kA -+ BA(T — T) + Q=0 (3.75)

The sign of the first term in (3.75) is negative when the heat flow is from the
fluid at T, to the surface at the left end of the element, and it is positive when
the heat flow is from the fluid at T, to the surface at the right end.

Convection of heat from a surface to the surrounding fluid can be
increased by attaching thin strips of conducting metal to the surface. The metal
strips are called fins. For a fin with heat flow along its axis, heat can convect
across the lateral surface of the fin unless it is insulated (see Fig. 3.9). To
account for the convection of heat through the surface, we must add the rate of
heat loss by convection to the right-hand side of (3.68):

e 2] aT -
2 (46 agmper L4 ppr .
Bx( i +Ag=pcA % + PB( 1) (3.76a)
where P is the perimeter and f§ is the film coefficient. Equation (3.76a) can be
expressed in the alternative form
aT d d
A——-—-—(kA—T) T = Aqgq + PBT, .
peA =~ o +Pf q+ PB (3.76b)

For a steady state, we set the time derivatives in (3.68), (3.71), (3.72),
and (3.76) equal to zero. The steady-state equations for various one-
dimensional systems are summarized below:

Plane wall and fin

d{ dT\ . . .
~a(kAET)+cT—Aq+ch, ¢=Pp (3.77)
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Cylindrical system

1d d
il a1 | =2 3.7
. (ZJrkr o g (3.78)
Spherical system
1d 2 2 d 2
— e —— — = 4 O
el (415 kr o g (3.79)

For a plane wall and insulated latera! surfaces of a bar, we set £=01n -
(3.77). The essential and natural boundary conditions associated with these
equations are , “

T=T, Q+pA(T—T.)+0p=0 (3.80)

The weak form and finite element model of (3.77) can be developed
using the ideas presented in Section 3.2.3. Since (3.77) is a special case of the
model boundary value problem with a =44, ¢= PB, and g Aq + PST., we
can immediately write the finite element model of (3.77) from (3.31):

(KT} = (£} + {29 (3.810)

where

K5 = f (a %ﬁ‘% + Pﬁw?w;’) dr, fi= L " Wi(Aq + PBT.) dx

z (3.81b)
0i=(-ka2) Looe (kA‘;—Q 1

where Q¢ and QF denote heat flow into the element at the nodes.

Equations (3.78) and (3.79) are also special cases of the model boundary
value problem. However, in developing the weak forms of (3.78) and (3.79),
the integration must be carried over a typical volume element of each system,
as illustrated in Section 3.2.8 for a radially symmetric cylindrical problem. The
weak form of (3.78) is given in (3.65), and the finite element model is given by
(3.66), with {u°} = {T*}. Similarly, the weak form of (3.79) can be developed
using a volume element of a sphere:

xg

dV =r*drdfd¢ for 0=6<2m, 0=s¢<2xm
The weak form of (3.79) is

2/ dwdT
0= (Zn)zJ (kg; — q[w)r2 dr — QSw(rs) — Qsw(rg) (3.82)

and the finite element model of (3.79} is
[KUTY = {f}+{Q%) (3.834)
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where p
4= (x )2f KU 2, fi= G [ quidr
“ (3.83b)

Q5= —(2n)2(r2k— Q3= (2n)2(r2kd—

In the following examples, we consider some typical applications of the
finite element models (3.81) and (3.66).

Example 3.1. Consider a slab of thickness L and constant thermal conductmty k
W m~1°C™"). Suppose that energy at a uniform rate of g, (Wm >} is generated in the
wall. We wish to determine the temperature distribution in the wall when the boundary
surfaces of the wall are subject to the following three different sets of boundary

conditions:

Set1 TM=T, TL)=T (3.84a)

d daT
Sef 2 (—ké) }

— g0 (Wm™), [k—+ﬁ(T )
Sets TO)=T, (kd—

=0 (3.84b)

x=1I

x=0

=g (Wm™) (3.84¢)

The governing differential equation for this problem is given by (3.77) with £ =0.
Hence, the finite element model in (3.81) is applicable here. We must select the order
of approximation (or type of element) to evaluate the coefficients K and f7 in (3.81b).
For the choice of linear elements and the data a =kA =constant and g = Agy=
constant, (3.81a) takes the form {see (3.37a)]

o IR e i b

For a uniform mesh of N elements, i.e., a mesh of same-size clements,

hy=h,=+-+=L/N=h, the assembled equations are
1 -1 T1( v )
-1 141 -t 0 U,
kA -1 1+1 U,
".}i—" .................................... < : >
0 1+1 -1 Uy
-1 1 Uy
N - k J ~ ~
[ 1 (o
141 g+ 0t
1+1 i+ 03
=#< Rl QPP LI PP
1+1 077+ 0F
1) U &
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where U; (I=1,2,...,N+1) denotes the temperature at global node I The
assembled equations (3.85) are valid for all three sets of boundary conditions in (3.84).
We now specialize the finite element equations (3.85) for each set of boundary
conditions.

Set 1, The boundary conditions (3.844) imply that

U=1, Uwau=15 (3.86a)
and the balance of the heats at global nodes 2, 3, ..., N requires
L i=0 fore=2,3...,N (3.86b)

The condensed equations for the unknown primary variables U3, Us, ..., Uy are
obtained by considering the 2nd, 3rd, . . ., Nth equations of (3.85) (and omitting those
corresponding to the known temperatures):

z2-1 ¢ U, 2 r(-5)
kA -2 t Agoh 2| ka4 0
L RS : S SR LE R (3.87)
0 2 =1 | Uy 2 0
-1 2 Uy 2 -1

The unknown secondary variables @} and OF are computed from the first and last of
the assembled equations (3.85):

kA kA
(Qi)equil = —%chﬂh + T (Ul - Uz), (Q;v)equi.l = —%Aqﬂh + T (UN+1 - UN) (3.88(1)

They can also be computed from the definition {3.81b):

d 2 afdy] kA
(@)= —(ka )| ka3 ()| = w-w
x=0 i=1 =0
d 2 dwn' kA (388b)
(0aer=+ (kA ?JBTE) kA z,l T}V(—d?’) = Wi Uy

The values computed in (3.88b) are in error compared with those in (3.88a) by the
nodal sources, 3g.hA, for h = LIN.

For any number of elements, the solution can be computed from (3.87). For this
set of boundary conditions and a lincar-clement mesh, the minimum number of
elements is 2.

For N=2 (h=1iL),

1 -1 ol(r 1 0}
k
TA—12—1 U2=A%“hz+o
0 -1 1|1%J 1 Q3

and the solution is

_ g’

U=k

+H{L+T)

kA kA
(Q{)equﬂ = _rohA + -iz (T‘l, - :rl)r (Q%)equi.l = —rohA + '.z_h (T'Z - T‘l) ’
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For N=3 (h=1iL),

1 -1 0 O}(T 1 0!
kAL -1 2 -1 0} U,| _Aqoh )2 0
Rl 0 -1 2 =1}t 2 12 0
0 0 -1 1]l 1 03
or
kAT 2 -1 Uz} {1} kA{T,}
- :A ———
h [—1 2}{113 Chy 1
T
{Q%} m{gﬂ[l -1 0 0] U, _Aqoh{l}
Qg equil hLO 0 -1 1 (]3 2 i
W
The solution is given by
h? 2
U=BLrien ), =D i v 2n)

kA kA
(Q})equil =—1g.hA + 3 (M—T),  (ONequi= —3qohA+ 35 (L-T)

The exact solution of (3.77) (with € =0), subject to the boundary conditions
(3.84a), is

Ty =L |5- (3‘—)] + (BT T,

2k LI \L
- d_T_HM(_ £)_k_A -
0() = —kA "=~ T2 (1-20) -"2(1,- T)

Note that the finite element solution at the nodes coincides with the exact solution for
gny number of elements. In fact, for constant @ = kA, it can be shown that the finite
element solution at the nodes is exact [see Reddy (1986), pp. 403, 404]; the only error
would be that due to the round-off error introduced in electronic computations. The
finite element solution, being linear, will not be exact at points other than the nodes.

If we use quadratic elements, we can improve the solution at points between the
nodes. Let us consider a mesh of one quadratic element. The element coefficient matrix
and source vector are given in (3.40). We have (¢, =0)

7 -8 1] 1] (o

A
’—;fmsmws U2=%°h4+0
1 -8 7]lw L) Let

where h = L. The solution is

Ag.h 3k h?
U= ‘; E%(mnﬁ%"‘}(’

+3(L+T)

kA kA
(Q })cquil = "%A%k + T (Tl - I‘Z)J (Q:li)equil = _%A‘%h + T (‘TZ - TI)
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If we compute the Q] using the definition (3.81), we obtain

' dT. 3 rdy)!
1 — Hle — ; __j_
@u=-(ka )| _ =427 ()],

3 4x 4 Bx 1 4x
= “‘A[Uﬂ(‘ﬁﬁ) * ”z(r ﬁ) 4 Uﬂ(“; +}?)],=0

kA
= —}Aquh +7(T1 - T3}

which coincides with the exact value. Recall that (O, for a linear-element mesh does
not coincide with the exact value. Also, the values of T{x) at x = £1., for example, from
the two linear- and one quadratic-element meshes can be computed using the
interpolations

.

L2
TEL) =1 Qak +3(3T+T)  (linear clement)

2 r
TGELY =% ii—‘ +i(3T+ T) (quadratic element)

The quadratic interpolation gives the exact value. Thus, the finite element solution
given by the quadratic element is exact at all points, because the exact solution varies
quadratically.

Set 2. In this case, the surface at x =0 is subjected to a uniform heat flux go
(Wm™?) (if it is insulated, go=0), and heat is dissipated by convection into a fluid of
temperature 7., at the boundary surface at x = L. These boundary conditions imply that

o1=(-k4%T)

=—ANT — Tl = —AB(Unsr— 1.)

x=L

x=0

oy=(ka)

where A is the cross-sectional area normal to heat flow and § is the heat transfer.
coefficient. Equations (3.86b) are also valid for the present case. For a one-element
mesh (N =1, h = L), the finite element equations are

g[ 1 —1}{Ul}_Aqgh{1}+{ Ago }
Rl-1 il 2 1 —ABU, + ABT.

@[ 1 -1 ]{UI}H{%AqOh+AgU}
B L=1 1+ gr/ki\U) UAgeh + ABT.

or

Their solution is
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where a = 1 + Bh/k. The exact solution is

mgg_f:f( Efs_ffi) &( i_z)
T(x) 2 1+ﬁL 73) 5% 1+,6L It

The finite element solution agrees with this at the nodes.

Set 3, In this case, the boundary surface at x =0 is maintained at a temperature
T,, while at the other boundary surface, x = L, a heat flux at the rate of g is removed.
These boundary conditions can be expressed in terms of the primary and secondary

variables as
U=1, Qgr = Agu

and (3.86b) are still valid. For a two-element mesh with i, = h, = 1L =/, we have

1 -1 o}fw 1 0!
%A—l 2 -1 U2=%2+ 0
o -1 1]lu 1 Ago
or
kA
Tl = e
hl-1 11U, 2 U Ago
kA
(Q})equil = _'liAth ‘E'”}“:(Ul - Uz)
We have
_3qof” | gk ok’ 280k
=zt fe e, n=2B B

t = 2% ° =
(Q !}eqm[ (2‘4 Qﬂh + Agﬂ) E Q(O)]

For a three-element mesh (h = L}, we have

2 -1 0|{w 2 0 T

A
%4—12—1 U3=§°"2+0+%40
0 -1 1] 1) Lag 0

Using Cramer’s rule, we can solve for U,, U;, and U,

A K -1 o A 2 K 0 h 2 -1 K
h=—IE 2 -1, UWB=——i-1 E -1|, U=——1i-1 2 E
EAD E -1 1 kAD 0K 1 kAD 0 -1 R
where
2 -1

D=|-1 2 -1|=2+(-1)=1
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and {F}={F, E B}7is the right-hand-side vector:

T;
Aggh +kf;1 !
{F}=
Aggh

1Agoh + Age

Evaluating the determinants, we obtain

h h
U2=k_A(E+B+E)=E(%q0h +go)+Th

h h
7

h h
U4=k_Aj‘(F1+2E+3P5)=;(%%h"‘380)"‘?1!

kA
(ODequn = —1Agoh + n (U, — ) =—Agot 3q0h1)

(Qi)def =—Algt 3q0h)

The exact solution of (3.77) with é=0 and subject to the boundary conditions
(3.84c) is given by

L qof,x X g‘}x]
Ty ==L (22 -2 422
(x) [2 (2L L1)+ )T h 6.9)

O(x) = —kA g - —A[qu(l - -E) + gﬂ]

Note that the finite clement solution at the nodes, for any number of elements,
coincides with the exact solution. The exact value of Ol is

p .
(0D exaee = —(kA Exf) =00 = ~AlL+ 20

x

The value of @] computed from the assembled equations is the same as the exact one;
however, when computed using the definition Q! = —kA(dU,/dx)|.—o, it is in error by
an amount f}=1Agoh. As the number of clements is increased, the value of (Q1)aee
approaches the exact value. Of course, when quadratic elements are used, we shali
obtain a more accurate (or even exact) value of (O des

The next example deals with radially symmetric heat transfer in a
cylinder.

Example 3.2. Consider a long solid cylinder of radius R, in which energy is generated
at a constant rate go (W m~). The boundary surface at r = R, is maintained at a
constant temperature T,. We wish to calculate the temperature distribution T'(r) and
heat flux g(r) = —k dT/dr (or heat Q0 = —Ak dT/dr).
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The governing equation for this problem is given by (3.78) with ¢ =gq. The
boundary conditions are ;

T(R)) = Tp, (2Jrkrd—r

(3.90)

The zero-flux boundary condition at r =0 is a result of the radial symmetry at r =0, If
the cylinder is hollow with inner radius R; then the boundary condition at r = R, can be
speciﬁcd temperature, specified heat flux, or convection boundary condition, depending
on the situation.

The finite element model of the governing equation is given in (3.66) (for unit
height of the cylinder and a = kr}:

[KT} ={f} +{Q} (3.91a)

where

dyid s
_2nf kr ‘P‘ ””d ff=2:r[ wegor dr

d
05 = ZJrk(rd—:)

and {74, rp) are the coordinates of the element Q° = (r,, rp).
For the choice of linear interpolation functions ¥} as fsee (3.16b) and (3.66¢)]

IPi:(rB—r)/he) ‘P;'——(f_r.q)/he

the element equations for a typical linear element are

2rkr, . [ 1 ml]{Ti} hg{Zr, + r,_,ﬂ} {Q’i}
3 = Do + 3.92
he 2 -1 e T v, T Lo 3-92)
The element equations for individual elements are obtained from these by giving the

element length A, and the global coordinates of the element nodes, r, =ryand r,., =rg.
For the mesh of one linear element, we have =9, n=h,=R,, and

1 -1 Ul} mf]oRo{ Rn] {Q%}
k =
i {—1 1]{U2 3 2R Tlot
The boundary conditions in (3.90) imply U, =T, and Q] = 0. Hence the temperature at
{global) node 1 is

(3.91b)
Qf= —an(r—

-]

Uy = quRy3k + Ty
and the heat at r = R, is
Q; = k(U ~ Uy} — 3aq.R; = —7qoR;
The negative sign indicates that heat is removed from the body (because dT/dr <0).
The one-element solution as a function of the radial coordinate r is

T'0) = Uk + U =28 (1- 1) 1 (399

and the heat flux is

1

dT
q(n= _k? = %QORD (3.94)
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The exact solution of the problem can be obtained by integrating (3.78) and '
evaluating the constants of integration with the help of the boundary conditions in

(3.90):
JER (Vg
=221~ (5) |+ (395
qry=1qor (nWm™), Q(Ro)= ‘(23‘*"'%-)

= -"'TQDR%

Ry

For a mesh of two linear elements, we take Ay =h, = 1Ry, =0, n="h,=3R,,
and r,= h; + f, = Ro. The two-element assembly gives

-1 olfu) oo iR, h
k]l -1 143 =30, =i§J Ro+2R, ¢ +1 Qi+ Q3 .(3.96)
o -3 3llu 1R, + 2R, 03

Imposing the boundary conditions Uy =T, and Q} =0, the condensed equations are

1 —17(U  mqeREf1 0
S P T MR Y 507
w1 allo) Tz el T ™ @97
Their solution is
RZ 2
Ul=%q1 T, Uzﬂ%ﬁqc}fu‘*"ﬂ: (3.98a)
From equilibrium, O3 is computed as
0= —EngoRE+3nk(Us — Uh) = —nqoR} {(3.98b)

The finite element solution becomes

r RZ R "2 Rl 2
Teem(r) =4 k R, X o
fem' = , ‘
R 2(Ro—r 2r—R
vt vt (380w MR n i
r RZ 3
%‘?(f—l—;)+ﬂ) for 0=r=1iR,
0 -
A © o (3.99)
T qoR? ’
gﬁ%(l"ﬁ;)'*'?"o for %ROSTSRD

Note that the heat flow at r =R, is predicted accurately by both one- and
two-element models. The temperature at the center of the cylinder according to the
exact solution is T{0) = qoR%/4k + T, whereas it is qoR3/3k + T, and quRE/18k+ T,
according to the one- and two-element models, respectively.

" The finite element solutions obtained using one-, two-, four-, and eight-clement
meshes of linear elements are compared with the exact solution in Table 3.3.
Convergence of the finite clement solutions to the exact solution with an increasing
number of elements is clear (see Fig. 3.10). Figure 3.11 shows plots of g(r)=—dTfdr,
as computed by the finite element interpolation and the exact formula. The figure also
shows the plot of the exact Q = —2mkr dT[dr vesus r.
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TABLE 3.3 a
Comparison of the finite element and exact solutions for heat

transfer in a radially symmefric cylinder (Example 3.2) (Ry =
0.0lm, gp=2X10*Wm™, k=20Wm™'°C™", T,=100°C)

Temperature u(r)t

One Two Four Eight

r{Rg elementf elements elements elements Exact

0.00 433.33 37778 358.73 352.63 350.00
0.125 391.67 356.24 348.31 347.42 346.09
0.250 350.00 335.11 337.90 335.27 334.38
0.375 308.33 315.28 313.59 315.48 314.84
0.500 266.67 204.44 289.29 287.95 287.50
0.625 225.00 245.83 249.70 252.65 252.34
0.750 183.33 197.22 210.12 209.56 209.38
0.875 141.67 148.61 155.06 158.68 158.59
1.000 100.00 100.00 100.00 100.00 100.00

t The underlined terms are nodal values and others are interpolated values.
£ Uniform meshes {i.e., equal-length elements) of linear elements.

3.3.2 Fluid Mechanics

All bulk matter in nature exists in one of two forms: solid or fluid. A solid
body is characterized by relative immobility of its molecules, whereas a fluid
state is characterized by their relative mobility, Fluids can exist either as gases
or liquids. The field of fluid mechanics is concerned with the motion of fluids

500
| T(r), Exact
s it T(!’), 1L
4004 " wemgen T(r), 2L
S U oeee T(), 4L { FEM
——a— T{r), 8L
T(r) 300 1
200 4
100
0 T T T ] b 1 ¥ T T T ¥
0.0 0.2 0.4 0.6 0.8 1.0 1.2
HR,
FIGURE 3,10

Comparison of the finite element solutions with the exact solution for heat transfer in a radially
symmetric problem with cylindrical geometry (Example 3.2).
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80
e (—2mkr dTldr) % 1072 (exact)
—em= (—dTidr) x 1072 (8L)

60 (—dTidr) x 107% (exact)

0.0 0.2 0.4 0.6 0.8 1.0 12 .

FIGURE 3.11
Comparison of the finite element solution with the exact solution for the temperature gradient in a
radially symmetric problem with cylindrical geometry (Example 3.2).

and the conditions affecting the motion. In this section, we review the basic
equations of fluid mechanics and develop finite element models of certain
one-dimensional fluid systems. Several numerical examples will be discussed.

The basic equations of fluid mechanics are derived from the global laws
of conservation of mass, momentum, and energy. Conservation of mass gives
the continuity equation, while the conservation of momentum results in the
equations of motion. The conservation of energy, considered in the last
section, is the first law of thermodynamics and results in (3.68), and
(3.77)-(3.79) for various one-dimensional systems when thermal-fluid cou-
pling is omitted. Before we review the basic equations of fluid mechanics, it is
informative to consider various types of fluids.

An ideal (ot perfect) fluid is one that has zero viscosity and is
incompressible. A real fluid or viscous fluid is one with finite viscosity, and
may or may not be incompressible. Nonviscous fluids are those with zero
viscosity, and again may or may not be incompressible. A viscous fluid is said
to be a Newtonian fluid if its viscosity coefficient is independent of the velocity
gradient (i.e., the viscosity is constant). Non-Newtonian fluids are those for
which the viscosity is a function of the velocity gradient.

Two different viewpoints arc used in the analytical description of the
equations of a continuous medium. In the first, one considers the motion of all
matter passing through a fixed spatial location. Here one is concerned with
changes (e.g., in velocity field, pressure, and density) that are taking place in
the matter that happens to occupy the fixed spatial location. This viewpoint,
known as the Eulerian description, is the one that is most commonly used in
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Auid mechanics. In the study of the motion of fluids, one is interested in the
flow characteristics of fluids occuping a fixed region rather than a fixed set of
fluid particles. In the other viewpoint, one considers the motion of a fixed set
of material particles (i.e., fixed matter), irrespective of its spatial location. This
viewpoint is known as the Lagrangian description, and it is used in the study of
the motion of solid bodies.

The conservation of mass in the Eulerian description is expressed as

3
a’: +V - (pu)=0 (3.1000)
or, for two-dimensional flow,
' p 3 3
2 + F (pu) + 3 (pv)=0 (3.100b)

where p is the density (in kg m™) and (u, v) are the velocity components (in
ms ™) in the x and y directions. All problems of fluid mechanics require that
the continuity equation (3.100) be satisfied (because of the Eulerian descrip-
tion). In the steady-state case, we have 3/8¢ =0, and (3.100a,b) become

o a
V- (pu)=0, ™ (pu) +:9; (pv)=0 (3.1014a,6)

If a fluid is incompressible, the density is constant, and the continuity
equations (3.101a,d) take the forms

du dJdv
Vou=0, 3_x+ay 0 (3.1024,b)

For flows of incompressible fluids, the conservation of linear momentum
results in the following equations of motion:

Su
V-G+f=p(§+u-Vn) (3.103a)

or, for two-dimensional systems,

ﬂ +f = (Bu L Su " _8_:{)
ox TP e T T sy
(3.1030)
acr +f, = (au u@ + c_?_q)
"’ y ax U ay

where (o, oy, 0,,) are the total stress components (in N m™) and (f,, f,) are
the x and y components of the body force vector {measured per unit volume).
The total stress components can be expressed in terms of the viscous stress
components (., T,, T,,) and the hydrostatic pressure P (in N m~%);

0,=1—P, o=1—-P o0,=1, (3.104)
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The viscous components of stress are related to the velocity gradients by
Newton’s law of viscosity. For isotropic, Newtonian fluids, these are

Ju du au)

Ju
rx=21u~"a;, ty=2ya—y, r,y*—*p(a—y—ka (3.105)

where p is the viscosity (in kg m~!sY) of the fluid. Combining (3.103)-
(3.105), we obtain

9387} 2 a2 2| o2
ax \H ox ay i \ay T/ 1T T e e ey
(3.106)

_‘5’_[ (2%+§£)]+_3.(2 @_p)ﬂo_ (@M@Hf"_")
o M\ay T ax) i T\ gy y TP e M Tyl
s

These are known as the Navier—Stokes equations. When the viscosity is zero,

we have .
— 213 + f = (% + ?E v é"_‘_)
ar TP e e Yy
(3.107)
aFP

——+f,= (@+ u§3+v§3)
ag TP T e T ay
which are known as the Euler equations.
Conservation of energy for incompressible fluids is expressed by

ar aT 87) (321" azr) -
i trrv—=l=kl——=+—5)tqt® 1
pc( 5 +u ™ v 3 k 8x2+ Py g+ (3.108)

where ¢ is the mean heat capacity at constant volume, g is the internal heat
generation, k is the thermal conductivity of the (isotropic) fluid, and @ is the

viscous dissipation,
au\? (8v\? du - dv\?
o= (5) +(5) #4535 1
#\ax + 3y T 8y+8x (3.109)

which is zero for nonviscous fluids. For fluids of low viscosity and for velocities
less than the sonic velocity, ® has a magnitude that is small compared with the
other terms in the equation.

In summary, the two-dimensjonal flows of viscous incompressible fluids
are governed by (3.102), (3.106), and (3.108). There are four unknowns
(v, v, P, T) and four equations. The two-dimensional flows of nonviscous
fluids are governed by (3.100), (3.107), and (3.108) (with ®=0). There are
five unknowns (4, v, T, P, p) in four equations. The fifth equation is provided
by the equation of state, F(p, T, P)=0, which relates the density p,
temperature T, and pressure P.

For certain flows, the equations can be further simplified to 1-D
equations. These are discussed below.
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Consider the flow of a viscous, incompressible flaid between two
stationary parallel flat walls separated by a distance 2L. We assume that there
are no body forces. The velocity of the fluid at the wall is zero, because of
adhesion, and reaches a maximum at the center of the channel. The velocity is
constant on a plane parallel to the center plane, with its magnitude being
proportional to the distance from the latter; the individual planes slide over
each other, the velocity field being purely axial everywhere. Such fluid flows
are called laminar. At a sufficiently large distance from the entrance, where the
velocity is uniform, the velocity distribution becomes independent of the
coordinate along the flow direction. The portion of the flow region beyond this
distance is called the hydrodynamically developed or fully developed region,
and the flow is called fully developed flow. For this case, the governing field
equations (3.102), (3.106), and (3.108) can be simplified because of the specific
nature of the velocity field:

u=ufx,y), v=0

where the x and y coordinates are chosen along and normal to the flow
direction, respectively. The continuity equation (3.012) reduces to

8

a—z =0, which implies that u=u{y)
The y momentum equation in (3.106), for £, = 0, simplifies to

oP

By 0, which implies that P = P(x)
The x momentum equation in (3.106), subject to the requirements v =0,
w=u(y), P=P(x), and f, = 0, simplifies to

d*u dpP
14 W = a (3. 110)
The energy equation (3.108) for this problem reduces to
cu T_ (ﬂ+ 32_ (Q)z 3.1
Pt ax ax?  y? # dy 111)

In the case of the steady flow of an incompressible, Newtonian fluid
inside a circular tube of radius r, (3.110) and (3.111) take the forms

E_‘i( éﬂ)_,effi

o rarN dr) T dz (3.112)
aT 18/ 3 & du\?

el =k 2 (r5) r o) () (3.113)

where u = u(r) is the axial velocity, T = T(r, z) is the temperature, P = P(z) is
the hydrostatic pressure, and the r and z coordinates are chosen along and
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normal to the direction of main flow. This flow is also known as Poiseuille

flow. .

This completes the review of the pertinent equations of fluid mechanics
that are considered in this chapter. Next, we consider the finite element
analysis of one-dimensional problems governed by (3.110)-(3.113).

Example 3.3. Consider paraliel flow between two long flat walis separated by a distance
2L. We wish to determine the velocity distribution u(y) for a given constant pressure
gradient dP/dx, using the finite element method. The governing equation (3.110) is a
special case of the model equation (3.1) with the following correspondence:

dpP
qg= —E-—' constant =g¢g,, a=p=constant, ¢= 6, =x=y

kW
Hence the finite element model in (3.31) is valid for this problem: g
(KW} ={f}+{Q%} . (3.114a)
where
. {77 dyidyy N A AT
e [0S0 i (e
™ * (3.114b)

oi-(ug)l, e,

For the choice of linear finite elements, (3.114a) is the samc as (3.37), with a, = and -
g. = go. For quadratic finite finite elements, [K*] is given by (3.40a) with c. = 0, and
{f¢} is given by (3.40b).

For a two-element mesh of linear elements {h = L), we have

1 -1 offw hl Q)
—E—l 2 13U =‘3§—2+Q;+Qi

0o -1 1ilw 1 02

We consider two sets of boundary conditions

Set1 wu(—L)y=u{l)=0 oo U=U;=0
(3.115)
Set2 u(-L)=0, w(ly=U; or U= 0, =0
The finite element solutions for these two cases are
L2
U,= q—;— for Set 1
" (3.116)
- oL

U,=22"+14U, forSet2
2

For a one-clement mesh of the quadratic element (h =2L), we have

7 -8 1jiU 1 o8

g 16 —sfur=LElateq0

6L 3
1 -8 71l 1 ot
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and the solution is

L2
U, q; for Set 1
' qi . @3.117)
U= 20;; +LiU, for Set?2

Although the nodal values predicted in the linear- and quadratic-element meshes are
the same, they vary linearly and quadratically, respectively, between nodes.

The exact solutions of (3.110) for the two sets of boundary conditions in (3.115)
are (-L=y=l)

_4an( _zi)
u(y) = 2 1 I for Set 1
(3.118)

Y ANE IS
RICOE =
u(y) o5 7 + 2 1 Iz for Set 2
Note that the finite clement solutions at the nodes are exact, as expected (see the
comments made in Example 3.1). The quadratic-element solution agrees with the exact
solutions (3.118) for every value of y,

3.3.3 Solid Mechanics

Solid mechanics is that branch of mechanics dealing with the motion and
deformation of solid bodies. The Lagrangian description of motion is used to
express the global conservation laws. The conservation of mass for solid bodies
is trivially satisfied because of the fixed material viewpoint used in the
Lagrangian description. The conservation of momentum is nothing but
Newton’s second law of motion. Under isothermal conditions, the energy
equation uncouples from the momentum equations, and we need only consider
the equations of motion.

Unlike in fluid mechanics, here the equations governing solid bodies
undergoing different forms of deformations are derived directly, without
specializing the three-dimensional elasticity equations. Various types of
load-carrying members are called by different names, e.g., bars, beams, and
plates. A bar is a structural member that is subjected to only axial loads, while
a beam is a member that is subjected to bending loads. The equations
governing the motion of such structural elements are not obtained directly
from (3.103). They are derived cither by considering an element of the
member with all its proper forces and using Newton’s second law, or by using
an energy principle. Examples of the governing equations of the bending of
beams and bars were discussed in Example 2.2 in Chapter 2. Energy principles
provide an alternative to Newton’s laws, and they are more suitable for finite
element modeling because energy principles are nothing but the weak forms
used in the development of the finite element models. Here we illustrate an
application of Newton’s second law and the energy principle, namely, the
principle of virtual displacements, to a bar element. Other examples will be
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presented in connection with the finite element modeling of beams (Chapter 4)
and plates (Chapter 12) later in this book.

Consider a material body of length L and cross-sectional area A. Suppose
that the material of the body is homogeneous (i.e., material properties are
independent of position), the cross-section is either constant or gradually
varying in the axiai (i.e., lengthwise) direction, and the applied loads are axial
and symmetrically positioned with respect to the geometric centroid of the
cross-section. Then the axial stress in the member, except near the points of
load application, will be uniform. The only nonzero stress component is
o, = o,(x, £). Such members are called bars. For this case, u = u(x, t), v=0,
and (3.103) reduce to the single equation (here « denotes the displacement)

8% Fu

th=pgp ) (3.119)

However, the above equation does not include cross-sectional properties of the
member, and it is not useful in its present form. The governing equations of
bars of axially varying cross-sections can be derived from Newton’s second law
(c.g., summation of forces along the x direction) applied to an element of the
body (see Fig. 3.12); i.e.,

> F,=ma
giving

_ oA+ (0, +do)(A+dA) +fdx = p[A+ (A +dA) fzf%zg

or
2

adi+dcrxA+daXdA+fdx=p(A+%dA}dx%§

Dividing throughout by dx and taking the limit dx — 0, we obtain

g &Pu
— (a0 A)+f=pA—= 3.120
= (a:A)+f =pA 5 (3.120)
where f is the body force per unit length.
IEE FIGURE 3.12
ds Axially loaded member and a typical portion of a
.,.‘ ‘(— member of length dx with its axial forces.
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From the strain—stress relation & = (o0, —vo,}/E, we have (because
o, =0)

du
o,=FEg,=E—
. € ox

Substituting for o, from here into (3.120), we obtain

3 Bu Fu
= (Ea —) +f=pAS
ax ( ) T =PAGE
or
Fu 38 du
4SS - (EAZ )= .
PASE " B (EA 8x) fle 1) (3.121)
For static problems, this reduces to
d du
- (EA Ex_) = F(x) (3.122)

Equation (3.1224) can be used to determine the displacement #(x) of a
material point located at a distance x along the axis of a uniaxially loaded
member, called a bar. It should be recalled that (3.122a) is derived under the
assumption that all material points on the line x = constant move by the same
distance u(x) (i.e., the stress at any cross-section is uniform). Equation
(3.1224) is the same as the model equation (3.1), with a = EA and g = f(x).

The average transverse deflection u(x) of a cable made of elastic material
is also governed by an equation of the form (3.1224):

- % (T%) ~ F(x) (3.122b)

where T is the uniform tension in the cable and fis the distributed transverse
force.

Example 3.4, A bridge is supported by several concrete piers, and the geometry and
loads of a typical pier are shown in Fig. 3.13. The Ioad 20 kN m™ represents the weight
of the bridge and an assumed distribution of the traffic on the bridge. The concrete
weighs approximately 25 kN m™ and its modulus is E=28 x 10°kNm™> We wish to
analyze the pier for displacements and stresses using the finite element method.

The pier is indeed a three-dimensional structure. However, we wish to approxim-
ate the deformation and stress fields in the pier as one-dimensional. To this end, we
represent the distributed force at the top of the pier as a point force

F={0.5%0.5)20=5kN

The weight of the concrete is represented as the body force per unit length. The total
force at any distance x is equal to the weight of the concrete above that point, The
weight at a distance x is equal to the product of the volume of the body above x and the
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:2‘0 kN m™2

t ! 0.5%
X
! im
i l FIGURE 3.13
1 05m The geometry and loading in the concrete pier

L__ 1_; m— g problem of Example 3.4.

specific weight of the concrete!

I
W(x) =0.5 E}ii'(i'zs—ﬂ@x % 25.0 = 6.25(1 +0.5x)x

r

The body force per unit length is computed from
d
f =+dLj= 6.25(1 +x)

This completes the load representation of the problem.
The governing differential equation for the probiem is given by {3.122a), with
E =28 % 10° kN m ™2 and cross-sectional area A(x):

A(x) =(0.5+0.5x)0.5=3(1 +x)

Thus
dl, du’l
i [4E(1 +x) dx] =6,25(1+x) (3.123a)
subject to the boundary conditions
[%E(l +3) d—“—’]l —5, w2)=0 (3.123b)
dx 1o -
The finite element model is
K Hu) = {f}+ {2} (3.124a)
where
g d ed € X5
Ky= [ B, pi= [ reyvias
XA d‘r d‘x *A
4 d (3.124b)
e _[_pat¥ e _ du
0= (-ea)|, @i (EaZ),

For the choice of linear interpolation functions (3.16h), we have

. Teel 7n? E 1
1= J; Ez(l +I)("£) dx =Ei¢:[1 + i(xe +xe+[)}

£

e+l
fim [ 62501 4 x)i e = 6.25T + K +220)

3
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Similarly, other com;laonents can be evaluated:

o E i i -1
K=o+ 3+ x| )]

h{f1 i xe+1+2xe})
“}=625" =
r=easz ({3l
Let us consider a two-element mesh with i, = b, =1 m. We have
Ef 15 -15 625[(3+1 4.167
1 = - t = — =
[K]_4[—1.5 1.5]’ i 6 {3+2} {5.2(}8}

w5 sk =i

The assembled equations are

(3.125)

0.375 ~0.375  0.000 || &}, 4,167 ol
E{ —0.375 1000 —0.625 |4 U, =1 12.500 ¢ +3 QL4 @2
0.000 —0.625 0.625 || 8.333 Q2

The boundary and equilibrium conditions require
Up=0, O:+07=0, 1=5kN

The condensed equations are

0.375 —0.375 Ul}_ {9.167} . _
E[*O.B’/‘S 1.000]{512 Tlizseofr  ©rT OGBS

and the solution is given by
U;=2111%10"%m, U,;=1238%X10"°m, (3i=-30kN (3.126)
Hence the stress at the fixed end is given by
a, = Q3 A= —-30/0.75 = —40kN m >
The exact solution of (3.123) is

ufx) = % [56.25 —625(1+x)*~7.5In (%—")} (3.127)

The exact values of 1 at nodes 1 and 2 are .
2(0)=2.08x10"°m, wu(l)=1.225x10"°m

The four-clement model gives 2.008 X 10 m and 1.228 X 107°m, respectively. The
finite element solution at the nodes is not exact because g = EA is not a constant in the
problem. '

34 SUMMARY

In this chapter, the finite element formulation of a second-order differential
equation in a single variable has been presented systematically, following a
step-by-step procedure. The basic steps of the formulation and analysis of a
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typical equation are described in Table 3.1. The model equation is repre-
sentative of the equations arising in various fields of engineering (see Table
3.2). The finite clement model is developed following three steps:

1. Weak formulation of the differential equation over an element.

2. Finite element interpolation of the primary variables of the weak
fomulation.

3. Finite element formulation over a typical element.

The weak formulation itself involves a three-step procedure, which enables
identification of primary variables (i.e., variables that are required to be
continuous throughout the domain, including the nodes at which elements are
connected). The finite element interpolation functions have been developed
here on the basis of continuity, completeness, and linear independence. The
finite element model has been developed by substituting appropriate interpola-
tion of the primary variable into the weak form of the differential equation.

Applications of the model to the solution of problems of heat transfer,
fluid mechanics, and solid mechanics have been presented. To aid the reader, a
brief review of the basic terminology and governing equations of each of the
three fields has also been given. The numerical examples should aid the reader
in deeper understanding of the steps involved in the finite element analysis of
one-dimensional second-order differential equations.

It has been shown that the secondary variables of a problem can be
computed using either the global algebraic equations of the finite element
mesh (i.c., condensed equations for the secondary variables) or by their
original definition through finite clement interpolation. The former method
gives more accurate results, which will satisfy the equilibrium at interelement
nodes, whereas the latter gives less accurate results, which are discontinuous at
such nodes. The secondary variables computed using the Lagrange linear
elements are element-wise-constant, while they are element-wise-linear for the
Lagrange quadratic elements. :

PROBLEMS

Many of the following problems are designed for hand calculation while some are
intended specifically for computer calculations using the program FEMIDV2. This
should give the student deeper understanding of what is involved in the formulation and
solution of a problem by the finite element method. The hand calculations can be
verified, in most cases, by solving the same probiems using FEM1DV2, which is
described in Chapter 7.

Section 3.2

3.1. Develop the weak form and the finite element model of the following differential
equation over an element:

—i(a@)+d—2(bd—2q)+ =f for x,<x<Xx
w\ ) Tae d:xz cu=f for x, -
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where a, b, ¢, and f are known functions of position x. Ensure that the element
coefficient matrix [K*®] is symmetric. What is the nature of the interpolation
functions for the problem?

3.2. Construct the weak form and the finite element model of the differential equation

d{ du du
_Ex-(a—)_ba—f for 0<x <L

over a typical element Q° = (x,, x;). Here a, b, and f are known functicns of x,
and u is the dependent variable. The natural boundary condition should not
involve the function b(x). What type of interpolation functions can be used for u?

3.3. Construct the weak form and associated finite element model of the equation

dif d
——(a—u)+cu=f for 0<x <L

dx\ dx
such that the natural boundary condition of the type
du
—+ k(o —uy) =
a dx (u uﬂ) Q

is included in the weak form. Here &, ¢, and f are known functions of x, while &,
iy, and Q are constants.

3.4. Derive the Lagrange cubic interpolation functions for a four-node (one-
dimensional) element (with equally spaced nodes) using the alternative procedure
based on interpolation properties (3.28). Use the local coordinate # for simplicity.

3.5, Verify (3.34a,b) by actual evaluation of Kj = K} and f;.

3.6. Evaluate the following coefficient matrices and source vector using the linear
Lagrange interpolation functions:

X8
K= J‘ (as + ayx)
Lx

dy; dy;
dr dr dx

X8 *B
miy= @+ emppivian, fi=[ o+ quuids
A

XA X
where 4y, @, Co, €1, §o, and g, are constants,
3.7. Verify the coefficients in (3.404,b) by actual evaluation of Kj= K3 and f7.

|—‘U1=0} ~u,

—~ uf b uf

k.
Typical element

FIGURE P3.8
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3.8.

3.9

-

3.10.

FINITE ELEMENT ANALYSIS OF ONE-DIMENSIONAL PROBLEMS

Consider the system of linear elastic springs shown in Fig. P3.8. Wiite the
force—displacement relationship for a typical (single) spring clement, and
assemble the element equations to obtain the force—displacement relations for the
entire system. Use the boundary conditions to write the condensed equations for
the unknown displacements and forces.

Consider the hydraulic network (the flow is assumed to be laminar) shown in Fig.
P3.9. A typical element (which is a circular pipe of constant diameter) with two
nodes is also shown in the figure. The unknown primary degree of freedom at
each node is the pressure P, and the secondary degree of freedom is the flow {or
discharge) Q. The element equations relating the primary variables to the
secondary variables are given by

c(de)“[ 1 —1}{?;}_{@} B
h L-1 e Tlosl ¢ 128p ~

where d, is the diameter of the pipe, b, is its length, and p is the viscosity of the
fluid. Write the condensed equations for the unknown pressures and flows {use
the minimum number of elements.)

Answer: P,=30a, P,=%0a, P,=10a.

@ = given R =2a Rz =3a

a = constant

P % P
Of —- s — 05

e—h—o _
Pipe resistance R, = 128k

wd?

FIGURE P3.9

Consider the direct current electric network shown in Fig. P3.10. We wish to
determine the voltages V and currents [ in the network using the finite element
method. A typical finite element in this case consists of a resistor R, with the
primary degree of freedom being the voltage and the secondary degree of
freedom being the current. The element equations are provided by Ohm’s law:

wla b=l
R.1—-1 111V3 I
The continuity conditions at the interelement nodes require that the net current

flow into any junction (node) always be zero in a closed loop. Set up the algebraic
equations (i.e., condensed equations) for the unknown voltages and currents.



SECOND-ORDER BOUNDARY VALUE PROBLEMS 131

Vi Vi
§ —— —AAA—— — It
R,
Typical element FIGURE P3.10

3.11. Consider the composite structure of axially loaded members shown in Fig. P3,11.
Write the continuity conditions (i.e., the correspondence of element nodal values
to global nodal values) and the equilibrium conditions (i.e., the relationships
between ()} at the interelement nodes) for the structure, Derive the assembled
coefficient (stiffness) matrix for the structure, and set up the condensed equations
for the unknown displacements and forces.

Ey=10"Ibin2
Ey=3x1071bin"?

1.5 in diam.

50 ki
20 in——F3]

1 in diam.

—16 in
Rigid bar

FIGURE P3.11

3.12. Use the finite element method to solve the differential equation

alZ
——u—cu+x2=0 for 0<x<1
dxz

for the (Dirichlet) boundary conditions #(0)=0 and u#(1)=0. Use a uniform
mesh of three linear ¢lements, and compare the finite element solution with the
exact solution for ¢ == 1.

Answer: U,=—0.02999, U,=—0.04257, P3=0.12771.

3.13. Solve the differential equation in Problem” 3.12 for the (mixed) boundary
conditions :

=0

x=1

Use three linear elements.
Answer: Uy= —0.18805, U, = -0.34144, U, = —0.40708, Pi=>5.6414,
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Solve the differential equation in Problem 3.12 for the {(Neumann) boundary

conditions
)
dclle 7 Ndx

Use a uniform mesh of three linear finite elements to solve the problem. Verify
your solution with the analytical solution.

Note that for Neumann boundary conditions, none of the primary
dependent variables is specified, and therefore the solution can be determined
within a constant; the coefficient matrix of the finite element equations for this
case remains unaltered. When ¢ = 0, the coefficient matrix is singular and caunot
be inverted. In such cases, one of the U, should be set equal to a constant (e.g.,
zero) to remove the “rigid-body” mode (i.e., to determine the arbitrary constant
in the solution). N

Answer: Uy =—0.56862, U= —0.20032, U,=0.18696; Us= 0.61334.

The governing equation for an unconfined aquifer with flow in the radia} direction

4
3

x=1

is given by the differential equation .
1d/  du
Crdr (rk -d_r) =f

where k is the coefficient of permeability, f the recharge, and u the piezometric
head. Pumping is considered to be a negative recharge. Consider the following
problem. A well penetrates an aquifer and pumping is performed at 7= Qata
rate Q =150m"h~". The permeability of the aquifer is k=2sm’h™'m™. A
constant head ue=30m exists at a radial distance 1. =200m. Determine the
piezometric head at radial distances of 0, 10, 20, 40, 80, and 140m (see Fig.
P3.15). You are required to set up the finite element equations for the unknowns
using a nonuniform mesh of five linear elements.

' FIGURE P3.15

Section 3.3
Heat transfer

3.16.

The following differential equation arises in connection with heat transfer in an
insulated rod:

dj d
—— A —]= <x <
dx(kd:) q for 0<x<L

TO) =T, [k%gfﬁ(T—T»)Jfé]\ =0

x=
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where T’ is the temperature, k the thermal conductivity, and g the heat
generation. Take the following values for the data: g=0, §=0, L=0.1m,
E=0.01Wm™'°C™, f=25Wm™2°C". T,=50°C, and T,=5°C. Solve the
problem using two linear finite elements for temperature values at x = 3L and L.

Answer: U, =21.59°C, U'=5.179°C, P{=4.482Wm ?= - P2,
An insulating wall is constructed of three homogeneous fayers with conductivities
ki, k3, and k, in intimate contact (see Fig. P3.17). Under steady-state conditions,
the temperatures at the boundaries of the layers are characterized by the external
surface temperatures 7, and 7T, and the interface temperatures T, and 7.
Formulate the probiem to determine the temperatures T; (i =1, .. ., 4) when the
ambient temperatures T, and T; and the (surface) film coefficients 8, and 8, are
known. Assume that there is no internal heat generation and that the heat flow is
one-dimensional (8T /3y = 0).

Answer: U, =84,480°C, U,=68.977°C, U,=50.881°C, U,=45.341°C,
(PDaer =217.16 W ™2, (P3gee= —155.11 Wm ™,

ky = 50 Wem™1oC!
ky = 30 Wem™ °C™!
ks =70 W em™t°C!
4 Ambient
temperature,

Ts = 35°C
B=15Wcem2°C?

Ambient

temperature,
T = 100°C
g =10Wem?°C!

FIGURE P3.17

Consider the rectangular cooling fin shown in Fig. 3.9. The governing equation
{i.e., balance of energy) is
T B
=t (T~ T)=
dx? ka( )=0

where T is the temperature, k the thermal conductivity, § the film coefficient, a
the thickness, and T. the temperature of the surrounding fluid (i.e., ambient
temperature). The boundary conditions of the problem are

T =T, (wall temperature), (kA %-)

=0
x=1r

The equations can be recast by introducing the following nondimensional

quantities:
T-T, x BLH
IR g ne(f)
g L N ka

They then take the forms

2

dag ag
L2 Ne=0, 8(0)=1, (m)l =0
dg‘z ( ) d& get
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Solve the problem using (a) two linear elements and (b) one quadratic
element, and compare the finite solutions at four equal distances with the
analytical solution

g = cosh N¢ — (tanh N) sinh NE

A steel rod of diameter D = 2 cm, length L =5cm, and therma! conductivity
k=50Wm °C™" is exposed to ambient air at T,.=20°C with a heat transfer
coefficient f=100Wm™ oc—1, If the left end of the rod is maintained at
temperature To=320°C and the other end is insulated {see Fig. P3.19},
determine the temperatures at distances 25 mm and 50 mm from the left end, and
the heat at the left end. The governing equation of the problem is :
2
—§+N26=0 for 0<x<L
I

where § =T — T., T is the temperature, and N? is given by

pp_ prD _ 4B
Ak izD% kD

L4

N?=

The boundary conditions are

=0

x=L

8(0) = T(0) — T.=300°C, (5;;9)

Use (a) two linear elements and (b) one quadratic element to solve the problem
by the finite element method. The exact solution is
cosh N{L —x)

o(x) = 8(0) cosh NL

Answer: (@) U;=300°C, Up= 50.272°C, U, =15.996°C, Pi=9989W m.
(b) U,=300°C, U= 62.658 °C, Uy =34.177°C, Pi=136TW m >

Ambient air

Tan
Diameter D

To

G

|
i

&

ALY \}%»13_\,35555;35

FIGURE P3.19

- 3,20, Find the temperature distribution in the tapered fin shown in Fig. P3.20. Assume

that the temperature at the root of the fin is 250°F, the conductivity k=
120 BTuh~' ft™*°F~", and the film coefficient f=15Btuh "t °p~t, and use
three linear elements. The ambient temperature at the top and bottom of the fin
is T.=75°F.

Answer: Ty(tip) =166.188°F, T = 191.1°F, T;=218.87 °F.
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T, = 75°F [ Ty = 250°F
: o .
1,4%%/4’/{,//‘;//2%‘ 10.25 in

X
L 3in— FIGURE P3.20

Consider steady heat conduction in a wire of circular cross-section with an
electrical heat source, Suppose that the radius of the wire is R,, its electrical
conductivity is K, (& 'em™"), and it is carrying an electric current density of /
(A cm™). During the transmission of an electric current, some of the electrical
energy is converted into thermal energy. The rate of heat production per unit
volume is given by g, = I*/K,. Assume that the temperature rise in the wire is
sufficiently small that the dependence of the thermal or electric conductivity on
temperature can be neglected. The governing equations of the problem are

1d d d
J—— —_— = () =< pr== e
T (rk df) g, for 0sr=R,, (kr dz)

Determine the distribution of temperature in the wire using (4) two linear
elements and (b) one guadratic element, and compare the finite element sclution
at eight equal intervals with the exact solution

o082

0: T(RO) = TD

r=0

Also, determine the heat flow Q = —ZmR,JLk(all‘"/r.i'r)|RD at the surface using (i)
the temperature field and (ii) the balance equations.

Consider a nuclear fuel element of spherical form, consisting of a sphere of
“fissionable” material surrounded by a spherical shell of aluminum “cladding” as
shown in Fig. P3.22. Nuclear fission is a source of thermal energy, which varies
nonuniformly from the center of the sphere to the interface of the fuel element
and the cladding. We wish to determine the temperature distribution in the
nuclear fuel element and the aluminum cladding.

The governing equations for the two regions are the same, with the
exception that there is no heat source term for the aluminum cladding. We have

14d T

—Fa(rzkl%r—l)=q for 0<<r=R;
1d dar;

—-;53;( zkgd—:)~—»0 for R-<r=R,

where subscripts 1 and 2 refer to the nuclear fuel element and cladding,
respectively. The heat generation in the nuclear fuel element is assumed to be of

the form
d1=4do c R.

where g, and ¢ are constants depending on the nuclear material. The boundary
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conditions are

krzd—T]-=0 at r=0
dr

=T, atr=Rg
T,=T, ar r=Rc¢

Use two linear elements to determine the finite element solution for the
temperature distribution, and compare the nodal temperatures with the exact

solution
RH[ - (o) et () T+ S as10(-5)
— T = = Zel1-{— 207 3 —=f
-1 ok, 1 R: + il R + I, (t+4c0)(1 R.
goRE s (RF RF) .
T—~Th= 143 ——— e
2 0 %, ( 5¢) r  Re .
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Fluid mechanics

3,23, Consider the flow of a Newtonian viscous fuid on an inclined flat surface, as
shown in Fig. P3.23. Examples of such flow can be found in wetted-wall towers
and the application of coatings to wallpaper rolls. The momentum equation, for a
fully developed steady laminar flow along the z coordinate, is given by

d*w

Mo =P8 cos f
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where w is the z component of the velocity, p is the viscosity of the fluid, p is the
density, g is the acceleration due fo gravity, and B is the angle between the
inclined surface and the vertical. The boundary conditions associated with the
problem are that the shear stress is zero at x = 0 and the velocity is zero at x = L:

(%)
dx
Use (a) two linear finite elements of equal length and (b) one quadratic finite

element in the domain (0, L) to solve the problem and compare the two finite
element solutions at four points x =0, 1L, 3L, and 3L of the domain with the

exact solution
2 2
BB,
2u L
Evaluate the shear stress (1,. = —u dw/dx) at the wall using (i) the velocity fields
and (i) the equilibrium equations, and compare with the exact vale.

Answer: (a) U, =3f,, U= 3fs, fi=(pg cos )L/ .

=0, w(l)=0

x=

Velocity 2
distribution

Direction of
gravity FIGURE P3.23

3.24. Consider the steady laminar flow of a viscous fluid through a long circular
cylindrical tube. The governing equation is
JLd o pe,
dr/~ L

rdr\’* =
where w is the axial (i.e., z) component of velocity, u is the viscosity, and f, is the
gradient of pressure (which includes the combined effect of static pressure and
gravitational force). The boundary conditions are
dw
(r-a—;) =0, w(Ry)=0

r=0
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Using the symmetry and (a) two linear elements, (b) one gquadratic
element, determine the velocity fieid and compare with the exact solution at the

nodes:
w11

3.25. In the problem of the flow of a viscous fluid through a circular cylinder (Problem
3.24), assume that the fluid stips at the cylinder wall; i.e., instead of assuming that
w =0 at r = R,, use the boundary condition that

dw
kw=—,ugr— at r=~Ro

in which k is the “coefficient of sliding friction.” Solve the problem with two

Jinear elements. . ~

3.26. Consider the steady laminar flow of a Newtonian fluid with constant density in a
jong annular region between two coaxial cylinders of radii R; and R, (see Fig.
P3.26). The differential equation for this case is given by ‘

_1£(r @)HL‘E:"P
pyri Uy A A

where w is the velocity along the cylinders (i.e. the z component of velacity), p is
the viscosity, L is the length of the region along the cylinders in which the flow is

distribution

FIGURE P3.26
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fully developed,' and P, and F, are the pressures at z =0 and 2 = [, respectively
(P; and P, represent the combined effect of static pressure and gravitational
force). The boundary conditions are

w=0 atr=R, and R,

Solve the problem using (a) two linear elements and (b} one quadratic element,
and compare the finite element solutions with the exact solztion at the nodes:

LRE r\t 1k r
W)= E (Ra) s (R)]
where k = R,/R,. Determine the shear stress 1,, = —u dw/dr at the walls using (i)
the velocity field and (ii) the equilibrium equations, and compare with the exact
values. (Note that the steady laminar flow of a viscous fluid through a long
cylinder or a circular tube can be obtained as a limiting case of k— (.)
Answer: U;=0.40198, U;=0.5036, U,=0.35811, P}=-1.6079, Pi=
~2.8705.
Consider the steady laminar flow of two immiscible incompressible fluids in a
region between two parallel stationary plates under the influence of a pressure
gradient, The fluid rates are adjusted such that the lower half of the region is
filled with Fluid I {the denser and more viscous fluid) and the upper half is filled
with Fluid II (the less dense and less viscous fluid), as shown in Fig, P3.27, We
wish to determine the velocity distributions in each region using the finite element
method.
The governing equations for each fluid are
d*u d°
—H ?21=ﬁu —ﬂz‘;d%:fb

where f, = (P, — P,)/L is the pressure gradient. The boundary conditions are
u,(—b)=0, uy(b)=0, u(0)=ux0)

Solve the problem using (a) four linear elements and (b) two quadratic elements,
and compare the finite element solutions with the exact solution at the nodes

ﬁ:bz[ 20 =y (y)z] .
u; = + == = 1, 2
ety v b b ( )

Less dense,
ess viscous

yi fluid °
nterface l

I_..x_.

Denser, I

iy more viscous
fluid

FIGURE P3.27

Solid mechanics

3.28.

Find the three-element finite element solution to the stepped-bar problem (axial
deformation of a bar). See Fig. P3.28 for the geometry and data.
Answer: Uy=6P[rE,, U,=5P/nE,, U,=%PrE,.
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P
12 in ——+—8 in —»le-d in->}
E,=10bin?
E =3 x 107 bin™"
P = 100 kips FIGURE P3.28

3.29, The equation governing the axial deformation of an elastic bar in the presence of
applied mechanical loads f and P and a temperature change T'is

_%[EA(%_WT)]-_—'f for 0<x<L{ “
where « is the thermal expansion coefficient, E the modulus of elasticity, and A
the cross-sectional area. Using three linear finite elements, determine the axial
displacements in a nonuniform rod of length 30in, fixed at the left end and
subjected to an axial force P — 4001b and a temperature change of 60 °F. Take
A(x)=6—fxin’, E=30% 10°1bin~?, and a=12%107%in inteFT

3.30. Analyze the stepped bar with its right end supported by 2 linear axial spring (see
Fig. P3.30). The boundary condition at x =24 in is

EA@+ku=0
dx

12in ——— 8 in <4 in->}
E, = 107 b in"? k= 10°1bin
E =3 x 10/ Ibin~?

P = 100 kips

FIGURE P3.30

fo=2001 in~!

|

!
F{1le

|

L5 in diam. ™2 in diam. I.S/in diant.

l._4 in —+———-12 in——‘l"‘ 4in _‘i FIGURE P3.31

3.31. Consider the steel (E=30X% 10° psi) beam shown in Fig. P3.31, Determine the
transverse deflection using two linear elements. Exploit the symmetry of the
beam. - .
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3.32. Determine the axial deformation of a nonuniform bar, A =A;+ A,x, under its
own weight (fy per unit length). Use two lincar elements. The bar is fixed at
x=0.

3.33. Turbine disks are often thick near their hub and taper down to a smaller thickness
at the periphery. The equation’governing a variable-thickness ¢ = #(r) disk is

d
o (tro,) — tog + tpw*r* =0

where w? is the angular speed of the disk and

0=c(f£ﬁ+vf) g =c(g+vi¥) c= E
_ i dr ) ¢ rodr/’ 1—v?

(a) Construct the weak integral form of the governing equation such that the
bilinear form is symmetric and the natural boundary condition involves
specifying the quantity #a,.

(b) Develop the finite element model associated with the weak form derived in
part (a).

3.34. Determine the axial deformation of a varying cross-section member (see Fig.

P3.34) under its own weight. Use one guadratic element.

LA o ot

A(x)=Ag + Ax>

FIGURE P3.34
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CHAPTER

!

BENDING
OF BEAMS

4.1 INTRODUCTION

Here we consider the finite element formulation of the one-dimensional
fourth-order differential equation that arises in the Euler-Bernoulli beam
theory and the pair of one-dimensional second-order equations associated with
Timoshenko beam theory. The formulations of a fourth-order equation and
two coupled second-order equations. involve the same steps as described in
Section 3.2 for a second-order equation, but the mathematical details are
somewhat different, especially in the finite element formulation of the
equations.

4.2 THE EULER-BERNOULLI BEAM
ELEMENT )

4.2.1 Governing Equation

In the Euler-Bernoulli beam theory, it is assumed that plane cross-sections
perpendicular to the axis of the beam remain plane and perpendicular to the
axis after deformation. In this theory, the transverse deflection w of the beam

143
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flx)
M V4 dV &w
'a x M= b Ez—
M+ dM FIGURE 4.1
V}n—dx—-[ _ M Bending of beams. The shear
dx force—bending  moment—deflec-
dv _ f tion relations and the sign con-

vention.
'3

is governed by the fourth-order differential equation

d* |, d*w ,
E;(ng—z)#(x) for 0<x<L (4.1)

where b = b(x) and f = f(x) are given functions of x (i.e., data), and w is the
dependent variable. The sign convention used in the derivation of (4.1) is
shown in Fig. 4.1. The function b = EI is the product of the modulus of
elasticity E and the moment of inertia I of the beam, f is the transversely
distributed load, and w is the transverse deflection of the beam. In addition to
satisfying the differential equation (4.1), w must also satisfy appropriate
boundary conditions; since the equation is of fourth order, four boundary
conditions are needed to solve it. The weak formulation of the equation will
provide the form of these four boundary conditions. A step-by-stcp procedure
for the finite-element analysis of (4.1) is presented néxt.

4.2.2 Discretization of the Domain

The domain of the structure (i.e., length of the beam) is divided into a set
(say, N) of line elements, each element having at least the two end nodes (see
Fig. 4.2a). Although the element is geometrically the same as that used for
bars, the number and form of the primary and sccondary unknowns at each
node are dictated by the variational formulation of the differential equation
(4.1). In most practical problems, the discretization of a given structure into a
minimum number of ¢lements is often dictated by the geometry, loading, and
material properties.

4.2.3 Derivation of Element Equations

In this step we isolate a typical element Q° = (x., X.+1) (see Fig. 4.2b) and
construct the weak form of (4.1) over the element. The variational formulation
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FIGURE 4.2
Discretization of a beam using Euler—Bernoulli beam clements. The generalized displacements
and generalized forces are shown on a typical beam efement.

provides the primary and secondary variables of the problem. Then suitable
approximations for the primary variables are selected, interpolation functions
are developed, and the element equations are derived.

WEAK FORM. The weak forms of problems in solid mechanics can be
developed either from the principle of virtual work (i.e., the principle of
virtual displacements or virtual forces} or from the governing differential
equations. Here we start with a given differential equation and using the
three-step procedure to obtain the weak form. Following the three-step
procedure developed in Chapter 2 and revisited in Section 3.2.3, we write

et [ d% f d*w
0= “[@(b‘aﬁ)”f]df‘

el dy d ¢ dw d /, d*wy]en
—L [“aa(bﬁ)‘“f]dﬁ["a(”?)],e

Xert £ 2y d2w d [ d®w\  du dPwlren
=£ (baﬁ“”f)d”[”a(bzﬁ)‘abﬁ] (42)

where v(x) is a weight function that is twice differentiable with respect to x,
Note that, in the present case, the first term of the equation is integrated twice
by parts to trade two differentiations to the weight function v, while retaining
two derivatives of the dependent variable ‘w; i.e., the differentiation is
distributed equally between the weight function v and the dependent variable
w. Because of the two integrations by parts, there appear two boundary
expressions (see Example 2.2), which are to be evaluated at the two boundary
points x = x, and x =x,;,. Examination of the boundary terms indicates that
the essential boundary conditions involve the specification of the deflection w
and slope dw/dx, and the natural boundary conditions involve the specification
of the bending moment b d*w/dx* and shear force (d/dx)(b d*w/dx?) at the
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endpoints of the element. Thus, there are two essential boundary conditions
and two naturat boundary conditions; therefore, we must identify w and dw/dx
as the primary varaibles at each node (so that the essential boundary
conditions are included in the interpolation). The natural boundary conditions
always remain in the weak form and end up on the right-hand side (i.e., the
source vector) of the matrix equation. For the sake of mathematical con-
venience, we introduce the following notation: @ = —dw/dx and

d [ d*w 2w
=[2059)]], e=0%),

{202, o5

dx*
ve
where Q¢ and Q5 denote the shear forces, and Q3 and Q7 denote the bending
moments (see Fig. 4.2b). Since the quantities QF contain bending moments,
which can also be viewed as “pending forces,” the set {Qf, Q5 05, Q%) is
often referred to as the generalized forces. The corresponding displacements
and rotations are called the generalized displacements. .
With the notation in (4.3), the weak form (4.2) can be expressed as

e Py dPw dv
o[ (2o (-E)
J;g b T d of ) dx — v{x.)Q% o/l

—uenes- (- )] e

dx Ke+1
= B(v, w) — (v} (4.4a)
We can identify the bilinear and linear forms of the problem as

s Py diw

Xe

(4.3)

Xetl Xe+l

Q3

B(v, w)= e dx
fXerl d
Hv) = j of dx +v(x) 05 + (.— Z’;)\ : (4.4b)
d
s u(ean@s+ () o

Equation {(4.4a) is a statement of the principle of virtual displacements for the
Euler—Bernoulli beam theory. The quadratic functional, known as the total
potential energy of the beam clement, is given by [from (2.43b)]

or= [ L2 o w42

@i~ (- ) o (4.5)

The first term in the square brackets represents the elastic strain energy due to
bending, while the second is the work done by the distributed load; the
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remaining terms ac'count for the work done by the generalized forces ©¢ in
moving through the generalized displacements of the element,

INTERPOLATION FUNCTIONS. The variational form (4.44) requires that the
interpolation functions of an element be continuous with nonzero derivatives
up to order two. The approximation of the primary variables over a finite
element should be such that it satisfies the interpolation properties (i.e., that it
satisfies the essential boundary conditions of the element):

w(xe) =Wy, ‘v(xe+1) = Wa; B(Xe) = 611 9(x8+1) = 82 (4‘6)

In satisfying the essential boundary conditions (4.6), the approximation
automatically satisfies the continuity conditions. Hence, we pay attention to
the satisfaction of (4.6), which form the basis for the interpolation procedure.

Since there is a total of four conditions in an element (two per node), a
four-parameter polynomial must be selected for w:

wx) =c; + cx + 3 + o’ 4.7
Note that the continuity conditions {i.e., the existence of a nonzero second

derivative of w in the element) are automatically met. The next step involves
expressing ¢; in terms of the primary nodal variables (i.e., generalized

displacements)
dw dw
ui=wx), wuz= ( - ?) yo U EW(X..),  ui= ( —*"—)
x X=Xg dx X =Xe+t
such that the conditions (4.6) are satisfied:
Wi=wx) =cy+cx, +eax + ¢
dw
ub = ( - —) = —¢y — 2¢3x, — 3c4x2
dx /s, (4.8a)
US=W(Xee1) = €1+ CoXopr T Eax2, 1+ Cuxiyy
dw
— — 2
uy= ( - a) = =03~ 203X, 41— 304X 41
Xe+1
or
u 1 x x2 x2 ¢
2
us _ 0 -1 2 —3x, cz (4.85)
2 3 *
ug 1 Xer1 Xetl Xer1 €3
ug 0 -1 —2x.,, -3xi, €4
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Inverting this matrix equation to express ¢; in terms of u%, u5, u%, and u%, and
substituting the result into (4.7}, we obtain

4

we(x) = uiei +usdr+ uSgs + uiei = > i df (4.9a)
j=1

where (with X, =X + h,.)

. X —X\Z x —x\° . x — X\
pim1-a( (), e m(E )

o) o), el R

Note that the cubic interpolation functions in (4.9)" are derived by
interpolating w and its derivative at the nodes. Such polynomials are known as
the Hermite family of interpolation functions, and ¢¢ in {4.9b) are called the
Hermite cubic interpolation {or cubic spline) functions. Recall that the
Lagrange cubic interpolation functions are derived to interpolate a function,
but not its derivatives, at the nodes. Hence, a Lagrange cubic element will
have four nodes, with the dependent variable, not its derivative, as the nodal
degree of freedom. Since the slope (or derivative) of the dependent variable is
also required by the weak form to be continuous at the nodes for Euler—
Bernoulli beam theory, the Lagrange cubic interpolation of w, although it
meets the continuity requirement for w, is not admissible in the finite element
approximation of Euler—Bernoulli beam theory.

The interpolation functions @i can be expressed in terms of the local

coordinate X:
. x\? x\? e - z\?
i=1 3(;;) +2(he)’ 4’2_—"(1 h,_,)

95 = 3(}?‘) - 2(5")3 $i=-7 [(??)2 i

The first, second, and third derivatives of ¢¢ with respect to ¥ are

é‘i’_i__ﬁi( _i) a5 _ [ (_’,‘__)2_ _f_]
e U Sl RV Y
ags__doi A0 _X (35 )

dx de’  dx h, \" h,

éz_(pi=_£ (1_2,{), dqu§=_2: (35-—2) (4.10b)

(4.9)

(4.10a)

di? h? h. dz* h.\ h,
d*¢5__d'¢% fm__g@g_g
di? 2 4t h.\h

Poi 12 Ly 6 des 12 deh 6
T LT ISP T U S
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xth xlh
FIGURE 4.3

Hermite cubic interpolation functions and their first derivatives used in the finite element model of
Euler-Bernoulli beam theory.

The Hermite cubic interpolation functions (4.9) satisfy the following interpola-
tion properties (see Fig. 4.3):
Pilx.) =1, Pi(x)=0 (i#1)
P5(xer) =1, Pi(xer1) =0 (i#3)

(_‘%3):1, (%?):0 (i #2) (4.11a)

These can be stated in compact form as (7, j=1, 2)

2
‘i’;i—l(fj) =.6ij: ¢§i(’fj) =0, ;1 P 1=1

(465 '

_ d¢§.-)
dx ,{0’ ( dx

(4.115)
=5

i

where ¥, =0 and %, = h, are the local coordinates of nodes 1 and 2 of the
clement Q° = (x,, x.,1).
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It should be noted that the order of the interpolation functions derived
above is the minimum required for the variational formulation (4.4). If a
higher-order (i.e., higher than cubic) approximation of w is desired, one must
cither identify additional primary unknowns at cach of the two nodes or add .
additional nodes with the two degrees of freedom (w, —dw/dx). For example,
if we add d?w/dx” as the primary unknown at each of the two nodes, or add a
third node, there will be a total of six conditions, and a fifth-order polynomial
is required to interpolate the end conditions (see Problems 4.27 and 4.28).
However, continuity of dw?/dx* is not required, in general, and such elements
should be used only in problems where d*w/dx” is continuous everywhere.

FINITE ELEMENT MODEL. The finite element model of the Euler—Bernoulli
beam is obtained by substituting the finite element interpolation (4.9a} for w
and the ¢, for the weight function v into the weak form (4.4d). Since there are
four nodal variables u¢, four different choices are used for v, v= @3, v=93,
y=¢35 and v=4¢;j to obtain a set of four algebraic equations. The ith
algebraic equation of the finite element model is (for v = ¢7)

4 X4t dz edﬁ e K41
1= Xe Xe
or
4
> Kui—F;=0 (4.12b)
j=1
where
. PXel d2 fdz e Tetl
K;.j.:j b dj; ?}%dx’ F?:J ¢if dx + QF (4.12¢)

Note that the coefficients Kj; are symmetric: K;?}-=Kj,:’,-. In matrix notation,
(4.12b) can be written as

11 2 bt 14 ug fi o5 )

K3 K% K3 24 us _ f3 3 Q3 (4.13)
%1 32 S 34 us fs Q3 '
S Ko Kb Kiadlus 4 Q%

This represents the finite element model of (4.1). Here [K°] is the stiffness
matrix and {F¢} is the force vecior of a beam element. When a transverse
point force F§ is applied at a point x, inside the element, it is distributed to the
element nodes by the relation [see Remark 5 in Chapter 3: (3.60)}:

F§ = F3gi(xo) (4.14)
which contains both transverse forces (Fi and F5) and bending moments (F3
and F3).
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For the case.in which b (= EI) and f are constant over an element, the
element stiffness matrix [K°] and force vector {F°} have the specific forms (see
Fig. 4.2 for the element displacement and force degrees of freedom)

6 —3h —6 —3h
2b —3h 2h* 3h K

[K]== 6 3 6 3 (b = EI = constant)
-3h  h* 3R 2H?
(4.15)
6 Oy
fhj—h 02
Fe}y=— + =
{F} 21 6 0. (f = constant)
h Q4

It can be verified that the generalized force vector in (4.15) represents the
“statically equivalent” forces and moments at nodes 1 and 2 due to the
uniformly distributed load over the element. For any given function f, (4.12¢)
provides a straightforward way of computing the components of the general-
ized force vector {f°}.

4.2.4 Assembly of Element Equations

The assembly procedure for beam elements is the same as that used for bar
elements, except that we must take inte account the two degrees of freedom at
each node. Recall that the assembly of elements is based on: (2) interclement
continuity of the primary variables (deflection and slope) and (b) interelement
equilibrium of the secondary variables (shear force and bending moment) at
the nodes common to elements. To demonstrate the assembly procedure, we
select a two-element model (see Fig. 4.4). There are three global nodes and a
total of six global generalized displacements and six generalized forces in the
problem. The continuity of the primary variables implies the following relation”
between the element degrees of freedom uf and the global degrees of freedom
U; (see Fig. 4.4):

1_ 1_ 1,2 _
=, uz=U, wuy=u;j=U; (4.16)
T2 2 _ 2 _ )
Uy=U53= U4, Uz = Us, Hy = U6

In general, the equilibrium of the generalized forces at a node between two
connecting elements Q° and Q/ requires that

Q% + Q4 = applied external point force

4.1
04 + QY = applied external bending moment (4.17)

If no external applied forces are given, the sum should be equated to zero. In
equating the sums to the applied generalized forces (i.e., force or moment),
the sign convention for the element force degrees of freedom (see Fig. 4.2)
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Ul = 09 Q% = unknown U3! Q% + Q‘% = G US! Q% = F[}
U, = 0, @3 = unknown '%"“ Up @+ 03 =0 ;I-‘Us’ 0% = Mo
]

€

1

I ui 2
wo us 1 - 734
12 1 1ty 3
u
[ ] 4 [ ] u4

o)

ois -
1 * z 1
[ Element 1 Qd\-}‘ 9 Element 2 %
o} 03

ot
w(x)j : /fo Fy I ~
P
12] T ] )Mﬂ

0.8 4

FIGURE 4.4
Assembly of two Euler-Bemoulli (or classical) beam finite elements, and the finite element
solution as a linear combination of the nodal values and interpolation functions.

should be followed. Forces are taken positive acting upward and moments are
taken positive acting clockwise.

To impose the equilibrium of forces in (4.17), it is necessary to add the
third and fourth equations (corresponding to the second node) of & to the
first and second equations (corresponding to the first node) of Q.
Consequently, the global stiffnesses Kis, Kas, Kass and K., associated with
global node 2 are the superpositions of the element stiffnesses:

K=K+ K, K34=K§4+K§2: K=K+ K3, K=K+ K%
(4.18)

In general, the assembled stiffness matrix and force vector for beam elements
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connected in series have the following forms:

Global -
nodes -
1 2 3
- e ~ ey -
Ki KL Kb Ko | .
KL KL, Kl Ky
[K]= Kél Kéz EK:Iﬁ"'K%l K§4+K%2 EK%Z* K%“ 2
- | Ki Kb | Kh+Kh KiL+Kh (Kh Kk
g K%i K%z : K%:i' K§4 3
LK Ky (Kb Ki |
(4.19a)
( F!)
F;
Fl+ F?
{F}= { g ’ (4.19h)
4 2
F3
. F; J

The connectivity matrix [B] (which will be used in computer implementa-
tion) for the two-element mesh is

-} 7

Since there are two primary degrees of freedom per node, repetition of a
number in [B] indicates that the coefficients associated with both degrees of
freedom will add up. For example, the repetition of the global node number 2
(which corresponds to global degrees of freedom 3 and 4) in rows 1 and 2
indicates that the global K3, K., Ki3, and K, have contributions from both
elements 1 and 2.

The assembled system of equations for a mesh of two elements with
hy=h,=3L=h, and constant EI and f [hence, [K°] and {f°} are given by
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(4.15)] is
6 -3k -6 ~3h o 071(0)
—3h 2h* 3h h? 0 0 U,

2EI) 6 3k 6+6 3h—3h —6 —3h U3L
W l—3n B2 3h—3n 2KP420% 3h R |Us
0 0 —6 3h 6 3h||Us
L0 0 —~3h h? 3h  2K*

112
(6 Cob
i

1
2

_fh)6+6 03+ Q1
_12*h—h>+ﬁQ§+Q§
6 | | O3

B ) U Q8

The reader is cautioned that (4.20) does not represent the assembled equations
of any two beam elements; it is based on the assumption that hy=hy,
(ED); = (EI),, and ()1 = (f)2- Equations (4.19) are more general.

™ (4.20)

4.2.5 Imposition of Boundary Conditions

At this step of the analysis, we must specify the particular boundary
conditions, i.e., geometric constraints and forces applied, of the particular
problem to be analyzed. The type of essential (also known as geometric)
boundary conditions for a specific beam problem depend on the nature of the
geometric support. Table 4.1 contains a list of commonly used geometric
supports for beams. For the sake of completeness, the boundary conditions on
the axial displacement u are also included. The natural (also called force)
boundary conditions involve the specification of generalized forces when the
corresponding primary variables are not constrained. Here we consider a
cantilever beam (i.e., a beam fixed at one end and free at the other) of length
L, flexural rigidity EI (= constant), and subjected to a uniformly distributed
force f,, end force F, and end moment M, (see Fig. 4.4).

First, we write the equilibrium conditions for the generalized forces. At
global node 1, Q1 and Q! (the shear force and the bending moment,
respectively; i.e., the reactions at the fixed end) are not known. At global node
2, there are no externally applied shear forces and bending moment. Hence,

Qi+ 0%1=0, Qi+03=0 (4.21a)

At global node 3, the shear force is given as £, and the bending moment as M,
(note the sign convention for F, and M, from Fig. 4.2): :

d d*w d*w
o= ()] -5 oi=-(o %)

7 =—M, (421b)

x=L

x=
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TABLE 4.1
Types of commonly used support conditions for beams ard frames
Displacement Force
_ boundary bhoundary
Type of support conditions conditions
z4 None All, as specified
e
FREE
7}
x u=40 Moment is specified
w=10
PINNED
zy )
QE—— x. -u=0 Transverse force and moment
ROLLER are specified
(vertical)
Z.
x w=0 Horizontal force and bending
moment are specified
ROLLER
(hotizontal)

i,

E__ u=0 None specified
w=0

A dwfdx=10
FIXED or CLAMPED

Next, we identify and impose the specified generalized displacements,
Since the beam is clamped at global node 1, it follows that the deflection w and
the slope dw/dx are zero there:

l=wpl=0,=0, ul=60l=U,=0 (4.22)

Using {4.21) and (4.22) in (4.20}, we obtain

6 -3hi-6 -3k 0 07(U-=0) (6) [ o)
~3h 20> 13k K 0 0 || U=0 ~h 3
2E1| 6 TRRTIIYTTTOUS6 53R US| Rk |17 0|
3 2 2 2 | kTR s
B o|-3k K1 0 4k 3h h U, 12]o0 0
0 0 (-6 3k 6 3k Us 6 F
L0 0 i-3r h* 3n 207)\ U . k) M)
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4,2.6 Solution_

Equation (4.23) contains six algebraic equations in six unknowns:
(01, @3, Us, Us, Us, Uy). Because the algebraic equations for the unknown
gencralized displacements (Us, Us, Us, Ug) do mot contain the unknown
generalized forces (Q1, 03), equations 3, 4, 5, and 6 of the system (4.23) can
be solved independently; the known values of the displacements U, and U, are
used in equations 3 and 4. This provides us with the motivation to partition
(shown by dashed lines) the matrix equation (4.23), which can be recast in the

form
(R A M B

where {U'} denotes the column of known generalized  displacements, {U%}
the column of unknown generalized displacements, {F'} the column of
unknown forces, and {F?} the column of known forces. Equation (4.24) can
be written, after carrying out the matrix multiplication, in the form [cf.
(3.56)]

[KMHUY} + [KPHU) = {F)}
[KPHU"} + (K20} = {F)
or
[K2){U?) = {F%) ~ (K* (U} (4.254)

{(F'y = [K"{U) + KU (4.25b)

These are the condensed equations for the generalized displacements and
forces, respectively. Since {U'} and {F?} are known ({U'} = {0}), we can use
(4.25a) to solve for {U?}, and then use (4.25b) to compute the unknown
reactions {F'}:

Uy 12 0 -6 —3n1 foh
Ul R} 0 4 3h K 0

(=4 fh=—r- . (4.26)
U 2EI| =6 3h 6 3h Fy+3ifh
Us —3h h* 3h 2R° — M, +fh?

Inverting the matrix (say, by Gaussian elimination) and performing the matrix
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multiplication (i.e., solving the equations), we obtain

2h* -3k SK* -3k foh
h|-3 6 —9% 6 0
(U} =5
6EI'| 5h* —9h 16h* —12h B+ 3oh
-3 6 —12h 12 My + f5fyh®
SH2Fy + 3hM, + 2k’
h ~OhFy— 6M, — foh®

=— 4.27
6EI | 16h°F, + 12aM, + 124> “.27)

—12hF, — 12M, — 8fh*

The reactions Q} and Q3 can be obtained by substituting (4.27) into (4.2556).
The Q¢ obtained from the element (equilibrium) equations are more accurate
than those obtained from the definitions (4.3), wherein the derivatives of w are
obtained by differentiation of its finite element interpolation. The reactions
from equilibrium (QF)equ: are

Us
{FI}Z{Q}}zz_ﬂ[—ﬁ —3h 0 0] U, _fo_h{ﬁ}
oy R L3m R 0 ol)u 12 |—h

Us

o e )

2h(Fy+ foh) + My (4.28)

It can be verified that the reactions Q} and Q} in (4.28) satisfy the static
equilibrium equations of the beam:

Qi+ (K +26h)=0, Qi— QKA +2fh*+My)=0

The reactions Q1 and Q3 can also be computed using the definitions (4.3):

2 73
Q}EE(EIH) %E(Efc_iﬂ)

I e I (4.29a)

X:O’ x=0

From (4.10b), we note that the second derivative of the Hermite cubic
interpolation functions is linear over the element and the third derivative is
constant over the element. Therefore, the reactions, i.e., bending moment and
shear force, computed using the definition (4.3) are element-wise linear and
constant, respectively. Further, at nodes connecting two elements, they yield
discontinuous values because the second and third derivatives of w are not
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made continuous across the interelement nodes. Substituting (4.10b) into
(4.29a), we obtain the values
d¢5 d”qbi)

o= EI(U3 e + Uy e

12 6

L EI[U3(_ﬁ) + U4(_F)] = —(Fy+ 3fh)
6 2 - ) : (4.296)

0z = EI(”sp*" Uq;) = (Mo + 2Bk + Bfoh?)

which are in error by £ =3kt and f5=1sfoh® compared with those in (4.28).

4.2.7 Postprocessing of the Solution

The finite element solution as a function of position x is given{by ~
Usps + Uy} for 0=x<h
we(x) = { apstUsfs T (4.30a)
Ug(i)l + U4¢2 + U5¢3 + U6¢4 for h=x =2h

where [see (4.10a)}

el o ol
¢§=1—3(1-%)2—2(1—%)3, %_=h(1—%)(2—-%)2 (4.300)

Fim 3(1 - %)2 + 2(1 - %)3 pi= h[(1 - %)3 * (1 B %)2]

The exact solution of (4.1) subject to the boundary cchition (4.21) can be
obtained by direct integration, and is given by

Elw(x) = Rfox* — s8R+ ol )P +3(My+ BL+ HLHx*
EI9(x)=—4ox’ +3(H+ RLX: — (Mo + RL+ HL® for 0=<x=<L
M) = foxt = (B + fol)x + Mo+ KL + ol?
(4.31)

The finite element solution (4.30) and the exact solution (4.31) are compared
in Table 4.2 for the data

f,=24kNm™, FKR=60kN, L=3m, Mo=0kNm
E=200%10°kNm™, 1=29x10°mm* (EI = 5800 kN m?)

As expected, the finite element solution for w and 8 coincides with the exact
solution at the nodes, At other points, the difference between the finite
element and exact solutions is less than 2%.

This completes the finite element formulation and analysis of the
fourth-order differential equation (4.1) governing the Euler—-Bernoulli beam
theory. Whenever the flexural rigidity b = EI is a constant in each element, the



TABLE 4.2

Comparison of the finite element solution with the exact solution
of the cantilever beam of Fig. 4.4 (2 elements; L=3m, El=

5800 kN m?, fo=24 kNm™!, F=60kN, M,=0kNm)
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w {m) —O0=dw/dx M/EI{kN m)
x (m) FEM Exact FEM Exact FEM Exact
0.00 0.00001  0.0000 0.00007 0.0000 0.0489%  0.0497
0.1875 0.0008 0.0008 0.0088 0.0089 0.0452 0.0455
0.3750 0.0033 0.0033 0.0169 0.0171 0.0415 0.0414
0.5625 0.0071 0.0072 0.0244 0.0245 0.0378 0.0375
(.7500 0.0124 0.0124 0.0311 0.0311 0.0341 0.0338
0.9375 0.0188 0.0188 0.0372 0.0371 0.0305 0.0301
1.1250 0.0263 0.0263 0.0426 0.0425 0.0268 0.0266
1.3125 0.0347 0.0347 0.0472 0.0471 0.0231 0.0234
15600 0.0439f  0.0439 0.0512% 0.0512 0.0194% 0.0202
1.6875 0.0539 0.0539 0.0546 (4.0547 0.0169 0.0171
1.8750 0.0644 0.0644 0.0575 0.0576 0.0144 0.0143
2.0625 0.0754 0.0755 0.0600 0.0600 ¢.0118 0.0115
2.2500 0.0868 0.0869 0.0620 0.0620 (.0093 0.008%
2.4375 0.0986 0.0987 0.0635 0.0634 0.0068 0.0065
2.6250 0.1106 0.1107 0.0645 0.0644 0.0043 0.0042
2.8025 0.1228 0.1228 0.0651 0.0650 0.0017 0.0020
3.0000 0.1350f  0.1350 0.0652F 0.0652 —0.0008t  0.0000

t Nodal values; alf others are computed by interpolation,

element stiffness matrix (4.15) can be used directly. The finite element solution
for the generalized displacements at the nodes is exact for all problems for
which EI is constant and the applied transverse load f is a polynomial
expression. Further, the solution is exact at all points if the distributed load is
such that the exact solution is a cubic.

computed from the formula

M=EI

d’w 4
—=EI > uf
de ‘% 7

d*ps
dx?

The bending moment at any point in the element Q¢ of the beam can be

(4.32q)

For beams of rectangular cross-section with height H (and width B) the
maximum bending stress is

MH

oy =F-—-—=F—

21

EH dzw __I-{
2 ;

2 dx?

¢';

(4.32b)

The minus sign is for the top and the plus sign for the bottom of the beam.
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flx) = fo = 2400 1b fi!

10,000 1b
1 EI = 107 1b £t
El =2 % 107 Ib P _ d Y »
weo g =g
10 ft—rpe— 12 ft —f—6 ft —| dx
(@)
h=0U uy U, Us, Uy Up=0,Ug=0
I — —
1 2 3 4
(&)
10,000 Ib ’ ™

fi £
’Il‘f% fi{‘\ Ol +0f=0 0% + Q3 = —10,000 1b
-0 (==l (l===3"
o ol £ =0 R+ O3=0 03
()

[P,

FIGURE 4.5

Finite element mesh and equilibrium conditions for the beam bending problem considered in
Example 4.2: (a) physical problem; () finite element mesh of three clements; {¢) equilibrium
conditions among the generalized forces (i.e., secondary variables),

4.2.8 Examples

Example 4.1, Consider the beam shown in Fig. 4.5(a). The differential equation (4.1}
is valid with the following discontinuous data: .

ﬂ{leO’lbft’ for 0=x=<10ft (@33a)
U0 b i for 10ft=x<28fr 2o
—24001bft " for 0=x=10ft
- 3
fo) {0 for 10ft<x <281t (4.336)

The geometry and loading in the present case require us to use at least three
elements (see Fig. 4.5b) to represent the domain @ = (0, L), L=28#. Tt is possible to
use two elements if we choose to distribute the point load —10,0001b by (4.14). We
shall use three elements to analyze the problem. There are four nodes and eight global
degrees of freedom in the mesh of three beam elements. :

Since EI and f are element-wise-constant, the element stiffness matrix and the
force vector are given by (4.15), with fo= 24001 ft™" in element 1 and f=0 in
elements 2 and 3. The point load will be directly included in the global force vector

t
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through equilibrium of forces. The assembled equations are

0024 0.2 D002 0M2 S
¢ 080 0.2 0.40 '
: 0.0309  0.0783 —0.00694 -0.04167 !
. : 1133 00417 0167 |
10 E 00625 —0125 —0.0556 —0.167
S e 10 ;01667 0333
symmetric! i 0.0556  0.1667
: : 0.6667 |
5 \
(0, [ -12,000 [ o
U, 20,000 2
U —12,000 QL+ Q!
U —20,000 QL+ Q2
w4 N G >+ < : Qj 4 (4.34)
Us 0 Q3+Q1
Us 0 Qi+ Q3
U; 0 H
\ USJ \ 0 J \ 3 J

where the interelement continuity conditions on the primary variables (i.e., displace-
ments and rotations) have already been used. The equilibrium of the secondary
variables (i.e., internal forces and moments) is given by

Q}=0, Qi+0i=0, Qi+0i=0, Qi+Q3}=-10,000, Qi+Qi=0
(4.35a)
Note that the forces Q] and 3 and the moment Q% (the reactions at the supports) are

not known. The boundary conditions on the primary degrees of freedom are

=0> U, =0  (4.35b)
28

x=

Using the known forces and displacements in (4.35), we can partition the global
system of equations to obtain the condensed equations for the unknown generalized
displacements and forces. Since the specified generalized displacements are all zero, the
condensed stiffness matrix associated with the unknown generalized displacements can
be obtained by deleting the columns and rows corresponding to the known U, [see the
submatrix enclosed by the dashed lines in (4.34)]:

8000 1.200 4.000 0000 0.000 U, 20,000

0.309 0.783 —0.069 —0.417 U, -12,000
10° 11,333 0.417  l.e67 U, y=1{-20,000 } (4.36)
symmetric 0.625 ~1.250 U —10,600

10.000 A 0
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The unknown reactions can be computed from the remaining equations, ie.,
equations 1, 7, and 8 of (4.34):

U,
0!} (12,000 ~0.12 —0.024 -0.12 0.0 00 v
o2b=t o t+107] 00 00 00 -0.0556 0.1667 {7,
03 0 00 00 0.0 -0.1667 0.3333]]|u
Us
(4.37)

The algebraic equations (4.36) are solved first for the generalized displacements,
and then (4.37) are used to obtain the unknown generalized forces of the problem.

N,

P
-0.14
w(x)
(ft)
—0.2
—0.3
0 5 10 15 20 25 30
x (ft)
(a)
0.10
dw 0.03
dx
M
— 0.001
7l 10
- Exact
0.05 - dvldx (FEM)
e Moo FEM) FIGURE 4.6 _
0.10 EI Comparison of the finite element so-

futions for deflection, slope, and
0 3 10 1%5 20 25 30 bending moment of a cantilever
x (ft) beam with the exact solutions (Ex-
(b) ample 4.2).



BENDING OF BEAMs 163

Equations (4.36) are solved with the help of a computer; the solution is

U,=0.0385, U,=—0.2808%, U, =0,01214
. (4.38q)

Us=-0.1103ft, U;=—-0.02752
The reaction forces, from the element equilibrium equations, are
Q1 =18,565.541b, Q3=15,434.461b, Q}=92,165{tlb (4.380)

Plots of the finite element solution for the transverse deflection w, rotation
# = —dw/dx, and bending moment M = EI d*w/dx? are shown in Fig. 4.6. Because of
the discontinuity in the loading and the flexural rigidity, the exact solution w(x) is also
defined by three separate expressions for the three regions:

#R X~ fAxt — Ax for 0=x <101t
w(x)= R — %thl(x - %hl)a —Ax + A, for W0ft==x=<22ft
R — Ak (x — 30, ) — LR(x —h — R —Ayx + 4, for 2ft=x <281t

(4.39a)

where
R, =0.001856, A,=2400x10""

A, =0.0385, A,=007497, A,=0.20043 (4.39b)
By =101t,  hy=121t

In the next example we consider a beam with linearly varying distributed
transverse load and with clamped and spring-supported ends. This requires us
to evaluate the integral for f7 [see (4.12¢)], since it is not available when f(x) is
a linear function of x.

Example 4.2. Consider a beam that has a clamped support at one end and is
spring-supported at the other (see Fig. 4.7). A linearly varying transverse load is
applied in the span, 4 ft <<x = 10ft. We must use at least two elements, as dictated by
the loading. A one-element model could be used when the load is distributed as
discussed in Remark 5 in Section 3.2.7. The force vector {f?} due to the distributed
load on element 2 can be computed according to (4.12¢):

f=[rewma, f@--1F (440

and ¢} are the Hermite interpolation functions given in (4.104). Carrying out the

integration, we obtain )

—-901b
1201b £t

—2101b

—1801bft

{ri1= (4.41)
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 (linear clastic
spring)

YL kw(L)y= kUs

/

90 b 210 Ib

FIGURE 4.7

Finite element analysis of 2 cantilevered beam with discontinuous loading: {a) physical problem;
(b} finite clement discretization and generalized element forces; {¢) assembly of finite element and
generalized global forces (Exampte 4.3).

The assembled equations are

s~z —sa o o){u] | oy [ 2 )
54 14 54 v o ol 0 !
EI|-27 st 2748 5424 -8 —24 U3L= -0 { . 03+ 0t
144 ] _s4 72 54-24 144496 24 48 ]U4 1 120 0L+ Q3
o 0 -8 2 8 2 |lu| |20 02
| o o0 -2 8 20 9% |lu) l-wso) L 2 )
(4.42)

The displacement boundary conditions at x = 0 and force boundary conditions at x = L
are
dw
v{0) =10, (——)
w(0) I

-2 (s

=0

x=0

= —kw(D), (Efi—’—;’) LD =0
- L

(4.43a)

x=L



BENDING OF BEAMs 165

which can be expressed in terms of the nodal degrees of freedom as
=0, U,=0, O5=-kU, Qi=0 (4.43b)

The condensed equations for the generalized displacements Us, U,, Us, and U are
given by the Jast four equations of (4.42):

35 30 -8 —-247(U, —90

EI| 30 240 24 48 |JU, | | 120

144 —8 24 8+c¢ 24 [JU[ ) -210 (4.44)
—24 48 24 96 |lu) L -180

where ¢ = 144k /EI The solution of these equations for different vaines of k/EI can be
computed as follows:

For k/EI=0 (a0 spring),

~0.16 x 10° 0. 72 X ICi4
Gompr W U~ (rad)
~0,7108 x 10° 0.99 x 10* (4.45)
5= —“E',"I"ﬁ“““ (fE) 5 U5 = —‘—EI_ (rad)
for k/EI =107 (a soft spring),
—0.4627 x 10 0.1951 x 10*
= (fy, U= — (rad) w6
x1 0.1659 x 10° )
U, _M @), U= 289X 6
El
for k/EI =10” (a hard spring),
—0.1216 x 10* 0.3765 x 10°
Ua—'E— (ft), Ui=——Fr (rad)
2 132 0.7617 x 10° (447)
U= (ft), Us=——T— (rad)
El
‘The solutions coincide with the exact solution at the nodes:
(ﬁRlx +5Mx*) for 0sx=a
EI
w(x) = 1 5 {4.48a)
7 [%R.x3+§M1x2—ﬁ(x —a) ] forasx=L
where
_ ab) 6OET + 10kL*b — kb? g2
Ri= (40  2EI+kL? ’ 1= 6fob” = Ry L (4.48b)

f=1001bft™, a=4ft, b=6ft, L=10f

Figure 4.8 shows plots of the transverse deflection, slope, and bending moment
for the case k/EI=100. The finite clement solution obtained using two elements is in
good agreement with the exact solution. Improvement can be expected if the region
4ft=x = 10ft is subdivided into two or more elements (note that the particular scale
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0.001

Elw x 1076
dw
2w 1078
EI .
Mx 107°
—0.001 4
__,O_Om T T ¥ T 1]
0 2 4 6 8 10 r 12
x {it)
FIGURE 4.3

Comparison of the finite element solutions with the exact solutions for a clamped spring-supported
beam (see Fig. 4.7 for the geometry and loading).

100
Limit vaiue
Q x 1w
Emw(f) % 1078
Mg |
Ef —100 - ~—a— (7 (spring force)
—_—— w(L}
—_t— M(0)
—200 - . B
o
N Limit value
‘300 T T v T T T T T T T T T

-6 -4 -2 0 2 4 6 8
log (KIED)

FIGURE 4.9

The effect of spring stiffiness on the deflection, bending moment, and spring force for the problem
in Example 4.3.
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used in Fig. 4.8 brings out the difference between the finite element and exact
solutions). The effect of the spring on the end deflection w(L)}, the bending moment
M(0) at the fixed end, and the spring force Q= 0= —kw(L) can be seen from the
results presented in Fig. 4.9, For k/EI>1, the spring acts essentially like a rigid

support. '

This completes the development and applications of the Fuler—Bernoulli
beam element.

4.3 PLANE TRUSS AND EULER-BERNOULLI
FRAME ELEMENTS

Structures composed of bar elements and beam elements are classified as truss
and frame structures, respectively. By definition, bars can only carry axial
loads and deform axially, whereas beams can take transverse loads and
bending moments about an axis perpendicular to the plane of the member. All
members of a truss are subjected to only axial loads, and no transverse
shearing forces and bending moments are experienced by any member. All
members are connected to each other through pins that allow free rotation
about the pin axis. On the other hand, members of a frame are connected by a
rigid connection (e.g., welded or rivetted), so that axial and transverse forces
and bending moments can be developed in the members. A truss can be
looked upon as a special case of a frame structure. Thus, a typical truss
member can be modeled using the bar finite element developed in Section
3.3.3. A member of a frame structure can be modeled by a superposition of
the bar element with the beam element of Section 4.2,

The objective of this section is to formulate, with the help of the
information from Sections 3.3.3 and 4.2, the truss finite element and frame
finite element. The formulation will be based on matrix notation. Since a truss
finite element is a special case of the frame element, the derivation is
presented for the frame element only.

In many truss and frame structures, the bar and beam structural elements
are found in many different orientations (see Fig. 4.10). Analysis of such
structures for displacements and stresses requires the setting up of a global
coordinate system and referencing of all quantities (i.e. displacements, forces,
and stiffnesses) of individual elements to the common (global) coordinate
system in order to assemble the elements and impose boundary conditions on
the whole structure. When a truss element is oriented at an angle from the
global axis, its axial displacements at the nodes have components along the
global axes. Thus, every node of a truss will have two displacements in the
global coordinates: one along the global x axis and another transverse to the x
axis. Therefore, the element will have two degrees of freedom per node in the
global coordinate system. In order to facilitate the transformation from
element equations to global equations, we append the element equations for
the axial displacements to those associated with the transverse displacements.
Since there are no stiffnesses associated with the transverse displacements
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z, A pin connection  Fy
7 4 Members rotate freely
about the pin axis

-—-’-FH

Different parts of the

frame are welded so that

they cannot rotate freely

about the axis perpendicular ’
to the plane of the structure

®

FIGURE 4.10

Typical examples of the plane truss and plane frame: {a) a plane truss structure {all elements carry
only axial joads); {b) a typical planc frame structure (all members may carry axial and transverse
loads and bending moments).

(because the element experiences axial deformation only), the entries in the
stiffness matrix corresponding to the transverse displacements are set equal to
zero. For example, when the linear Lagrange interpolation is used for the axial
displacement, the element stiffness matrix in the element coordinates for a
truss element with two displacements (axial and transverse) per node can be
written as

1 0 -1 0

. AE/| 0 0 00
KI1=5-1 1 0 10 (4.49)

0o 0 00

Similarly, a superposition of the bar element of Section 3.3.3 with the beam
element of Section 4.2 gives three primary degrees of freedom per node (see
Fig. 4.11a) of the frame element: (u, w, —dw/dx). When the axial stiffness
AE, bending stiffness EI, and axial distributed force g and transverse
distributed force f are element-wise-constant, the superposition of the linear
bar element with the Hermite cubic Euler—Bernoulli beam element gives the
following element equations:

(KHu} = {F°} (4.50a)
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7] fis 2 FS
i £ F,
g v F‘ﬁ
Generalized displacements Generalized forces
(a)

X
Element degrees of freedom Global degrees of freed'(t)m
(b

FIGURE 4.11

The frame element with primary and secondary variables {or degree of freedom) in the local and
global coordinate systems. {(#) The generalized displacements and forces in the element coordinate
system (%, ¥, Z). (b) The generalized displacements in the element coordinate system and global
coordinate system (x, y, z); the y axis is into the plane of the paper. The angle of orientation is
measured counter-clockwise from the global x axis fo the element % axis. The truss element is
obtained from the frame element by omitting the rotation and moment degrees of freedom at the
nodes (also, i, = fiy = 0 for the truss efement).

5

where

- '
e

1

2qh 1

Wy %ﬂl 3
i og,2

6y —1afh 3

{ue}: > {F5}= ¥, S+ { > 4.50b
1 u, igh a ( )
Wy +3fh 5
| 62 ) 08

and g = g and f = f; are constants over an element.
The element stiffness matrix [K®] is of order 6 X 6:

k0 0 —p 0 07
0 6 -3k 0 —6. -3k
2EI| 0 —3h 202 0 3n R Ah?
K="= , =22 .
[K]=—3 4 0 0 a4 0 o u="r | @500
: 0 B 3h 0 6 3k
i [0 =3k K 0 3n 2W
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In the following paragraphs, we develop transformation relations to express
the element equations (4.50c)—valid in the element coordinate system—to the
global coordinate systemt.

Let  and w denote the axial and transverse displacements referred to the
local coordinate system (%, Z). The locai coordinates (%, ¥, Z) are related to the
global coordinates (x, y, z) by (see Fig. 4.11b)

x cosee 0 sina X
Jir= 0 i 0 y (4.51)
z —sine 0 cosq z

where the angle « is measured counter-clockwise from x axis to X axis. Note
that the y and § coordinates are paraliel to each other, and they are into the
plane of the paper. The same transformation relations hold-tor displac\ements
(u, v, w) along the global coordinates (x, y, z) and displacements (i, o, W) in
the local coordinates (%, ¥, ). Since we are considering 2-D structures, we
have v = © = 0. The rotation 8 = —dw/dx about the y axis remains unchanged:
0 — §. Hence, the relationship between (1, w, 8) and (i1, W, 0) can be written
as

i cosa sing O |ju
we=| —sinae cosa 03w (4.52)
é 0 0 14Le

Therefore, the six element nodal degrees of freedom @ in the (%, ¥, Z) system
are related to the six degrees of freedom ut in the (x, y, z) system by (o= 0a)

(3,)° [cose sina O ' T fulwe
i, _sina cosa O 0 Uy
il 0 o 1 u

41--_-3-5 = e fomarmmmmenmenm oo { -2 L (4.53a)
T L cosa sine 01w,
is 0 E.—sin o cosa Of]us

UZ(,J L_ i 0 G 1ﬁ \ He J

or
(@} =[T°{u") (4.53b)

The inverse of (4.53) is
fuey = [T} @) = [R{a°}
and it can be shown that
[RT]=[T°]" (4.54)

i.e., the inverse of [T*] is equal to its transpose.
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Analogously to (4.53b), the element force vectors in the focal and global
coordinate systems are related according to

(B} =[1)(F?) *.55)

To obtain expressions for the element stiffness matrix and the force
vector referred to the global coordinates in terms of the element stiffness
matrix and force vector in the local coordinates, we use (4.53)-(4.55) in the
element equations

[K|{a"} = (F} (4.56)
Substit}zting'the transformation equations into (4.56), we obtain
[KNT W) = [Te){F*}
Premultiplying both sides with [7°]" =[7*}", we obtain
[T [RNTNue} = {F*) (4.57)

which gives

[KI=ITT[KNT],  {F) =[T°]°{F<} (4.58a, b)

Thus, if we know the element matrices [K*] and {F*} of an element QF in
the local coordinate system (%, ¥, Z) then the element matrices of the element
in the global coordinate system, which is obtained by rotating the element
coordinate system through an angle « in the counter-clockwise direction about
the y axis, are given by (4.58). Note that the angle « is measured in the
counter-clockwise direction from the positive global x axis.

Inserting the element stiffness from (4.50c) for [K] into (4.584) and
carrying out the indicated matrix multiplications, we arrive at the element
stiffness matrix [K¢] referred to the global coordinates:

2E7
k) =2E
iK%} e
peos® o+ 6sin” o
{(#~6)cosasine p sin® o+ 6cos’ o symmetric
N 3hsin o —3hcos e 2’
~(p cos® o+ G sin® ) ~{g-6)sinweosa ~3Asina poos o+ bsin’ o
—{n —6)cos wsinw —{u sin® -+ 6 cos” @) 3hcose (u—6jcosasing p sin® o+ 6 cos” o
3hsineg —3hcos o K ~3hsin a Jhcosa 25
(4.59a)
where
1=Ah%/21 (4.595)

|
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Equation (4.58b), after multiplication, yields

(F
E
B
) E,
Fs
\ s

(£, cos a — Fy sin o)

F sin o+ Fycos o
P

2 o \ (4.60)
Ficosa—Issma

F,sina+ Fcos &
\Fs /

which is the element force vector referred to the global coordinates.
We next consider an example each of a truss and frame structure.

Example 4.3,

Y

P
Consider the three-member truss shown in Fig. 4.12(a). All members of

the truss have identical cross-sectional area A and modulus E. The hinged supports at

points

1, 2, and 3 allow free rotation of the members about the ¥ axis (taken as positive

into the plane of the paper). We wish to determine the horizontal and vertical

displacements at the joint 3
Since all joints are

members are subjected to only axial forces. Hence,

and the forces in each member
hinged, and the applied forces are acting at the nodes, the

of the structure.

the structure is a truss. We use

three finite elements to model the structure. Any further subdivision of the members

Us
1
Lo, QF
o3 Q{_._zl
03 %,
03
031! /11
U 03

04 Us
U
Z—EQ% 02 3
2 3
N
23

FIGURE 4.12

Geometry and finite element dis-
cretization of a plane truss: (a) ge-
ometry and leading; (b) element
numbers, global node numbers of
element nodes, and element nodal
forces in the element coordinates.
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does not add to the accuracy, because for all truss problems the finite element solutions
are exact. This is a consequence of the fact that all truss members with constant
cross-section are governed by the homogeneous differential equation

EA=——==0 (4.61)

r2

whose solution is of the form wu(x)=c¢,x +¢,. Thus, linear interpolation of the
displacements should give the exact result,

The global node numbers and element numbers are shown in Fig. 4.12(b). There
are two degrees of freedom, horizontal and vertical displacements, at each node of the
element. The element stiffness matrix in the local coordinate system is

1 0 -1 0
- AEL 0 0 0 0

(&= he | -1 0 1 o0 (4.62)
0 0 0 0

The (transformed) stiffness matrix of the element £, in the global coordinate system is
given by

cos® & cosasine ; —cos’®  —cOS asin &
(k) -EA| sasine | se iccosasng  csive | o
h, —cos’r  —cosasinw: costa cos o sin & '
—cos’@siney —sin*a ! cosasina sin® o

which is obtained from (4.59) by deleting the rows and columns corresponding to the
bending degrees of freedom and setting all bending stiffnesses to zero. The element
stiffness matrix is 4 X 4 in the giobal coordinate system because of the horizontal and
vertical displacement degrees of freedom at each node. The element data for the
problem are as follows.

Global nodes

Element of the Geometric Material

number  clement properties property Orientation
1 2 3 A hy =L E =0

2 1 3 Ah,=V2IL E o =45°

3 1 2 A hy=1L E «=90"

The assembled stiffness and force coefficients are given by

[ 1 2 3 4 5 6 |
h+Kh KL+KL K K3 K% T 1
K3+ Kn K3, K3, 3 K, 12
K] - Ki+Kh KL+Kh K A
. Kiu+Kn  Kp 14

symmetric N . X
KL+Ki; KiL+KL]5
| K+ K14_ 6
(4.64)
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The force vector can be written directly by including the known applied forces:
(03+07)
Q3+ 03
Q3+ Q1
Qi+ 02
03657

oo

Substituting the element data into (4.63) and the result into the assembled
equations, we obtain

{(F}= ¢ X (4.65)

[ 0.3536 03536 0.0 0.0 —0.3536 -0.3536
1.3536 0.0 —-1.0 —0.3536 ,—0.3536] *
i EA 10 00 -1.0 0.0
IK1=7 _ 1.0 0.0° 0.0
symmetric :
1.3536  0.3536
i 0.3536 |

The specified displacement degrees of frecdom are
U=UL=U=U=0 (4.66)

The first two correspond to the horizontal and vertical displacements at node 1, and the
last two to the horizontal and vertical displacements at node 2. The condensed
equations for the unknown displacements and forces are $

EAT1.3536 0.3536 Us}_{—?.P}
L [0.3536 0.3536}{U6 “lep (4.67)
Q1+ Q1 —0.3536 —0.3536
03+ 0% EA| —0.3536 -0.3536 {US}
=— 4.
Q+0! [ L |-10 00 . |lu (4.68)
1+ 0} 0.0 0.0

where, for example, Q3 + Q7 is the horizontal force and Q3+ (3 the vertical force at
node 1. Solving (4.67) and computing the reaction forces (4.68), we obtain

3PL PL PL
U=-"os U=03+2V2)——=5828—
" EA s=(+2V2) gy =588 (4.69)
R=0}+Qi=-P, FE=-P, E=3P, E=00
The stress in each element can be computed from the relation
03
A,

o =
where (5 is the axial force at node 2 of the element Q°. Note that, for a truss element
with constant cross-section, the following relations hold:

_;=0, -§=0r Q_i=_Q§
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The (% can be determined from the element equilibrium equations
Q5 1 0 -1 o0(as
Os|_EA|l 0 o0 o

i;

G
= 4.70
s k. -1 6 1 oi]a (4.70)
oz 6 0 o0 ol
Hence,
E,
of==(a5-q5), @#=0
h.
From the global displacements Us; and U, we have
3PL _ . PL _
a;=—E, @ =Uscos & + Uﬁsma=2ﬁ, =0 {4.71)
Therefore, we have
3P P
o =2 =0 4.
o e V2 e 4.72)

The next example deals with a frame structure. It also illustrates how to
incorporate a point load between nodes.

Example 4.4, The frame structure shown in Fig. 4.13 is to be analyzed for displace-
ments and forces. Both members of the structure are made of the same material (E)
and have the same geometric properties (A, I}. The element stiffness matrices and force
vectors in the global coordinate system (x, y, z) can be computed from (4.59) and
{4.60). The geometric and material properties of each element are as follows.

Element 1
L=144in, A=10in’, I=10in% cosa=00, sma=10

4,73
E=10°psi, fi=4Plbin ' (4.73)

Element 2
L=180in, A=10in*, 7I=10in®, cosa=0.8, sina=0.6
E=10°psi, £=0
The load F, = 4P at the center of the element is distributed to the nodes according to
4.14).

The assembled stiffness matrix and force vectors are obtained by superposing the
last three rows and columns of element 1 on the first three rows and columns of element
2; i.e., the 3 X 3 submatrix associated with rows and columns 4,5, and 6 of element 1,
and the 3 X 3 submatrix associated with rows and columns 1, 2, and 3 of element 2
overlap in the global stiffness matrix.

The known geometric boundary conditions are

Ui=0, U;=0, U;=0, U=0, U,=0, Uy=0 (4.75q)

The force boundary conditions are

Qi+01=0, Qi+Qi=-2P, Ql+0%=0 {4.75b)

(4.74)
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Z
J
4P
| i
P |9
1P (b ft1) 4 6 ft
s 7] - 3
] t
- 12

FIGURE 4.13 :
Geometry, loading and finite element dis-
cretization of a plane frame structurc: {a)
geometry and loading; (b) finite element
discretization, element numbers, and ele-
ment forces in the element coordinates.

Since all specified values of the known boundary conditions on the primary variables
are zero, the condensed equations for the unknown global displacement degrees of
freedom are

0.3560 0.2666 —0.0178 || Us 1
1080 0.2666 0.8846 —0.0148 |y Usp =7 —4 P (4.76)
~0.0178 —0.0148  5.0000 | LUs 48

whose solution is
[7,=0.839 % 107*P (in), Us= —0.681 x 107%P (in), Us= 0.961 % 107*P (rad)-
' 4.77)

The reactions and forces in each member in the giobal coordinates can be
computed from the element equations

{07} =[KWu)}—{f} (4.784)

The forces {Q°) can be transformed to those in the element coordinate system by
means of {4.55):

{0 =1HQ"} (4.786)
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We obtain
(4731 ( 1.458)
0.725 ~0.180
_ —10.900 21.550
= P, 7 = P 4,79
L= 4 ~4.731> @ =9 _ assf (4.79)
1.275 0.180
| 50.450) | 10.870)

44 THE TIMOSHENKO BEAM AND
FRAME ELEMENTS

4.4.1 Governing Equations

Recall that the Euler-Bernoulli beam theory is based on the assumption that
plane cross-sections remain plane and perpendicular to the longitudinal axis
after bending. This assumption implies that all transverse shear strains are
zero. When the normality assumption is not used, i.e., plane sections remain
plane but not necessarily normal to the longitudinal axis after deformation, the
transverse shear strain g, is not zero, Therefore, the rotation of a transverse
normal plane about the y axis is not equal to —dw/dx, Beam theory based on
these relaxed assumptions is called a shear deformation beam theory, most
commonly known as the Timoshenko beam theory. We denote the rotation
about the y axis by an independent function W(x). The governing equilibrium
equations of the Timoshenko beam theory are

d dw

a [GAKS(‘I‘-FE)} +f=0 (4.80a)
d dv dw
a (Eld_x) - GAK_,(‘I’-F'E;) =0 (4.80b)

where G is the shear modulus and X, is the shear correction coefficient, which
is introduced to account for the difference in the constant state of shear stress
in this theory and the parabolic variation of the actual (i.e., as predicted by
equilibrium equations) shear stress through the thickness. When the second
‘equation is substituted into the first for GAK, (¥ + dw/dx), and ¥ is replaced
with —dw/dx, we obtain governing equation (4.1) of the Euler—Bernoulli
beam theory.

442 Weak Form

- The weak form of (4.80) over an element Q° = (x4, xg) is developed using the
- Usual procedure, now applied to each equation. We multiply (4.80a) wtih a
. Weight function —w, and (4.80b) with a weight function —w;,, and integrate
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over the element length:

0= J - wl{% [GAKS(‘P +%’—:)] +f} dx

*B d d¥ dw
o[- {2 s57) oo+
J;A wz[dx (E oy GAK, 11’+dx dx

Integrating the first term of each integral once by parts, we obtain

*8 Cdw, ( dw) ] [ ( dw)]"“
= — K e - — .
0 f [dx GAK, ‘1‘+dx wif ldx w GAK W+ de) (4.81a)

x4 A
*8 [dw,  dW ( dw)] [ d‘l’]"ﬂ
= —=FE[——+ — - F— .81
0 J;A [ i w,GAK |\ ¥ + o dx — | woE . (j 81b)
The coefficients of the weight functions w; and w; in the bounﬁary integrals are
dw d¥
A ,(‘P —~) = —= .
GAK |\ ¥ + vV and EI ™ M (4.82)

where V is the shear force and M is the bending moment; these coefficients
constitute the secondary variables of the weak form. The weight functions w;
and w, must have the physical interpretations that give w,V and w,M units of
work. Clearly, w, must be equivalent to (the variation of) the transverse
deflection w, and w, must be equivalent to (the variation of) the rotation
function ¥

w~w, -~

Hence, the primary variables of the formuiation are w and ¥. Denoting the
shear forces and bending moments at the endpoints of the element by the
expressions

d
o {2

. 72 o ¥ (4.83)
§E[GAKS(‘I’+——}K)] , st(}ﬂﬂ-—)

dx x5 dx xg

the weak statements in (4.81) can be written in the final form

0= Jj [GAKS% (‘P +£‘K) - wlf] dx — wi(x4) 05 — wi{xp)05

dx
d"‘Vz av

p (4.84)
x” W ‘
0= f (2 G+ GAKom(9 + T)] e = me08 = mlea) 05

4.4.3 Finite Element Model

A close examination of the terms in (4.84) shows that both w and ¥ are
differentiated only once with respect to x. Since the primary variables are the
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dependent unknowns themselves (and do not include their derivatives), the
Lagrange interpolation of w and W is appropriate here. The minimum
admissible degree of interpolation is linear, so that dw/dx # 0 and d¥/dx #0.
The variables w and ¥ do not have the same physical units; they can be
interpolated, in gencral, with différent degrees of interpolation.

Let us consider Lagrange interpolation of w and W in the form

i

w= o wyplD, W= 2 (4.85)
s “

i=1

where y{" and y{® are the Lagrange interpolation functions of degree m — 1

and n — 1, respectively. In general, m and n are independent of each other,
although m =r is most common. However, when m=n=2 (i.e., linear
interpolation is used), the derivative of w is

(@)" _Wi—wi
dx h,
which is element-wise-constant. The rotation function W, being linear, is not

consistent with that predicted by w(x). For thin beams, the transverse shear
deformation is negligible, and we have W = —dw/dx, which requires

XpTK K —X4 wi — wi
51 . + 353 e Iy (4.86a)
or, equivalently (by equating like coefficients on both sides),
sxp — 55, = —(wi—w), s5-—-s55=0 (4.86b)
which in turn requires
W3 — wi
S =55=———1 (4.87)
h,
This implies that W(x) is a constant:
Xp—x X—x
- W)= Bh +s5— A =g5 (=55 (4.88)

However, a constant state of W(x) is not admissible, because the bending

energy of the element,
(2 EI (dW\?
. 3‘ (E) dx (4.89&)
would be zero. This numerical problem is known as shear locking.

To circumvent this, two alternative procedures have been developed in
the literature:

1. Use a consistent interpolation for w and W such that dw/dx and ¥ are
polynomials of the same order (i.e., m=n + 1).
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2. Use equal interpolation (i.e. m = n) for w and W, but evaluate the bending
energy with actual interpolation of ¥ and the shear energy

s GAK, (dw 2
GAR (2 w) (489
L : ( ) dx (4.89b)

with a polynomial that is one order lower.

The latter can be achieved computationally without using different interpola-
tions of ¥ in (4.894, b). In the numerical evaluation of the integral (4.89bh), we
use a quadrature rule (see Section 7.1 for details) that is necessary to calculate
the integral
%8 dw\?

f GAKS(——) dx (4.89¢)

e dx N
exactly. For example, when the linear interpolation of w and/'{I is used, we use
a one-point quadrature rule to evaluate (4.89b) because a one-point quadra-
ture would give the exact value of the integral (4.89¢) when GA = constant. A
two-point quadrature is needed to evaluate the integral in (4.89b) exactly. The
use of reduced integration, i.e., one-point quadrature on the integral (4.89b),
would result in the linear term in the approximation of ¥ not contributing to
the shear energy. For illustrative purposes, we take a detailed look at the
expression

GAK; [*® {dw 2 GAK, [ [dw 2
TEE ) (=W dx= ’[(—r—+‘1’) ]he
2 J;A (dx ) ¥ 2 dx x=xa+Hh A2

where x =x, +3h, is the midpoint of the element and k. is its length.
Substituting (4.85) into this expression (with m =n =2), we have

GAK;h, (wi - wi Lge¥e LIPE. —xA)z
ger A
2 he ! he 2 he r=xq+hS2
GAKh, (wi—wi  sit si)z
= + 4.90
(B ) e

which is a weaker requirement than (4.87), i.e., if (4.87) holds then (4.90) also
holds, but (4.90) does not imply (4.87). We note that (4.87) must hold only for
problems for which the transverse shear energy (4.89) is negligible.
_ In summary, we use eithcr consistent interpolation (m=n + 1) or equal

interpolation with reduced integration in the evaluation of the transverse shear
stiffness coefficients in the Timoshenko beam element. We consider both forms
of elements here.

Substitution of (4.85) for w and W, and w; = P& and w, = ¥ into the

weak forms (4.84), we obtain the finite element equations:

m n

0= Kitw,+ > Kifs,—F} (i=1,2,...,m)
i=1 i=t (4.91a)

0=2,

=1

1
Kijw+ 2 Kis; — Fi (=1,2....m)
p-
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where

g dlp(l)dlpil)
n_ | gag ZF Y5
Ky L; GAK, b dx dx
dyf”

g WP de=Kj

K= f GAK,
TA
(4.91b)
Ay dyf?
K= [ (5S4 + GAR AP de

X8
Fé=f foVdx+ Qyy,  Fi=Qy
x4

Equations (4.91a) can be written in matrix form as

Gg} {[ﬁz} ]{{{j}}} B {gli} (4.92)

A CONSISTENT INTERPOLATION ELEMENT (CIE). To illustrate the use of
consistent interpolation, we select p® to be Lagrange quadratic polynomials
and 9 Lagrange linear polynomials. For this choice of interpolation, [K] is
3% 3, [K] is 3% 2, and [K**] is 2x 2. The explicit forms of the matrices,
when EI and GAK, are constant, are

7 -8 1 5 -1
[K“]=% -8 16 -8 |, [KH]:% 4 —4
€ 1 -8 7 1 5| (493)
EIT 1 —-171 GAKA T2 1
227 e i €
(K] he[—l 1] 6 [1 2]

The element equations become

_% 5 _% g ——g Wy 5 ¢
779 [ A S A [ R R Y e Y
St Lok a k) o |e
] _é —g g _%+% %+-§-H [ %2 SRR

(4.94)

where o = EI/GAK,, Q is any specified transverse force at node 3, and
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0, O3) are shear forces and (Q,, Q4) bending moments at the end nodes 1
and 2 of the element.

Note that node 3, which is the middie node of the element, is not
connected to other elements, and the only degree of freedom there is the
transverse deflection. Thus, there are different number of degrees of freedom
at different nodes of the element, and this therefore complicates the assembly
of elements and its implementation on a computer. Hence, we eliminate the
node 3 dependence in the system of element equations by condensing out ws.
We obtain

R | K N
—Q%E GP’;E 1GAK, 1GAK, ] ;
_1GAK, 1GAK, %GAKSh-FlEg %GAKsh—% le
-1GAK, 1GAK, ﬁGAKSh——%—I 1GAK,h +%‘f E

)

P 4.95
f +%fs\ R RO (459
h+ih \ Qs
~ihh \ 2
ifah 4

/

where f=f, + 0. This is obtained by solving the second equation of (4.94) for
w, and substituting for w; in the first four equations of (4.94). The forces f; are
obtained using

fi= J feywide,  wi= [ = quadratic interpolation functions (4.96)

XA

The element equations (4.95) can be assembled in the same manner as the
classical beam equations, with two degrees of freedom (w, s) per node.
However, it should be noted that w is interpolated with quadratic polynomials.
For constant f =f,, the specified load vector in (4.95) takes the form
[because f5 = oh, [3=4fh, 3= 46, 00=0; see (3.40b)]
ifoh
‘%fﬁh 1t
—Hfoh’
Tafoh?
which is precisely the same as that obtained in the classical beam element [see

(4.15)]. )

= (4.97)
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AN EQUAL INTERPOLATION, REDUCED INTEGRATION ELEMENT
(RIE), When equal interpolation is used (m = n), all submatrices in (4.92) are
of the same order: n X n, The element coefficient matrices K} and K}* are
evaluated exactly, as is the first part of K?. The second part of Ki? is to be
evaluated using reduced integration. For the choice of linear interpolation
functions, and for constant values of GAK, and EI, the matrices have the
following explicit values:

g_{li(_{[ 1 —1], [Ku}:GAKS[—l —1]

h, L—-1 1 2 L1 1

Erj 1 -1 GAKR, 1 1
22y B s'te
(K] h. [—1 1] 4 [1 1]

where one-point integration is used to evaluate the second part of [K**]. Note
that [K'"], [K"], and the first part of [K*] are also evaluated exactly with
one-point quadrature when EI and GAK, are constant. Hence the uniform
one-point integration for [K *#] satisfies all requirements.

The element equations are

[ GAK, GAK, 7 )

(K=
(4.98)

- —1GAK, - h —1GAK, w | e
EI EI
—3GAK, %GAK5h+-h— 1GAK, %GAKsh——I;— st
< 3
GAK,
- HGiK‘ 1GAK, 5 3GAK, Wy
. EI EI
—1GAK, %GAKSh—7 1GAK, %GAKSH7 szJ
(i) 0.¢
0 O,
= + 4.99
Al o[ ¢
\O Q4

It is interesting to note that the element stiffness matrix in (4.99) is the
same as that in (4.95) obtained from the consistent interpolation with quadratic
approximation of w and linear approximation of ¥, except that the nodal
variables are listed in a different order. The only difference is the load
representation. In the consistent interpolation, the load vector is equivalent to
that of the Euler-Bernoulli beam theory, whereas, in the equal interpolation
with reduced integration élement, the load vector does not contain any
moment components due to the distributed load.

The quadratic interpolation of both w and W with full integration of the
element coefficient matrices also suffers slightly from the shear-locking
phenomenon. A uniform two-point quadrature rule has the desired effect on
[K"], [K"], and [K?]; i.e., [K"], [K"™], and the first term of {K%] will.be
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evaluated exactly and the second term of [K*] approximately. As the degree
of approximation and/or the number of elements in the mesh is increased, the
shear locking will disappear and reduced integration is not necessary.

Example 4.5. Here we reconsider the indeterminate beam problem of Example 4.2
(see Fig. 4.7), and analyze it with the reduced integration element (RIE) and consistent
interpolation element (CIE). Unlike the Euler—Bernoulli beam element, the Timo-
shenko beam element does not yield exact values at the nodes, even when Ef and
GAK, are constant. This is because of the coupled nature of the equations relating w
and W.

The beam is modeled using two (hi=4, ho= 6) and four (b= 2, hy=2, h3=3,
h,=3) linear elcments with reduced integration. The element equations for a typical
element are the same as those in {4.99), where f for the elements with distributed force
are given by , w

‘=+l—4
fo= J [~ Rpyi(E)] dE for x4 (4.100)
x4 r

where ¥ is a coordinate such that x =% + 4. We obtain
ha f; {1}
2y . 2j0
(=-21,

for the two-element case and

D

for the four-elernent case (113 = hs).

0.02
—  Exact solution
~0- FE solution (2L)
oy 0.00 —o-  FE solution (4L)
z LIH = 10, k = 0.0
!
8 -0.02
5
o)
e}
]
£ —0.04
>
[l
—0.06
_0-08 1) 1] 1 1 T
0 2 4 6 g 10 12
FIGURE 4.14

Comparison of the transverse deflection obtained using Timoshenko beam elements with the exact
deflection of a cantilever beam (see Fig. 4.7). -
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Figure 4.14 shows plots of transverse deflection versus x for the case with k=0
(i.e., a centilever beam), beam length-to-height ratio L/H = 16°, and EI=10°f1b.
The ratio L/H is a measure of the thinness of the beam. When it is large (i.e., for very
thin beams), the transverse shear deformation is negligible and the Euler- Bcrnouih and
Timoshenko beam theories give the same results. For smalf values of L/H, say 10 {i.e.,
GAK, = 4 X 10°1b), Timoshenko beam theory predicts larger deflections, and for the
problem at hand the difference is not noticeable enough to be seen if the deflections
from both theories were included in Fig. 4.14. The finite ¢lement solutions shown in the
figure are obtained with the reduced integration elements.

Figure 4.15 contains results of a convergence study, which includes two and four
linear and quadratic element meshes for the case of k/EI=1.0 and L/H =10. The
reduced integration elements are used. The scale used for plotting the deflections is
such that the difference between the finite element solutions and the exact soluticn can
be seen clearly. The mesh of four quadratic elements gives the converged solution. To
show the effect of the transverse shear deformation, the exact solution for the thin
beam (L/H =10°) is also shown in Fig. 4.15. It is clear from the resuits that the
convergence is rapid and the quadratic elements yield faster convergence.

The accuracy of the reduced integration element (RIE) relative to the full
integration element (FIE) and the consistent interpolation element (CIE) can be seen
from the results shown in Fig. 4.16 (for L/H =10 and k/EI =1). Clearly, the CIE
element gives more accurate results, followed by the reduced integration element.
Recall that the stiffness matrices of the two elementis are identical, the only difference
being in their force vectors {sce (4.95) and (4.99)]. Of course, in the CIE element, the
transverse deflection is interpolated using quadratic functions. The plots shown in Fig.
4.17 indicate that the reduced integration is necessry even for quadratic elements,
although they are not as sensitive to locking.

0.001
—— Exact (L/H = 10, KEI = 1)
—_0— 21,
—o— 4L | FE solutions
. ~4—= 2Q{ (WEI = 1, LIH = 10)
- —o— 40Q
g 0.000 4 ==== Exact (L/H = 10°, WEI = 1)
o
[
o
2
=]
—0.001 A
&
—0.002 13 L) ¥ L] T
0 2 4 6 8 10 12
FIGURE 4.15

Convergence of the finite element solution to the exact solution of the beam in Flg 4.7 (k/EI=1);
the Timoshenko beam element is used.
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0.001 -~ FIE (2L)
?2 —o— RIE (2L) —— CIE (2 e}ements)
% 1 --o0-- FIE (4L) CIE (4 elements)
8 —o— RIE (4L) — TExact solution
T 0.000 degg
: ﬂ.ﬂﬂ'-u"n—l}-
<]
§
&
[}
o]
&
E’ —-0.001 1
wn
£
2 ] o
P
_O.wz T ¥ 1 T T 1
0 2 4 6 8 10 12
Distance x {ft)
FIGURE 4.16

Comparison of the transverse deflection w{x) obtained with reduced integration elements {RIE),
full integration elements (FIE), and consistent interpotation elements (CIE) with the cxact
solution: 2L, two linear elements; 4L, four linear elements.

0.001

—- Reduced integration
—=— Full integration

FES-2IL

E ﬂﬁﬂ'ﬂ‘-n—z.k\ -

0.000

—0.001 -

Transverse deflection w{x)

. "'0.002 T T M T T T v T T ]

FIGURE 4.17
The effect of full and reduced integration on the accuracy of the finite element solution (FES)
obtained using the Timoshenko beam element. -



s

BENDING OF BEAMS 187
y

The following general observations can be made about various finite
element models based on the Timoshenko beam theory:

1. The reduced integration element (RIE) exhibits less locking compared with
the full integration element (FIE).

2. As the number of elements in the mesh is increased or the degree of
approximation is increased (i.e., higher-order elements are used), the finite
element solutions obtained by both RIE and FIE elements improve; i.e.,
the effect of locking is reduced with mesh refinements and higher-order
elements.

3, The consistent interpolation element (i.e., quadratic approximation of w
and linear approximation of W) with full integration yields a more accurate
solution than that predicted by the RIE element. This is due to a better
representation of the distributed load.

4, The element with quadratic approximation of both w and ¥ and reduced
integration of the coefficients yields more accurate resuits than the
consistent interpolation element with quadratic approximation of w and
linear approximation of W and with full integration of the coefficients.

The frame element based on shear deformation beam theory can be
obtained by superposing the bar and beam stiffnesses.

4.5 INCLUSION OF CONSTRAINT EQUATIONS

When the support plane of a roller support is at an angle to the global
coordinate system (see Fig. 4.18), the boundary conditions on the displace-
ments and forces at the roller are

u,=0, Q=0 (4.101)

where ¢ is the normal component of the displacement, ()7 is the tangential
component of the force at node 1 of the element Q°, and QO is any specified
tangential force. These conditons must be expressed in terms of the global

. FIGURE 4.18
U = ucos 8+ wsin
! B . R Transformation of specified boundary conditions from a local
U, = weos - using coordinate system to the global coordinate system.
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components of displacements and forces by means of the transformation (4.53)
and (4.55):

wi=—uisin f+uscosf=0 (4.102a)
O¢=Q%cos §+ Qssin = (4.1026)

where (u5, u5) and (Q5, Q%) are the x and z components of the displacements
and forces at the support.

Equations (4.102) can be incorporated into the global system of
equations as follows. Consider the assembled system of equations,

KyUy+ KUyt + Ky, U, =R

K21U1+K22U2+-"‘+K2,;UH=E (4103)

Knlul +Kn?.U2+ e +KnnUn =E:

where U, are the global generalized displacement degrees of freedom and F are
the sums of the applied (ff) and internal (Qf) generalized force degrees of
freedom. Suppose that the roller support is at the first node of the element £°,
and that the corresponding displacement degrees of freedom are U;, Uj, and
Uy. The forces Q1, 05, and Q% corresponding to these displacements end up
in the forces F, F;, and F, respectively. Hence, to inciude the force boundary
condition of (4.102b), we must add cos f§ times the Ith global equation to sin 8
times the Jth equation:

(COS ﬁ)(KﬂUl + KnU2+ et KHLT; + KHUJ +...+ KINUN) = (COS ﬁ).F[
(Sinﬁ)(K]]_U}_+ KJ‘ZU2+ e +KJ]U[+KJJU]+ PR +KJNUN) = (Sin ﬁ)E

and obtain
(Kpcos B+ Kpsin YUy +... + (K c0s B + Ky sin B)Uy
= {F; cos § -+ F;sin 3}
= (f¢cos B -+ f5sin B) + (7 cos B -+ Q5 sin f3)
= (f§cos B+ fisin f) + Qo (4.104)

We replace the Jth equation with this and replace the Ith equation with
(4.102a): :

(sin YU, + (—cos BYU, =0 (4.105)

These modifications of the global set of algebraic equations violate the
symmetry of the resulting global stiffness matrix.

To retain the symmetry of the global stiffness matrix, an alternative
method of incorporating the conditions (4.102) is presented here. Equations
(4.102a) or (4.105) can be viewed as the constraint equations among the global
displacements, which have a companion relation among the associated forces,
i.e., (4.102b). In the following paragraphs, we present a general procedure by
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which constraint equations of the type

{U'h _ i
L) =ty (4.1060)
among the primary variables .
{U}= {Eg%} (4.1065)

can be implemented in the assembled system of equations (4.103). In (4.106),
{U'} denotes the n X1 vector of generalized nodal displacements that are
selected as the independent nodal variables, and {U?} denotes the m x 1
vector of generalized nodal displacements that are selected as the dependent
nodal variables. The matrix operator [A] is of order (n +m) X n.

For example, consider a frame problem with N nodes and a total of 3N
{(=m + n) degrees of freedom in the problem. If one of the supports is a roller
support, there will be one constraint equation of the type (4.102«). If the
global node number corresponding to the roller is I then p =3(1 — 1) + 1 is the
first degree of freedom at the support. Hence, the constraint condition
(4.102q) can be expressed in terms of the generalized global displacement
degrees of freedom U, and U, as

—U,sin f+ U,4ycos f=0 (4.107)

Suppose that U, is selected as the independent variable and U,,, as the
dependent variable. Then the number of independent variables is # = 3N + 2,
and there is only one dependent variable (i.e., m =1). For this case, the
constraint (4,106a) has the form

(Y [t 0 ...0 o0 o0 ... 0]
U, 01 ...0 0 0 ...0luU
U 00 ...0 1. 0...0u ¢
I z (4.108)
Uyiz 00 ... 0| |Upsz
Ul LO 0 ... 0 tang 0 ... 010, J
L Ups1) Lpth column

Equation (4.106a) represents a transformation similar to (4.55q),
between two sets of global generalized nodal displacements, with [A] being the
transformation matrix. Therefore, the discussion presented in the paragraph
following (4.58) can be used to transform the equations in m + n variables to
those in only n variables,

Consider the assembled equations

[KI{U} ={F} (4.109)
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~which can be rearranged as
(U}
{U*}

where {U'} and {U?} denote the vectors defined in (4.106a). Using the
transformation (4.106a), we obtain

[RIAKU"}Y = {F} (4.111)

[I_(]{ } ={F} (4.110)

To obtain a symmetric coefficient matrix, we premultiply both sides with [A7,
and arrive at

[AJ[RTIANU") = (AT (£}

or ’
RYU" ={F) ' (4.1124)
where
(R]=[AV[KYA), {F}=[A]"{F} (4.112b)

Equations (4.112) are now ready for the implementation of boundary
conditions and solution. '

As an example, consider the frame element in Fig. 4.18. We have one
constraint equation,

U5=U4tanﬁ
The transformation equation (4.108) has the form
v} [1 00 o 0](,)
Uy 010 0 0 U‘
Us 001 0 O0ff”
{78 = SUs ¢
U, o 00 1 0 u
u| (000 o L,
(o) Lo oo tnp 0 U

and the stiffness matrix [K] is the same as [K], with the fifth and sixth rows and
columns interchanged: :

Ky - Ku Kis Kis |

[K] = Ky Ky K4 Kis
K- Kea Kes Kgs
L. K51 <+ Ksy K6 Kss |
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The transformed stiffness matrix and force vector are, from (4.1126), of order
5x 5 and 5 X 1, respectively. The elements of [K] and {F} are given by

A —

Ki=Ky; (1,j=1,2,3,5)
Ry=K,;+Kgtan g '
Ki= K+ Kgtan
Ry=Ky+ (K + Kg) tan B + Kegtan® B

k=E (=1,23,5), FE=FK+Fuanp

}(i=1,2,...,5;i;&4)

During the imposition of the boundary conditions of the problem, the force £
will be replaced by Q.

4.6 SUMMARY

In this chapter, finite element models of the classical (i.e., Euler—Bernoulli)
and Timoshenko beam theories have been developed. The classical beam
theory is governed by a fourth-order differential equation, and therefore
results in a weak form whose primary variables contain the transverse
deflection and its first derivative. Therefore, Hermite interpolation of the
transverse deflection is required in order to impose the continuity of the
deflection and its derivative at the nodes between elements. In the case of the
Timoshenko beam theory, there are two second-order equations governing the
transverse deflection and the rotation. The weak forms of the equations
require Lagrange interpolation of the transverse defiection and rotation. Since
the rotation function is like the (negative of the) derivative of the transverse
deflection, the degree of the interpolation used for the rotation should be one
less than that used for the transverse deflection. Such selective interpolation of
the variables is called consistent interpolation. When the same interpolation
functions are used to approximate the transverse deflection and the rotation,
the resulting stiffness matrix is often too stiff—especially when the number of
elements used is small—to yield good solutions. This is due to the inconsis-
tency of interpolation of the variables, and the phenomenon is known as shear
locking. It is overcome by the use of reduced integration to cvaluate the
stiffness coefficients associated with transverse shear strains. Both reduced
integration elements (RIE) and consistent interpolation elements {CIE) have
been developed here. It has been shown that consistent interpolation with
linear approximation of the rotation and quadratic interpolation of the
transverse deflection yields the same stiffness matrix as that obtained with a
reduced integration element with linear approximation of the rotation as well
as the deflection. However, the load vector of the consistent interpolation
element, for a uniformly distributed transverse load, is equal to that of the
Hermite cubic element of the classical beam theory,

The plane truss element and frame elements of the classical and
Timoshenko beam theories have also been discussed. A plane truss element is
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a bar element that carries only axial loads and is oriented, in general, at an
angle from the horizontal axis (fhe global x axis is taken to be horizontal). The
bar element is first modified by adding columns and rows of zeros correspond-
ing to the transverse displacements, so that it has two degrees of freedom
(axial and transverse displacements) per node. The arbitrary plane truss
element is then obtained by transforming the stiffness matrix and force vector
from element coordinates to global coordinates, which are taken to be
horizontal and vertical, Thus, a plane truss element has two degrees of
freedom (horizontal and vertical displacements) per node, and carries only
axial loads. The frame element is a superposition of the beam and bar
clements, and has three degrees of freedom (axial displacement, transverse
deflection, and rotation about an axis perpendicular to the plane of axial and
transverse coordinates). The general plane frame element is oriented. at an
angle from the horizontal position, and its equations are obtained by
transforming the equations of the frame element in local coordinates.

Finally, a procedure for including constraint conditions among the
displacements and/or forces has been presented.

PROBLEMS

4.1-4.16. For the beam problems shown in Figs. P4.1-P4.16, use the Fuler-Bernoulli

beam element, and give:

(a) the assembled stiffness matrix and force vector;

(b) the specified global displacements and forces, and the equilibrium conditions;

{c) the condensed matrix equations for the primary unknowns (i.e., generalized
displacements) and the secondary unknowns (i.e., generalized forces)
separately.

Solve for the unknown displacements if there are less than four unknown

displacements (use Cramer’s rule), and evaluate the bending moment M°=

El d%w/dx® at point C using the finite element interpolation of w (when the

condensed equations are not solved, express M® in terms of the nodal values of

fg b iﬂ—l

1] .

- - =L
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FIGURE P4.16

the appropriate element). Use the minimum number of elements required in each

problem.
Answer: (Problem 4.1) Uy = fh*/48EL, U, = —(f,h*/96EI).

4.17-4.21, Repeat Problems 4.1-4.5 using the Timoshenko beam element (with

4.22

4.23

4.24.

reduced integration). Use a value of 2 for the shear correction factor. Note that
accurate results can be obtained only with a sufficiently large number of elements,
when compared with the Euler-Bernoulli element.

Consider a simply supported beam on an elastic foundation (with foundation
modulus k) and subjected to uniform transverse loading. Determine the
transverse displacement at midspan using one Eunler—Bernoulli beam element.
Consider the axisymmetric bending of a lrear elastic circular plate of constant
thickness. The governing differential equation according to the thin plate
assumption is (see Section 7.3 for additional details)

142 d*w dwy 1d &w Dy dw
2 o008 L5205,
rdr’ (r N ar * Drz dr) rdr\ Zdrt 7y dr f

where Dy, Dy, and D, are the plate material stiffnesses (constant), w is the

transverse deflection, and r is the radial coordinate. Develop

(@) the weak form of the equation over a typical element Q°=(r,, r5); the
quantities in parentheses should not be integrated by parts;

(b) the finite element model of the equation in the form -

[K)u} = {F} + {07}

Make sure that [K°] is symmetric (i.e., the bilinear form in () should be
symmetric). Comment on the interpolation functions that are admissible for the
element.

The differential equations governing axisymmetric bending of circular plates
according to thick plate theory are

14d dw
‘:a[““ﬁ(‘“zﬂ—f

1d d¥ Dy )] 1( ¥ D, ) ( a'w)_
rdr[r(Du dr+ r ¥ +r Du 8r+ ¥ W)+ Ass lIJ-*-ai'r =0

where Ass, Dy, Dy, and Dy, are plate material stiffnesses, ¥ is the rotation
function, w is the transveise deflection, and f is the transverse load. Develop

(a) the weak form of the equations over an element;

(b) the finite element model of the equations.
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4.25. Solve the problem of a thin (radius-to-thickness ratio o/t = 100) clamped
isotropic (v = 0.3) circular plate with uniformly distributed load using the element
developed in Problem 4.23. Exploit symmetry, and use two thin plate (Euler—-
Bernoulli) eiements in the computational domain.

4.26. Solve the circular plate problem of Problem 4.25 using a two-element mesh of
Timoshenko elements (use & = 2).

4.27. Consider the fourth-order equation (4.1) and its weak form (4.4). Suppose that a
two-node element is employed, with three primary variables at each node:
(w, 0, ), where g =dw/dx and = d*w/dx? Show that the associated inter-
polation (Hermite) functions are given by

205 — 20°R% + 30x*h — 12¢° é 2% — 12630 + 16x°h* - 6x°h

P 20 2 20’
~
b A A -3 et PO _206%? + 30x°h — 12¢°
3" 3 4
2h° W
8% — 1+ 6 = 2h + K
’ 2h° ’ o 2h°

where x is the element coordinate with the origin at node 1. Also compute the
element stiffness matrix and force vector.

4.28. Consider the weak form {4.4a) of the Euler—Bernoulli beam element. Use a
three-node element with fwo degrees of freedom (w, 6), where 0 =—dw/dx.
Derive the Hermite interpolation functions for the element. Compute the
element stiffness matrix and force vector.

4.29-4.36. For the truss and frame problems shown in Figs. P4.29-P4.36, give {a) the
transformed element matrices; (b) the assembled element matrices; (¢} the
condensed matrix equations for the unknown generalized displacements and
{forces.
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Answer: (Problem  4.29) U,=0.022973in, U, = —0.00216%in, Pi=
—9428 b, Pi="74541b.
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CHAPTER

R

FINITE
ELEMENT
ERROR
ANALYSIS

5.1 APPROXIMATION ERRORS

The errors introduced into the finite element solution of a given differential
equation can be attributed to three basic sources:

1.

2.

Domain approximation error, which is due to the approximation of the
domain.

Quadrature and finite arithmetic errors, which are due to the numerical
evaluation of integrals and the numerical computation on a computer.

Approximation error, which is due to the approximation of the solution
(see (iv) in the Note to Remark 10 in Section 3.2.7):

N
u=y,=> U, (5.1)

=1

where U; denotes the value of u at global node 1, and ®, denotes the
global interpolation function associated with global node 1 (see Fig. 3.3b).

In the one-dimensional problems discussed thus far, the domains

considered have been straight lines. Therefore, no approximation of the

199
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domain has been necessary. In two-dimensional problems involving nonrectan-
gular domains (as will be seen in Chapter 8), domain {(or boundary)
approximation errors are introduced into the finite element solutions. In
general, these can be interpreted as errors in the specification of the data of
the problem because we are now solving the given differential equation on a
modified domain. As we refine the mesh, the domain is more accurately
represented, and, therefore, the boundary approximation errors are expected
to approach zero.

When finite element computations are performed on a computer,
round-off errors in the computation of numbers and errors due to the
numerical evaluation of integrals are introduced into the solution. In most
lincar problems with a reasonably small number of total degrees of freedom in
the system, these errors are expected to be small (or zero when only a certain
decimal point accuracy is desired). -

The error introduced into the finite element solution U because of the
approximation of the dependent variable u in an element £° is inherent to any
problem

N n M
== 2, X U= >, U, (5.2)

e=1i=1 =1
where u,, is the finite element solution over the domain (w, = U® in Q%), Nis
the number of elements in the mesh, M is the total number of global nodes,
and 7 is the number of nodes in an element. We wish to know how the error
E =u — u,, measured in a meaningful way, behaves as the number of elements
in the mesh is increased. It can be shown that the approximation error is zero
for the single second-order and fourth-order equations with element-wise-

constant coefficients [see (5.30)—(5.35)].

52 VARIOUS MEASURES OF ERRORS

There are several ways in which one can measure the “difference” (or
distance) between any two functions # and u,. The pointwise error is the
difference of u and u, at each point of the domain. One can also define the
difference of u and u to be the maximum of all absolute values of the
differences of # and u; in the domain Q=(a, b):

It = o= max. jue) — )] (5:3)

This measure of difference is called the supmetric. Note that the supmetric is a
real number, whereas the pointwise error is a function and does not qualify as
a-distance or rnorm in a strict mathematical sense. The norm of a function is a
non-negative real number.

More generally used measures (or norms) of the difference of two
functions are the energy norm and the L, norm (pronounced “L-two norm™).
For any square-integrabie functions 1 and u, defined on the domain €=
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(a, b), the two norms are defined by

- b m diu dt'u’ 2 12
=, = Tl ) .
energy norm [Jee — w,f ( ] Zo i | (5.4)
b 12
L, norm [lu —wllo= (] et 1|2 dx) (5.5)

where 2m is the order of the differential equation being solved. The term
“energy norm” is used to indicate that this norm contains the same-order
derivatives as the quadratic functional (which, for most solid mechanics
problems, denotes the energy) associated with the equation. Various measures
of the distance between two functions are illustrated in Fig. 5.1. These
definitions can easily be modified for two-dimensional domains.

5.3 CONVERGENCE OF SOLUTION

The finite element solution wy, in (5.1) is said to converge in the energy norm to
the true solution u if

|fet — vyl << ch® for p >0 (5.6)

where ¢ is a constant independent of w and u,, and k is the characteristic
length of an element. The constant p is called the rate of convergence. Note
that the convergence depends on # as well as on p; p depends on the order of
the derivative of u in the weak form and the degree of the polynomials used to
approximate u [see (5.15) below]. Therefore, the error in the approximation
can be reduced either by reducing the size of the elements or increasing the
degree of approximation. Convergence of the finite element solutions with
mesh refinements (i.e., more of the same kind of elements are used) is termed
h-convergence. Convergence with increasing degree of polynomials is called
p-convergence.

u(x)

(%)

Maximum
norm

I, norm (arca shaded)

uplx)

FIGURE 5.1

Different measures of error E=
u — u, between the exact solution u
and the finite clement solution ;.
The maximum norm and the L,
b norm are illustrated,

B —
b
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5.4 ACCURACY OF THE SOLUTION

Returning to the question of estimating the approximation error, we consider a
omth-order differential equation in one dimension (m=1, second-order
equations; m =2, fourth-order equations):

n ) di diu
b ! -_— g/ | = 0 < < .
E (-1 I (a, dx‘) f for x<L 5.7

i=1

where the coefficients a,(x) and a,(x) are assumed to be positive. Suppose that
the essential boundary conditions of the problem are

w(0)=u(L)=0 (m=172) (5.8)

(@,..~ (@)
dx x=0 dx
The variational formulation of (5.7) and (5.9) is given by

L rm i I
0=J (2 ai~d—”dﬁ—‘.—uf) dx (5.10)
(4]

i=1 dx" dx’

-0 (m=2) ' (5.9

x=L

The quadratic functional corresponding to the variational form is

Hu)= LL%[E: ai(%)zl dx — LL uf dx (5.11)

Now consider a finite element discretization of the domain by N elements
of equal length A. If u, denotes the finite element solution in (5.1), we have,
from (5.11),

I(u) = LL %[Z,l a,-(%)zl dx — LL w,f dx (5.12)

In the following paragraphs, we show that the energy [ associated with
the finite element solution approaches the true energy from above, and we
then give an error estimate. We confine our discussion, for the sake of
simplicity, to the second-order equation (;m = 1).

From (5.11) and (5.12), and

AR
dx\ "dx
we have

L) — 1) = LL%[ai(%—’)z - al(%)z + 2 (u — uh)] dx

oy -5 -Eegewle



-

FINITE ELEMENT ERROR ANALYsis 203

(18 () e

L 2 2
[ (e p e

L 2[(dx '+ dx dedx dx

L 2
! %_@) =
“L Z(dx dx d"’o_ (513

Thus,
I(uy) = I{u) (5.14)

The equality holds only for u = u,. Equation (5.14) implies that the conver-
gence of the energy of the finite element solution to the true energy is from
above. Since the relation in (5.14) holds for any u,, the inequality also
indicates that the true solution x minimizes the energy. A similar relation can
be established for the fourth-order equation (m =2),

Now suppose that the finite element interpolation functions D, (Ii=
1,2,..., M) are complete polynomials of degree k. Then the error in the
energy norm can be shown to satisty the inequality [see Reddy (1986, 1991), p.
401]

fellm = llee — tplln < ch?, p=k+1-m>0 (5.15)

where ¢ is a constant. This estimate implies that the error goes to zero as the
pth power of  as h is decreased (or the number of elements is increased). In
other words, the logarithm of the error in the energy norm versus the
logarithm of £ is a straight line whose slope is k + 1 —m. The greater the
degree of the interpolation functions, the more rapid the rate of convergence.
Note also that the error in the energy goes to zero at the rate of £ + 1 — m; the
error in the L, norm will decrease even more rapidly, namely, at the rate of
k +1, i.e., derivatives converge more slowly than the solution itself.

Error estimates of the type in (5.15) are very useful because they give an
idea of the accuracy of the approximate solution, whether or not we know the
true solution, While the estimate gives an idea of how rapidly the finite
element solution converges to the true solution, it does not tell us when to stop
refining the mesh. This decision rests with the analysts, because only they
know what a reasonable tolerance is for the problems they are solving.

As an example of estimating the error in the approximation, i.c. (5.15),
consider the linear (two-node) element for a second-order equation (m =1).
We have for an element .

Ty =uy(l —8) + uys (5.16)

where s=#%/h and % is the local coordinate. Since u, can be viewed as a
function of u, via (5.16), one can expand u, in a Taylor series around node 1 to
obtain

Uy=uyFur+3ul+. .. (5.17)
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where u’ =du/ds- Substituting this into (5.16), we obtain
wy =y uisHauis oo (5.18)
Expanding the true solution in a Taylor series about node 1, we obtain
w=y uls Fhugst . (5.19)

Therefore, we have, from {5.18) and (5.19),

1 d2ut 1 d*u
iy~ =6 =% uan G| =56~ Vg (520
d 1 d*u
JS—— —— s — — .
PRI rr B L2
These lead to
lle = tigllo= o Nu- uplly = cah (5.22)

where the constants ¢, and ¢, depend only on the length L of the domain.
The reader may carry a similar error analysis for the fourth-order
equation.

Example 5.1, Here we consider a computational example to verify the error estimates
in (5.22). Consider the differential equation

2
—%;—;=2 for 0<x<1 (5.23)

with
u(0) =u(l)=0

The exact solution is
u(x) = x(1—x) _ {5.24)
while the finite element solutions are, for N=2,

" ={h2(xfh) for O=sx=Hh
"=\ p2—x/h) for h=x=2h

for N=3,
20 (x/h) for D=x=h
u, =3 22—y + 2h*(x/h—1) for h=x =2h (5.25)
2R3 —x/[h) for 2h <=x=<3h
and, for N=4,
3h*(x/h) for 0=x=h

322~ x /i) + 4P(x[h — 1) for h=x =2k
4h2(3~—x/h)+3h2(x/h—2) for 2h=x <3k
3P -xlh) - for 3h=<x=<4h

Up =



FINITE ELEMENT ERROR ANALYSis 208

TABLE 5.1
The L, error and error in the energy norm of the

solution to (5.23) (Example 5.1)

R dogiwh  llelio - logllella  llelly  logiellells

—0.301  0.04564 —1.341 0.2887 —0.5396
-0.477  0.02028 —1.693 0.1925 —0.7157
—0.601  0.01141  --1.943 0.1443 -0.8406

i Lgjarn p b

For the two-element case (h = 0.5), the errors are given by
y ] Zh
T u,,ll%=f (x —x*— hx) dx -i-f {x —x*—2h"+ xhY dx
(] ]

= 0.002083
" (5.26)

=J:(1-—2x—h)2¢ix+£ (1—2x + k) dr

2

du du,

dx dx

Jo]

={.08333

Similar calculations can be performed for N =3 and N =4. Table 5.1 gives the errors
for N=2, 3, and 4.
Plots of log jje|lo and log {je||; versus log s show that (see Fig. 5.2)

log llello=2logh +logc,, logllell,=logh+logc, (5.27)
In other words, the rate of convergence of the finite element solution is 2 in the L,
norm and 1 in the energy norm, verifying the estimates in (5.22).

Much of the discussion presented in this section can be carried over to
curved elements and two-dimensional elements. When the former, i.e.,

tog lell:

~~log |lellg = log c; + 2 log A

log [lello

I’
A

log ¢)f

FIGURE 5.2

Plots of the L, and energy norms of errors versus the mesh size. The log—log plots give the rates of
convergence in the respective norms, The rates of convergence are given by the slopes of the lines
(the plots shown are for linear elements).
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elements with nonstraight sides, are involved, the error estimate also depends
on the Jacobian of the transformation. Because of the introductory nature of
the present study, these topics are not discussed here. Interested readers can
consult Cairlet (1978), Wait and Mitchelt (1985), Oden and Reddy (1982),
Strang and Fix (1973), and Reddy (1986, 1991).

As noted earlier, in the case of both second- and fourth-order equations
in a single unknown and with constant coefficients, the error between the exact
solution and the finite clement solution at the nodes is zero. This is not
accidental. We can prove that when the coefficients a and b are constant, the
finite element solutions of the equations

ﬂ% (a %) —£(x) : 55.23)
%:5 (b %) — £ ) (5.29)

coincide with the exact solutions at the nodes. The proof is presented below
for the second-order equation.
Consider the equation

d*u
—azxq=f for 0<x <L (5.30)
with
u(0y=0, u(L)=0 (5.31)
The giobal finite element solution is given by (U= Un = 0)
N=L
u, = 2, Ui®; (5.32)
=2

where @, are the linear global interpolation functions shown in Fig. 3.3(b).
From the definition of the variational problem, we have

L d(pfduh
L(dx dx—‘I’If)dx—O foreach [=2,...,N—1 (5.33)

where f=f/a. The exact solution also satisfies this equation. Hence, by
subtracting the finite element equation (5.33) from the exact solution, we
obtain

Lrduy  duy\ dP;
L(d;e dx) D=0 (=2, N=D

Since we have ®,=0 for x= (I+ 1)k and x= (I—1h, and dd/dx=1/h
for (| —Dh=x=<lh and d®,/dx =—1/h for Ih=x= (I + D)k, it follows that

e rdu dug\l U+ rdy dug\( 1
L—I)h (dx dx ) B dx dx/\ h dx (5.34)
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for 1=2,3,..., N—1 Denoting €(x)=n(x) — u,(x), we have

or
1
“];‘(—61_1'5'261"6[1.1):0 (112, 3,.. .,N‘_‘l) (5.35)

where €; = €(lh) (i.e., the value of ¢ at x =Ih). Since ¢,= €y =0 (because
both u and u, satisfy the essential boundary conditions), it follows from the
above homogeneous equations that the solution is trivial: ¢, =¢,=... =
€y—1 =10. This implies that the finite element solution ceincides with the exact
solution at the nodes.

5.5 SUMMARY

Various types of errors in the finite element approximation of differential
equations have been discussed and different measures of the error (or
difference between two functions) have been defined. Error estimates for the
second-order differential equations have been presented. It has been shown
that the finite element solutions of differential equations with constant
coefficients are exact at the nodes. The proof has been presented for a single
second-order differential equation. This result does not hold for coupled
second-order differential equations with constant coefficients.

PROBLEMS

5.1. Show that the error estimate for the fourth-order equation (4.1) is given by
[lw — Wy ll; = ch?
where ¢ is a constant, w, is the finite element solution obtained by using the
Hermite cubic interpolation, and w is the exact solution of the problem.

5.2, Consider a Lagrange quadratic element extending between x = —h and x = k and
having the three nodes at x = —h, x = ah, and x = h. The transformation between
x and a normalized coordinate & is given by

x=h{§+a(1- &%)

If the dependent variable u is interpolated by a gquadratic polynomial in &, show
that the error € = u — 1, is given by

o

=
lelles 7=
Hint: First show that :
i — u,|<c¢ max @
MY e |dE
and then
d’u du du d 1 d
ez — i {1 — 2 — + R - 20E) —_——
dE> ol =208) et h(-208) 05, o h(1— 2aE) dE
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5.3. The error in the finite clement approximation is often measured in terms of the
energy associated with the problem under consideration. For the second-order
problem considered in (3.1), the energy of the problem is given by the functional

1=2 1) @

where N is the total number of elements in the finite element mesh and 7, is the
functional given in (3.11). The error in the solution is defined to be the difference
between the true or exact sofution g and the finite element solution u,, and the
error in the energy is defined by

N
E=tg—itn, NEIL=2 LE) (i, iii}
e=1
If the fipite element approximation u, is an interpolant of the true solution uy,
determine the error in the solution and the energy of (3.1) when (a) 4, is a linear
interpolant and (b) s is a quadratic interpolant.
Hint: Use pertinent references at the end of the chapter to determine the
interpolation error in terms of the mesh parameter (spacing) #, and use the result
(iii) to determine the error in the energy in the form

IEfl = coh”

where ¢ and p are constants; p determines the rate of convergence {(p=>0) or
divergence (p <0).
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CHAPTER

6

EIGENVALUE
AND
TIME-DEPENDENT
PROBLEMS

6.1 EIGENVALUE PROBLEMS
6.1.1 Introduction
Determination of the values of the parameter A such that the equation
Au) = AB(u) (6.1)

where 4 and B denote linear differential operators, has nontrivial solutions i is
called an eigenvalue problem. The values of A are called eigenvalues and the
associated functions u are called eigenfunctions. For example, the eguation

d*u . d?
—gjflu, with Ar-EP, B=1

which arises in connection with the axial oscillations of a bar or the transverse
oscillations of a cable, constitutes an eigenvalue problem. Here A denotes the
square of the frequency of vibration w.

In general, the determination of the eigenvalues is of engineering as well
as mathematical importance. In structural problems, the eigenvalues denote
either natural frequencies or buckling loads. In fluid mechanics and heat
transfer, eigenvalue problems arise in connection with the determination of the
homogeneous parts of the solution. In these cases, eigenvalues often denote

209
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amplitudes of the Fourier components making up the solution. Eigenvalues are
also useful in determining the stability characteristics of temporal schemes, as
discussed in Section 6.2.

In this section, we develop finite element models of eigenvalue problems.
In view of the close similarity between the equations of eigenvalue and
boundary value problems, the steps involved in the construction of their finite
element models are entirely analogous. Differential eigenvalue problems are
reduced to algebraic cigenvalue problems by means of the finite element
approximation. The methods of solution of algebraic eigenvalue problems are
then used to solve for the eigenvalues and eigenvectors.

6.1.2 Formulation of Eigenvalue Problems

Consider the parabolic partial differential equation g
du 0O du v
A-———= (kA ﬂ—) =g{x, .
P25 ax ox q(x, 1) 62)

which governs transient heat transfer in one-dimensional systems (e.g., a plane
wall). Here u denotes the temperature, k the thermal conductivity, p the
density, A4 the cross-sectional area, ¢ the specific heat, and g the heat
generation per unit length. The homogeneous solution (i.e., the solution when
g = 0) of (6.2) is often sought in the form of a product of a function of x and a
function of ¢t (i.e., through the separation of variables technique):

u(x, ) = Sx)T() 6.3)

Substitution of this assumed form of solution into the homogeneous form of
(6.2) gives
dar d das

ol )
'OCSa't dxkAde O‘

Separating the variables (assuming that pcA and kA are functions of x only),

1dT 1 1£(kAdS)

T pcAS dx

= 6.
Tdt pcASdx (6.4)

Note that the left-hand side of this equation is a function of ¢ only while the
right-hand side is a function of x only. For two functions of two independent
variables to always be equal, both must be equal to the same constant, say —A

yar 1 1d /[, dS
T s 4 ) (6.50)
Of
dr d( dS
L (kA E) - ApcAS =0 (6.5b)



EIGENVALUE AND TIME-DEPENDENT PROBLEMS 211

The negative sign in the constant A is based on the physical requirement that
the solution S(x) be harmonic in x while 7°(f) must decay exponentially with
increasing f. The solution of the first equation is T = ’Ibe M When k, A, p,
and ¢ are constants, the solution of the second equation is

S(x) = B, sin Vix + B, cos Vix, i=f).

>
The constants A, 7, B,, and B, are determined with the kelp of initial and
boundary conditions.
In view of the above discussion, the solution of (6.2) is of the form

u(x, )= U(x)e™ (6.6)

This form is consistent with the solutions we derived above, with
U(x)=S(x)Tp. Substituting (6.6) into the homogeneous form of (6.2), we
obtain

—_— au —At _ —Ar _
+ (kA ) ApcAUE)e =0
or
d({ dU
- dx (kA E‘t—) - lpcA U=0 (6.7)

We wish to determine A and nonzero U(x) such that (6.7) holds and the
boundary conditions of the problem are met. Equation (6.7) describes an
eigenvalue problem, A being the cigenvalue and U(x) the eigenfunction.

The axial motion of a bar can be described by the hyperbolic equation

Fu 3 du
AEFNE;(EA 5.1,:) =g{x, 1) (6.8)

Here u denotes the axial displacement, E the modulus of elasticity, A the
cross-sectional area, p the density, and g the axial force per unit length.

The natural axial oscillations of the bar are periodic, and they can be
determined by assuming a solution of the form

u(x, )= Ux)e ™™, with i=V-1 (6.9)

where @ denotes the frequency of natural axial motion (or vibration), and
U(x) denotes the configuration of the bar, called the mode shape, during the
vibration. For each value of w, there is an associated mode shape. Substitution
of (6.9) into the homogeneous form of (6.8) gives

d au
A 2U—-—-( )] et
[ —pAw EAd 0
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or

d dU
\ WE(EAE)—M)AU:OA‘ (6.10)

where A= ®? Equation (6.10) is ap eigenvalue problem, which involves
determining the square of natural frequencies A and mode shapes U. This
equation also arises in the solution of (6.8) by means of separation of
variables, as discussed in connection with the parabolic equation. Note that
(6.7) and (6.10) are of the same form. Only the coefficients are different.

Equations similar to (6.10) can be derived for the transverse vibrations of
a beam using the Euler-Bernoulli or the Timoshenko beam theories. For the
Euler-Bernoulli beam theory, we assume

wix, 1) = W(x)e ™

A
Is

where  is the frequency of natural transverse motion and W(x) is the mode
shape of the transverse motion. Substitution of this form into the equation of
motion of the Euler-Bernoulli beam theory

Fw & *w
A ( F) - _
PAZE + o) E W 0 {6.11)
gives
d* W
Lixz (EI 7 ) _ApAW =0 (6.12)
where A = w? For the Timoshenko beam theory, we assume
wix, f)=Wx)e ™, W, )= S(x)e™
and substitute into the equations of motion of the theory
Fw 9 3w
22 Lo )]
P25 axG K8x+ 0 (613
(222 (2 gar( 2w =0 "
P Tax\ ax ax
to obtain the eigenvalue problem
d daw
——|GAK (—— S)] - ={
dx [G Ix + ApAW 616
d 45 dw )
o) ca(fs)
dx( I GAK ir +8)—ApIS=0

The study of buckling of beam-columns also jfeads to an eigenvalue
problem. For example, the equation governing the equilibrium of a beam
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subjected to an axial force P, according to the Euler—Bernoulli beam theory, is

dz dz dz
(Eldx‘;') +P—d7‘f=0 (6.15)

which is an eigenvalue equation with A = P as the eigenvalue, which represents
the buckling load. Often one is interested only in the smallest value of A,
called the critical buckling load. For the Timoshenko beam theory, the
buckling equations are

2
—i{GAK(dW+W)}+PL“O

dx d dx? 6.16)
d dy dw '
dx(EId—)+GAK( )—0

This completes the formulation of eigenvalue problems associated with
- the model problems studied in this book. In the next section, we develop the
finite element models of (6.7}, (6.10), (6.12), and (6.14)—(6.16).

6.1.3 Finite Element Models

An examination of the eigenvalue equations derived in the previous section
shows that they are a special case of the equations studied in Chapters 3 and 4.
For example, consider

d/ du
- (a52) =1 6.17)
The eigenvalue equation associated with this is
d( dU
-2 (a EE) = Aeol (6.18)

where a and ¢, are quantities that depend on the physical problem: for heat
transfer,

a=kA, co=pcA
where c¢ is the specific heat, while, for a bar,
a=FEA, c3=pA

Similarly, the eigenvalue equations associated with the transverse vibrations
and buckling of beams are special cases of their static counterparts. Therefore,
the finite element models of the eigenvalue equations can readily be
developed. It is important to note that the spatial derivative operators of the
static (i.e., non-time-dependent) and eigenvalue equations are the same, The
difference between (6.17) and (6.18) is that, in place of the source term f, we
have AcyU in the eigenvalue equations. This difference is responsible for
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another coefficient matrix, in addition to the usual coefficient matrix [K*], in
the eigenvalue problems. The derivation of the finite element models of
eigenvalue equations is presented next.

Over a typical element Q°, we seek a finite element approximation of « in
the form

U =2 wyi) (6.19)
i=
The weak form of (6.18) is
%5 fdw dU
0= J;A (-&IGE—' ACQWU) dx — QIW(IA) — an(xB) (6203.)

where w is the weight function, and O, and @, are the ,usual secondary
variables (Q¢=0,i# 1, n)
du
3 Qu = (a #_)
x4 dx

Substitution of the finite element approximation into the weak form gives the
finite element model of the eigenvalue equation (6.18):

f

(6.20b)

xg

[Keu) — AMHu) = {2%) (6.21a)
where
w dysdyg -
5= J a 7;{_'&% dx, M= J coWiny] dx (6:21b)

Equation (6.21a) represents the finite element model of the eigenvalue
equations (6.18) and (6.10).
The finite element model of (6.12) is

[Klue} — AIMHu} = {Q°} (6.22a)

where {#°) and {Q°} are the columns of nodal generalized displacement and
force degrees of freedom of the Euler-Bernoulii beam element:

([ ws ) ( [i(EId2W)] )
( d—“—’)e dx dx2 1
dx/, ( dZW)
EI— 1

{ue}=‘l W L} {Qe}=1[ d( dZW)] o (620)

where the subscripts 1 and 2 refer to element nodes 1 and 2 (at x =x4 and
x = xp). The matrices [K*] and {M*], known as the stiffness and mass matrices,
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are defined by

P de *a
K= f EI— 7 dqi —rdr,  Mg= f pAG;¢; dx (6.22¢)

X4
where ¢ are the Hermite cubic interpolation functions (see Chapter 4 for

details).
The finite element model of (6.14), with equal interpolation of w and S,

is

e (A RN e M
where
K§1=£:BGAKd;pxi d‘dex Kr_1i2=£:n ‘Pi

K,?jZ:f (GAKipﬂ,P,+EI w'd”’f) x

my=["pdvtvrar, ap=[" otyivyax (6.23b)
=[-oax(Gres)], vi=[oak(Ges)]
d 1 d 2
. ds ds
Mi=(-mrg,),  me= ()

Note, that for sufficiently large ratios of length L. to height H of the beam, the
Timoshenko beam element gives the results of the Euler-Bernoulli beam
element, For example, for L/H =100, the effect of shear deformation is
negligible, and both elements give approximately the same solution.

The finite element models of {6.15) and (6.16) are the same as those in
(6.22a) and (6.23a), respectively, with A=P, and [M°] and [M!] (and
[M?*] = [0]) replaced by [G?] and [G*!], respectively, where

%2 dbe d =P
G5=| d‘p‘ df’d GY = f dw,d;ﬁ,d (6.24)

XA

The coefficient matrix [G*] is known as the stability matrix.

The numerical form of the stiffness matrices [K¢] were given in the
previous sections [see, e.g., (3.34a), (3.40a), (4.15), and (4.98)]. Expressions
for the mass matrices M} and stability matrices G§; for the Lagrange elements
are also available from the previous derivations [see, e.g., (3.34a) and (3.35)].
The mass and stability matrices for the Hermite cubic interpolation,

5 ddt ddt
M:.;.—f cepieps dx, G;j,:j o, 201401

6.25
e ey dx dx (6.25)
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can be evaluated numerically for element-wise-constant values of ¢, and a,:

156 22 54 13k

ch | =220 4k —13h -3n*
M=— .
MI=00l sa —13n 156 224 (6.26a)

13n  —3n* 22k 4R°

36 —3h 36 —3h
a | =31 4k* 3 —h?

GV=30ml 36 3n 36 3n (6.266)

~3h —h®* 3k 4K?

The assembly procedure and imposition of boundary conditions*in the
eigenvalue analysis remains the same as for static problems. The boundary
conditions are necessarily homogeneous. ,

The standard error estimates for the fundamental eigenvalues and
eigenfunctions of the problems discussed here are [see Strang and Fix (1973)]

,1(0) Slhfé 1(0) + Chz(k-ﬂ—m)[/1(0)](’”-1)/”'

uu() _ “h ”m = Chk+14m{l(0)}(k+1)t2m (627)

where (1@, v) is the exact solution, (4", ") is the finite element solution, m is
the order of derivatives appearing in the weak form, k is the degree of
polynomials used in w*, and h is the characteristic length of the element (see
Chapter 5 for the notation and definitions of errors).

6.1.4 Applications

Here we consider a couple of examples of eigenvalue problems to illustrate the
concepts described in the previous section. We consider one example of a
heat-transfer-type problem and one of free vibration of beams.

Example 6.1. Consider a plane wall, initially at a uniform temperature T, which has
both surfaces suddenly exposed to a fluid at temperature T... The governing differential
egquation

FT 15T k
“é?m;[‘a, o:—-R; (6.28)
and the initial condition is
T{x, =1

where « is the diffusion coefficient, k the thermat conductivity, p the density, and ¢, the
specific heat at constant pressure. Equation (6.28) is also known as the diffusion
equation.

We consider two sets of boundary conditions.



EIGENVALUE AND TIME-DEPENDENT PROBLEMs 217

Set 1. If the heat transfer coefficient at the surfaces of the wall is assumed to be
infinite, the boundary conditions can be expressed as

TO0,H)=T., T{,0)=T. for >0 (6.294)

Set 2. If we assume that the wall at x = L is subjected to ambient temperature, we
have

=0 (6.29b)

x=L

(0, ) =T, [kA g% + BA(T ~ 1:,)]

Equation (6.28) can be normalized while making the boundary conditions
homogeneous. Let
x of T-T,

==, I=—

L 2 YTr_T

The differential equation (6.28), boundary conditions (6.29), and the initial condition
become

u  Bu
~57t 5 =" (6.30a)
w(0,0=0, w(1,N=0, ulx,0=1 (6.308)
_ du _ _ ﬁ_L
«(0, ) =0, ( S Hu) =0 -k (6.30¢)

where the bars over x and ¢ are omitted in the interest of brevity.

Solution of (6.30u,b) by separation of variables leads to solution of the
eigenvalue problem

U
‘E{‘AU:G: um=0, uQ)=90 (6.31)

The finite element model of this equation is given by (6.21), with 4 = 1 and ¢, =1, For
the choice of linear and quadratic interpolation functions, the element equations
(6.21a) become {see (3.34) and (3.40)]

(kle L; _ﬂ - A:e [f ;D{:g} = {g;} (linear element)

1 7 -8 1 i 4 2 -1 us [0
™ -8 16 -8|-4 i 2 16 2 us =10 {quadratic element)
‘Tt -8 7 -1 2 4 u3 o3

For a mesh of two linear elements {the minimum needed), with s, = h, = 0.5, the
assembled equations are

1 -1 ¢ RERRINE Q!
A1 27-1-azfl 4 1 jur=q0
0 -1 1 01 2]1/|u Q2

The Set 1 boundary conditions U(0) =0 and U(1) =0 require U, = U, =0. Hence, the
eigenvalue problem reduces to the single equation

@ —-5D)U,=0, or 4,=120, U,#0
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For a mesh of one quadrat.ic element, we have (& = 1.0)
B_L116=0, or A, =100

The corresponding eigenfunction amplitude is U,=1.0 (or any nonzero constant), so
that the eigenfunctions are as follows: for linear clements (k =0.5),

Uz‘.“i*—‘% for 0<x =05
Ux)=
Uzw% =

for 0.5=x=<10
while, for a quadratic element (h = 1.0},

U(x)=Uys= 4;—: (1 —-%) for 0sx=<1.0
R
The exact eigenvalues are A, = (n)* and A, = #* =9.8696. The exact eigenfunec-
tions for Set 1 boundary conditions are U,(x) = sinnax and U, = sin mx.
The eigenvalues and eigenfunctions can be used to construct the solution of the
transient problem. For example, the solution of {6.28) with Set 1 boundary conditions is

u(e, =3 T,U(x)e " =, T,sinnax g
=1 n=1

where T, are constants to be determined using the initial condition of the problem. The
finite clement solution of the same problem, when one quadratic element is used, is
given by

up(x, £y =dx(1—x)e T

For a mesh of two linear elements, the Set 2 boundary conditions translate into
U, =0 and 03+ U;=0. The condensed equations are

IR o W b R A
(o) i

The characteristic polynomial of the above eigenvalue problem is obtained by setting
the determinant of the coefficient matrix equal to zero:

4—4% —@2+R)| _
-@+h 3-21

or

0, A=A
or

TR — 241 +8=0
The roots of this equation are

2+ - -
Aia= 1—?@ (A;=0.374167, 4, = 3.0544)

and the eigenvalues are (A =124)
Ay =4.4900, A= 36.6529
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The eigenvectbrs are computed from the equations

[ 4-%4  —@+ ﬁai)] {Ua}“’ _ {0}
_(2 + ﬁli) 3- 12*211 U, 0

For example, for 4, = 4.4900, we have

2.5033U57 - 2.3742UP =0
or
{UW} = (1.000, 1.0544) = (0.6881, 0.7256) (normalized)

Hence, the eigenfunction corresponding to A; = 4.4900 (= 0.5} is

UD(x) = {0-688],'(/11 for 0=sx=0.5
_ ~ 10.6881(1 ~ x)/h +0.7256(2x — 1}/2h  for 0.5<x < 1.0

The exact eigenfunctions for Set 2 boundary conditions are
U, (x) = sin VA,x
and the eigenvalues A, are computed from the equation

1+\/A_,,cot\/l_,,=0

219

Table 6.1 gives a comparison of the eigenvalues obtained using meshes of linear
and quadratic elements with the exact values. Note that the number of eigenvalues we
can obtain is equal to the number of unknown nodal values. As the mesh is refined, not
only do we increase the number of eigenvalues but we also improve the accuracy of the
preceding eigenvalues. Note also that the convergence of the numerical eigenvalues to

TABLE 6.1

Eigenvalues of the heat conduction equation (6.28) for two sets of

houndary conditions
Set 1t Uu0y=0, U{h)=0
Set 2 (in parentheses): U(0)=0, (dU/dx+ U)|,.,=0

Mesh A, IR A Ay A A 1,

2L 12.0000
{4.4900) (36.6529)

4L 10.3866  48.0000 126.756
(4.2054) (27.3318) (85.7864) (177.604)

8L 9.9971 41.5466 99.4855 192.000 328291  S07.025  686.512
(4.1380) (24.9088) (69.1036) (143.530) (257.580) (417.701) (607.022)
1Q 10.000
(4.1545) (38.5121)
20 9.9430  40.000  128.723
(4.1196) (24.8995) (81.4446) (207.653)
4Q 9.8747 397754 91,7847 160000 308253  S14.891  794.794

(4.1161) (24.2039) (64.7705) (129.261) (240.539) (405.253) (658.137)

Exact  9.8696 30.4784  88.8264 157.9137 246,740  355.306  483.611
(4.1159) (24.1393) (63.6591) (122.889) (201.851) (300.550) (418.987)
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2
—— Maoade 1
—o— Mode 2
wms— Mode 3
1 —
u(x)
0
—1 1 FIGURE 6.1
) The first three mode shapes (or
8L, Eight linear elements eigenveetors). as predicted by the
H=10 mesh of eight linear elements for
-2 e the heat transfer problem in Ex-
0.0 0.2 0.4 0.6 0.8 1.0 1.2 ample 6.1, Set 1 boundary
x conditions.

the exact ones is from the above, i.e., the finite element solution provides an upper
bound to the exact eigenvalues. For structural systems, this can be interpreted as
follows. According to the principle of total minimum potential energy, any approximate
displacement field would overestimate the total potential energy of the system. This is
equivalent to approximating the stiffness of the system with a larger value than the
actual one. A stiffer system will have farger eigenvalues (or frequencies). The first three
mode shapes of the system are shown in Figs. 6.1 and 6.2.

We close this example by noting that the eigenvalue equation (6.31) can also be
interpreted as that arising in connection with the axial vibrations of a comstant
cross-section member, In that case, U denotes the axial displacement and A = o*plE,
being the frequency of vibration. The boundary conditions in (6.30c) can be interpreted
as the left end of the bar being fixed and the right end being connected to a linear

p

FIGURE 6.2
The first three mode shapes as
predicted by a mesh of eight li-
near elements for the heat trans-
) ————T — — fer problem with convection
0.0 0.2 0.4 0.6 0.8 1.0 1.2 (H =1.0). See Example 6.1, Set 2
x boundary conditions.

—o—— Mode 1
—o— Mode 2
H=10 ——a— Mode 3
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Linear elastic spring FIGURE 6.3
with spring constant £ An elastic bar with an end spring. The axial vibrations in
/ this case can be shown to be governed by the same
—WLE eigenvalue problem as that used for the heat transfer
problem with convective boundary condition at x = £, {Set

L i 2 boundary conditions in Example 6.1},

ot X, N

AR

elastic spring (see Fig. 6.3). The constant H is equal to k/EA, k being the spring
constant. Thus, the results presented in Table 6.1 can be interpreted as the square of
the natural frequencies of a uniform bar (multiplied by p/E).

In the next example we study transverse vibrations of cantilever beams
using the Timoshenko beam theory. The effect of shear deformation is brought
out by considering two different ratios of length to height of the beam. In
problems with more than one independent variable and certain coarse meshes,
the computed eigenvalues are not always the lowest eigenvalues of the
problem. This is due to the restrictions placed by the particular mesh on the
mode shapes it can model.

Example 6.2. Consider a uniform beam of rectangular cross-section, length L, width B,
and height H. The beam is fixed at one end, say at x =0, and free at the other, x = L.
We assume that Poisson’s ratio is v = 0.25. We wish to determine the first four natural
frequencies associated with the transverse deflection w.

The finite element model of the Timoshenko beam theory is given by (6.23a).
The number of eigenvalues we wish to determine dictates the minimum number of
elements to be used. If we use one linear element, we shall have four degrees of
freedom, with two degrees of freedom at the fixed end being specified as zeros, Thus,
we can only obtain two eigenvalues. If two linear elements are used, there are six
degrees of freedom, with two of them known to be zero, and we can obtain four
eigenvalues. However, the four computed eigenvalues may not be the lowest four.
Indeed, a mesh of two linear elements can only represent the first two mode shapes of
the cantilever beam (see Fig. 6.4). In order to represent the first four mode shapes, we
must use at least four linear elements.

S,

Mode shape 2

.

FIGURE 6.4

Two possible nonzero mode shapes that can
be represented by a mesh of two linear
(Lagrange) elements.

Mode shape 1
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Because of the algebraic complexity of the element matrices for meshes of 4, 8,
and 16 linear elements and 2, 4, and 8 quadratic clements that are used to study the
convergence characteristics of the eigenvalues of the beam, the element matrices and
assembled equations are mot presented here. For all meshes used, the boundary
conditions at the fixed end require w(0) =0 and W(0y=0, or

U,=0, U;=0

The frequencies obtained by solving the resulting eigenvalue probiems are shown
in Table 6.2 for two different values of the length-to-height ratio L{H. The value
L/H =100 makes the effect of shear deformation negligible and yields essentiaily the
Fuler—Bernoulli beam theory results. Since the frequencies are normalized, ®=
wl*(pA/ENY, it is necessary only to select the values of v and L/H. For
computational purposes, we take v=0.25, p[=1.0, Ei=10, and L =10, and
compute :

h"
E s 4EI 1201 7
GAK =y B 1 PA= T
where B and H are the width and height, respectively, of ‘the beam. Thus for
LIH=100 (or H=107%, we take GAK=4X 10 and pA=12x10%, and, for
L/H =10, we have GAK =4 X 10% and pA = 12% 10%

We note from Table 6.2 that the finite element results converge with f-
refinement (i.e., when more of the same kind of elements are used) and also with
p-refinement (i.e., when higher-order elements are used). The p-refinement shows
more rapid convergence of the fundamental (i.e., first) frequency (see Fig. 6.5). The
rates of convergence are consistent with the error estimates in (6.27). The mesh
refinements with either more or higher-order elements refine the higher frequencies
more than the fundamental frequency (see Table 6.2). Note also that the effect of shear
deformation is to teduce the natural frequencies. This is because of the increased
flexibility in the Timoshenko beam theory compared with the Euler-Bernoulli beam
theory. The first four mode shapes of the cantilever beam, as obtained using the
16-element mesh of linear elements, are shown in Fig. 6.6.

TABLE 6.2
Natural frequencies of a cantilever beam according to the Timeshenko and

Euler—Bernoulli beam theories {@ = wL*(pA/El 3 -

LiH =100 L{H =10

Mesh @ o, @ @y @, @ s s

4L 35406 25.6726 983953 417.1330 3.5137 24.1345  80.2244 189.9288
8L 35203 228851 68.8937 1518431 3.4956 217004 60.6297 119.2798
16L 35174 222350 633413 127.5434 3.4908 211257 564714 104.6799
2Q 5214 233226 783115 3283150 3.4947 220762 67.0884 181,0682
4Q 5161 221054 633271 133.9828 34895 21.0103 56.4572 108.6060
8Q 35158 220280 61.7325 121.4458 3.4892 20.4421 55.2405 100.7496

Exact<EBTY 3.5158 22.0315 61.6774 120.8300 3.5002 21.7425 59.8013 114.2898

- |TBTY 15158 22.0226 61.6179 120.6152 14802 20,9374 55.1530 100.2116
EBT% 3.5160 22.0345 61.6972 120.9019 3.5160 22.0345 61.6972 120.901%

+TBT, Timeshenko beam theory; EBT, Euler—Bernoulli beam theoty {with rotary inertia).
1 Rotory inertia neglected; the results are independent of the ratio L/H.
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3.65
g €] i
@, ‘ (tinear)
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- 3-60'q —e— @, ¢ {guadratic}
“3
|
%5 1 Lk = 100
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Element size k
FIGURE 6.5

Plots of error in the frequencies computed using linear and quadratic finite elements (for
length-to-height ratios L/H = 10 and 100).
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FIGURE 6.6

First four natural mode shapes of a cantilever beam, as predicted using a 16-element mesh of
linear Timoshenko beam elements (L/H = 10).
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6.2 TIME-DEPENDENT PROBLEMS

6.2.1 Introduction

In this section, we develop the finite element models of one-dimensional
time-dependent problems and describe time approximation schemes to convert
ordinary differential equations in time to algebraic equations. We consider
finite element models of the time-dependent version of the differential
equations studied in Chapters 3 and 4. These include the second-order (in
space) parabolic (i.e., first time derivative) and hyperbolic (i.., second time
derivative) equations and fourth-order hyperbolic equations arising in connec-
tion with the bending of beams. Recall that second-order parabolic equations
arise in heat transfer and fluid mechanics (see Sections 3.3.1 and 3.3.2), while
second- and fourth-order hyperbolic equations arise in solid mechanics
problems.

The finite element formulation of time-dependent proi)lems involves two
steps:

1. Spatial approximation, where the solution u of the equation under
consideration is approximated by expressions of the form

u(x, )=~ Us(x, )= gl () Wix) (6.32)

and the spatial finite element model of the equation is developed using the
procedures of static or steady-state problems, while carrying all time-
dependent terms in the formulation. This step results in a sct of ordinary
differential equations (i.e., a semidiscrete system of equations) in time for
the nodal variables ui(f) of the element. Equation (6.32) represents the
spatial approximation of u for any time t. When the solution is separable
into functions of time only and space only, u(x, )= T(NX(x), the
approximation {6.32) is clearly justified. Even when the solution is not
separable, (6.32) can represent a good approximation of the actual
solution, provided a sufficiently small time step is used.

2. Temporal approximation, where the system of ordinary differential equa-
tions are further approximated in time, often using finite difference
formulae for the time derivatives. This step aliows conversion of the
system of ordinary differential equations into a set of algebraic equations
among i at time £ = (s + 1) At, where At is the time increment and s is
an integer.

All time approximation schemes seek to find u; at time f4 using the
known values of ; from previous times:

compute {u}rr using {t}s {4}t -
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Thus, at the end of the two-stage approximation, one has a continuous spatial
solution at discrete intervals of time:

U, 1) = ; WEW) (=0,1,...)

Here we study the details of these two steps by considering a model
differential equation that contains both second- and fourth-order spatial
derivatives and first- and second-order time derivatives:

_i( 8u)+82(b821¢)+ N du
ox ox? Cott C‘a

+ cz =fn 0 | (6.330)

subject to -appropriate boundary and initial conditions. The boundary condi-
tions are of the form

specify u(x,f) or - (x, H+ ( zili)
and (6.33b)
4

du a
specify a—i(x, t) or ba—;

at x =0, L, and the initial conditions involve specify
cou(x, 0) and ci(x, 0) + cyu(x, 0) (6.33¢)

where 1 = du/dt. Equation (6.33a) contains, as special cases, time-dependent
second- and fourth-order equations. Second-order equations arise, for ex-
ampie, in determining the transverse motion of a cable (a=T; b =0, ¢, =p,
c2=0, ¢g=0), the longitudinal motion of a rod (a=EA, b=0, ¢;=0 if
damping is not considered, ¢, = pA, ¢g=0), and the temperature transients in
a fin (a=kA, b=0, ¢;=pA, c;=0). A fourth-order equation arises in
determining the transverse motion of a beam (a =0, b=EI, c,=k, ¢,=0,

Cr= pA).

6.2.2 Semidiscrete Finite Element Models

The semidiscrete formulation involves approximation of the spatial variation of
the dependent variable, which follows essentially the same steps as described
in Section 3.2, The first step involves the construction of the weak form of the
equation over a typical element.

Following the three-step procedure of constructing the weak form of a
differential equation, we can develop the weak form of (6.33a2) over an
element. Integration by parts is used on the first term once and on the second
term twice to distribute the spatial derivatives equally between the weight
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function w and the dependent variable u:

Xy 2 82
O=J w[— 8( au)+ o (b—a—zﬁ)+cou+cl%+c2+—%— :\dx

3\ P ax/ o\ ax? at ar

J”f‘[aw au+azwbazu+“ + 8u+c &u vf]dx
= a—+—b-— Vit e W —F W —
Ll e e e W W e !

]2+ 20T+ S5
WINT? %) Tae a2/l T ax T et )y

du

—-rB(a%%+bizE@+c3u+cw +c wé@—fwf)dx >
=) am et O T e e
. A A { OW A W\
_ Q1FV(XA)‘*Q3W(XB)— Qg(— a—) IA— Q4(—— **a;) . (6.3461)
where
s3] (32)
I g — (b=
Qs [ o ax\C o/l =432,
A du 8 (, 8u A 3*u
Qr‘[‘“*&*@}(bgﬁ)] 0.=-(35) (639

Next, we assume that u is interpolated by an expression of the form
(6.32). Equation (6.32) implics that, at any arbitrarily fixed time ¢>0, the
function & can be approximated by a linear combination of the ¥, with ui(t)
being the value of u at time ¢ at the jth node of the element Q¢ In other
words, the time and spatial variations of u are separable. This assumption is
not valid, in general, because it may not be possible to write the solution
u(x, t) as the product of a function of time only and a function of space only.
However, with sufficiently small time steps, it is possible to obtain accurate
solutions to even those problems for which the solution is not separable in time
and space. The finite element solution that we obtain at the end of the analysis
is continuous in space but not in time. We only obtain the finite element
solution in the form

u(, ts)=Zuf(ts)w,f(x)=§1(u§)’¢f(x) 6=1,2...) (633

where () is the value of u(x, t) at time ¢ =1, and node j of the element Q°.
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Substituting w = P(x) and (6.32) into (6.34a), we obtain

o= [ R E W )

F=1

+cow,(2 u w,) + cm(Z w;) + cw.(i ‘Z‘i w,) w.f] dx

f=1 =1 =1
"Qﬂl’a(xA) Q3"P;(x3) Qz( dw!) Q ( (Z'f‘)
2 o | du; , d%u
=ng [(KL,+K + My, +M,,d + My i ] F, (6.36)
In matrix fonh, we have
[K|{u} + [M'{a} + [M?]{ii} = (F) (6.37a)
where ‘
[K] = [K"] + [K?] + [M"] (6.37b)

MS = j Cow;wj dx
X4
Xy

M‘ll=f clwiwj dx, Mﬁ:j Czlp,-'(pj dx
- i (6.37¢)
X g d d dZ d2

ki=[ oSy k2o f b f’df’d

E=L, Yifdx + O

This completes the semidiscrete finite element formulation of (6.33) over
an element.

6.2.3 Time Approximations

As special cases, (6.37a) contains the parabolic equation (set [M?*] = [0]) and
the hyperbolic equation (set [M"] = [0]). The time approximation of (6.37a) for
these two cases will be considered separately: in Case 1, ¢, =0; in Case 2,
c = O

CASE 1: PARABOLIC EQUATIONS. Consider. the parabolic equation [set
[M?] equal to zero in (6.37a)]
[(M'){i} + [K]{u} = {F} (6.38a)
subject to the initial condition
{u}o={uo} (6.38b)
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where {u}, denotes the value of the enclosed quantity u at time ¢ =0, whereas
{uo} denotes the column of values ;.

“The most commonly used method for solving (6.38a) is the « family of
approximation, in which a weighted average of the time derivative of a
dependent variable is approximated at two consecutive time steps by linear
interpolation of the values of the variable at the two steps:

(1 o)}, + afit}oa ={—ﬂs‘:r——_—{ﬁ—s for 0=a=1 (6.39a)
s+1

where { }, refers to the value of the enclosed quantity at time f ={, = f=1 Ay
and Af, = t, — t,_; is the sth time step. If the time interval [0, Tp] is divided into
equal time steps then £, =5 Af. Equation (6.39a) can be inte;preted as~

{t}si1= {u}; + At{ti}ssa
(i}erw=(1— @){i), + it} for 0= o<1

(6.395)

For different values of «, we obtain the following well-known numerical
integration schemes:

0, the forward difference (or Euler) scheme (conditionally
stable); order of accuracy = O(Af)
a=1{1, the Crank-Nicolson scheme (stable); O((AD%) (6.40)
2 the Galerkin method (stable); o((A)Y)
1, the backward difference scheme (stable); O(Ar)

Equation (6.392) can be used to reduce the ordinary differential
equations (6.384) to algebraic equations among the i at time f,4;. Since
(6.38a) is valid for any £>0, it is valid for ¢ =¢, and £ = £,,, ((M']=[M]):

(MG}, + (KL{u}s = (F}s (6.41a)
MY }s1 + Kl {ihon = (Flon (6.416)

where jt is assumed that the mass matrix is independent of time. After
multiplying (6.39a) throughout by At,,,, we premultiply both sides of the
equation with [M] and obtain ’

Atyay MY g1 + Aty (1= )[MI{i2)s = [MI{udsaa = {us)

Substituting for [M]{1i},+1 and [M]{i}, from (6.41a) and (6.41b), respectively,
in the above equation, we obtain

AV ATS Y cr({F}.s'+1 - [K]5+1{u}s+l) + AIS+1(1 - CV)({F}S - [K]s{u}s)
= [MI({#}oer — {ue}s)
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Rearranging the terms into known and unknown ones, we obtain

[Rlev{tdens = [KL{u)s + {F}ssnn (6.42a)

where

Rlowr =M1+ ai[K]vs,  [K]=[M'] - a,fK],
{FYosrr=Atr [0{F}s0i+ (1 - a){F}.] (6.42b)

=& Abyy,  ay=(1—a) At

Note that, in deriving (6.42), it has been assumed that [M"] is independent of
time and that the time step is nonuniform.

Equations (6.42) are valid for a typical element. The assembly, imposition
of boundary conditions, and solution of the assembled equations are the same
as described before for static (or steady-state) problems. Calculation of [K]
and {£} at time ¢ = 0 requires knowledge of the initial conditions {u}, and the
time variation of {F}. Note that, for &« =0 (the forward difference scheme),
we obtain [K]=[M"]. When the mass matrix [M"] is diagonal, (6.42a) become
explicit, and one can solve for {u},,, directly without inverting [K]. The mass
matrix obtained according to the weak form, called the consistent mass matrix,
is not diagonal. There are several ways to diagonalize mass matrices; these will
be described in Section 6.2.4.

Stability and accuracy. Since (6.392) represents an approximation, which is
used to derive (6.424), error is introduced into the sohstion {u}s41 at each time
step. In addition to the truncation error introduced in approximating the
derivative, round-off errors can be introduced because of the finite arithmetic
used in our computations. Since the solution at time ;.1 depends on the
sofution at time £, the error can grow with time. If it grows unboundedly with
time, the solution scheme is said to be umstable. If it is bounded (i.e., it
increases for one time step and decreases for another time step, but never
exceeds a certain finite value), the solution scheme is said to be stable. The
numerical scheme (6.42) is said to be consistent with the continuous problem
(6.38) if the round-off and truncation errors B0 to zero as At— 0. Accuracy of
a numerical scheme is a measure of the closeness between the approximate
solution and the exact solution, whereas stability of a solution is a measure of
the boundedness of the approximate solution with time. As one might expect,
the size of the time step can influence both accuracy and stability. When we
construct an approximate solution, we like it to converge to the true solution
when the number of elements or the degree of approximation is increased and
the time step Af is decreased. A time approximation scheme is said to be
convergent if, for fixed £; and Az, the numerical value {u}, converges to its true
value {u(t)} as At— 0. Accuracy is measured in terms of the rate at which the
approximate solution converges. If a numerical scheme is stable and consis-
tent, it is also convergent [see Isaacson and Keller (1966)].

A numerical scheme is said to be conditionally stable if it is stable only
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when certain restrictions on the time step are satisfied. For all numerical
schemes in which & <%, the a family of approximations is stable only if the
time step satisfies the following (stability) condition:

At < Aty = (6.43)

(1-2a))

where A is the largest eigenvaiue of the finite element equations (6.38). Note
that the same mesh as that used for the transient analysis must be used to
calculate the eigenvalues. .

When « =0, the numerical scheme is called an explicit scheme. The
name comes from the fact that when the mass matrix [M] is diagonal, (6.42)
can be solved without inverting [K] (because [R]=[M] is diagonal). When
a0 the scheme is said to be implicit, indicating that [K] has to be inverted
(whether or not [M] is diagonal). Such a classicfication of time integration
schemes seems to have originated with finite difference methods. When these
methods are used for spatial discretization, the mass matrix {M] ends up as a
diagonal matrix. However, in the finite element method, irrespective of the
time integration scheme used, the consistent mass matrix [M] is not diagonal
and hence it is necessary to invert [K]. When the consistent mass matrix is
replaced by an equivalent diagonal mass matrix (see Section 6.2.4), an explicit
scheme results in an explicit set of algebraic equations that can be solved
without inverting the coefficient matrix k).

CASE 2: HYPERBOLIC EQUATIONS. For this case ¢, =0 (i.e., [M*] = [0]),
and (6.37a) takes the form

[MA{it) + [KH{u} = {F} (6.44)
The hyperbolic nature is dictated by ¢, #0, not by ¢; =0; in fact, in structural
systems, both ¢; and ¢, can be nonzero. For example, consider the case where
[M'] is the damping matrix in a structural system; see Problem 6.24.

There are several numerical integration methods available to integrate
second-order (i.e., hyperbolic) equations. Among these, the Newmark family
of time integration schemes is widely used in structural dynamics. Other
methods, such as the Wilson method and the Houbolt method, can be used to
develop the algebraic equations from the second-order differential equations
(6.44). _

In the Newmark method, the function and its first time derivative are
approximated according to

{U}sen = (U}, + AL {d), +3(A0 i}y
{I2}5+l = {u}s + {ﬁ}s+a’ At

(6.45a)

where

{i1}sr0= (1 O) i} + 6{il}srs (6.45b)

and @ and y (=2p) are parameters that determine the stability and accuracy
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of the scheme. The following schemes are special cases of (6.45a,b):

a=3, y=2=3 the constant-average acceleration method (stable)
@=3, y=2f=3, the linear acceleration method (conditionally stable)
@=3, y=28=0, the central difference method (conditionally stable)
@=3, y=2f=% the Galerkin method (stable)

=3, y=2B8=2, the backward difference method (stable)

(6.45¢)

For all schemes in which y<aand ¢=1%, the stability requirement is

A= Atcr = [%.wilax(a’ - }’)]_“2 (646)

where @, is the maximum natural frequency of the system (6.44).
The use of (6.45) in (6.44) gives the following system of algebraic
equations:

[K}s+1{u}5+l = {F}s,s+1 (6 47!1)

where

[K}1 = [KL a1 + aafM], 1,
{Flossr={F}u + [M],i(as{u}s + au (i}, + as{ii},) (6.47h)

pam— 2 __2 21,
Ty “Tyar ¢T

Again, (6.47) are valid over a typical element.

Note that the calculation of [K] and {£} requires knowledge of the initial
conditions {u}q, {tt}s, and {ii}o. In practice, one does not know {ii},. As an
approximation, it can be calculated from (6.44) (we often assume that the
applied force is zero at t =0):

{i}o= M) ({F}o— [K]{u}o) (6.48)

At the end of each time step, the new velocity vector {i},,, and acceleration
vector {i},,; are computed using the equations

{f#}ser = as({u}sir — {u})— 04{11}5_ as{il},

{tt}ssr = {8}s + ax{d}, + a{ii}sn (6.49)
am=alt, a=(1—a)At

The remaining procedure stays the same as in static (i.e., non-time-
dependent) problems.
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6.2.4 Mass Lumping

Recall from the time approximation of parabolic equations that use of the
forward difference scheme (i.e., a=0) results in the following time marching
scheme [see (6.42)]:

(MYt} orr = (M7] = At [KD{u}s + AL {FD (6.50)

The mass matrix [M¢] derived from the weighted-integrat formulation of the
governing equation is called the consistent mass matrix, and it is symmetric,
positive-definite, and nondiagonal. Solution of the global equations associated
with (6.50) requires inversion of the assembled mass matrix. If the mass matrix
is diagonal then the assembled equations can be solved explicitly,

(Ups+1= M.I—II[MH(UI)S — At i Ky(Un)s + At (Ef)s] ~(6.51)
=1

thus saving computational time. The explicit nature of (6.51) motivated
analysts to find rational ways of diagonalizing the mass matrix.

There are several ways of constructing diagonal mass matrices [see
Hughes (1987)]. Diagonal mass [matrices are known as fumped mass matrices.
The error estimates in (6.27) are generally not valid for lumped mass matrices.
The row-sum and proportional lumping techniques are discussed here.

ROW-SUM LUMPING. The sum of the elements of cach row of the consistent
mass matrix is used as the diagonal element:

Mi=3 [ pvivrdc= [ putax 6.52)
F=1 x4 XA

where the property Li— pi=1 of the interpolation functions is used. When p
is constant, (6.52) gives

h.f1 O
M), = %— [ 0 1] for the Lagrange linear element
A 6.53a
" 100 ( )
M), = P 62 0 4 0| forthe Lagrange quadratic element
001 ’
Compare these lumped mass matrices with the consistent mass matrices
h.[2 1 ‘ ,
[M¢le= % { 1 2] for the Lagrange linear element
6.53b
" 4 2 -1 ¢ )
T M= "; O‘ 9 16 2| for the Lagrange quadratic element
-1 2 4

Here subscripts L and C refer to lumped and consistent mass matrices,
respectively.
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PROPORTIONAL LUMPING. Here the diagonal elements of the lumped mass
‘matrix are computed to be proportional to the diagonal elements of the
consistent mass matrix while conserving the total mass of the element:

My=a fpw:wfdx, a=(["pa) /(5[ puiwiax) | 650

X4 i=1 Jx,

For constant p, the proportional lumping gives the same lumped mass matrices
as those obtained in the row-sum technique for the Lagrange linear and
quadratic elements.

The use of a lumped mass matrix in transient analyses can save
computational time in two ways. First, for forward difference schemes, lumped
mass matrices result in explicit algebralc equations, not requiring matrix
inversions. Second, the critical time step required for condifionally stable
schemes is larger, and hence less computational time is required when lumped
mass matrices are used. To see this, consider the stability criterion in (6.46) for
the case @ =3, B=0. For a one lmear clement model of a uniform bar of
stiffness £A and mass pA, fixed at the left end, the eigenvalue problem with a
consistent mass matrix is

75 B Sl S N R ol

Since £, =0 and Q1 =0, we have
= EA /pAh_ 3E
h 3 ph?
Substituting this into the critical time step relation (6.46), we have,
(Ater)c =2/ 0o = h(4p/3E)'?
If we use the lumped matrix, o is given by
w=(E/p)Y/h

and the critical time step is

(At)r =h(2p/E)" > (At,)c (6.55)

6.2.5 Applications

Here we consider two examples of applications of finite element models of
one-dimensional problems. Problems are taken from heat transfer and solid
mechanics. Other field problems can be related to heat-transfer-type problems,

Example 6.3. Consider the transient heat conduction problem with equation

a 2
Bff—g—x-’%o for 0<x <1 (6.56a)
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boundary conditions
a 1
w(0, £) =10, 3‘:(1, =0 (6.56b)
and initial condition
u(x, 0y =10 {6.56¢)

The problem at hand is a special case of (6.332) witha =1, b=0, =0, 6=1 =0,
and f = 0. The finite element model of {6.56a) is given by (6.38a):

(M} + (K Hu) = {Q7) (6.57a)
wheze
*s =5 o doys
MF}=J Yy dx, K§=J %{%dx (6.57b)

XA x4

For the choice of linear interpolation functions, {6.57a) becomes
r

hiZz 1 ﬂl} 1[ 1 wl]{ul} {Ql}
— F- = .
6[1 2]{:12 rl-1 1l 7 e (6:57¢)
where h is the length of the element. Use of the o-family of approximation (6.39)
results in the equation [see (6.42)]

(M1 + At oKDY, = (M) - AT (L @)K e’}
+ AKa{QYs 0+ (1 - ){Q}) (6.58a)

where At is the time step.
Tor a one-element model, we have

At Al

%h+a:7 th— Lo U,
At At
%;,.,a_];_ %h-i-o:—h— U, »
A At : =
%h-(l—a’); %h+(1«-o:)¥ U, O
= At At + At {6.58b)
pra-of m-g-op ||t |2

where 0, = (@) + {1~ a)(Q}),. The boundary conditions of the problem require
(U), =0, (@D, =0 forall s>0 (e.,t>0) |
while the initial condition requires
(Uo=1, (Uade=1 for =0

Since the initial condition should be consistent with the boundary conditions, we take
(U)o = 0.0. Using the boundary conditions, we can write for the one-element model
(h=1.0)

(14 &)= 15— - @ F |0 ©59)
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which can be solved répeatedly for U, at different times, s =0, 1, ....

Repeated use of (6.59) can cause the temporal approximation error to grow with
time, depending on the value of o. As noted earlier, the forward difference scheme
(@ =0) is a conditionally stable scheme. The critical time step is given by

Atee =2 A
where A, is the maximum eigenvalue associated with (6.57¢):
—AMMKU} + [K}{U} = {0}
For the model at hand, this reduces to
—~IARL+R7U, =0, of A=3/k=3

Hence Af, = 0.6667. Thus, in order for the forward difference solution of {6.59) to be
stable, the time step should be smaller than At = 0.6667; otherwise, the solution will
be unstable, as shown in Fig. 6.7.

For unconditionally stable schemes (& = 3), there is no restriction on the time
step. However, to obtain a sufficiently accurate solution, the time step must be taken
as a fraction of Af,. Of course, the accuracy of the solution also depends on the mesh
size h. As this is decreased (i.e., the number of elements is increased), At
decreases,

Figure 6.8 shows plots of u(l, £) versus time for & =0.5 and At =0.05. Solutions
predicted by meshes of one and two linear elements and the mesh of one quadratic
element are compared with the exact solution. The convergence of the solution with
increasing number of ¢lements is clear. The finite element solutions obtained with
different methods, time steps, and meshes are compared with the exact solution in
Table 6.3.

2 L 1 3
1 -
u(l, ¢}
0 - b=
-1 4 L
At = 0,675, 1L
a= 0.0
‘2 ¥ T A T T
0 2 4 6 8
Time ¢
FIGURE 6.7

Transieat solution of a parabolic equation according to the forward difference scheme {Ar = 0.675,
one lincar element). The solution is unstable because the time step is larger than the critical time
step.
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1.2 | x .| 1 . 1 M L
e Analytical
1.0 —o— 1L
—— 2L
0.8 At = 0.05
u(l, ) a=103
0.6 1
.44
0.2 1
“~
P
0.0 T T Y T T T x T v {
0.0 0.2 0.4 0.6 3.8 1.0 R
Time ¢
FIGURE 6.8

Transient solution of a parabolic equation according to linear and quadsatic finite elements.

TABLE 6.3
A comparison of the finite element solutions obfained using various time

approximation schemes and meshes with the analytical solution of a parabolic
equation arising in conductive leat transfer

Quadratic elements
1L Linear elements (o = 0.5) (e =10.5, 1=0.05)
Time Exact
t a=0 a=1 1L 2L 4L SL 10 20 4Q solution

0.00 1.0000 1.0000 1.0000 1L.0GOO 1.0000 1.0000 10000 1.6000 1.0000 1.0000
0.05 0.8500 0.86%6 0.8605 1.0359 0.9951 09933 1.0870 0.9942 009928 0.9965
0.10 07225 07561 07404 09279 0.9588 0.9554 09819 09550 0.9549 0.9493
0.15 0.6141 06575 0.6371 0.8169 0.8639 0.8707 0.8693 0.8831 0.8725 0.8642
0.20 05220 0.5718 0.5482 07176 0.7557 07694 07679 07633 0.7731 0.7723
025 0.4437 04972 04717 0.6300 0.6750 0.6824 06780 0.6933 0.6855 0.6854
030 03771 0.4323 04059 0.5533 0.5906 0.6037 0.5987 0.6006 0.6070 0.6068
035 03206 03759 03492 04858 05250 0.5325 0.5286 0.5394 0.5358 0.5367
0.40 02725 0.3269 03005 0.42606 0.4608 0.4713 0.4668 0.4710 0.4741 0.4745
0.45 02316 02843 0.2586 0.3746 0.4083 0.4158 0.4121 04201 0.4188 0.4194
0.50 0.1969 02472 0.2225 0.3289 03592 0.3676 0.3639 03687 0.3701 0.3708
0.55 0.1673 0.2149 0.19:4 0.2888 03176 03247 03213 03275 03273 0.3277
0.60 0.1422 0.1869 0.1647 0.2536 0.2798 02868 02837 02883 0.2890 0.2897
0.65 0.1209 01625 0.1418 02227 0.2472 02535 02505 0.255% 02556 0.2561
0.70 0.1028 ©0.1413 0.1220 0.1955 0.2i80 02238 0.2212 02253 02258 0.2264
0.75 0.0874 0.1229 0.1050 0.1717 0.1924 0.1979 0.1953 0.1995 0.1996 0.2001
@80 0.0743 0.1069 0.0%03 0.1508 0.1697 0.1747 0.1725 0.1761 0.1764 0.1769
0.85 0.0631 00929 00777 0.1324 0.149% 0.1544 0.1523 0.1557 0.1559 0.1563
0.90 00536 0.0808 0.066% 0.1162 01322 0.1363 01345 01375 0.1378 0.1382
0.95 0.0456 0.0703 0.0575 0.1020 0.1166 0.1205 0.1187 0.1216 0.1218 0.1222 -
1.00 0.0388 0.0611 0.0495 0.08%6 0.1029 0.1065 0.1048 0.1074 0.1076 0.1080
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The next example concerns a hyperbolic equation.

Example 6.4. Consider the transverse motion of a beam clamped at both ends,
according to the Euler—Bernoulli beam theory,

L
%2’+%§=0 for 0<x<1 {6.600)
w(0, £) =0 igl’(0 =0 (1,)=0 %(1 =0 6.60b
) ] e 3 = wil, — ax » - (' )
w(x, 0) =sin mx — mx(l — x), %L:(x, N=90 (6.60c)

Note that the initial deflection of the beam is consistent with the boundary conditions.
The initial slope is given by

—?f {(x, ) = 7 cos ax — w(l — 2x) {6.60d)

Because of symmetry about x = 0.5, we consider only half of the beam for finite
element modeling. In this case, the boundary condition at x = 0.5 is (3w/2x}0.5, N =
0. For a one-element model with the Euler—Bernoulli beam element, we have

156 —22h 54 13k (4
| -22n 4n? —13n 32 ||,
20| 54 ~13h 156 22h |) i

13 -3 2n  4m* |4,

=

6 —3h —6 -3K|(u Q,
+3 —3h 2K 3k RH? | _ Q.
Bl -6 31 6 3k |]us Qs
=3k A 3R 2W* lu, Q.
The boundary conditions for the one-element model translate into

U1=0, U2=0, U4=0, Q3=0 for aif +=>0
while the initial conditions

Uy=06 U,=06, U;=0.2146, U‘:O} for 1=0
U,=0, 0,=0, U,=0, t,=0f 7T
The time marching scheme {6.47a) for this case takes the form
(Kaa + a3 My) (L), 0 = (E)s,su = Mss(as Us+a, Ua +as [.]3);

where as, a4, and as are defined in (6.47b). The second derivative [ for time =0
(i.e., when s = 0) is computed from the equation of motion;

. Kay(U 12
(Th)o= _ K)o —( ) S0 110932

M, ? X 0.2146 ﬁ

The stability criterion (6.46) requires, for y < 3, that the time step Af be less than
At.,. For the present model, w,., is computed from the eigenvalue problem

(K33 - w2M33)U3 =0 or w2 = M33/K33 =516.923
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2 I I L 1 ]
Y
------------ At = 0.005
—e—Af = (.15
1- —o— At = 0175 o
w(0.5, 1) |-
o4 ® : ‘
-1 4 One element in half-beam -
a=05p8=3%
L
,
-2 * T v T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 f
Time ¢
FIGURE 6.9

Transient response of a beam clamped at both ends, according to the Hinear acceleration method
(a=0.5 and g=1). The critical time step for the method using one clement is §.1524. The
remainder of the At =0.005 plot is not shown.

Hence, the critical time step for a = 0.5 and y = § (i.e., the linear acceleration scheme)
is

At = V12/ 0yae = 0.15236

Although there is no restriction on time integration schemes with a = 0.5 and y > 0.5,
the critical time step provides an estimate of the time step to be used.

Figure 6.9 shows plots of w(0.5, t) versus time for the scheme a=0.5, y=4%
Three different time steps, At=70. 175, 0.150, and 9.005, are used to illustrate the
accuracy. For At =1{. 175 > Al,,, the solution is upstable, whereas for Af = 0.15 < At it
is stable but inaccurate. The period of the solution is given by

T =27mfw =0.27635

For a time step At = 0.005, the solution is predicted very accurately.

For two- and four-element meshes, the critical steps are computed by computing
the maximum eigenvalues of the corresponding discrete systems. The critical time steps
for the two meshes are

(Af),=0.00897,  (At),=0.00135

where the subscripts refer to the number of elements in the mesh. Figure 6.10 shows a
comparison of the tranmsverse deflections obtained with the two Euler—Bernoulli
elements (Af =10.005) and the Galerkin method (see Chapter 2) for a complete period
{0,0.28).

The problem can also be analyzed using the Timoshenko beam element, which
requires us to select the coefficients GAK, EI, pA, and pl consistent with those in the
differential equation (6.11). Comparing (6.60a) with (6.11), we have EI =10 and
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0.10

0.05

0.00

Time ¢

T

71
0.24 0.28

Deflection w{0.5, )

-0.05

-0.10

-0.15

-0.20

FIGURE 6.10
Transient response of a beam clamped at both ends and subjected to an initial transverse
deflection (Af=0.005, @ =0.5, and § = 0.25).

pA =1.0, Therefore, GAK can be computed as

E El 125 4
= EI (6.61)

GAK =———BHK = 5T
2(1+v) 20+ vYH’ 6 H?

where B is the width and H the height of the beam, and = %5BH?, v=0.25, and K=
are used in arriving at the last expression. Similarly,

pl = p&BH = 5pAH? {6.62)

For L/H =100 (since L = 1.0, H =0.01), the shear defermation effect is small; while
for L/H=10 (or H=0.1), it is significant enough to warrant its inclusion in the
analysis.

Table 6.4 gives values of w(0.5, ) as obtained using the Euler-Bernoulli and
Timoshenko elements for various numbers of elements. The time step is taken to be
At =0.005, which is larger than that required for stability of the four-element mesh of
the Euler-Bernoulli beam element when y =1, Figure 6.11 shows plots of w(0.5, )
obtained with two quadratic Timoshenko elements for L/H =100 and 10. The
Timoshenko elements have better stability characteristics (i.e., larger At} than the
Euler-Bernoulli beam element for small ratios L/H. This is because, as L/H is
decreased, the .., predicted by the Timoshenko beam theory is smaller than that
predicted by the Euler—Bernoulli beam theory. The critical time steps for the mesh of
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TABLE 6.4

FINITE ELEMENT ANALYSIS OF ONE-DIMENSIONAL PROBLEMS

Effect of mesh and shear deformation on the transient response of a beam
clamped at both ends (A¢ = 0.005)

Timoshenko element

Euler-Bemoulli beam element (2Q)
Galerkin
a=0725 f=16 a=035 =025 a=0.5 =025 in space
Time and exact
1 1 2 4f 1 2 4 LIH=100 LiH=10 in time
0.00  0.2146 0.2146 0.2146 0.2146 0.2146 0.2146 (0.2146 0.2146 0.2146
0.01 0.2091 0.2098 0.2008 0.2091 0.2098 0.2098 02100 0.2116 0.2157
0oz 01928 0.1951 0.1950 0.1928 0.1951 0.1951 0.1953 0.1951 0.1988
003 0.1666 0.1696 0.1681 0.1667 0.1696 0.16598 0.1695 0.1690 0.1716
0.4 0.1319 0.1346 0.1181 0.1320 0.1348 0.1350 0.1342 0.1427 0.1356
0.05 0.0004 0.0930 —0.0795 0.0905 0.0931 0.0935 0.0929 4.1067 0.0925
0.06 0.0442 00481 —1,7165 —0.0443 0.0482 0.0483 0.0484 0.0657 0.0447
0.07 -6.0043 0.0014 -—17.877 ~0.0041 0.0014 0.0018 0.0016 0.0234  —0.0055
0.08 —0.0525 —0.0462 —179.92 —0.0523 -0.0459 -0.0455 —0.0469 fo—0.0267 —0.0553
0.09 -0.0980 -—-0.0926 —1796.9 -—0.0978 -0.0923 -0.0916 -—0.0937 00706 —0.1023
0.10 -0.1385 -—0.1345 . —0.1383 -0.13d42 —0.1336 —0.1349 —0.1100  —0.1441
0.11 -0.1719 -0.1685 -0.1717 -(.1685 --0.1682 —0.1680 -0.1461  —0.1783
0.12 -0.1964 —0.1933 —0.1963 —0.1933 —0.1932 -0.1931 -0.1717 —-0.2034
0,13 -0.2108 —0.2088 -0.2108  —0.2088 —0.2087 —0.2100 -0.1969  —0.2179
0.14 —0.2144 —0.2153 . ~{1.2144 —0.2150 -—(.2148 -0.2169 —0,2110  -0.2211
035 02070 -0.2113 Diverged -—0207t -0.2112 -0.2111 02117 —0.2146  —0,2129
1 Ar, = 0.00135
0.3 L
0.2 -
) 0.1 1 S
=
ES
_8 0.0 1 B
5
&
o —0.14 o
—0.2 4 I
-0.3 .
©0.0 0.1 0.2
Time ¢
FIGURE 6.11

Transient response of a beam clamped at both ¢nds, according to the Timoshenko beam theory
(At =0.005, two quadratic elements are used, o =0.5, and B =0.25).
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two quadratic elements are
(Ato)ioo=0.00665, (Af.),,=0.00644

where the subscripts refer to the ratio L/H. This completes the example.

6.3 SUMMARY

In this chapter eigenvalue problems and their formulation for one-dimensional
second- and fourth-order equations (beams) have been discussed, finite
element models of the equations have been developed, and applications to
heat transfer and the natural vibration of beams have been presented. Except
for the solution procedure, the finite element formulation of eigenvalue
problems is entirely analogous to boundary value problems.

Finite element models of time-dependent problems described by para-
bolic and hyperbolic equations have also been presented. A two-step proce-
dure to derive finite element models from differential equations has been
described. In the first step, we scek spatial approximations of the dependent
variables of the problem as linear combinations of nodal values that are
functions of time and interpolation functions that are functions of space.
This procedure is entirely analogous to the finite element formulation
presented for boundary value problems in Chapters 3 and 4. The end result of
this step is a set of ordinary differential equations (in time) among the nodal
values. In the second step, the ordinary differential equations are further
approximated to replace the time derivatives with the values of the functions at
different times.

PROBLEMS

Section 6.1

6.1, Determine the first two longitudinal frequencies of a rod (E, A, L) fixed at one
end and spring-supported at the other:
&u u

I
—EA—P-i—pA?ﬁO for 0<x <L

u(0)=0, (EA ﬂl + ku) =0

dx
Use (a) two linear finite elements and (b) one guadratic element.
Answer: (a) The characteristic equation is 742 — (10 + 4c)A + (1 + 2¢)=0,
¢c=kh{EA, A= {(ph*/6E)w".
6.2, Determine the smallest natural frequency of a beam with clamped ends, and of
constant cross-sectional area A, moment of inertia I, and length L. Use the
symmetry and two Euler-Bernoulli beam elements in the half-beam.

6.3. Re-solve the above problem with two linear Timoshenko beam elements in the
hali-beam.

6.4. Consider a beam (A, 1, E, L) with its left end clamped and its right end supported

by an elastic spring. Determine the fundamenta! natural frequency using (a) one
Euler—Bernoulli beam and (b) one Timoshenko beam element.

x=L
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6.5. Determine the critical buckliing load of a cantilever beam (4, I, L, E) using (a)
one Buler~Bernoulli beam clement and (b) one Timoshenko beam element.

6.6. Determine the fundamental natural frequency of the truss shown in Fig. P4.24,

6.7. Determine the fundamental natural frequency of the frame shown in Fig. P4.27,

6.8. Determine the first two longitudinal patural frequencies of a rod (A, E, L,m),
fixed at one end and with an attached mass m, at the other. Use two linear
elements. _

Hint: Note that the boundary conditions for the problem are u(0) = 0 and

(EA Gujdx +m; Puf 8 = 0.

6.9, The equation governing the torsional vibration of a circular rod is
F¢o TP
-GJ—+ml—5=0
G o e

RS
where ¢ is the angular displacement, J the moment of iner?ia, G the shear
modulus, and m the density. Determine the fundamental torsional frequency of a
rod with disk (/) attached at each end. Use the symmetry and {a) two linear
elements, (b) one quadratic element.

6.10. The equations governing the motion of a beam according to the Timoshenko
beam theory can be written as

2 Fw Fw ( +b
ax* o kG art

pdw Bw E ) F'w ,m W
oxt B

where a? = EI/mA and b* = IfA. Assuming that b?m kG <1 (i.e., negiecting the
last term in the governing equation), formulate the cigenvalue problem for the
determination of natural frequencies, and develop the finite element model of the
eigenvalue problem.

6.11. Use the finite element model of Problem 6.10 to determine the fundamental
frequency of a simply supported beam.

6.12. Find the critical buckling load F,; by determining the eigenvalues of the equation

gL LY

o 'Ex_2=0 for 0<x <L

w
- 1_)
S (E dx?

Use one Euler—Bernoulli element in the half-beam.
Answer: P, =9.9439EI/L?,

w(0) = w(L) =0, (EI%)

=0

x=L

Section 6.2

6.13. Consider the partial differential equation arising in connection with unsteady heat
transfer in an insulated rod:
du 0o du

————ja— 1= <x <L
ot ax(“ax) f for O=x

u(0) = uo, [a%i—ﬁ(a ——um)+£1‘]\ L=0

x=



6.14,

6,15

-

6.16.

6.17.

6.18.

6.19

6.20.
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Following the - procedure outlined in Section 6.2, derive the semidiscrete
variational form, the semidiscrete finite element model, and the fully discretized
finite element equations for a typical element.

Using a two-element (linear) model and the semidiscrete finite element equations
derived in Problem 6.13, determine the nodal temperatures as functions of time
for the case in which ¢ =1, f =0, uy=1, and § =0. Use the Laplace transform
technique [see Reddy (1986)] to solve the ordinary differential equations in time.
Consider a uniform bar of cross-sectional area A, modulus of elasticity E, mass
density m, and length L. The axial displacement under the action of time-
dependent axial forces is governed by the wave equation

Fu 5 u (fl')m

ZE =% 5a AT\

&t ox
Determine the transient response {i.e., find u(x, )] of the bar when the end x =0
is fixed and the end x =L is subjected to a force F,. Assume zero initial
conditions. Use one linear element to approximate the spatial variation of the

solution, and solve the resulting ordinary differential equation in time exactly to
obtain

u,(x, t)=%§(1——cos at), a’=\/§%
Re-solve Prablem 6.15 with a mesh of two linear elements. Use the Laplace
transform method to solve the two ordinary differential equations in time.
Solve Praoblem 6.15 when the right end is subjected to an axial force K, and
supported by an axial spring of stiffness k.

Answer:

_ 3K _ma kIN'?
1{t) = c¢{1 —cos Bt), C*mALﬁ’" ﬁ_\/gL(H-EA)

A bar of length L moving with velocity v, strikes a spring of stiffness k.
Determine the motion u{x, ) from the instant the end x =0 strikes the spring,
Use one linear element.
A uniform rod of length L and mass m is fixed at x =0 and loaded with a mass M
at x = L. Determine the motion u(x, {) of the system when the mass M is
subjected to a force Fy. Use one linear element.

Answer:

PL a {3M -
H=c(l—-cosAf), c=-23, A= 3_(Z_+ )
wity=c(l—cos ), ¢ Py \/_L 7 tm

The flow of liquid in a pipe, subjected to a surge-of-pressure wave (i.e., a water
hammer), experiences a surge pressure p, which is governed by the equation

& & 1/t Dy

% aZp_g oni(l2)

art . Ox m\k  bE
where m is the mass density and X the bulk modulus of the fluid, I¥ is the
diameter and b the thickness of the pipe, and E is the modulus of elasticity of the
pipe material. Determine the pressure p{x, f) using one linear finite element, for
the following boundary and initial conditions:

p(O, t)=p0; P(L, t)=0: p(x! 0)=PO
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6.21,

6.22.

6.23

-

6.24.

6.25.

6.26.

FINITE ELEMENT ANALYSIS GF ONE-DIMENSIONAL PROBLEMS

Consider the problem of ‘determining the temperature distribution of a solid
cylinder, initially at 2 uniform temperature 7o and cooled in a medium of zero
temperature (i.e., T.,=0). The governing equation of the problem is

5T 18 37)
o _ 22 (i) =0
Lo rar(r ar

The boundary conditions are

=1

r=R

aT aT
—(0, ) =0, (k—— T)
3r( ) ¢ 3r+ﬁ

The initial condition is T(r, ) =T,. Dectermine the temperature distribution
T(r,t) using one linear element. Take R=25cm, T;=130°C, k=
15Wm™1°C™, =525Wm?°C™, p=2700kg m~2, and ¢ =09kIkg™'°C™".
What is the heat loss at the surface? W

. . . . e
Determine the nondimensional temperature 8(r, 1) in the region bounded by two
Jong cylindrical surfaces of radii R, and R,. The dimensionless heat conduction
equation is 4

18( gy o8
_1Z rw)-}-——:{)
rér\ or at

with boundary and initial conditions

2R n=0, 6R, D=1 6(,0)=0
Show that (6.44) and (6.45) can be expressed in the alternative form [see (6.47)]
[H]{ﬁ}s-i-l = {F}s+1 - [K]{b}:
where
[H] = BANK] + (M), {b}={u}, + At {a}, + (&~ BYUAN i)
Using the Newmark integration scheme (6.45), express the equation
[MIGay +{CHa} + [K]{u} = {F}

in the form
[K]{u}s+1 = {ﬁ}s-}—l

[R1=[K]+ adM] +as[C)
{ﬁ}si»l = {F}s+1 + [M](ao{u}s + al{a}s + al{ﬁ}:) + [C](as{u}: + aﬁ{d}s + a7{fi}_,)
o o At o '
as_EKt’ aé—'B'_]., a7—?(3—2)
A uniform cantilever beam of length L, moment of inertia I, modulus of elasticity
E, and mass m begins to vibrate with initial displacement

w(x, 0) = wex*/L?

where

and zero initial velocity. Find its displacement at the free end at any subsequent
time. Use one Euler—Bernoulli beam element to determine the solution. Solve
the resulting differential equations in time using the Laplace transform method.

Re-solve Problem 6.25 using one Timoshenko element.
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6.27. Use the Newmark integration scheme to reduce the ordinary differential
equations of time in Problem 6.10 to algebraic equations,
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CHAPTER

7

NUMERICAL

INTEGRATION

AND

COMPUTER .
IMPLEMENTATION

7.1 ISOPARAMETRIC FORMULATIONS
AND NUMERICAL INTEGRATION

7.1.1 Background

Exact evaluation of the integrals appearing in element coefficient matrices and
source vectors is not always possible because of the algebraic complexity of the
coefficients a, b, and ¢ in differential equations. In such cases, it is natural to
seek numerical evaluation of these integral expressions. Numerical evatuation
of the coefficient matrices is also useful in problems with constraints, where
reduced integration techniques are used (see, e.g., the reduced integration
element of the Timoshenko beam theory, Section 4.4). ‘

Numerical evaluation of integrals, called numerical integration or
numerical quadrature, involves approximation of the integrand by a polyno-
mial of sufficient degree, because the integral of a polynomial can be evaluated
exactly. For example, consider the integral,

9= J F(x) dx (7.1)

240
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We approximate the function F(x) by a polynomial:

F(x)=~ 2 Fapy(x) (7.2)

where F; denotes the value of F(x) at the Jth point of the interval [%4, xz] and
P (x) are polynomials of degree N —1. The representation can be viewed as
the finite element interpolation of F(x), where F, is the value of the function at
the Ith node. The interpolation can be of the Lagrange type or the Hermite
type.

Substitution of (7.2) into (7.1) and evaluation of the integral gives an
approximate value of #. Tor example, suppose that we choose linear
interpolation of F(x). Then N =2, 9, = (x5 —x)/h, Y= (x —x,)/h, and

F=3h(F+E), F= F(xs), BE=F(xp) (7.3)
Thus, the value of the integral is given by the area of a trapezoid used to
approximate the area under the function F(x) (see Fig. 7.1). Equation (7.3) is
known as the frapezoidal rule of numerical integration, If we use the Lagrange
quadratic interpolation of F(x), we obtain
F=3h(R+4K+F), F=F(x,),
E=F(xs+3h), F=F(xg)
which is known as Simpson’s one-third rule.

Equations (7.3) and (7.4) represent the form of numerical (E;uadraturc
formulae. In gencral, a quadrature formula has the form

(7.4)

#= [ Feyac~3 Fow, (7.5)
X4 =1
4
|
F(x) i
: | F§
! |
} !
& & -
X X, X = Xg
(@
F(z)

FIGURE 7.1
Approximate evaluation of an in-
» x  tegral using the trapezoidal rule: (a)
X4 X = Xp Two-point formula; (b) three-point
()] formuia,
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where x; are called the quadrature points and W; are the quadrature weights.
These formulae require functional evaluations, multiplications, and additions
to obtain the numerical value of the integral. They yield exact vatues of the
integral whenever F(x) is a polynomial of order r — 1.

In this section, we describe several numerical integration techniques and
formulations in which the geometry as well as the dependent variables are
approximated using different degrees of polynomials. We begin with the
discussion of a local coordinate system.

7.1.2 Natural Coordinates

Of all the quadrature formulae, as will be discussed in the subsequent sections,
the Gauss—Legendre one is the most commonly used. The details of the
method itself will be discussed shortly. The formula requires the integral to be
cast as one to be evaluated over the interval [—1,1]. This requires the
transformation of the problem coordinate x to a local coordinate £ such that
(see Fig. 7.2):

when x=x,, E=-1; when x=x5 E=1
The transformation between x and & can be represented by the linear “stretch”
transformation

x=a-+b§
where a and b are constants to be determined such that the above conditions
hold:
xs=a+b{(-1), xp=at+b(l)

Solving for a and b, we obtain

b=3(xz—x4)=%h, a=3(xp+xa)=xa+t 3h,

Hence the transformation takes the form
x=x,+3ih.(1+E) | (7.6)

where x4 denotes the global coordinate of the left end node of the element °
and #, is the element length (see Fig. 7.2). The local coordinate & is called the
normal coordinate or natural coordinate, and its values always lic between —1
and 1, with its origin at the center of the element. :

The local coordinate £ is useful in two ways: (i) it is convenient in
constructing the interpolation functions; (i) it is required in numerical
integration using Gauss—Legendre quadrature.

e FIGURE 7.2
x5 Olobal coordinate x, local coordinate %, and
1 pormalized local coordinate &.
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The derivation of the Lagrange family of interpolation functions in terms
of the natural coordinate £ is made easy by the property 1 in (3.28) of the
interpolation functions:

: 1 ifi=j

w"(&")_{o if i#j

where §; is the § coordinate of the jth node in the element. For an element
with 7 nodes, ¢, (i=1,2, ..., n) are functions of degree n — 1. To construct

1, satisfying (7.7), we proceed as follows. For each v, we form the product of
n—1 linear functions E-§ (j=1,2,...,i—1,i+1,...,nj+in

Y= c(E—&E)(E—8)  (E~ & )E-Ew) - (E-8)

Note that 1; is zero at all nodes except the ith. Next we determine the constant
c; such that ¢, =1 at §=§;:

G=[E—ENE—8) - (&~ G- )& —Eir) - (E—E)]

Thus, the interpolation function associated with node i is

(E-E)(E-8) - (5~ & )E—8n) - (E-E)
E—E)&E—&) - (&~ &-)&— &) - (&= &)

Interpolation functions that satisfy (7.7) are said to belong to the
Lagrange family of interpolation functions, and the associated finite elements
belong to the Lagrange family of finite elements. The interpolation functions y;
in (3.16b) and (3.18) provide an example of the Lagrange interpolation
functions (# =2). Figure 7.3 shows the linear, quadratic, and cubic Lagrange
interpolation functions expressed in terms of the natural coordinate (for
equally spaced nodes).

1.7

(&) = (7.8)

7.1.3 Approximation of Geometry

Recall from (3.31¢) and (4.12¢) that the element matrices involve the
derivatives of the interpolation functions with respect to the global coordinate

_____ e g=1 - 8)

1 2 '!‘2‘:%(14'&)

=1 - &
do=(1+&(1 -8
g =3(1+ &)

= ;;%(1 —OG+HC- 8  FIGURE 7.3

=51+ (1 - G~ &  Lagrange family of 1-D interpola-
=L+ O - HE+ 8 tion functions in terms of the nor-
b= 3+ HE-HU+ & malized coordinate.
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x. A transformation of the form

x = f(§) (7.9)

is required in order to rewrite the integrals in terms of & (—1=E=1). The
function f is assumed to be a one-to-one transformation. An example of f(£) is
provided by (7.6):

f(Ey=xa+3h(1+5),

In this case, f(E) is a linear function of & Hence, a straight line is transformed
into a straight line. When f is a nonlinear function, a straight line is mapped
into a curve of the same degree as the transformation.

It is natural to think of approximating the geometry in the same way as
we approximated a dependent variable. In other words, the transformation
x = f(E) can be written as d

e

x= ; XPiE) ' (7.10)

where x¢ is the global coordinate of the ith node of the element £° and 11:,? are
the Lagrange interpolation functions of degree m —1. Equation (7.10)
represents the shape (or geometry) of an element, and the ye¢ are therefore
called shape functions. Equation (7.10) maps a geometric shape from & space
into x space, i.e., for any given &, (7.10) gives the corresponding x. When the
element is a straight line, (7.10) is exactly the same as (7.6).

The transformation (7.10) is useful in evaluating integrals by the Gauss
quadrature. It should be noted that the transformation is not used to change
the actual geometry of the element; the transformation is used to write integral
expressions involving x in terms of expressions involving &:

Xg 1
J Fx) dx = j (&) dE (7.11)
XA -1
so that the Gauss quadrature can be used to evaluate the integral over [—1, 1].

The differential element dx in the global coordinate system x is related to
the differential element d& in the natural coordinate system § by

de =2 gg = g, de

d&
where $. is called the Jacobian of the transformation. We have
dx d (& . N
§e=—:-——( x?- f): x?-—-" 7.12
ae = dE\2 ) 2 712

For a linear transformation, i.e., when ¢ are the linear Lagrange interpola-
tion functions (m =2), we have

P=31-8), P.=3(1+8)

(7.13)
Fo = xi(— 1)+ x5(3) =305 — ¥ = e
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It can be shown that $, =31k, whenever the clement is a straight line,
irrespective of the degree of interpolation used in the transformation (7.10).

7.1.4 Isoparametric Formulations

Recall that a dependent variable u is approximated in the element £° by
expressions of the form

u{x)= Ei\, uiPs(x) (7.14)

In general, the degree of approximation used to describe the coordinate
transformation (7.10) is not equal to the degree of approximation (7.14) used
to represent a dependent variable, i.e., f[)}*s& Wi In other words, two
independent elements can be used in the finite element analysis: one for the
approximation of the geometry x and the other for the interpolation of the
dependent variable u. Depending on the relationship between the degree of
approximation used for the coordinate transformation and that used for the
dependent variable, the finite element formulations are classified into three
categories:

1. Subparametric formulations: m <n
2. Isoparametric formulations: m =n (7.15)
3. Superparametric formulations: m >n :

In subparametric formulations, the geometry is represented by lower-order
elements than those used to approximate the dependent variables. An example
of this category is provided by the Euler—Bernoulli beam ¢lement, where the
Hermite cubic element is used to approximate the transverse deflection, while
the geometry is approximated, when straight beams are analyzed, with linear
interpolation functions. In isoparametric formulations (the most common in
practice), the same element is used to approximate the geometry as well as the
dependent unknowns: ;(x) = 9,(&). In the superparametric formulations, the
geometry is represented with higher-order elements than those used to
approximate the dependent variables. This formulation is seldom used in
practice.

7.1.5 Numerical Integration

The evaluation of integrals of the form

b
f F(x) dx (7.16)
by exact means is either difficult or impossible owing to the complicated form
of the integrand F. Numerical integration is also required when the integrand
is to be evaluated inexactly (as in the Timoshenko beam element) and when
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the integrand depends on a quantity that is known only at discrete points (e.g.,
in nonlinear problems).

The basic idea behind all numerical integration techniques is to find a
function P(x) that is both a suitable approximation of F(x) ‘and simple to
integrate. The interpolating polynomials of degree n, denoted by P,, which
interpolate the integrand at n + 1 points of the interval [a, b], often produce a
suitable approximation and possess the desired property of simple in-
tegrability. An illustration of the approximation of the function F (x) by the
polynomial Py{x) that exactly matches the function F(x) at the indicated base
points is given in Fig. 7.4(a). The exact value of (7.16) is given by the area
under the solid curve, while the approximate value

L Py d .

F(x)

{a)

F(x}

(b)

Fx)

FIGURE 74

Numerical integration by  the

Newton—Cotes quadrature: {a) ap-
x proximation of a function by Py(x);
- (p) the trapezoidal rule; ()

Simpson’s rule.
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is given by the area under the dashed curve. It should be noted that the
difference (i.e., the error in the approximation) E = F(x) — Py{x) is not always
of the same sign, and therefore the overall integration error may be small
(because positive errors in one part cancel negative errors in other parts), even
when P, is not a good approximation of F.

The commonly used integration methods can be classified into two basic
groups:

1. The Newton—Cotes formulae that employ values of the function at equally
spaced base points.

2. The Gauss quadrature formula that employs unequally spaced base points.
These are described here.

THE NEWTON-COTES QUADRATURE. For r equally spaced base points, the
Newton—Cotes integration formula is given by

jb F(x)de=(b—a) i F(x)w, .17

where w, are the weighting coefficients and x; are the base points, which are
equally spaced, For r =1, (7.17) gives the rectangle formula. For r =2, it gives
the familiar trapezoidal rule, in which the required area under the solid curve
in Fig. 7.4(b) is approximated by the area under the dotted straight line [i.e.,
F(x) is approximated by Pi(x)]:

j b_:xz F(e)dx = [F(x) + F()l,  E= O (7.18)

where E denotes the error in the approximation and 4 is the spacing between
two base points. The notation O(h), read as “order of £, is used to indicate
the order of the error in terms of the spacing k. For r =3, (7.17) gives the
familiar Simpson’s one-third rule (see Fig. 7.4c):

f b_:” Fx)dx =3h[F(x) + 4F () + F(x;)], E=0@%)  (7.19)

The weighting coefficients for r =1, 2, ..., 7 are given in Table 7.1. Note
that /%8, = 1. The base point location for r=1 is x;,=a+3(b —a)=
1(a + b). For r > 1, the base point locations are

a=a, d;=a+Ax, ..., a,=a+{r—DAx=b

where Ax = (b —a)/(r —1).-

A comment is_in order on the use of the Newton-Cotes integration
formula (7.17). For & r (i.e., when there is an even number of intervals or
an odd number of base points), the formula is exact when F(x) is a polynomial
of degree r +1 or less; for odd r, the formula is exact for a polynomial of
degree r or less. Conversely, a p™-order polynomial is integrated exactly by
choosing r = p + 1 base points.
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TABLE 7.1 :
Weighting coefficients for the Newton—Cotes formula (7.17)

r Wy W Wi Hy Wg W Wy
1 i
1 1
2 3 2
3 1 3 3
1 3 3 1
4 H 2 8 §
5 e 32 1z 32 7.
30 50 o0 5 56
6 pLA s 20 30 a5 19
238 288 288 28 288 283

THE GAUSS-LEGENDRE QUADRATURE, In the Newton—Cotes quadrature,
the base point locations have been specified. If the x; are not specified then
there will be 2r + 2 undetermined parameters, the weights 1, and base points
x;, which define a polynomial of degree 2r +1. The Gauss-Legendre
quadrature is based on this idea. The base points x, and the weights w; are
chosen so that the sum of the r+ 1 appropriately weighted values of the
function yields the integral exactly when F(x) is a polynomial of degree 2r +1
or less. The Gauss—Legendre quadrature formula is given by (see Fig. 7.5)

[ Feyax=| F@ dszlgﬁ(saw,

(7.20)

where w, are the weight factors, & are the base points [roots of the Legendre

. - f l -
=1, | =1
&= g =
—0.57735 (8) 0.57735

|
|
|

l
|
I[—— ¢

£=-1

¢=1  FIGURE 7.5
£ = @) £ = The two-point {a) and three-point (b) Gauss-
(774597

0.774597 Legendre quadratures.
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TABLE 7.2

Weights and Gauss points for the Gauss—
Legendre quadrature

| Ferag=Srceom,

Points &; r Weights w;

0.0000000000 One-point formula 2.0000000000
+0.5773502692 Two-point formula 1.0000000000
0.00000000600 Three-point formula  0.88883838889

+0.7745966692 0.5555555555
+0.3399810435 Four-point formula 0.6521451548
+0.8611363116 0.3478548451

0.0000008000 Five-point formuta 0.5688888889
+0.5384693101 0.4786286705
+0.9061798459 0.23692683850
+0.2386191861 Stx-point formula 0.4679139346
+0.6612093865 0.3607615730
+0.9324695142 0.1713244924

polynomial P,,(£)], and F is the transformed integrand

F(E) = F(x (&) #(E) (7.21)

The weight factors and Gauss points for the Gauss—Legendre quadrature
(7.20) are given, forr =1, ..., 6, in Table 7.2.

The Gauss-Legendre quadrature is more frequently used than the
Newton—Cotes quadrature because it requires fewer base points (hence a
saving in computation) to achieve the same accuracy. The error in the
approximation is zero if the (2r + 2)th derivative of the integrand vanishes, In
other words, a polynomial of degree p is integrated exactly by employing
r=3(p +1) Gauss points. When p +1 is_odd, one should pick the nearest
larger integer:

r=[3(p +1)] (7.22)

In finite element formulations, we encounter integrals whose integrands F
are functions of x, ,;(x) and derivatives of y,{x) with respect to x. For the
Gauss-Legendre quadrature, we must transform F(x) dx to F(E)dE to use
(7.20). For example, consider the integral

N
K5 = f a(x)—d%%dx (7.23)

Using the chain rule of differentiation, we have

dyi(e) _ dys(8) dé
dx d&  dx

dypi(§)

i (7.24)

=gt
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Therefore, the integral can be written, with the help of (7.10}, as

e[ 1dyildy;
Ki= | abe(@) 5yt 5 e F (7.25)
= 21 F HEDw; {7.26)

where

pe _ L dvidy; oo A
e N L
o dE

For the isoparametric formulation, we take ¥f= . The transformation from
x to & is not required for the Newton—Cotes quadrature. .

As noted earlier, the Jacobian matrix will be the same (. = 3h.) when
the element is straight, even if the coordinate transformation is quadratic or
cubic. However, when the element is curved, the Jacobian is a function of §
for transformations other than linear.

1t is possible to determine the number of Gauss points required to
evaluate the finite element matrices

(7.27)

%5 dre S X g Xg
K;}:L %—%}dx, M;;:j weyt dx, F§=L widxe  (7.28)
exactly using linear, quadratic, and cubic interpolation functions. For linear
interpolation functions, the integrand of Kj is constant, requiring only
one-point Gauss quadrature. The integrand of the mass matrix M7 is quadratic
(p =2), requiring [r =3(p +)1=1] two-point quadrature. The coefficients f§
are evaluated exactly by one-point quadrature. Similarly, for quadratic and
cubic elements, we can estimate the number of Gauss points needed to
evaluate Kj, Mj, and f{ exactly. The results are summarized below. Note that,
in estimating the quadrature poiats, it is assumed that the Jacobian is a
constant, which holds true when the element is a straight line.

XA

Number of Gauss quadrature points needed

Element

type K5 M5 fi
Linear 1 2 1

Quadratic 2 3 2

Cubic 3 4 3

_If the matrices in (7.28) have variable coefficients or the elements are
curved {and hence %, = %.(£)], the degree of the variation of the integrands
changes and the number of Gauss points needed to evaluate the integral
exactly changes. If the elements are straight, and the coefficients g = a{x) and
¢ =c(x) together with f = f(x) are no more than linear in x, then the number
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of Gauss points for evaluating the coefficients

£ __ 8 gﬁiﬁ c_fxa & e
,,_L s Mi=[ eyt (7.29)
remain the same as listed in the above table. However, the evaluation of f¢
requires one point more than before. Conversely, the two-point quadrature for
linear elements, three-point quadrature for quadratic elements, and four-point
quadrature for cubic elements would exactly evaluate K7 with a quadratic
variation of a(x), My with linear variation of c(x), and f¢ with quadratic
variation of f(x).

The use of Gauss quadrature on (7.28) yields the following values (exact
up to the fifth decimal place) when the element is straight and the
isoparametric formulation is used:

Quadratic (three-point formula)

[ | 233333 —2.66667 0.33333
{K}=E— —2.66667  5.33333 —2.66667
‘L 033333 —-2.66667 2.33333
5 [ 1.33333 0.66667 —0.33333
{M]zi—é 0.66667 5.33333  0.66667 (7.30)
| —0.33333  0.66667 1.333433
0.166667
{F} = h,4 0.666667
0.166667

Cubic (four-point formula)

C 3700 —4.725 1350 —0.325
(k=L | 4725 10800 —7.425 1350
he| 1350 —7.425 10.800 —4.725
L-0325 1350 —4.725 © 3.700
T 0.761905  0.589286 —0.214286  0.113095
()= | 0589285 3857143 —0.482143 0214286 0.3
10 | —0.214286 —0.482143  3.857143  0.589286
0.113095 ~0.214286  0.589286  0,761905
0.125
. 0.375
E}=heq 0,375
0.125

In Section 7.2, we study the computer implementation of the steps
involved in the finite element analysis of one-dimensional problems. As a part
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of the element calculations there, the computer implementation of the
numerical integration ideas presented in this section will be studied. A model
finite element program (FEMIDV2) for the solution of one-dimensional
problems is also described, and its application is demonstrated via several
examples. Appendix 1 contains a source listing of program FEM1DV2.

7.2 COMPUTER IMPLEMENTATION

7.2.1 Introductory Comments

Chapters 3-6 were devoted to the finite element formulations of two classes of
boundary value, initial value, or eigenvalue problems in one dimension:
A
;-
1. Second-order differential equations (e.g., heat transfer, fluid mechanics,
1-D elasticity, bars, and the Timoshenko beam theory);r

2. Fourth-order differential equations governing the Euler-Bernoulli beam
theory.

The frame element, obtained by superposing the bar element and the beam
element, was discussed in Chapter 4.

By now, it should be clear to the reader that the steps involved in the
finite element analysis of a general class of problems (e.g., single second-order,
single fourth-order, and a pair of second-order equations) arc systematic and
can be implemented on a digital computer. Indeed, the success of the finite
element method is largely due to the ease with which the analysis of a class of
problems, without regard to a specific problem, can be implemented on a
digital computer. For different geometries, boundary and initial conditions,
and problem data, a specific problem from the general class can be solved by
simply supplying the required input data to the program. For example, if we
develop a general computer program to solve equations of the form

Ju azu a Ju 32 3214
[ 3 Ca 8:2 (a ) + 3 ( 5 +cu r (7 )

then all physical problems described by (3.1) and (4.1) and their time-
dependent versions can be solved for any compatible boundary and initial
conditions.

The purpose of this section is to discuss the basic steps involved in the
development of a computer program for second- and fourth-order one-
dimensional differential equations studied in the preceding chapters. The ideas
presented here are used in the development of the model program FEM1DV2
(a revised version of FEM1D from the first edition of this book), and they are
meant to be illustrative of the steps used in a typical finite element program
development. One can make use of the ideas presented here to develop a
program of one’s owi.



NUMERICAL INTEGRATION AND COMPUTER TMPLEMENTATION 259

PREPROCESSOR

+ Read the input data
+ Echo the input data
» Write the input data
and plot the mesh

PROCESSOR

Compute element
coefficient matrices
and column vectors
Assemble element
equations

Impose boundary
conditions

Solve equations or
find cigenvalues

POSTPROCESSOR

* Compute solution

at points other

than the nodes

+ Compute the gradient
of the solution

« Prini/plot the results

FIGURE 7.6

The three main functional units of a finite element program.

7.2.2 General Qutline

A finite element program consists of three basic parts (see Fig. 7.6):

1. Preprocessor
2. Processor
3. Postprocessor

In the preprocessor part of the program, the input data of the problem
are read in and/or generated. This includes the geometry (e.g., length of the
domain and boundary conditions), the data of the problem (e.g., coefficients in
the differential equation), finite element mesh information (e.g., element type,
number of elements, element length, coordinates of the nodes, and connec-
tivity matrix}), and indicators for various options (e.g., priat, no print, type of
field problem analyzed, static analysis, eigenvalue analysis, transient analysis,
and degree of interpolation}.
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In the processor part, ali steps in the finite element method, except for
postproeessing, discussed in the preceding chapters are performed. These
incfude the following:

Generation of the element matrices using pumerical integration.

1.

2. Assembly of clement equations.

3, Imposition of the boundary conditions.
4.

Solution of the algebraic equations for the nodal values of the primary
variables.

In the postprocessor part of the program, the solution is computed by
interpolation at points other than nodes, secondary variables that are derivable
from the solution are computed, and the output data are processed in a desired
format for printout and/or plotting.

The preprocessor and postprocessors can be a few Fortran statements to
read and print pertinent information, simple subroutines (e.g., subroutines to
gencrate mesh and compute the gradient of the solution), or complex
programs linked to other units via disk and tape files. The processor, where
typically large amounts of computing time are spent, can consist of several
subroutines, each having a special purpose (e.g., a subroutine for the
calculation of element matrices, a subroutine for the imposition of boundary
conditions, and a subroutine for the solution of the equations). The degree of
sophistication and the complexity of a finite element program depend on the
general class of problems being programmed, the generality of the data in the
equation, and the intended user of the program. It is always desirable to
describe, through comment statements, all variables used in the computer
program. A flow chart of the computer program FEM1DV2 is presented in
Fig. 7.7. In the following sections, a discussion of the basic components of a
typical finite element program is presented, and then the basic ideas are
illustrated via FORTRAN statements (see Appendix 1). .

7.2.3 Preprocessor

The preprocessor unit consists of reading input data and generating finite
element mesh, and printing the data and mesh information. The input data to
a finite clement program consist of element type IELEM (i.e., Lagrange
element or Hermite element), number of clements used (NEM), specified
boundary conditions on primary and secondary variables (number of boundary
conditions, global node number and degree of freedom, and specified values of
the degrees of freedom), the global coordinates of nodes X;, and element
properties (e.8., coefficients a,, b., ¢., f., etc.). If a uniform mesh is used, the
length of the domain should be read in, and global coordinates of the nodes
can be generated in the program.

The preprocessor portion that deals with the generation of finite element
mesh (when not supplied by the user) can be separated into a subroutine
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(MESHLD), depending on the convenience and complexity of the program.
Mesh generation includes computation of the global coordinates X; and the
connectivity array [B]= [NOD]. Recall that the connectivity matrix describes
the relationship between element nodes to global nodes:

NOD(Z, J) = global node number corresponding to the Jth node of
element I

This array is used in the assembly procedure as well as to transfer information
from element to the global system and vice versa. For example, to extract the
clement nodal coordinates x7 of the element Q" from the global coordinates
X,, we can use the array NOD:

x*=X, 1=NOD(n,i) .

7

The arrays {ELX} and {GLX} are used in FEMIDV?2 for {x7} and {Xi},
respectively. .

7.2.4 Calculation of Element Matrices (Processor)

The most significant part of a processor is where we generate element
matrices. The element matrices are computed in various subroutines
(COEFNT and TRSFRM), depending on the type of problem being solved.
These subroutines typically involve numerical evaluations of the element
matrices [K°] and [M°] (program variables ELK and ELM) and the element
vector {f°} (program variable ELF) for various field problems. The Gauss
quadrature described in Section 7.1.5 is used to evaluate clement matrices and
vectors, and the arrays are assembled as soon as they are computed. Thus, a
joop on the number of elements in the mesh (NEM) is used to compute
element matrices and assemble them (subroutine ASSMBL). It is here that the
connectivity array NOD plays a crucial role. By putting element matrices into
global locations one at a time, we avoid the computation of all element
matrices at once.

Element matrices for different model equations (MODEL) and type of
problem (NTYPE) are generated by assigning values as follows:

1, MODEL=1, NTYPE=0: all field problems described by the model
equation (3.1), including radially symmetric heat-transfer-type problems.

2. MODEL =1, NTYPE = 1: radially symmetric elastic disk problems (see¢
Problem 3.33).

3. MODEL=2, NTYPE=0 (RIE) or 2 (CIE): the Timoshenko theory of
beams.

4. MODEL =2, NTYPE =1 (RIE) or 3 (CIE): the Timoshenko theory for
bending of circular plates.

5. MODEL =3, NTYPE =0: the Euler—Bernoulli theory of beams.

6. MODEL=3, NTYPE=1: the Euler—Bernoulli theory for bending of
circular plates.
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7. MODEL =4, NTYPE = 0: the two-node truss element.
8. MODEL =4, NTYPE =1: the two-node Euler—Bernoulli frame element.
9. MODEL =4, NTYPE =2: the two-node, Timoshenko frame element.

The time-dependent option is exercised through variable ITEM:

ITEM =0 static analysis
ITEM=1  first-order time derivative (i.e., parabolic) problems
ITEM =2 second-order time derivative (i.e., hyperbolic) problems

The element matrices are evaluated using the Gauss quadrature, except for
MODEL =4, where the explicit forms of element coefficients are programmed
in the interest of computational efficiency.

The element shape functions SF and their derivatives GDSF are
evaluated at the Gauss points in subroutine SHP1D. The Gaussian weights and
points associated with two-, three-, four-, and five-point integration are stored
in arrays GAUSWT and GAUSPT, respectively. The nth column of
GAUSWT, for example, contains the weights corresponding to the n-point
Gauss guadrature rule:

GAUSPFT(i, n) = ith Gauss point corresponding to the n-point
Gauss rule

The variable NGP is used to denote the number of Gauss points, which is
selected to achieve good accuracy. As noted earlier, the linear, quadratic, and
cubic interpolation functions require two, three, and four quadrature points,
respectively, to evaluate the element coefficients exactly. Thus, if IELEM is
the element type,

1 for linear
IELEM =14 2 for quadratic (Lagrange elements)
3 for cubic

then NGP =IELEM + 1 would evaluate Kj, M$, and ff [see (7.29)] exactly
when c(x) is linear, and a(x), b(x), and f(x) are quadratic functions. The
Hermite cubic element is identified with IELEM =0, for which case NGP is
taken to be 4.

The coefficients a(x) = AX, b(x) =BX, and ¢(x)=CX, together with
f{x)=FX in the differential equation (7.32) are assumed to vary with x as
follows:

AX = AX0 + AX1#X - (a=ap+a;x)
BX =BX0+BX1*X (b =bo+bix)
CX =CX0+CX1#X (c=co+cix)

FX=FX0+FX1*X+FX2xX*X (f=f+fix +fx%)

For radially symmetric elasticity problems, (AX0, AX1) [or (BX0, BX1) for
circular plates] are used to input Young’s modulus £ and Poisson’s ratio v.
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The Gauss quadrature formula (7.20) can be implemented on the
computer as foliows. Consider Kj of the form

o dysdys )
k= [ a0 S+ ey ar (.39

Let us use the following program variabies for the quantities in (7.33):

dyi
dx

ELK(,J)=K5 SE(D)=vi GDSFI)=

AX=a(x), CX=c(x), ELX()=x{
NPE =#n, the number of nodes in the element

After transforming x to &, .

X

x=Q,xyi [= wé,i +3h.(1+ B)] (7.34)

H

the coefficients K§ in (7.33) take the form [see (7.25)]

€ — ’ l.d_wi.l_g_lp_; €a1,€
Kii—j_l [a(g)g 4 ¢ dE +C(§)1p,-1pj]fd8 (7.35a)
= 2 FieIW, (7.356)

e

where Fj denotes the expression in the square brackets in (7.35a), ¥ is the
Jacobian, and (&;, W,) are the Gauss points and weights.

Examination of (7.35b) shows that there are three free indices: i, j, and I.
We take the Gauss-point loop on [ as the outermost one.’ Inside this loop, we
evaluate F§ at the Gauss point g, for each { and j, multiply with the Jacobian
¢ = 1h, and the weights W, and sum:

ELK(, j) = ELK(, j) + Fi(E)FW; (7.36)

To accomplish this, we must initialize ail arrays that are being evaluated using
the Gauss quadrature:

DO 10 J = 1,NPE
po 10 I = 1,NPE
10 EIK(I,J) = 0.0

This initialization is made outside the do-loop on number of Gauss points.
The computation of coefficients Fj in 7.35b) requires evaluation of a, ¢,

,, and dy,;/dE at the Gauss point g,. Hence, inside the loop on I, we call

cubroutine SHP1D to evaluate v, dy;/dx = (dy;/dE)/F. We now have all
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quantities needed to compute K in (7.355);

DO 100 NI = 1,NGP
XI = GAUSPT(NI,NGP)

C
c call subroutine SHP1D to evaluate the interpolation functions
o] {§F} and theilr global derivatives (GDSF) at the Gauss point XI
c

CALL SHP1D({XI,NPE,SF,GDSF,GJ)

CONST = GI*GAUSHT (NI,NGP)
C

X =0.0

DO 20 I=1,NPE

20 X = X + SF(I)*ELX{I)

C

AX=AXO0 + AX1#*X
CX=CX0 + CX1*X
DO 30 J = 1,NPE
ELF(J) = ELF(J) + CONST*SF(J)*FX
DO 30 ¥ = 1,NPE
30 ELK(I,J)~ELK(I,J)+CONST* (AX*GDSF (I)*GDSF (J)+CX*SF (I} *SF (T} )

In the same way, all other coefficients (e.g., M;; and f5) can be evaluated.
Recall that the element properties (i.c., K§, My, and ff) are calculated by
calling a suitable subroutine (COEFNT or TRSFRM) for the field problem
being analyzed within a loop on number of elements. As soon as the element
properties are available for a particular element, they are put into their proper
locations (i.e., assembled) with the help of array NOD. The assembly is
explained in the next section. :

7.2.5 Assembly of Element Equations (Processor)

The assembly of element equations should be carried out as soon as they are
computed, rather than waiting till element coefficients of all elements are
computed. The latter requires storage of the element coefficients of each
element. In the former case, we can perform the assembly in the same loop in
which a subroutine is called to calculate element matrices.

A feature of the finite element equations that enables us to save storage
and computing time is the assembly of element matrices in upper-banded form.
When element matrices are symmetric, as is the case in most problems of
interest in this book, the resulting global (or assembled) matrix is also
symmetric, with many zeros away from the main diagonal. Therefore, it is
sufficient to store only the upper half-band of the assembled matrix. The
half-bandwidth of a matrix is defined as follows. Let N, be the number of
matrix elements between the diagonai element and the last nonzero element in
the ith row, after which all elements in that row are zero; the half-bandwidth is
the maximum of (N;+ 1) X NDF, where NDF is the number of degrees of
freedom per node:

b; = max [(N; + 1) X NDF]

l<i=n
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where # is the number of rows in the matrix (or equations in the problemy}.
General-purpose equation solvers are available for such banded systems of
equations.

The half-bandwidth NHBW of the assembled (i.e., global) finite element
matrix can be determined in the finite element program itself. The local nature
of the finite element interpolation functions (i.e., ¢ are defined to be nonzero
only over the element Q°) is responsible for the banded character of the
assembled matrix. Recall from earlier discussions that if two global nodes do
not belong to the same element then the corresponding entries in the global
matrix are Zeros:

K,; =0 if global nodes I and J do not correspond to local nodes
of the same element

A
This property enables us to determine the half-bandwidth NHBW of the
assembled matrix:
NHBW:= max {abs[NOD(N,I)-NOD®,J )] +1} x NDF  (7.37a)
=N=<NEM
llél, J=NPE
where

NEM = number of elements in the mesh
NPE = number of nodes per element (7.37b)

NDF = number of degrees of freedom per element

Clearly, for one-dimensional problems with elements connected in series,
the maximum difference between nodes of an element is equal to NPE— 1.
Hence,

NHBW = [(NPE — 1) + 1] x NDF = NPE x NDF (7.38)

Of course, NIIBW is always less than or equal to the total number of primary
degrees of freedom, i.e., the number of equations, NEQ, in the finite element
mesh of the problem. '

The logic for assembling the element matrices Kj into the upper-banded
form of the global coefficients Ky, is that the assembly can be skipped
whenever J <1 and J>NHBW. The main diagonal, I=J, of the assembled
square matrix (i.e., full storage form), becomes the first column of the
assembled banded matrix (i.e., banded storage form), as shown in Fig. 7.8.
The upper diagonals (parallel to the main diagonal) take the position of
respective columns in the banded matrix. Thus, the banded matrix has
dimension NEQ x NHBW, where NEQ denotes the total number of equations
in the problem.

_ The element coefficients Kj; and f7 of a typical element Q" are o be
assembled into the global coefficient matrix [K] and source vector {F},
respectively. If the ith node of the clement is equal to the Ith global node, and
the jth node of the element is equal to the Jth global node, we have

Ky=Ki, F=F (forNDF=1) (7.39a)
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Full storage mode Upper-half-banded mode

: Half-bandwidth = NHBW
X x % X All blanks % x x x|
X X X % contain zeros X X X
X X X X . X X X X
< x x\ All entries above X X %
“x_x X X X X
\X X X X
A X X X X
X X X
X X X X
Symmetric XX X
X X X X
x X %7
e
x x|
s
XL_.__._J
— N s -
Main diagonal -
NEQ x NEQ NEQ x NHBW
FIGURE 7.8

Finite element coefficient matrix storage in upper-half-banded form.

The values of I and J can be obtained with the help of array NOD:
I=NOD{n, i), J=NOD(n,j) (7.39h)

Recall that it is possible that the same J and J may correspond to a pair of i and
Jj of some other element Q™. In that case, K} will be added to existing
coefficients K, during the assembly. For NDF > 1, the logic still holds, with
the change

K(NR)(NC) = K,('l,'+p_])(f+qﬁl) (p, q= I, 2, Ve NDF) (7.400)
where
NR=(I—1)XNDF+p, NC=(@—1)xNDF+q  (7.400)

and / and J are related to { and j by (7.39b). A Fortran listing of the subroutine
ASSMBL can be found in FEM1DV2 in Appendix 1.

7.2.6 Imposition of Boundary Conditions (Processor)

Imposition of boundary conditions on the primary and secondary global
degrees of freedom can bé carried out through a subroutine (BONDRY),
which remains unchanged for 2-D or 3-D problems. There are three types of
boundary conditions for any problem:

1. Essential boundary conditions, i.e., boundary conditions on primary
variables {Dirichlet boundary conditions).
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2. Natural boundary conditions, i.e., boundary conditions on secondary
variables (Neumann boundary conditions}.

3. Mixed boundary conditions (Newton boundary conditions).

The procedure for implementing the boundary conditions on the primary
variables involves modifying the assembled coefficient matrix (GLK) and
right-hand column vector (GLF) by three operations:

Step 1 moving the known products to the right-hand column of the matrix
equation.

Step 2 replacing the columns and rows of GLK corresponding to the
known primary variable by zeros, and setting the coefficient on the
main diagonal to unity.

Step 3 replacing the corresponding component of the right-hand Column by
the specified value of the variable.

Consider the following N algebraic equations in full matrix form:

Ky K Kip ... U B
Ky Ka Kaz ... th _ B

Ksi Ky Ky oo |1 Us 5

where U; and F are the global primary and secondary degrees of freedom, and
K, are the assembled coefficients. Suppose that U= Us is specified. Recall
that when the primary degree of freedom at a node is known, the correspond-
ing secondary degree of freedom is unknown, and vice versa. Set Kgg=1 and

F, = Us; further, set Kg;=K;s=0forI=1,2,..., Nand [ # 8. For § =2, the
modified equations are
Ky 0 Ki3 K ... Ky B)
0 1 0 0 ... 0 0,
Ky 0 Ky Kiy ... Ky, = ﬁls ’
._Knl 0 Kn3 Kn4 e Kﬂlt_ ﬁr'zj

where
E=FE-K,0, (i=1,3,4,5,...,n;i#2)

Thus, in general, if Ug = U, is known, we have
Kgs=1, F= ﬁs', E=E”K:sﬁs; Ks=Kis=10

where i=1,2,...,5~1, S+1,..., n(i#S5). This procedure is repeated for

“every specified primary degree of freedom. It enables us to retain the original
order of the matrix, and the specified boundary conditions on the primary
degrees of freedom are printed as part of the solution. Of course, the logic
should be implemented for a banded system of equations.
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The specified secondary degrees of freedom (Q,) are implemented
directly by adding their specified values to the computed vaiues. Suppose that
the point source corresponding to the Rth secondary degree of freedom is
specified to be F. Then

Fr=fr + Iy
where fr is the contribution due to the distributed source f(x); f is computed

as a part of the element computations and assembled,
Mixed-type boundary conditions are of the form

d
2 E‘x‘_ +k(u-—#a)=0 (i andk are known constants) (7.41)

which contains both the primary variable u and the secondary variable
adu/dx. Thus adu/dx at the node P is replaced by —k,(u, — i1,):

Qp =~k (U, — [Z,)
This amounts to modifying K, by adding k,, to its existing value,
Kpp (—Kpp + kp
and adding k,U, to F,,
'FJ;? é—F;’ + kP UP

All three types of boundary conditions are implemented in subroutine
BONDRY for boundary, initial, and eigenvalue problems. The following are
used in subroutine BONDRY (see Appendix 1):

NSPV number of specified primary variables

NSSV number of specified secondary variables
NNBC  number of Newton boundary conditions
VSPV column of the specified values U, of primary variables

VSSV column of the specified values , of secondary variables (7.42)
VNBC  column of the specified values k,
UREF column of the specified values U,
ISPV array of the global node and degree of freedom at the
node that is specified [ISPV(I, 1) = global node of the
Ith boundary condition, ISPV(I, 2) = degree of freedom
specified at the global node, ISPV(I, 1)]

Similar definitions are used for ISSV and INBC arrays.

7.2.7 Solution of Equaﬁons and Postprocessing

Subroutine SOLVE is used to solve a banded system of equations, and the
solution is returned in array GLF. The program performs the Gaussian
elimination and back-substitution to compute the solution. For a discussion of
the Gaussian elimination used to solve a set of linear algebraic equations, the
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reader is referred to the book by Carnhan, Luther, and Wilkes (1969). On
most computing systems, a variety of equation solvers are available, and one
can use any of the programs that suits the needs. See Appendix 1 for a listing
of subroutine SOLVER.

Postprocessing involves computation of the solution and its gradient at
preselected points of the domain. Subroutine PSTPRC is used to evaluate the
solution and its derivatives in any element:

u(x)= i i Pi(x); (du”)\x= i uj (Eﬂ)

j=1 dx j=1 dx

(7.43a)

x

for the Lagrange elements and

i

n ive n d"l ?
=3 wei, =2 u( G
j=1 x j=1

(m=1,2,3) (743b)

dx™ /7,
for the Hermite cubic elements. The nodal values 1 of the element ° are
deduced from the global nodal values U; as follows: ‘

ui=U, [=NOD(, j), when NDF=1
For NDF > 1, T is given by I =[NOD(e, j) — 1} X NDF and
u_?+p= Ui+p (P = 1) 2) LR NDF)

The values computed using the derivatives of the solution are often
inaccurate because the derivatives of the approximate solution become
increasingly inaccurate with increasing order of differentiation. For example,
the shear force computed in the Euler-Bernoulli beam theory,

d [ d*w nd( d¢f
V= (b5 = (b= 5) 7.44
de \ dx? ,21 ae\ dx? (7.44)
will be in considerable error compared with the true value of V. The accuracy
increases, rather slowly, with mesh refinement and higher-order elements.

When accurate values of the secondary variables are desired, it is recom-
mended that they be computed from the element equations:

0f=S Kui—ff (i=1,2,...,n) (7.45)
i=1

However, this requires recomputation or saving of element coefficients Kj and

fi.

7.3 APPLICATIONS OF THE COMPUTER
PROGRAM FEMIDY2

7.3.1 General Comments

The computer program FEM1DV2, which embodies the ideas presented in the
previous section, is intended to illustrate the use of the finite element models
developed in Chapters 3-6 to a variety of one-dimensional field problems,
some of them not discussed in this book. FEM1DV2 is a modified version of
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FEMID from the first edition of this book. It was developed as a learning
computational tool for students of the course. In the interest of simplicity and
ease of understanding, only the model equations discussed in this book and
their immediate extensions are included in the program (see Appendix 1).

Table 7.3 contains a summary of the definitions of coefficients of various
model problems and their corresponding program variables. The table can be
used as a ready reference to select proper values of AX0, AX1, and so on for
different probiems.

7.3.2 Hlustrative Examples

Here we revisit some of the example problems considered earlier to illustrate
the use of FEMIDV2 in their solution. Only certain key observations
concerning the input data are made, but complete listings of input files for each
problem are given. In the interest of brevity, the output files for most problems
are not included. Table 7.4 contains a description of the input variables to
program FEM1DV2.

Example 7.1 Steady heat transfer in a fin. The problem is governed by

2
—%-&-CH 0 for 0<x<L
d4e
8(0) = 6,, —) -
0 =6, (dr . 0 (Set 1)
o )’
=6 —— - =
6(0) = 6., ( etk ) =0 (et

where 6 is the nondimensional temperature, and L, ¢, 6,, B, and k are

L=0.25m, ¢=25m™>, 6,=100°C,

7.46
B=64Wm?2°C™, k=50Wm°C! (7.46)

Thus the problem is governed by the model equation (3.1).

Hence, MODEL =1, NTYPE =0, and ITTEM =0 (for a steady-state solution).
Since- a=a,=1.0 and ¢=c¢,= PB/k =256 are the same for all elements, we set
ICONT =1, AX0=1.0, and CX0=256.0. All other coefficients are zero [b=0 and f
(=g} =0} for this probler. For a uniform mesh of four linear elements (NEM =4,
IELEM = 1), the increments DX(I) are [DX(1) is always the coordinate of node 1];

{DX} = {0.0, 0.0625, 0.0625, 0.0625, 0.0625}

(because 1L =0.25/4 =0.0625)..

Set 1 boundary conditions are U/, =0 and Q=0. Since the natural boundary
condition (Q3 = 0) is homogeneous, there is no need to add a zero to the corresponding
entry of the source column (F+ Q3— F). There are no mixed (i.e., convection)
boundary condifions. Hence, NSPV =1, N§SV =0, and NNBC=0, The specified
boundary condition on the primary variable is at node 1 and degree of freedom 1
ISPV(1, 1) =1 and ISPV(1, 2) = 1. The specified value is VSPV(1) = 100.0.
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TABLE 7.4

Description of the input variables to the program FEM1DV2{

* Data Card 1:
TITLE -
* Data Card 2:

MODEL —
HTYPE -

ITEM -

% Data Card 3:

IELEM -

NEM -
* Data Card 4:

ICONT -

NPRNT -

Title of the problem being solved (80 characters)

Model eguation being solved (see below}
Type of problem solved (see below)

MODEL~=1, NTYPE=0: A problem of MODEL EQUATION 1
MODEL=1, NTYPE=1: A circular DISK (PLANE STRESS)
MODEL=1, NTYPE>1: A cireular DISK (PLANE STRAIN)
MODEL~2, NTYPE=0: A Timoshenko BEAM (RIE#) problem
MODEL=2, NTYPE=1: A Timoshenko PLATE (RIE) problem
MODEL=2, NTYPE=2: A Timoshenko BEAM (CIEF#) problen
MODEL=2, NTYPE>2: A Timoshenko PLATE (CIE} probleir
MODEL=3, NTYPE=0: A Euler-Bernoulll BEAM problem
MODEL=3, NTYPE>O: A Euler-Bernoulli Circular plate
MODEL=4, NTYPE=0: A plane TRUSS problen

MODEL=4, NTYPE=1: A Euler-Bernoulli ‘FRAME problem
MODEL=4, NTYPE=2: A Timoshenke (CIE)} FRAME problem

# - Reduced Integration Element (RIE}
## - consistent Interpolation Element (CIE)}

Indicator for transient analysis:
ITEM=0, Steady-state solution
ITEM=1, Transilent analysis of PARABOLIC equations

ITEM=2, Transient analysis of HYPERBOLIC eguations
ITEM=3, Eigenvalue analysis

Type of finite element:

IELEM=0, Hermite cubic finite element
IELEM=1, Linear Lagrange finite element
IELEM=2, Quadratic Lagrange finite element

Number of elements in the mesh

Indicator for continuity of data for the problem:

ICONT=1, Data (AX,BX,CX,FX and mesh} is continuous
ICONT=0, Data is element dependent

Indicator for printing of element/global matrices:

NPRNT=0, Not print element or global matrices
but postprocess the solution and print
NPRNT=1, Print Element 1 coefficient matrices only
but postprocsess the solution and print

+ SKIP means that you omit the input data. It does not m
heré, variables of each data card are read from the same line; if the values are not found on the same line, the
computer will fook for them on the next line(s)., Each
variable pames included in the data sets of Tables 1.5-7.

not 1ead by the computer.

ean that you leave a blank. In the “free format’’ used

data card should start with a new line. Note that the
14 are only for the convenience of the reader—they are
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TABLE 7.4 (Continued)

NPRNT=2, Print Element 1 and global matrices but
HOT postprocess the solution

NPRNT>2, Not print element or global matrices and
*NOT postprocess the solution

8KRIP Cards 5 through 15 for TRUSS/FRAME problems (MODEL = 4), and
read Cards 5 through 15 only if MODEL.NE.4. SKIP Cards 5 through 9
if data is discontinuous (ICONT = 0)

* Data Card 5:

DX(I) - Array of element lengths. DX(1) denotes the global
coordinate of Node 1 of the wmesh; DX(I) (I=2,NEM1}
denotes the length of the (I-1)st element. Here
NEM1=NEM+1, and NEM=number of elements in the mesh.

cards 6 through 9 define the coefficients in the model equations.
All ccefficients are expressed in terms of GLOBAL coordinate x.
See Table 7.3 for the meaning of the coefficients, especially for
deformation of circular plates and Timoshenko elements.

* Data Card 6:

AX0 - Constant term of the coefficient AX
AX1 - Linear term of the coefficient AX

* Data Card 7:

BX0 ~ Constant term of the coefficient BX
BX1 - Linear term of the coefficient BX

* Data Card 8:

CX0 - Constant term of the coefficient CX
CX1 - Linear term of the coefficient Cx

SKIP Card 9 for eigenvalue problems (i.e. ITEM=3)

* Data Card 9:

FX0 - Constant term of the coefficient FX
FX1 - Linear term of the coefficient FX
FX2 - Quadratic term of the coefficient FX

SKIP Cards 10 through 15 if data is continuous (ICONT.HE.0). Cards
10 through 15 are read for each element (i.e., NEM times}. All
coefficients are expressed in terms of the GLOBAL coord

* Data Card 10:

{GLX} ~ Global x-coordinates of the FIRST and LAST nodes
of the element

* Data Card 1i:
{HOD} - Connectivity of the element:
NOD({N,I})=Global node number corresponding to the

I-th node of 'Element N (I=1,NPE)
NPE .denctes the Number of nodes Per Element

* Data Card 12:
{DCAX}~- Constant and linear terms of the coefficient AX
* Data Card 13:

{DCBX}~- Constant and }linear terms of the coefficient BX
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TABLE 7.4 (Continued)

* Data Card 14:

{DCCX} -

* Data Card 15:

{DCFX}~-

READ Cards
SKIP Cards

16
16

*# pata Card 16:

HHM

SKIP Cards
19 through

17
19

% Data Ccard 17:

FR
SE
SL
SA
5T
cs
SN

# PR

is

* Data Card 18:

HF
\'23
PF
XB

CHT
SNT

* Data Card 19:

{NOD}

READ Cards
20 and 21

20

caonstant and linear terms of the coefficient CX
hY

Constant, linear and quadratic terms of FX

K

through 21 for TRUSS/FRAME problems (MODEL 4} .

through 2i if MODEL.NE.4

Number of nodes in the finite element mesh

through 19 for TRUSS problems (NTYPE = 0}. Cards
are read for each element, i.e., NEM times
g

—_

Polsson’s ratio of the material# _
Young’s modulus of the material ‘

Length of the element

Cross—ectional area of the element

Moment of inertia of the element

Cosine of the angle of orientation of the element
Sine of the angle of orientation of the element
Angle is measured counter-clock-wise from X axis

not used for the Euler -Bernoulli element

Intensity of the horizontal distributed force
Intensity of the transversely distributed force
Point load on the element

Distance from node 1, along the length of the
element, to the point of load application, PF
Cosine of the angle of orientation of the load PF
Sine of the angle of orientation of the lcad PF
Angle is measured counter-clock-wise from the
element x axis

Connectivity of the element:
NOD(MN,T) = Global node number corrasponding to the
I~th node of Element N (I=1,NPE)

and 21 only for TRUSS problems (NTYPE = 0). Cards

are read for each element;i.e., NEM times

* Data Card 20:

SE
5L
SA
cs
SH

HF

" % pata Card 21:

{NOD}

Young’s modulus of the material

Length of the element

Crogs-ectional area of the element

Cosine of the angle of orientation of the element
Sine of the angle of orientation of the element
Angle is measured counter-clock-wise from x axis
Intensity of the horizontal distributed force

Connectivity of the element:
NOD(N,I) = Global node number corresponding to the
Ith node of Element N {I=1,NPE}
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TABLE 7.4 (Continued)

* pata Card 22:

NSPV - Number of specified PRIMARY degrees of freedom

SKIP Card 23 if no primary variables is specified (NSPV=0). Repeat
Card 23 NSPV times

Data Card 23: (I = 1 to NSPV}
ISPV(I,1) - Node number at which the PV is specified
ISPV(1,2) - Specified local primary DOF at the node
VSPV(I) - Specified value of the primary variable (PV)

{will not read for eigenvalue problems)

SKIP Card 24 for eigenvalue problems (i.e. when ITEM=3)

Data Card 24:
NSSV - Number of specified (nonzero) SECONDARY variables

SKIP card 25 if no secondary variable is specified (NSsV=0). Repeat
card 25 NSSV times

Data Card 25: (I = 1 to N8SV)
ISSV(I,1) - Node numher at which the SV is specified
ISSV(I,2) - Specified local secondary DOF at the node
VSsV(I) - Specified value of the secondary variable (PV)
Data card 26:
NNBC - Number of the Mewton (mixed) boundary conditions
SKIP Card 27 if no mixed boundary condition is specified (NNBC=0).

The mixed boundary condition is assumed to be of the form: SV+VNBC
# (PV-UREF) = 0. Repeat Card 28 NNBC times

Data Card 27: (I = 1 to NNBC)

INBC(I,1} - Node number at which the mixed B.C. is specified
INBC(I,2) - Local DOF of the PV and SV at the node

VNBC{I)} - Value of the coefficient of the PV in the B.C.
UREF (I} - Reference value of the PV

SKIP Card 28 if ITEM=0 (read only for time-dependent and eigen-
-value problens

Data Card 28:
CT0 - Constant part of CT = CTO + CT1*X
CT1 - Linear part of CT = CTO0 + CT1*X

SKIP remaining cards if steady-state orleigenvalue analysis is te
pe performed (ITEM=0 or ITEM=3)

pata Card 29:

DT - Time increment (uniform)
ALFA -~ Parameter in the time -approximation scheme
BETA - Parameter in the time approximation scheme

pData Card 20:

INCOND- Indicator for initial conditions:
INCOND=0, Homogeneous (zero) initial conditicons
INCOND>0, Nonhomogeneous initial conditions
NTIME - Number of time steps for which solution is sought
INTVI. - Time step intervals at which solution is to printed



278  FINITE ELEMENT ANALYSIS OF ONE-DIMENSIONAL PROBLEMS

TABLE 7.4 (Continued)

SKIP Cards 31 and 32 if initial conditions are zero (INCOND=0)
% Data Ccard 31:
{GUO} - Array of initial wvalues of the primary variables

SKIP Card 32 for parabolic equations (ITEM=1)

* Data Card 32:

{GU1} -~ Array of initial values of the first time-deriva-
tives of the primary variables

For Set 2 boundary conditions, we have one essential boundary condition and
one mixed boundary condition; e

-
U1=0, Q;+§(US_UM):O

Hence, NSPV =1, NSSV =0, and NNBC= i, and the values in the mixed boundary

conditions are input as

VNBC(1)= 8/k=1.28, UREF()=U.= 0.0, INBC{1,1)=5, INBC(1,2}=1.

The output file for Set 1 boundary conditions is presented in Table 7.5(a). The
input files are echoed in the output. The input file for Set 2 boundary conditions is
given in Table 7.5(b).

Example 7.2 (Example 3.2) Radially symmetric heat transfer in a solid cylinder. The
governing equation of the problem is given by [see (3.78)]

d d
o (anrd—g =2mq, for 0<r<R, _ (7.47)

d
)| -
(2J‘c rdr »

with k=20Wm™1°C", go=2x10*Wm™, T, =100°C, and R,=0.01m (see Table
3.3). We have MODEL =1, NTYPE =0, and ITEM = 0 (for a steady-state solution),
and the data is continuous (ICONT =1) in the domain for a mesh of two quadratic
elements (IELEM =2, NEM = 2}. The data is

a=2mkr—a,=0, @ =2rk, b=0-b=00, b =00
c=0-¢=0.0, ¢=00; f=2mgor—f=00, fi=2nq, kL= 0.0
Thus, we have [for values k =20 Wm™'°C™’, go=2% 1PWm™

AX0=0.0 AX1=125.6637, BX0=0.0, BXi=00
CX0=0.0, CX1=0.0, FX0=00, FXl= 12.5664E8, FX2=0.0

0, T{RY)=T, {7.48)

The array {DX} and boundary information are given by

(DX} = {0.0, 0.0025, 0.0025, 0.0025, 0.0025}
NSPV=1, ISPV(l,1)=5, ISPV(1,2)=1, VSPV(1)=100

(B
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TABLE 7.5
Output from FEM1DV2 for the problem in Example 7.1

{a) Set I houndary conditions (edited output)

*4%% ECHO OF THE INPUT DATA STARTS ***

Example 7.1: Steady heat transfer in a fin (Set 1 boundary conditions)
1 0 0 MODEL, NTYPE, ITEH
104 IELEM, NEM
i 1 ICONT, NPRNT
. .0625 0.0625 0.0625 0.0625 DX (I}

o
™
E
=
Y
5¢
e

0 BX0, BX1l
.0 CX0, ©X1
o 0.0 FX0,FX1,FX2

N8PV
1 100.0 ISPV(1,J) {J=1,2]}, VSPV{1}
NSSV
HNBC

%]
n
[=N: =T e}

ooooo
DOoOOoOO

(== e

*% %% ECHO OF THE INPUT DATA ENDS *&*%

OUTPUT FROM PROGRAM FEM1DV2 BY J. N. REDDY

Example 7.1l: Steady heat transfer in a fin (Set 1 boundary conditions}
*%% ANALYSIS OF MODEL 1, AND TYPE 0 PROBLEM **%

Element type (0, Hermite,>0, Lagrange)..
No. of deg. of freedom per node, NDF....
No., of elements in the mesh, NEM....,...
No. of total DOF in the model, NEQ......
No. of specified primary DOF, NSPV,,....
No. of specified secondary DOF, NSSV....
No. of specified Newteon B. C,; NNBC.....

L/ A I I T
OO !B

Boundary information on primary variables:
1 1 0.10000E+03
Global coordinates of the nodes, {GLX}:
0.000G0E+00 (.62500E-01 0.12500E+00 0.18750E+00 0.25000E+00

Coefficients of the differential eguation:

AX0 = 0.1000E+01 AX1 = 0.0000E+00
BX0 = 0.0000GE+00 BX1 = ©.0000E+00
CX0 = 0.2560E+03 CX1 = &.0000E+00
FX0 = 0,0000E+Q0 FX1 = 0.0000E+00C FX2 = 0.0000E+30

SOLUTICH (values of PVs) at the NODES:

0.10000E+03 0.35158E+02 0.12504E+02 0.48560E+01 0.30250E+01
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TABLE 7.5 (Continued)

P. Variable

5, variable

(4,00000E+00
0.78125E-02
0.156258E-01
0.23438E-01
0.31250E-01
0.39063E~01
0.46875E-01
(0.54688E-01
0.62500E-01
0.62500E-01
0.70313E-01
0.78125E-01
0.85938E-01
0.93750E-01
0.,10156E+00
0,10938E+00Q
0.11713E+00
0.12500E+00
0.,125C0E+00
0.13281E+00
0.14063E+0C
0.14844E+00
0.15625E+00
0.16406E+00
0.17188E+00
0,17969E+00
0.18750E+00
0.18750E+00
0.19531E+00
0.20313E+00
0.21094E+0C
0.21875E+00
0.22656E+00
0.23438E+00
0.24219E+00
0.25000E+00Q

0.10000E+03
0.91895E+02
0.83789E+02
0.7568B4E+02
0,67579E+02
0.59473E+02
0.51368E+02
0.43263E+02
0,35158E+02
0.35158E+02
0.32326E4+02
0.29494E+02
0.26663E+02
0,23831E+02
0.2099%E+02
0.1B168E+02
0.15336E+02
0.12504E+02
0,12504E+02
0.11548E+02
0.10592E+02
0.96362E+01
0.86801E+01
0.77241E+01
0.67681E+01
0.58120E+01
0.48560E+01
0.48560E+01
0.46284E+01
0.44008E+01
0.41731E+01
0.39455E+01
0.37179E401
0.34903E+01
0.32626E+01
0.,30350E+01

~-0.10375E+04
-0.10375E+04
-0.10375E+04
-0.10375E+04
~0.10375E+04
~0,10375k+04
~0.,10375E+04
-0.10375E+04
~0.10375E+04
-0.36245E+03
-0.36245E+03
-0.36245E+03
=0.36245E+03
~0.36245E+03
-0.,36245E+03
-0.36245E+03
-0,36245E+03
-0,362458+03
-0,12237E+03
-0.12237E+03
-0.12237E+03
-0.,12237E+03
-0.12237E+03
-0,12237E+03
-0.12237E+03
-Q,12237E+03
-0,12237E+03
-0.,29136E+02
-0.29136E+02
-0.29136E+02
-0.2%136E+02
-0.29136E+02
-0.29136E+02
-0.29136E+02
~0.29136E+02
-0,29136E+02

(b) Set 2 boundary conditions (input data only)

Example
1 0 0
1 4
T 1
0.0 0.0625 0.0625 0.0625
1.0 0.0
0.0 0.0
256.0 0.0
0.0 0.0 0.0
1
1 1 100.0
Q
L
5 1 1.28 0.0

0.0625

7.1: Steady heat transfer in a fin (Set 2 5oundary conditions)

MODEL,
IELEM,
ICONT,
DX (I}
AXO,
BX0, BX1

CX0, CX1

FX0,FX1,FX2

NSPV

1SPV(1,J), VSPV(1}

NSSV

NNBC

INBC(1,J), VNBC(1), UREF(1)

NTYFE,
NEM
WPRNT

ITEM

X1
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TABLE 7.6
Input file for the problem in Example 7.2

Example 7.2: Radially symmetrlc heat transfer in a solid cylinder

1 0 0 MODEL, NTYPE, ITEM
2 2 IELEM, NEM
101 ICONT, NFRNT
0.0 0.005 0.005 DX (T}
0.0 125.6637 AX0, AXL
0.0 0.0 BX0, BX1
0.0 0.0 CcxXo, CXt
0.0 12.56637E8 0.0 FX0, FX1,FX2
1 NSPV
5 1 100.0 ISPV(1,J), VSPV(1)
0 NSS8V
0 NNBC

~ . The input file of the problem is presented in Table 7.6 (cf. Table 3.3). Note that
the finite element solution obtained with two quadratic elements is more accurate
(essentiaily the same as the exact) than the solution obtained with four linear elements.

The fluid mechanics problem in Example 3.3 is very simple, and the
reader should be able to generate the input file very easily to solve it with
FEMIDVZ.

Example 7.3 Deformation of a rotating disk. For this case, we have MODEL =1,
NTYPE =1, and TTEM = 0. For a mesh of two quadratic elements (i.e., [EL=2 and
NEM =2), we use ICONT =1 and

{DX} = {0.0, 0.25R, 0.25R, 0.25R, 0.25R}

where R is the radius of the disk. For a uniform and homogeneous disk of thickness H
and made of isotropic material, we take the moduli E, = E, = E. Since we are seeking
results in nondimensional form, we take

R=10, E=10, v=03, H=10
Thus, we have
AX0(=E)=10, AX1(=E))=1.0
BX0(=v2)=0.3, BXi(=H)=10
CX0=0.0, CX1=0.0
The body force is f, = pw’ =f, + fir + £,0. Hence, taking pw® = 1.0,
FX0=0.0, FX1=1.0, FX2=0.0

The boundary conditions are w(0)=0 (by symmetry) and ro, =0 at r=R
(stress-free condition). Since the secondary variable is homogeneous, there is no need
to impose it—only the boundary condition on the primary variable is to be imposed,
We have

NSPV=1, NSSV=0, NNBC=90
ISPV{1,13=1, ISPV(L,2)=1, VSPV(1)=0.0
The input file for this problem is presented in Table 7.7.
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TABLE 7.7
Input file for the problem in Example 7.3

Example 7.3: Deformation of a rotating disk
i1 0 KODEL, NTYPE, ITEM
2 2 IELEM, NEM
101 ICONT, HPRNT
0 0.50 DX(T)
AX(O, AX1
BX0, BX1
cxo, CX1
0.0 FX0, FX1, FX2
NSEV
ISPV {%,J}, VSPV(1}
NSSV
HNBC

cocoHOo
QO Wo o
HO RO
ocoocouwm

SopRR
=
(=]
o

e

Example 7.4 (Example 4.2) Clamped and spring-supported beam “in Fig. 4.7. We
solve the problem using the Euler-Bernoulli beam element (MODEL =3, NTYPE =0,
IELEM =0) and the Timoshenko beam element (MODEL =2, NTYPE= 0 or 2,
IELEM = 1,2, or 3).

Since the loading is discontinuous, we set ICONT=0. A minimum of two
elements are required to model the problem (i.e., NEM =2}.

If we take EI = 1.0B6 (i.e., 10°ft*Ib) then

E 5 EI 5
T2l 4 ) BH =17y
For [L/H = 10, we have H = 1.0 because L = 10ft. For the choice v =0.25, we have
GAK =4EI[H*=4 x 10°Ib

GAK

Thus, we use
AX0=0.0, AX1=0.0, BX0 (=FN=10KE6
BX1=0.0, CX0=00, CXi=0.0
for the Euler—Bernoulli beam and
AX0 (= GAK)=4.0B6, AX1=00, BX0 (=£I)=10E6
BX1=0.0, CX0=00, CX1=0.0

for the Timoshenko beam.
The distributed transverse load is zero in element 1, and it is

fly= - =9

in element 2. Hence,

FX( =0.9, FX1=0.0, FX2=0.0 inelementl
FX0=66.666, FX1=-16.666, FX2=0.0 inelement2

.The global coordinates of nodes and the connectivity matrix entries for each
¢lement are obvious from the geometry. For the Euler—Bernoulli beam element the
number of nodes is always equal to 2 (NPE =2), whereas for the Timoshenko beam
element, the number of nodes depend on the degree of interpolation (or element type)
selected: NPE =1ELEM + 1.
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The boundary conditions for this problem are
- dw

o (%)

w(0} ) pm

‘Therefore, we have (NSSV =0)
NSPV=2, ISPV(L,1)=1, ISPV(1,2)=1, VSPV(1)=0.0
ISPV(2, 1) =1, ISPV(2,2)=2, VSPV(2)=0.0
NNBC=1, INBC(1,1)=3, INBC(,2)=1
VNBC(1} (=k)=1.0E6 (for k/EI=1) and 0.0 (for k£ =0.0)
UREF(1) = 0.0
Tables.7.8 and 7.9 give the input files for the Euler-Bernoulli and Timoshenko

elements. Note that the Buler—Bernoulli element is a Hermite cubic element, whereas
the Timoshenko element is only a Lagrange linear element,

=0, (V+iw) =0

x=0 =L

Example 7.5 (Example 4.4) Analysis of a plane frame, Here we consider the
two-member frame structure shown in Fig. 4.13(¢). We shall analyze it using the
Euler-Bernoulli frame element (MODEL =4, NTYPE = 1) and the Timoshenko frame
element (MODEL =4, NTYPE = 2). The former gives an exact solution for all frame
structures with constant cross-section membess. The Timoshenko frame element, on
the other hand, does not yield accurate results unless several elements per member of
the structure are used.

The input files of the problem are presented in Tables 7.10 and 7.11. The
eight-element mesh of Timoshenko elements gives resuits comparable to the two-
element mesh with the Euler—Bernoulli frame elements (results are not included here).

The next example deals with the use of FEM1DV2 for time-dependent
problems (i.e., ITEM =1 or 2).

TABLE 7.8
Input file for the problem in Example 7.4

Example 7.4: Clamped and spring-supported beam {E-B element; k=1.0E4)
3 0 0 MODEL, NTYPE, ITEM
g 2 IELEM, NEM
g 1 ICONT, NPRNT
.0 4.0 GLX (I}
2 NOD({1,T)
Q AXQ, AX1 Data for
Q BX0, BX1 Element 1
.0 CX0, CX1
0 0.0 FX0,FX1,FX2
0 GLX(I}
3 HOD(2,J)
o} 0.0 AX0, AX1 Data for
.0E6 0.0 . BX0, BX1l Element 2
0 0.0 cXo, €X1
67 -16.666667 0.0 FX0,FX1,FX2
NSPV
ISPV(1,J), VSPV(1)
IS?V$2,J), VSPV (2}
NSsV '
NNBC (with transv. spring)

QOO LOOHORO

W QRN

1 1.CE04 0.9
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TABLE 7.9
Input file for the problem in Example 7.4

Example 7.4: <¢lamped and spring-supported beam (TIM element; k=1.0E4)

2
1
0

WO

OO oO00

m o
o

- 0OC
[ole]
[ )]

1 1

cCocoOoO

(L/B = 10)
0.0

-16.666667 0.0
0.0

MODEL, NTYPE, ITEM
IELEM, NEM
ICONT, NPRNT
GLX(T)

NOD (1,3}
AX0, AX1
BX0, BX1
CcX0, CX1
FX0,FX1,FX2
GLX (I}
NoD(2,J)
AX0, AX1
BYX0, BXL
X0, CXi
FX0,FX1,FX2 W
NSPV s

ISPV(1,J}, VSPV(1)
ISPV(2,J), VSPV(2)

NS5V r

NNBC (with tranv., spring)
INBC(1,J), VNBC(1), UREF(1)

pata for
Element 1

pata for
Element 2

Example 7.6 (Example 6.4) Transient heat conduction in a plane wall. Consider the
transient heat conduction problem of Example 6.4 [see (6.56)]:

TABLE 7.10
Input file for the problem in Example 7.5

ou

B ax’

3u

du
, D=0, —(1,f)=
u(0, 1) 8t( H=0

=0 for 0<x<1 (7.49a)

(Set 1) (7.49b)

Example 7.5:

CORQOWOO®

ORNHWLWHRERPRANDOW

.3
.0

Analysis of a plane

1 0
2
1
1.0E6 144.0
-0,0:138888 0.0
2
1.0E6 180.0
0.0 -4.0
3
1 0.0
2 0.0
3 0.0
1 6.0
2 0.0
3 0.0
2 -2.0

10.0
Q.

1c.0
0.0

a

0.0 0.0 1.0
0.0 0.0

10.0 0.8 0.6
0.6 0.8
.
L

frame (E-B element)

MODEL, NTYPE, ITEM

IELEM, NEM
ICONT, NPRNT
NEM

PR, SE, SL, sa, 8I, €S, SN
HF, VF, PF, XB, CST, SHT
NOD({1,J)

Same as above for Element 2

NSPV

ISPV, VSFV

NSSV
1SSV, VS8V
NKBC

B
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TABLE 7.11
Input file for the problem in Example 7.5

Example 7.5: Analysis of a plane frame (TIM element)

4 2 0 MODEL, NHTYPE, ITEM
o 2 ! IELEM, NEM
o 1 ICONT, NPRNT
3 NNM
0.3 1.0E6 144.0 3i0.0 10.0 ©.0 1.0 PR, SE, SL, SA, SI, C8, SN
0.0 -0.0138888 0.¢ 0.0 0.0 0.0 HF, VF, PF, X8, CST, SNT
1 o2 NOD(1,J)
0.3 1.0E6 180.0 10.8 10.0 0.8 ¢0©.&
0.0 0.0 -4.0 90.0 0.6 0.8 Same as above for Element 2
2 3
6 NSPV
1 1 0.0 e ———
1 .2 0.0
1 3 Q.90
3 1 0.0 ISPV, VSPV
3 2 0.0
3 3 0.0 L ———
1 NSSV
2 2 -2.0 IS8V, Vssv
[} NNBC
Su
w(0, 1) =0, (—— + u) 0 (Set2) (7.49¢)
at 131
ulx, )=1

In Example 6.4, only Set 1 boundary conditions were considered.
We have MODEL =1, NTYPE=0, ITEM =1, ICONT =1, NSPV =1, N§§V =
0, and NNBC =0 for Set 1 and NNBC = 1 for Set 2. The coefficients of the differential
equations are (g = 1.0, b=0.0, ¢=0.0, c,=1.0 and f =0)
AX0=1.0, AX1=0.0, BX0=0.0, BXi=00
Cx0=00, CX1=00, FX0=00, FXi=00
FX2=0.0, CT0=1.0, CT1=0.0
The boundary and initial conditions (since INCOND = 1) are input as
ISPV(1,1)=1, ISPV(1,2)=1, VSPV(1)=0.
GUO(I) ={0.0,1.0,1.0,...}
From the discussions of Example 6.4, we use Ar=0.01 (DT=0.01) and print the

solution for every time step (f.e., INTVL =1}
The input file of the problem for Set 1 boundary conditions is presented in Table

7.12.

Example 7.7 (Example 6,2} Natural vibrations of a cantilever heam. For this problem,
the boundary conditions are given by :

w(0) =0, (%) =0 for the Euler-Beznoulli beam theory
x=0
w{0)=0, ¥(O)=0 for the Timoshenko beam theory

The input data for all variables is the same as in the static analysis. In addition, we must
input ¢,y and ¢,;. For the Timoshenko beam theory [see (6.13)], ¢, denotes the inertia
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TABLE 7.12
Inpaut file for the problem in Example 7.6

Example 7.6: Transient heat conduction in a plane wall
i 0 1 MODEL, NTYPE, ITEM
i 2 IELEM, NEM
101 ICONT, NPRNT
0.5 DX{(I}
AX0, AX1
BXO, BX1
cxo, oXi
¢.0 FX0,FX1,FX2
HSPV
ISPV(I,J), VSPV(I)
NS5V
NHBC
CcT¢, CT1
.0 DT, ALFA, BETA
' INCOND, NTIME, INTVL =~
Guo (1) s

QOOQQ
[= === ]
QoooWk;

"o

.05 0.

CrOROORPOOORO
P
o
a

L]

[=]
[l =
(=]

pA, and c,, denotes the rotatory inertia pI. The cigenvalue solvér used in FEM1DV2
requires the matrix [B] in [A]{x} = A[B]{x} to be positive-definite. Hence, ¢, and ¢,
should be nonzero, otherwise, the mass matrix coefficients associated with W will be
ZEI0.

The input files for the natural vibrations of the cantilever beam by the two types
of elements are given in Tables 7.13 and 7.14. The reader can investigate the
convergence characteristics of the elements in improving the accuracy of the fundamen-
tal frequency with the use of FEMIDVZ,

74 SUMMARY

In this chapter three main items have been discussed: numerical integration of
finite element coefficient matrices and vectors, logical units of a typical finite
element program and their contents, and applications of the finite element
program FEM1DV2. The numerical evaluation of the coefficients is required
because of (z) variable coefficients of the differential equations modeled and
(b) special evaluation of the coefficients, as was required for the Timoshenko

TABLE 7.13
Input file for the problem in Example 7.7

Example 7.7: Natural vibrations of a cantilever beam {E-B; with RI})

3 0 3 MODEL, NTYPE, ITEM
0 4 IELEM, NEM
11 ICONT, NPRNT
0.0 0.25 0.25 0.25 0,25 DX (I}
0.0 0.0 AX0, AX1L
1.0 0.0 BX0, BX1
0.0 0.0 cX0, CX1
.2 NSPV
1 1 TSPV (1,J)
12 ISPV(2,J)
0 MNBC

1200.0 1.0 cTo, cTl (L/H=10)
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TABLE 7.14
Input file for the problem in Example 7.7

Example 7.7: Natural vibrations of a cantilever beam (TIM element}
2 0 3 ' MODEL, NTYPE, ITEM
1 4 IELEM, NEM
11 ICONT, NPRNT

5 0.25 0.25 0.25 DX(I)

AXG, AX1
BX0, BX1
CcXe, ©Xt
NSPV
101 ISPV (1,J)
1 2 ISPV(2,J)
0 NNBC
12.0E2 1.0 CT0, CT1  {L/H=10)

=

%)
cooo
DO ON

beam element with equal interpolation. The Newton—Cotes and Gauss—
Legendre integration rules have been discussed. The integration rules require
the transformation of the integral expressions from the global coordinate
system to a local coordinate system. This transformation requires interpolation
of the global coordinate x. Depending on the relative degrees of interpolation
of the geometry and the dependent variables, the formulations are classified as
subparametric, isoparametric, and superparametric.

The three logical units—preprocessor, processor, and postprocessor—
have been discussed. The contents of processor, where most finite element
caiculations are carried out, have been considered in detail. Fortran statements
for numerical evaluation of integral expressions, assembly of element
coefficients, and imposition of boundry conditions have been discussed.

A description of the finite element computer program FEM1DV?2 has
been presented, and its application to problems of heat transfer and solid
mechanics has been discussed.

PROBLEMS

Section 7.1

In Problems 7.1-7.5, compute the matrix coefficients using () the Newton—Cotes
integration formula and (b) the Gauss-Legendre quadrature. Use the appropriate
number of integration points, and verify the results with those obtained by the exact
integration.

7.1,

W o dyd ‘B
K=f @) PP Ga= [ axpipn s

A

where v, are the linear (Lagrange) interpolation functions.
Answer: Kip=—h 7' [1+3(x.+x5)}, G =h(1 +x,+ 3k).
7.2. Repeat Problem 7.1 for the quadratic interpolation functions.
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7.3.

14,

7.5.

FINITE ELEMENT ANALYSIS OF ONE-DIMENSIONAL PROBLEMS

xg dZ 2 X8
X, xA

A

where ), are the Hermite cubic interpolation functions,

Answer: r=2: Ky, =12/h* {exact), G,, = 0.398148#.
Repeat Problem 7.3 for the case in which the interpolation functions are the
fifth-order Hermite polynomials of Problem 4.21.

Answer: Ky =0, Gy, = Eh (exact for five-point quadrature).

Xg di,f); 2
k=] (G0) @
oy N dX

B
where 1, =sin[i#x(& +3£%]. Use three- and five-point Gaus$ quadrature to
compute K.

Section 7.2

Computer exercises (use FEM1DYV2)

7.6.

7.7,

7.8

7.9.

7.10,

711,

7.12.

7.13.

7.14.

7.15.

Solve the problem in Example 3.1 (Set 2) using two, four, and six linear
elements. Tabulate the results along with the exact solution. Use the following
data: L=0.02m, £k=20Wm'°C™!, g=10"Wm? TL=50°C, B=
500Wm ' °C L

Solve the problem in Example 3.1 (Set 2} using one, two, and three quadratic
elements. Compare the finite element results for the temperature and heat flux
with the exact solutions at the nodes.

Solve the heat transfer problem in Example 3.2 (Set 2), using four linear elements
and two quadratic elements, and tabulate them with the exact solution at nodes
(see Table 3.3},

Solve the problem in Example 3.4 using four quadratic elements, and compare
the solution with that obtained using eight linear elements and the exact solution.
Solve the one-dimensional flow problem of Example 3.4 (Set 2), for dP/dx =
—24, using four linear elements and two quadratic elements. Compare the finite
element results with the exact one.

Solve the Couette flow problem in Example 3.3 using (a} four linear elements and
(b) two quadratic elements. Compare the finite element solution for the
temperature with the exact solution.

Solve the problem of heat flow in a rod (Problem 3.19) using (a) four linear
elements and (b) two quadratic elements, and compare the results with the
analytical solution.

Solve Problem 3.26 using (a) four linear elements and (b) two gquadratic
elements, and compare the finite element solution with the exact solution at
nodes.

Solve the problem of axisymmetric deformation of a rotating circular disk using
(a) four linear elements and (b) two quadratic elements (see Example 7.3).
Assume that the body force is given by f = pwr.

Solve Problem 3.28.
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7.16. Solve Problem 3.30.

7.17. Solve the problem in Example 3.4 using (e) four linear and (b) two quadratic
elements. Determine the stress at the fixed end.

7.18-7.29. Solve the beam problems 4.1-4.12 using the minimum number of Hermite
cubic elements.

7.30. Analyze a clamped circular plate under a uniformly distributed transverse load
using the Euler-Bernoulli plate element. Investigate the convergence using two,
four, and six elements by comparing with the exact solution

ot )]

where D = EH’/12(1 —v?), g, is the intensity of the distributed load, @ is the
radius of the plate, # is its thickness, and v is Poisson’s ratio (v = 0.25).

7.31. Repeat Problem 7.30 with (@) two, four, and six linear and (b) one, two, and
three quadratic Timoshenko plate elements (RIE) for a/H = 10 and 100.

7.32. Repeat Problem 7.30 with the Timoshenko plate element (CIE) for a/H = 10 and
100.

7.33. Consider an annular plate of outer radius 2 and and inner radius b, and thickness
H. If the plate is simply supported at the outer edge and subjected to a uniformiy
distributed moment M, at the inner edge (see Fig. P7.33), analyze the problem
using the Buler-Bernoulli plate element. Investigate the accuracy using two and
four elements and comparing with the analytical solution (v = 0.25)

b My(a® — 1) a’b*M, r
w(r) = 2 I z PR (_)
20+ viD(a*—b*) (1 —vID(a*—b?) a
See Problem 7.30 for the definition of D.

Radius b

Radivs a

Line load
along the
inner edge FIGURE P7.33

7.34. Repeat Problem 7.33 with (#) two and four linear and () one and two guadratic
Timoshenko (RIE) elements for a/H = 10 and 100.

7.35. Consider the simply supported annular plate described in Problem 7.33. Suppose
that the inner cdge is loaded with a uniformly distributed shearing force 0,. Use
meshes of two and four Euler-Bernoulli plate elements to analyze the problem.

7.36. Analyze Problem 7.35 with (@) two and four lincar and (b) one and two quadratic
Timoshenko (RIE) plate elements for a/H = 10 and 100.

7.37. Repeat Problem 7.36 with the Timoshenko {CIE) plate element.
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7.38. Consider a simply supported circular plate of radius 4, loaded at the center with a
load P. Analyze the problem with two, four, and six Euler-Bernoulli plate
elements and compare with the analytical solution (v =0.25)

w{r) =§;r% [2(31:_1;) (@—r)+ 7 In (g)]

Note that Of = P/2n.

7.39. Analyze Problem 7.38 with four and eight linear Timoshenko (RIE) plate
elements for a/H =10 and 100.

7.40. Analyze the simply supported annular plate in Problem 7.33 when it is subjected
to a uniformly distributed load of intensity go. Use the Euler-Bernoulli plate

element.
7.41, Analyze the annular plate in Problem 7.40 using two and four Timoshenko (CIE)
plate elements, ’

7.42~7.49, Solve the truss and frame problems in Figs. P4.29-P4.36.

7.50. Consider the axial motion of an elastic bar, governed by the second-order
equation

&u 3u
EA?—:pA—a—[—i for 0<x<L

with the following data: length of bar L =500 mm, cross-sectional area A=
1mm?, modulus of elasticity E=20,000N mm 2, density p=0.008 Ns’mm™,

boundary conditions
Su
0,0=0 EA—(L,f)=1
u(0, 1) 5, (L)

and zero initial conditions. Using 50 linear elements and Af = 0.002 s, determine
the axial displacement and plot the displacement as a function of position along
the bar for t =0.8s. ’

7.51. Consider the following nondimensionalized differential equation governing the
plane wall transient [see Myers (1971), p, 101]:

H§+%:O for 0<x <1

with boundary conditions T(0,#)=1 and T(1,#)=0, and initial condition
T{(x, 0) =0. Solve the problems using {«) four, six, and eight linear elements, and
{b) two, three, and four quadratic elements. Compare the finite clement solutions’
with the exact solution.

Note. Program FEM1DV2 cannnot be used without modification to solve Problems
7.52-7.54.

7.52,-Consider a simply supported beam of fength L subjected to a point load

it
Pysin— for O0sis7t
PHy=1 """

0 for t=1
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at a distance c from the left end of the beam (assumed to be at rest at ¢ = 0}. The
transverse deflection w(x, t) is given by [see Harris and Crede (1961), pp. 8-53]

w(x, )=
2P0L3 bt 1 . f]],‘c . inx 1 . Tt T; .
E4Ell=§}i—4$m—z-smf[?_"—Tm—rz (sm?—gsm a)it)] for 0=t=<s1

WP S | ime | inx [(E/r)mS(nrﬂ;) ) L ]
Jr“EI;nz,i“Sln L | T g o sin w,(t—~31)| for t=+¢

where
2 2L2A_p _ E

w, PrxEI P

Use the data F,=10001b, t=20X10"%s, L=30in, E=30X10°lbin"2, p=
733x107%1bin®, At=10"%s, and assume that the beam is of square Cross-
section 0.5in by 0.5in. Using five Euler-Bernoulli elements in the half-beam,
obtain the finite clement solution and compare with the series solution at midspan
for the case ¢ = 1L.

7.53. Repeat Problem 7.52 for ¢ = {L and eight elements in the full span.
7.54. Repeat Problem 7.52 for P(¢) = F, at midspan and eight elements in the full span.

7.55. Consider a cantilevered beam with a point load at the free end. Using the load
and data of Problem 7.52, find the finite element solution for the transverse
deflection using Euler—Bernoulli beam elements.

7.56. Repeat Problem 7.52 for a clamped beam with the load at the midspan.
7.57-7.61. Solve Problems 7.52-7.56 using Timoshenko beam elements. Use v = 0.3.
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CHAPTER

SINGLE-VARIABLE
PROBLEMS

8.1 INTRODUCTION

The finite element analysis of two-dimensional problems involves the same
basic steps as those described for one-dimensional problems in Chapter 3. The
analysis is somewhat complicated by the fact that two-dimensional problems
are described by partial differential equations over geometrically complex
regions. The boundary T of a two-dimensional domain Q is, in general, a
curve. Therefore, the finite elements are simple two-dimensional geometric
shapes that can be used to approximate a given two-dimensional domain as
well as the solution over it. Thus, in two-dimensional problems, we not only
seek an approximate solution to a given problem on a domain but we also
approximate the domain by a suitable finite element mesh. Consequently, in
the finite element analysis of two-dimensional problems, we shall have
approximation errors due to the approximation of the solution as well as
discretization errors due té the approximation of the domain. The finite
element mesh (discretization) consists of simple two-dimensional elements,
such as triangles, rectangles, and/or quadrilaterals, that allow unique deriva-
tion of the interpolation functions., The elements are connected to each other
at nodal points on the boundaries of the elements. The ability to represent
domains with irregular geometries by a collection of finite elements makes the

295



b 9210] TewLION

g Aususp

xny snauley

“q Amsusp

xng Juswsorldsig
£

zx, _ 6
9@@0

SADOLIA,
ug
— 3 = b adedas
Y X S

Ao xQ

ECRr

Pg Pe

ISIIO[IA,
[("1 — 1)y uonwaanod
pue %g/ g ¥ UONOnpuod
woiy sawod] & moy 1e9L]

peo| panquysip
P f1as1oAsuel],

. d fisuop od1eyD)

JUBIQISUI
u [ uonusy,

o Ajiqeatrag

m Ausuop 38IByD) 7 JUBISUOD IOV

yi8uay un
12d 1511 JO MU =49

=4

(0~ ‘Burdwnd 10)
O 9d1eyoay

(o12z [euiou) o
uonsnpoad ssepy

(o197 Aj[ewiiou) o
vondnposd ssey

{} 901nos 1o

SOMpPOW JEIYS = 5

¥ Amqesuiiag

d Kusuaq

d Ansuacg

¥ Apanonpuocy)

7 onIdYIp
SS1aASTRIT,

¢ renudnod onouBe

¢ |enuarod repeog

h uorpuny .,.mmu.—wm

¢ pEYY LMoz

¢ enusiod HoopA

. uonoUNy Weans

I smgesadwag,

SOURIQUIIT JTISB]
JO UOTDOPIP ISIIASUBLYL, L,

saneysouley ‘9

SoTRISONIINH S

UONI98-5501 JUBISUOD
M SIS JO UOISIOY, “p

MOl I3]EMPURCID) ¢

Py [eapt ue
JO MO[ [BUONEIOL] T

Izjsuen) yesH T

Hlm I w *@
g ng
sa[qeuea Aepuedag

§
IQPIEA
0Inog

¥
JUEISUCD

feLayely

n
JqeLies
Lrewnmag

noneadde yo prig

~

7 = 7 :aoRIpuod AIepunoq [EudIssg

b= (*n — n)g + ug/ng ¥ :moRIPUod AIEPUNoq [EINJEN

f=(nA%) - A— uonenba uossiog 2y jo sapdurexa awog

I's ATAV.L



SINGLE-VARIABLE PROBLEMS 297

method a valuable practical tool for the solution of boundary, initial, and
eigenvalue problems arising in various fields of engineering.

The objective of this chapter is to extend the basic steps discussed earlier
for one-dimensional problems to two-dimensional boundary value problems
involving a single dependent variable. Once again, we describe the basic steps
of the finite element analysis with a model second-order partial differential
equation, namely the Poisson equation, governing a single variable. This
equation arises in a number of fields, including electrostatics, heat transfer,
fluid mechanics, and solid mechanics (see Table 8.1).

8.2 BOUNDARY VALUE PROBLEMS
8.2.1 The Model Equation

Consider the problem of finding the solution u of the second-order partial
differential equation

a Su du d du ou
—a(ﬂn 'é;'l"ﬂ;zg;) - 5}:(021 a"' azza_y) + ool _f =0

for given data ay (i, j =1, 2), aq and f, and specified boundary conditions, The
form of the boundary conditions will be apparent from the weak formulation.
As a special case, one can obtain the Poisson equation from (8.1) by setting
dypp=a@xn=aand a;; = a;; = aqe=0

=V-(aVu)=f in Q (8.2)
where V is the gradient operator. If 1 and j denote the unit vectors directed

along the x and y axes, respectively, the gradient operator can be expressed as
(see Section 2.2.2)

(8.1)

=i 3 +3 a
- 3x ! ay
and (8.2) in the cartesian coordinate system takes the form
3 Ju 3/ Ju
55 *a—y(“za*;) =f ®3)

In the following, we shall develop the finite element model of (8.1). The
major steps are as follows:

1. Discretization of the domain into a set of finite elements.

2. Weak (or weighted-integral) formulation of the governing differential
equation.

3. Derivation of finite element interpolation functions.
4. Development of the finite element model using the weak form.

5. Assembly of finite clements to obtain the global system of algebraic
equations.
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6. Imposition of boundary conditions.
7. Solution of equations.
8. Post-computation of solution and quantities of interest.

Steps 6 and 7 remain unchanged from one-dimensional finite element analysis
because at the end of Step 5 we have a set of algebraic equations whose form is
independent of the dimension of the domain or nature of the problem. In the
following sections, we discuss each step in detail. :

8.2.2 Finite Element Discretization

In two dimensions, there is more than one simple geometric shape that can be
used as a finite element (see Fig. 8.1). As we shall sec¢ shortiy,.the
interpolation functions depend not only on the number of nodef in the element
but also on the shape of the element. The shape of the element must be such
that its geometry is uniquely defined by a set of points, Wwhich serve as the
element nodes in the development of the interpolation functions. As will be
discussed later in this section, a triangle is the simplest geometric shape,
followed by a rectangle.

The representation of a given region by a set of elements (i.e.,
discretization or mesh generation) is an important step in finite element
analysis. The choice of element type, number of elements, and density of
elements depends on the geometry of the domain, the problem to be analyzed,

Discretization
error

4 e

FIGURE 3.1
Finite efement discretization of an
irregular domain: (a) discretiza-
tion of a domain by triangular
-y and quadrilateral elements; (b} a
i typical triangular clement
(boundary I, the unit normal i
(&) on the boundary of the element),

—z
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and the degree of accuracy desired. Of course, there are no specific formulae
for obtaining this information. In general, the analyst is guided by his or her
technical background, insight into the physics of the problem being modeled
(e.g., a qualitative understanding, of the solution), and experience with finite
element modeling. The general rules of mesh generation for finite element
formulations include the following:

1. Select elements that characterize the governing equations of the problem.

2. The number, shape, and type (i.e., linear or quadratic) of elements should
be such that the geometry of the domain is represented as accurately as
desired.

3. The density of clements should be such that regions of large gradients of
the solution are adequately modeled (i.e., more or higher-order elements
should be used in regions of large gradients).

4. Mesh refinements should vary gradually from high-density regions to
low-density regions. If transition elements are used, they should be used
away from critical regions (i.e., regions of large gradients). Transition
elements are those that connect lower-order elements to higher-order
elements {e.g., linear to quadratic).

Additional discussion of finite element meshes and types of elements (linear
and higher-order Lagrange elements, transition elements, etc.) will be pre-
sented in Chapter 9.

8.2.3 Weak Form

In the development of the weak form, we need only consider an arbitrarily
typical element. We assume that Q° is such an element, whether triangular or
quadrilateral, of the finite element mesh, and we develop the finite element
model of (8.1) over Q°. Various two-dimensional elements will be discussed in
the sequel.

Following the three-step procedure presented in Chapters 2 and 3, we
develop the weak form of (8.1) over the typical element Q°. The first step is to
multiply (8.1) with a weight function w, which is assumed to be once-
differentiable with respect to x and y, and then integrate the resulting equation
over the element domain Q°:

3 ad
0= Qew[—é}(ﬂ)—a—y(g)+qmu—f} dx dy (8.4a)
where
Ju Ju cu ou
ﬂ"“”ana‘*‘ﬂua_y: Fﬁ=azta_x+azzg}; (8.4b)

In the second step, we distribute the differentiation equally between u and w.
To achieve this, we integrate the first two terms in (8.4a) by paris. First we
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note the identities

8 aw 1 oF, dw 3
g}z(wﬂ)=aﬁ+w§;‘l or —WE;=EIE_§;(WE) (8.5a)
a aw aF oF, ow 2,
5;($v5)=-§;5+sv-af or —wa_;=5;F2—a—y(wl*}) (8.5b)

Next, we recall the component form of the gradient (or divergence) theorem in
(2.17b):

2
J > (wh) dxdy = 35 wF n, ds (8.6a)
. - iy
,
3
Lea_y (wE) dxdy = iﬁ* whn, ds (8.6b)

where s, and n, are the componeants (i.e., direction cosines) of the unit normal
vector

fAi=ni+ nyj = cos ai+ sin aj {8.7)

on the boundary T%, and ds is the arclength of an infinitesimal line element
along the boundary (see Fig. 8.1b). Using (8.5) and (8.6) in (8.44), we obtain

3 a a 3 3 8
0= [ w(an_u+ _l{)+ w(azl—u+a22—u)+amwu-wf] dx dy
ge

ax ox iz dy a—y ax aJy
ou . ou Ju du
_ﬁ-ew'[nx(au"a—x‘*‘an%) +ny(0215;+an—é;)]ds (88)

From an inspection of the boundary term in this equation, we note that the
specification of u constitutes the essential boundary condition, and hence u is
the primary variable. The specification of the coefficient of the weight function
in the boundary expression

_ du du du du
g ="y 011“(9;’*" ama—y) +ny(a215£+a22_é;) (8.9

constitutes the natural boundary condition; thus, g, is the secondary variable
of the formulation. The function g, = gq,(s) denotes the projection of the
vector ayVu along the unit normal f. By definition, g, is positive outward
from the surface as we move counter-clockwise along the boundary I. The
secondary variable g, is of physical interest in most problems. For example, in
the case of heat transfer through an anisotropic medium, a; are the
conductivities of the medium, and g, is the heat flux normal to the boundary of
the element (into the element).

[
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The third and last step of the formulation is to use the definition {8.9) in
(8.8) and writc the weak form of (8.1) as

aw du CBu\ 3w du du
0= " [—5; (an e + alza—y) + 5—; (ang + azz“@) + dpg Wit — wf] dx dy
—jg wq,, ds
|
(8.10a)
or
B(w, u)=1I(w) (8.10b)

where the bilinear form B(:, -) and linear form /(*) are

ow du 3u ow du Ou
a_x (an —+ay— 53}- (azl F + ay; 5):) + agwu | dx dy

B(w, 1) = QE[ W 3y
(8.10c)

I(w) =J wfdx dy + fﬁ wq, ds
QF e

The weak form (also called the variational problem) in (8.10) forms the basis
of the finite element model of (8.1). The quadratic functional associated with
the problem can be obtained from (2.43b) when B(, ) is symmetric [see
Mikhlin (1964), Reddy and Rasmussen (1982), and Reddy (1986)]:

I(u) =3B (u, u) = 1(u)

The bilinear form in (8.10c) is symmetric when a;, = a,,.

8.2.4 Finite Element Model

The weak form in (8.10) requires that the approximation chosen for u should
be at least linear in both x and y so that there are no terms in (8.10) that are
identically zero. Since the primary variable is simply the function itself, the
Lagrange family of interpolation functions is admissible. Suppose that u is
approximated over a typical finite element Q° by the expression

u(x, y) = U(x, y) = 2 usyi(x, ) @®.11)

where uj is the value of U° at the jth node (x;,y,) of the element, and Y; are
the Lagrange interpolation functions, with the property

Yix ¥ =6y (8.12)

The specific form of 7 will be derived for linear triangular and rectangular
elements in Section 8.2.5, and higher-order interpolation functions will be
derived in Chapter 9.
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Substituting the finite element approximation (8.11) for u into the weak
form (8.10), we obtain

aw LNCLA 5 oYy
0= R [a_x (an 2 ““?xl + a5 ]2:1 4 a—y")
swi & 3y oy,
+— i+ ——’)
3y (alzl ,=21 “ax T Zﬁ 4 3y

+ QoW 2, w; — wf} dx dy — 3§ wq,, ds (8.13)
j=1 =

This equation must hold for any weight function w. Since we need n

independent algebraic equations to solve for the 7 unknowns iy, Ua, . . .+, Uy,

we choose # independent functions for w: w =1, ¥, . . ., ¥, This particular
choice is a natural one when the weight function is viewed as a virtual variation
of the dependent unknown (i.e., w = du = Xi., u,; ;). For each choice of w,
we obtain an algebraic relation among (4, Uy, - . . 5 Us)- We label the algebraic
equation " resulting from substitution of , for w into {8.13) as the first
algebraic equation. The ith algebraic equation is obtained by substituting
w = 1, into (8.13):

< oy Yy Y,
3 L2
j=1 Lge ox “4u Ix tan ay

oY; 3y, Y;
+ 5 (a21 ’"a_x] + (1Y) a_yj) + aoowj'lpj] dx dy}uj

_J'gefwidxdy—itlpiq"ds (=1,2...,n)

or
> Koui=fi+ Q5 . (8.14a)
j=1
where
; dwi( By Y\ . dw( Ow. 8y
R O an 3+ (e a3)) + sy | dedy

fo=| furaxay, Qf=3§ g, ds
Qe Te

(8.14b)
In matrix notation, (8.14a) takes the form

[K)us} = {7} +{Q"} (8.14c)

Note that K§j=Kj (i.e., [K] is symmetric) only when ap=az. Equation
(8.14c) represents the finite element model of (8.1). This completes the

(-
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development of the finite element model. Before we discuss assembly of
elements, it is informative to consider how the interpolations ¥¢ are derived
for certain basic elements. and evaluate the element matrices in (8.145).

8.2.5 Interpolation Functions

The finite element approximation U(x, y) of u(x, y) over an element Q¢ must
satisfy the following conditions in order for the approximate solution to be
convergent to the true one:

1. U° must be differentiable, as required in the weak form of the problem
(i.c., all terms in the weak form are represented as nonzero values).

2. The polynomials used to represent U/ must be complete (i.e., all terms,
beginning with a constant term up to the highest order used in the
polynomial, should be included in U*).

3. All terms in the polynomial should be linearly independent.

The number of linearly independent terms in the representation of U* dictates
the shape and number of degrees of freedom of the element. Next, we discuss
some of the basic polynomials and associated elements for problems with a
single degree of freedom per node.

An examination of the variational form (8.10) and the finite element
matrices in (8.14b) shows that ¥ should be at least linear functions of x and y.
For example, the polynomial

Us(x, y) = ¢y +cox +c3y (8.15)

contains three linearly independent terms, and it is linear in both x and y. To
write the constants ¢; (i =1, 2, 3) in terms of the nodal values of U¢, we must
identify three points or nodes in the element Q¢. These three nodes must also
uniquely define the geometry of the element. Obviously, the geometric shape
defined by three points in a two-dimensional domain is a triangle. Thus the
polynomial (8.15) is associated with a triangular element, and there are three
nodes identified, namely, the vertices of the triangle.
On the other hand, the polynomial

Us(x, y)=c +eax + 3y +eyxy (8.16)

contains four linearly independent terms, and is linear in x and y, with a
bilinear term in x and y. This polynomial requires an element with four nodes.
There are two possible geometric shapes: a triangle with the fourth node at its
center (or centroid), or a rectangle with the nodes at the vertices. A triangle
with a fourth node at the center does not provide a single-valued variation of u
at interelement boundaries, resulting in incompatible variations of u there, and
is therefore not admissible. The linear rectangular element is a compatible
element.
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A polynomial with five constants is the incomplete quadratic polynomial
Ut{x, y) =1+ €ox + €3y + Caxy +cs(x* +37) (8.17)

which can be used to construct an element with five nodes (e.g., a rectangle
with a node at each corner and at its midpoint); however, the element does not
give single-valued variation of u. Also, note that the x” and y? terms cannot be
varied independently of each other.

The quadratic polynomial

Ue(x, ¥) = €y + o + €3 ) +caxy + x>+ Coy* (8.18)

with six constants can be used to construct an element with six nodes. For
example, a triangle with a node at each vertex and a node at the midpoint of
each side is admissible. It is known as the quadratic triangular element.
Examples of three-, four-, five-, and six-node elements are shown in Fig. 8.2.

Here we derive the lincar interpolation functions for the three-node
triangular element and the four-node rectangular element. The procedure used
is the same as that for one-dimensional elements. The interpolation functions
for linear, quadratic and cubic triangular and rectangular elements can be
found in many books, and the present study is intended to illustrate the
procedure used to derive the interpolation functions. Additional discussion on
the generation of interpolation functions is presented in Chapter 9.

LINEAR TRIANGULAR ELEMENT. Consider the linear approximation (8.15).
The set {1, x, y} is linearly independent and complete. We must rewrite the
approximation (8.15) such that it satisfies the conditions

Usxs, yh=u; (i=1,2,3) (8.19)

where (x, y§) (i=1, 2, 3) are the global coordinates of the three vertices of
the triangle Q°. In other words, we determine the three constants ¢; in (8.15) in

FIGURE §.2
Finite elements in two dimensions: (4) a three-node element; {b) four-node elements; (c) a
five-node element; (d) a six-node element.
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terms of uf from (8.. 19):
uy=u(xy, y1) =c1+ ey + )
Uy = U(xy, )’2) =CptCaxat o3y, (8.20)
U3=u(xs, y3) = c; +Cxa+ 33
where the element label e on the us, xs, ys, and ¢s is omitted for simplicity.

Throughout the following discussion, this format will be followed. In matrix
form, we have

Uy I xy »n C1
=1 x5 w3 e (8.21)
151 1 Xa ¥ Cy

Solution of (8.21) for ¢; (i =1, 2, 3) requires inversion of the coefficient
matrix in (8.21). The inverse does not exist when any two rows or columns of
(8.21) are the same. This happens only when all three nodes lie on the same
line. Thus, in theory, as long as the three vertices of the triangle are distinct
and do not lie on a line, the coefficient matrix is invertible. However, in actual
computations, if any two of the three nodes are very close relative to the third,
or the three nodes are almost on the same line, the coefficient matrix can be
nearly singular and numerically noninvertible. Hence, one should avoid
elements with narrow geometries (see Fig. 8.3) in finite element meshes.

Inverting the coefficient matrix in (8.21), we obtain

1 o & O
[A]_l =2__{-1_- ﬁ]_ ﬁz ﬁ_g 3 2Ae =& + [14) -+ [£2) (8.22)
‘ Yi Yz V3

and, solving for ¢; in terms of u;,

{c} ={A]"Y{u},
La ‘la

FIGURE 8.3
Triangular geometries that should be
() avoided in finite element meshes.

)
I~



3“6 FINITE ELEMENT ANALYSES OF TWO-DIMENSIONAL PROBLEMS

we obtain
1
€1 =“2“?e (ouy+ apuy + *.’1'3“3)
1
iy (Brty + Batts + Baus) (8.23a)
1
Cs =E (v141 + Yaita + v3us),
where A, is the area of the triangle (or 24, is the determinant of [A]), and g,
B;, and y; are the geometric constants .
,

& =X Yie = X ¥y
Bi=y— (i #j+k;and i, j and k permute i’ a natural order)
i =~ — xi)
(8.23b)

Substituting for ¢; from (8.23a) into (8.15), we obtain

1
[(oryuy + apuy + asuz) + (Byuy + Botiy + Baus)x

Us(x, y) =3a

+ (vaug + yatta + yiis)y]
3
= 2_31 wipix, y) (8.24)

¥

FIGURE 8.4
Linear interpolation functions for the three-node triangular element.
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where 97 are the lincar interpolation functions for the triangular element,

1
yi=sr (@i Bix+yly) (i=1,2,3) (8.25)

and &, f, and y; are constants defined in (8.23b). The linear interpolation
functions ¥ are shown in Fig. 8.4. They have the properties

wig(xf’ y}e) = 61}’ (i: ] = 1) 2; 3)

; o OV SKek 4]
£==1, =0, =0
Elwf 2:1 dx ; ay

(8.26)

Note that (8.24) determines a plane surface passing through u,, u;, and u,.
Hence, use of the linear interpolation functions ¥ of a triangle will result in
the approximation of the curved surface u(r,y) by a planar function
U*=X%},u{y; as shown in Fig. 8.5. We consider an example of the
computation of 7.

Example 8.1, Consider the triangular element shown in Fig, 8.6. Let

€
Uk, y)=citecx+eay={1 x ylye
C3

U {x, y} = L ufdi

e

Finite element mesh
of the domain

FIGURE 8.5
Representation of a continuous function u(x, y) by lirear interpolation functions of three-node
triangular elements.
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¥
3,93
o 3, 4)
34 2
5.3
2..
i 1
@1 FIGURE 8.6
: . : i . A triangular element with element nodes and
1 2 3 4 5 coordinates (for Example 8.1).

Evaluating this polynomial at nodes 1, 2, and 3, we obtain the equations, from (8\L21)

7 12 1{g I Uy d
U f = 1 53 Caf, Ca z[/i]ml Ha
i, 13 4fle €5 U
where
1 11 -5 i
[A}“=7 -1 3 -2
-2 -1 3

Substituting into U, we obtain (4] ={A*])

i u,

U, y)={1 x yYANwp={y ¥ va)yuaf=2 i

i=1
M3 U3
where
yi = AL+ Alx + ALy

and A} are the elements of the inversc matrix [AT"
Alternatively, from the definitions (8.23b), we have

b =5x4=3x3=11, m=3x1-2x4=-5 @=2x3-35x1=1
Bi=3-4=-1, B,=4-1=3, Pfy=1-3=-2
H=—(-39=-2 p=-G-2=-1 p=-@2-5=3
2A, =t ot as=7
The interpolation functions are

Yi=i(ll-x-2y), 9i=H-5+3x-y), Yi=il-2x+3y)

LINEAR (FOUR-NODE) RECTANGULAR ELEMENT, Here we consider an
approximation of the form (8.16) and use a rectangular element with sides a
and b (sce Fig. 8.7a). For the sake of convenience, we choose a local
coordinate system (%, ¥) to derive the interpolation functions. We assume that

U@, §)=cit X + ey +oiy (8.27)
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)

FIGURE 8.7

Linear rectangular element and its interpsfation functions: {4) geometry of the element; (&)
interpolation functions.

and require
= U(O, 0) =0

4 u,=U(a,0)=c, +ca

(8.28)
us=Ula, b) =c¢, + c,a + ¢c3b +ciab
Uy = U(O, b)=C1+C3b
Solving for ¢; (i =1, ..., 4), we obtain
ci=uy, =2
a
(8.29)
C3=U4_‘u1, C4=H3‘“‘u4+u}'—“2

b ab ’
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Substituting these into (8.27), we obtain

N P EZ) (E_EX) xy (X_E)_’)
Ui, 9 u1(1 p b+ab +u2a > +u3a + iy .

4

=upr H Uy s T uPy = > usys (8.30)

i=1

where

or, in concise form,

yie ) = o1 -2 (12 (8.315)

where (F;, 7;) are the (%, ) coordinates of node i. The interpolation functions
are shown in Fig. 8.7(b). We again have

4
YEE, ¥)=06; (Li=1,...,4), ; wi=1 (8.32a,b)

where (%, 7;) are the coordinates of node j in the (%, y) system.

Note that the linear interpolation functions for the four-node rectangular
element can also be obtained by taking the tensor product of the 1-D linear
interpolation functions (3.18) associated with sides 1-2 and 2-3:

\_F

? {1—% %}=[:’P°: i;‘] (8.33)

The procedure given above for the construction of the Lagrange
interpolation functions involves the inversion of an n'X n matrix, where n is the

number of nodes in the element. When r is large, the inversion becomes very.

tedious. The alternative procedure discussed in Chapter 3 for one-dimensional
elements proves to be algebraically simple. Here we illustrate the alternative
procedure for the four-node rectangular element. Equation (8.32¢) requires
that

w;(-if) Y:)ZO (l=21 31 4): wi(xl’ yl) =1

That is, ¢ is identically zero on lines ¥ =4 and § = b. Hence, ¥i(X, ¥} must
" be of the form

PIE ) = ca — )b —7)
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Using the condition ¥5(x,, y,) = ¥5(0, 0} =1, we obtain ¢, = 1/ab. Hence,
(5 9) =@ - 06 - =(1-2)(1-2)
Vil y) =gt PWEGTI TS
Likewise, one can obtain the remaining three interpolation functions.

8.2.6 Evaluation of Element Matrices, and Vectors

The exact evaluation of the element matrices [K°] and {f*} in (8.14b) is, in
general, not easy. Therefore, they are evaluated using numerical integration
techniques described in Section 74.5. However, when a;, ae, and f are
element-wise constant, it is possible to evaluate the integrals exactly over the
linear triangular and rectangular elements discussed in the previous section.
The boundary integral in {Q°} of (8.14b) can be evaluated whenever g, is
known. For an interior element (i.e., one that does not have any of its sides on
the boundary of the problem), the contribution from the boundary integral
cancels with similar contributions from adjoining elements of the mesh
(analogous to the QF in one-dimensional problems). A more detailed
discussion is given below.

For the sake of brevity, we rewrite [K®] in (8.14) as the sum of four basic
matrices [$**] (&, =0, 1, 2):

(K] = a0l $™] + a4y [S"] + apa S ] + a2 [S T + a2[ 5] (8.34)

where [ }* denotes the transpose of the enclosed matrix, and

S;ﬁ = J.Q, u]i,cr'{pj,ﬁ dx dy (8.35)

with ¥, , = 8,/ 3x,, x,=1x, and x,=y; ¥, o=y, All matrices in (8.34) and
interpolation functions in (8.35) are understood to be defined over an element;
i.e., all expressions and quantities should have the element label e, but these
are omitted in the interest of brevity. We now proceed to compute the
matrices in (8.34) and (8.14b) using the linear interpolation functions derived
in the previous section.

ELEMENT MATRICES FOR A LINEAR TRIANGULAR ELEMENT. For a
triangle, the following exact integral formulae are available for evaluating the
integrals. Let

Ln = f x™y" dx dy (8.36)
A
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Then we have (the element label on A is omitted)

In=A (area of the triangle)

Ard A 3
111'_"_(2 xiYi+9xAﬁ): 120=_(E x?..}_gfz), In = (E
12\Sy 12 :

i=1

Using the linear interpolation functions (8.25) in (8.35), and noting that
o B di_ 1

3
ox 24’ oy 24 (8.38)
we obtain .
1 ]. 1 Fa
Sffl = a ﬁrﬁp S%jz = ﬁ Bivp szjz = 4_A YiY;
1 ) R
s = o { Ly + (b + Bt + oy + ] (3.39)

H
+ A [LoBiB; + Lyl + viB) + IOZY:’Y}'}}

In view of the identity «;+ B:£+ ;9 =3A [which follows from (8.23b) and
(8.37)], for an element-wise-constant value of f = f,, we have

fi=3o + Bt + vi9) = if.A. (8.40)

This should be obvious, because for a constant source f,, the total magnitude
of the source on the element is equal to fLA,, which is distributed equally
among the nodes. Once the coordinates of the element nodes are known, one
can compute «;, §;, and y; from (8.23b) and substitute into (8.39) to obtain the
element matrices, which in turn can be used in (8.34) to obtain the clement
matrix [K°]. For example, when a;,, 45, and ag are zero, and a,; and a,, are
element—wise-constant, we have

1
(a51Bi 67 + a%yivi) (8.41)

Ki=1a

ELEMENT MATRICES FOR A LINEAR RECTANGULAR ELEMENT. When a;
(i, =0,1,2) and f are constants, we can use the interpolation functions of
(8.31a) expressed in the local coordinates ¥ and ¥, which are related to the
global coordinates by

x=F+x5, y=y+yl, dx=di, dy=dy (8.42)

where (x1, yi) are the global coordinates of node 1 of the element Q° with
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respect to the global (x, y) coordinate system. For example, we have
xi+a cyi+b a rb
se=[" [ waray=[ [y azas
x5 0 -0

where a and b are the lengths aloi)g the ¥ and ¥ axes of the element. Consider
the coefficient

5= [omact=[ [ (-5-D-Ho- o

“ 2 b 7\? ab ab
= —_— T 1’“_) V==
L(i a) dxfo( ») 93377

Similarly, we can evaluate all the matrices [S°¥] with the aid of the integral

identities
i =\ 2 a =
[(-amw [50-Dacmn
L T (8.43)
[(1-2)ae=to, [Zdr=1a
4] a g ¢
We have
- 2 =2 -1 17 i 1 -1 -1
b| -2 2 1 -1 1 1 1 1 1
ny_ 2 iz X
1571 6a] —1 1 2 =2 F [s 4 1 1 1 1
1 -1 -2 2] 1 1 -1 -1
- 2 i -1 =27 4 2 1 2
a 1 2 -2 -1 ab| 2 4 2 1
$2]=— , $§0r=— .
5™ 6b| —1 -2 2 1 571 3611 2 4 2 (8.44)
| —2 —1 1 2 | 21 2 4

{fi=4ab{l 1 1 1}7

EVALUATION OF THE BOUNDARY INTEGRALS. Here we consider the
evaluation of boundary integrals of the type

0f=$ aiviGs)ds (3.45)

where g, is a known function of the distance s.along the boundary I'® It is not
necessary to compute such.integrals when a portion of I'¥ does not coincide
with the boundary I' of the total domain Q. On portions of I that are in the
interior of the domain £, g5, on side (f, j) of the element Q° cancels with ¢/, on
side (p, g) of the element ©/ when sides (i, j) of Q¢ and (p, g) of Q7 are the
same (i.e.,” at the interface of Q° and ©Qf). This can be viewed as the
equilibrivm of the internal “flux” (see Figs. 8.8b,c). When I'® falls on the
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4, (specified)

g, {specified)

\‘-—-' ‘True boundary
of the domain

(b (c)

FIGURE 8.8

Computation of boundary forces and equilibrium of secondary variables at interclement
boundaries: (g) finite element discretization; (b} equilibrium of forces at interfaces; (c)
computation of forces on the true boundary.

boundary of the domain Q, g5, is either known, in general, as a function of s,
or is to be determined in the post-computation. In the latter case, the primary
variable will be specified on the portion of the boundary where g, is not
specified.

The boundary I of linear two-dimensional elements is a set of linear
one-dimensional elements. Therefore, the evaluation of the boundary integrals
in two-dimensional problems amounts to evaluating line integrals. It should
not be surprising to the reader that when two-dimensional interpolation
functions are evaluated on the boundary, we obtain the corresponding
one-dimensional interpolation functions. For example, consider the linear
triangular element shown in Fig. 8.9. The linear interpolation functions for this
element are given by (8.25). Now let us choose a coordinate system (s, £) with
its origin at node 1 and the coordinate s parallel to the side connecting nodes 1
and 2. The two coordinate systems (x, y) and (s, t) are related by

x=a1+b13+clt
y=a2+b25+62r

The constants a;, by, ¢, @2, by, and c, can be determined with the following
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conditions:
when s =0, =0, x=x;, y=w
when s=aq, t=0, x=x; y=)
when s=c¢, f=b, x=2x3, y=¥»
We obtain

{

$ ¢ c
x(5, ) =x;F (xs—x)—+ {(—w 1)x1 —=X, +x3]
a (74 fa

o |

(8.46)
Ly C o f
Y& 0=yt =y o+ [(E - 1)y1 o n +)’3] 3

These equations allow us to express /{x,y) as (s, £), which can be
evaluated on the side connecting nodes 1 and 2 by setting £ =0 in (s, £):

V’:(S) = T,U,-(S, 0) = wi(x(S: O): y(S» 0))
) =xit=x) 5 YO=n0amn)

For instance,

PSRN N (W

1 s s
=—{(a;+ a,+ & (1-—)=1-—

ZA ( 1 2 3) a a
where the definitions of a4, B, and y, have been used to rewrite the entire
expression. Similarly,

Vi) =2, e =0

where a = hy, is the length of side 1-2. We note that w(s) and w,(s) are
precisely the linear one-dimensional interpolation functions associated with the
line element connecting nodes 1 and 2. Similarly, when ;(x, y) are evaluated
on side 3-1 of the element, we obtain

§
§) =, =0, 1-——
Pals) o Y2 Pa(s) = h13
where the s coordinate is taken along the side 3-1, with origin at node 3, and
h1s is the length of side 1-3. Thus evaluation of QO involves the use of
appropriate 1-D interpolatien functions and the known variation of g, on the
boundary:

-2

=0h+0p+0h , (8.47)

0i= | v@a@ i+ ] ve©ds+[ v
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FIGURE 8.9
The linear triangular element in the globai (x, y)
r T : x and local (s, f) coordinate systems.

where [,_; denotes the integral over the line connecting node i to node j, the s
coordinate is taken from node i to node j, with origin at node i, and Q% is
defined as the contribution to QF from g on side J (see F/ig. 8.9) of the
element Q°:

Q5= Yign ds (8.48)

side J

For example,

Q1 =9€ gnpi(s) ds =J (n)12%1 ds +0+f (gn)s-191 ds
e 1-2 31

The contribution from side 2-3 is zero, because 1 is zero on side 2-3 of a
triangular element. For a rectangular element, 5 has contributions from sides
1-2 and 4-1, because 4 is zero on sides 2-3 and 3-4.

Example 8.2, Consider the evaluation of the boundary integral Q; in (8.45) for the four
cases of g{s) and finite elements shown in Fig. 8.10. For each case, we must use the
q(s) and the interpolation functions associated with the type of boundary element (i.e.,
linear or quadratic).

Case 1. g{5) = g, = constant; linear element:

he
0=p awds=ao [ wds+0+0 (=1,2,3)
re 1]

where

§ h
tpl=1_h_) tpzzh_, w3=0

We have
Qi=iqeh. (=0%), Q5i=1iqoh. (=Q%), Q5=0
Case 2. q(s} = qos/h. (linear variation); linear element:
5 ke
Qf=j£ qoi-wds=L| syids (i=1,2,3)
e e

e 40
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§

3 Case 1

q1

do

Case 3 Case 4

FIGURE 8.10
Evaluation of boundary integrals in the finite element analysis (Example 8.2).

where

We have
Qi =iqoh. (=05), Q5=3qoh. (=0%), Q5=0

Case 3. g(s) = g, = constant; quadratic element:

Q§=jg goy;ds {i=1,2,...,6)
1

w=(=)5) v i) e (eR)

and ¥, s, and iy, are zero on side 1-2-3. We have
Oi=1tgoh. (=0Q0), Qi= $goh. (= 05), Qi=3qeh. (=0Q50)
Case 4. g{5) as shown in Fig. 8,10; linear element;
s
Q:=§ ‘I(S)lffids:f %;{“’P;dS-FJ gy ds +0
re 1-2 ) ¥ 2-3

=Qhu+Qr (@a=0

317
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We obtain,

& hy
Q:zJ;ZQOE(l_E)dS“"O‘l'O:%QOh:z (=0
= z

s 5 5
e gty +f (1——)ds+0
Qz J;—Z qnh12h12 g 2—3 ql hl’j
=3qohis + 3.y (= 0%+ 05)

5
Q;=e+£_3q.rds+0=%qlhﬂ (=05)
B zZ

3

8.2.7 Assembly of Element Equations

The assembly of finite element equations is based on the same two principles
that were used i one-dimensional problems: .

1. Continuity of primary variables p
2, “Equilibrium” (or “balance™) of secondary variables

We illustrate the procedure by considering a finite element mesh consisting of
a triangular element and a quadrilateral element (see Fig. 8.11a). Let K}
(i,;=1,2,3) denote the coefficient matrix corresponding to the triangular
element, and let K3 (i,j =1, ..., 4) denote the coefficient matrix corresponding
to the quadrilateral element. From the finite element mesh shown in Fig.
8.11{a), we note the following correspondence (i.e., connectivity relations)

Global — 1.ocal

Kn Kt

Kp K

Ko K + K
Kia 0

K;s 0

K23 K)_% + K&
Ky K

Ky KJ + Kid
Kz 0

Ky Kb+ K + K + K
Kis K+ Kid
Kse 0

Ky K3+ Kid

(b)

FIGURE 8.11

Assembly of finite element coefficient matrices using the correspondence between global and
clement nodes (one unkaown per node): (a) assembly of two elements; (b} assembly of several
elements.
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between the global and element nodes:

t23 X] (8.49)

[Blz[z 45 3

where X indicates that there is no entry. The correspondence between the
local and global nodal values is (see Fig. 8.11a)

ui=U, w=ui=U, w=ui=U, ui=U, ui=U; (8.50)

which amounts to imposing the continuity of the primary variables at the nodes
common to elements 1 and 2.

Note that the continuity of the primary variables at the interelement
nodes guarantees the continuity of the primary variable along the entire
interelernent boundary. For the case in Fig. 8.11(a), the requirement

wy=ui and uj=uj guarantees U'(s) = U%(s)

on the side connecting global nodes 2 and 3. This can be shown as follows, The
sotution U'(s) along the line connecting global nodes 2 and 3 is linear, and is
given by

Uls =u*(1—£) +uls
(s) 2 A U3 I
where s is the local coordinate along side 2-3 with its origin at global node 2
and £ is the length of side 2-3 (or side 2). Similarly, the finite element solution
along the same line but from element 2 is

o 7 . - e AL
= v us 4 :\\ﬂi *%) Corrz "{
UXs)= uz(l - _) +u2= e :
( ) 1 h 4 h ]-_z ’Af - T? . fe

tode & qe oAor 20
Since uf=u} and uj=u}, it follows that U(s) = U%(s) for every value of s% gt
along the interface of the two elements.
Next we use the balance of secondary variables. At the interface between
the two elements, the fluxes from them should be equal in magnitude and
opposite in sign. For the two elements in Fig. 8.11(a), the interface is along
the side connecting global nodes 2 and 3. Hence, the internal flux g on side
2-3 of element 1 should balance the flux g2 on side 4-1 of element 2 (recail the
sign convention on g;):

(‘Irl:)%s = (q?,).H or (gu)3= (—q%)l—-i (8.51)

In the finite element method, we impose the above relation in a weighted-
integral sense:

ERE
RNty

q}.wéds:—jhz aaids, L qiwéds:—flz g2 yids  (8.52a)
15 23 tis

2%
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where h;, denotes the length of the side connecting node p to node g of the
element Q°. The above equations can be written in the form

L Gprds+ | quyids=0, glpdds+ | q2yids=0 (8.52b)
hiy . [ (A

or
0%+0%,=0, Q5+0%4=0 (8.52¢)

where (f denotes the part of @F that comes from side J of element e {see
(8.48)]:

05=| awwids
side J

The sides of triangular and rectangular elements are numbered as shown in
Fig. 8.11. These balance relations must be imposed in assembling the element
equations. We note that Qf is only a portion of QOf [see (8.47)].

The element equations of the two elements are written first. For the
model problem at hand, there is only one primary degree of freedom
(NDF = 1) per node. For the triangular element, the element equations are of
the form

Khui + Kjus + Kisu; —f1 + 01

Kiui+ Kpuy+ Kiaui=f3+ Q3 (8.53a)

Kl + Khuz + Kigus = f3+ 03

For the rectangular element, the element equations are given by

Khut+ K + Khus + Kl =1+ 01
Kjut+ Ko + Ko + Kjud =f2 +Q3
K33 + Ko + Ksu3 + Khui = 3+ 03
K + Ko + Koud + Kl =fi+ Q4

In order to impose the balance of secondary variables-in (8.52), we must add
the second equation of element 1 to the first equation of element 2, and also
add the third equation of element 1 to the fourth equation of element 2:

(KZIul + K3pu; + K23“3) + (Kllul Kt + K13u3 %4“%)

=(f2+ 0+ (fi+ QY
(Kl + Khul + Khud) + (Kud + Kou3 + Kaud + Kl

=(f3+ Q3+ (fi+ Q%)
Using the global-variable notation in (8.50), we can rewrite the above
equations as follows [this amounts to imposing continuity of the primary
variables in {(8.50)]:
KU+ (KL + KUy + (K35 + Ki Us + KRpUs + KsUs=f2 + 1+ (Q2+ 0D
Kl + (K + KUy + (Kis + K3 Us + KUy + KiUs = f3+ f1+(Q3+ 03)

(8.53b)
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Now we can impoée the conditions in (8.52) by setting appropriate portions of
the expressions in parentheses on the right-hand sides of the above equations
equal to zero: ‘
Q1+ 01=(On+ 0% +0L) +(Qh + 0%+ 0% + 214)
= Q5+ Q2+ (Q%z + Q%af) +Oh+ 0%+ Q%
Q3+ 03=(05+ QL+ 05+ (% + 0L+ Q% + Qi)
=05+ Q5+ (@5 + 0h) + 04 + Q% + 0%
The underlined terms are zero, by the balance requirement (8.52¢). The
remaining terms of each equation will be either known because g, is known on
the boundary or will remain unknown because the primary variable is specified
on the boundary.

In general, when several elements are connected, the assembly of the
elements is carried out by putting element coefficients K%, fi, and QF into
proper locations of the global coefficient matrix and right-hand column vectors.
This is done by means of the connectivity relations, i.c., the correspondence of
the local node number to the global node number. For example, if global node

number 3 corresponds to node 3 of ¢lement 1 and node 4 of element 2 then we
have

E=F%+Fi5f;+f§+Q§+Q3, K=K+ K3,

If global node numbers 2 and 3 correspond, respectively, to nodes 2 and 3 of
element 1 and nodes 1 and 4 of element 2 then the global coefficients Ko, Ko
and Ks; are given by

Kn=Kn+K}, Kun=KhL+Ki, K3=Ki+ K
Similarly, the source components of global nodes 2 and 3 are added:
. E=Fi+F, FE=Fi+F

For the two-element mesh shown in Fig. 8.11(a), the assembled equations are

K} K} Ki; 0 0 U, Fi

Ky Kn+Kh Kih+KL Kb Ku| |0, Fi}+F}

Ky Knp+Ki Kh+K%L K3, K% Usp = {F3+Fj} (8.54)
0 K% K34 Kh Ku| (U F3
0 K% K K% Kahl \Us F3

The assembly procedure described above can be used to assemble
elements of any shape and type. The procedure can be implemented on a
computer, as described for one-dimensional problems, with the help of the
array [B] (program variable is NOD). For hand calculations, the procedure
described above must be used. For example, consider the finite element mesh
shown in Fig. 8.11(b). Location (4, 4) of the global coefficient matrix contains
K3+ K} + K3, + K}, Location 4 in the assembled column vector contains
Fi+ F}+ F} + F{. Locations (1,5), (1,6), (1,7), (2,5), (2,6), (2,7), (3,6), (3,7,
and (5,6) of the global matrix contain zeros because K, = 0 when global nodes
I and J do not correspond to nodes of the same element in the mesh.
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This completes the first five steps in the finite element modeling of the
model equation (8.1). The next two steps of the analysis, namely, the
imposition of boundary conditions and solution of equations, remain the same
as for one-dimensional problems. Postprocessing of the solution for two-
dimensional problems is discussed next.

8.2.8 Postprocessing

The finite element solution at any point (x, y) in an element Q° is given by

Us(x, y) = 2‘,1 uipix, y) (8.55)
i

ALY

and its derivatives are computed as

U BU AU OU 556

Equations (8.55) and (8.56) can be used to compute the solution and its
derivatives at any point (x, y) in the element. It is useful to generate, by
interpolation from (8.55), information needed to plot contours of U* and its
gradient.

The derivatives of [J¢ will not be continuous at interelement boundaries,
because continuity of the derivatives is not imposed during the assembly
procedure. The weak form of the equations suggests that the primary variable
is 1, which is to be carried as the nodal variable. If additional variables, such
as higher-order derivatives of the dependent unknown, are carried as nodal
variables in the interest of making them continuous across interelement
boundaries, the degree of interpolation (or order of the element} increases. In
addition, the continuity of higher-order derivatives that are not identified as
the primary variables may violate the physical features of the problem. For
example, making du/dx continuous will violate the requirement that g,
(= a;;, Bu/3x) be continuous at the interface of two dissimilar materials,
because a4, is different for the two materials at the interface.

For linear triangular elements, the derivatives are constants within each
element:

1
wi=3 (&t B +vy)
oy;_ 1, ay_1
A =5a b o=
dx 24 dy 24

al® & uify ou* i Y,
Ix j=1 ZAE ’ ay j=1 2Ae

(8.57)
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For linear rectangular elements, 3U¢/3x is linear in y, and 0U°/dy is linear in
¥ [see (8.31b)5:
WM BE) L £
ok a b. /) gy b a

sl —“2 ( u), U =__Z e (1_ +x)

3x aj= b b=
where ¥ and § are the local coordinates (see Fig. 8.7a). Although 8U*°/3% and
dU? /3y are linear functions of y and x, respectively, in each element, they are
discontinuous at interelement boundaries. Consequently, quantities computed
using derivatives of the finite element solution U® are discontinuous there. For
example, if one computes g5 = aj; 8U°/x at a node shared by three different
elements, three different values of g; are expected. The differences between
the three values will diminish as the mesh is refined. Some commercial finite
element softwares give a single value of g, at the node by averaging the values
obtained from various elements connected at the node.

(8.58)

8.2.9 Axisymmetric Problems

In studying prablems involving cylindrical geometries, it is convenient to use
the cylindrical coordinate system (r, 8, z) to formulate the problem. If the
geometry, material properties, boundary conditions, and loading (or source) of
the problem are independent of the angular coordinate 0, the problem
solution will also be independent of 6. Consequently, a three-dimensional
problem is reduced to a two-dimensional one in (r, z) coordinates. Here we
consider a model axisymmetric problem, develop its weak form, and formulate
the finite element model.

MODEL EQUATION. Consider the partial differential equation
187 . Su d (., du
T (ran ar) % (azz % ) + dgout = F(r, 2) (8.59)
where dgy, 441, d2, and f are given functions of r and z. This equation arises in
the study of heat transfer in cylindrical geometries, as well as in other fields of
engineering and applied science. Our objective is to develop the finite element
model of the equation based on the weak form of (8.59).

WEAK FORM. Following the three-step procedure we write the weak form of
. 19/, du d (. OJu
() 0= Qrw[——;g(mng)—gz-(ana )+a00u f]rdrdz
i) 0= {—rdy —+—ra —~
(ii) j rip o 32 riig, — 2z + wrigol wrf) drdz
Sw 3 3w 3
(iii) 0= f (ﬁn v u+ Il u-!—amwu - wf)rdr dz —ﬁg wq, ds
e

(8.59):
(GW . Ou Jw du
—§ (rﬁ Bun +ri ou )d
IYW i1 ar 2 az 5
ar or 23z oz
(8.60)
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where w is the weight function and g, is the normal flux,

Ju du
qn = r(c?ug;n, + [1‘225;:12) (8.61)
Note that the weak form (8.60) does not differ significantly from that
developed for the model equation (8.1) when a, = a3, = 0. The only difference
is the presence of 7 in the integrand. Consequently, (8.60) can be obtained as a
special case of (8.10) for ag=4dpoX, a1 =aux, an= fix, and f=fx; the
coordinates r and z are treated like x and y, respectively.

FINITE ELEMENT MODEL. Let us assume that u(r, z) is approximated by the

finite element interpolation U¢ over the element Q°:
W

n 7
u=Ur, 2) = D, ufyi(r, z) (8.62)
j=1

The interpolation functions ;(r, z} are the same as those d'eveloped in (8.25)
and (8.31@) for linear triangular and rectangular clements, with x =r and
y = z. Substitution of (8.62) for « and ¥ for w into the weak form gives the ith
equation of the finite element model:

L] 88 g 8 ? e
0=2U (&ua;f" L/ w'%+émw§wf)rdrdz]u;
f=1 LJQe

or 2 57 3z

— f pifrdrdz — 5!; Pig, ds (8.63)
Qr iad
or
0=2, Kjuj ~ 1~ 0f (8.643)
=
where

. . owioyws | oyioy; . . 8
K"f':_",(an ar a—;+a22¥ az’+amw,-1p,—)rdrdz
(8.64b)

fi=| wirardz, 0i=§ vig.ds

Exact evaluation of the integrals in K and f§ for polynomial forms of 4; and 7
is possible. However, we evaluate them numerically using the numerical

integration methods discussed in Chapter 7 (see Section 7.1.5), and reviewed

in Chapter 9. This completes the development of the finite element model of

an axisymmetric problem.

8.2.10 An Example

The model equation in (8.1) arises in many fields of engineering and applied
sciences, and some examples are given in Table 8.1, The application of the
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finite element model developed in Sections 8.2.2-8.2.8 to a problem is
discussed here. This example will be particularly useful for readers who are
interested in the mathematical aspects rather than the physical background of
the problem.

Example 8.3. Consider the Poisson equation

Fu  5u

—V2 = —(m+_
u=y, or ot oy

)= fo inQ (8.65)

in a square region Q (see Fig. 8.12a). The boundary condition of the problem is
=0 onT (8.66)

We wish to solve the problem using the finite element method.
A problem possesses symmetry of the solution about a Hne only when there is
symmetry of (¢) the geometry, (b} the material properties, {¢) the source variation, and

y ’
/ Line of symmetry

u=0

u=0

Domain used for the
triangular-element
meshes

1 X 2 m _ 4
ay .
)] {c)
FIGURE 8.12

Finite element analysis of the Poisson equation in a square region: (@) gcometry and
computational domain, and boundary cenditions of the problem; (b) a coarse finite element mesh
of linear triangular elements; (c) a refined mesh of linear triangular elements (Example 8.3).
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(d) the boundary conditions about the line, Whenever a portion of the domain is
modeled to exploit symmetries available in the problem, a portion of the boundary of
the computational domain is a line of symmetry. On lines of symmetry, the normal
derivative of the solution (i.e., the derivative with respect to the coordinate normal to
the line of symmetry) is zero:

_Su_du du

=0 67
an ax ey (8.67)

The problem at hand has symmetry about the x =0 and y =0 axes; it is also
symmetric about the diagonal line x =y (see Fig. 8.12¢). We can exploit such
symmetries in modeling the problem. Thus, we can use a quadrant for meshes of
rectangular elements and an octant for meshes of triangular elements of the domain to
analyze the problem. Of course, it is possible to mix triangular and rectangular
elements to represent the domain as well as the solution, . -

Solution by linear triangular elements. Owing to the symmetry alf)ng the diagonal
x =y, we model the triangular domain shown in Fig. 8.12(a). As a first choice, we use a
uniform mesh of four linear trangular elements to represent the domain (see Fig.
8.12b), and then a refined mesh (see Fig. 8.12¢) to compare the solutions. In the
present case, there is no discretization error involved in the problem because the
geometry is exactly represented.

Elements 1, 3, and 4 are identical in orientation as well as geometry, Element 2 is
geometrically identical with element 1, except that it is oriented differently. H we
number the local nodes of element 2 to match those of element 1 then all four elements
have the same element matrices, and it is necessary to compute them only for element
1. When the element matrices are calculated on a computer, such considerations are
not taken into account. In solving the problem by hand, we use the correspondence
between a master element (element 1) and the other elements in the mesh to avoid
unnecessary calculations.

We consider element 1 as the typical element, with its local coordinate system
(%, 7). Suppose that the element dimensions, i.e., length and height, are @ and &,
respectively. The coordinates of the element nodes are

(-flr )_'t) = (01 0): (fz, }’_z) = (ﬂ, 0)1 (fBa }_)3) = (ﬂ, b)
Hence, the parameters o;, 3;, and y; are given by '
6"1=f2}73_f3}722f1b, £¥2=f3)71—f1y_3=0, Ws=f:}72“fz)71=0
Bi=h—F=-b B=ph—%=b p=F-k=0 (B.68)
y1=-(F—%)=0, y=—(H:-F)=-a v=—(F—-H)=a

The element coefficients Kj; and f; are given by

1 b? ~b? 0 b 1
a
{Kl]zza—b b 2+b —a , {fl} =ﬁJT 1 (8.69{1)
0 —-a* a4 1

.The element matrix in (8.69a) is valid for the Laplace operator —V* on any
right-angled triangle with sides a and & in which the right-angle is at node 2, and the
diagonal fine of the triangle connects node 3 to node 1. MNote that the off-diagonal
coefficient associated with the nodes on the diagonal line is zero for a right-angled
triangle. These observations can be used to write the element matrix associated with the
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Laplace operator on any right-angled triangle, i.e., for any element-node numbering
system. For example, if the right-angled corner is numbered as node 1, and the
diagonal-line nodes are numbered as 2 and 3 {following the counter-clockwise
numbering scheme), we have {note that a denotes the length of side connecting nodes 1
and 2)
1 a+b* —p? —g?
{K]= 2ab —b? b? 0 (8.695)
—a® 0 4
For the mesh shown in Fig. 8.12(), we have
[KT=[K]=[K]=[K', {fY={={}={r"

For a = b, the coefficient matrix in (8.694) takes the form

N
(Kl=5[-1 2 -1 (8.70)
0 -1 1

The assembled coefficient matrix for the finite element mesh is 6 % 6, because
there are six global nodes, with one unknown per node. The assembled matrix can be
obtained directly by using the correspondence between the global nodes and the local
nodes, expressed through the connectivity matrix

12 3
532
[B]= 9 4 5 (8.71)
356
The assembled system of equations is

1 -1 00 0 0w 1 0!

-1 4 =2i-1 0 0|{G 3 QG+ 03+ 03
11.0.72_ 410 =2 ollul )3 Q:1.03+ 01
2| 0 -1 02 -1 0 ju =5t o3 (8.72)

0 0 -2:-1 4 -1}1U 3| @i+ o+l

0 o o:0 -1 1Jly 1 0l

The sums of the secondary variables at global nodes 2, 3, and 5 are
0:+ Qi+ 0i=0,
Qi+ 05+ Qi=0, ' (8.73)
Qi+ 03+ 03=0;
At nodes 1, 4, and 6, we have J; = Q[, Oi= Q4, and Q= 0,.

The specified boundary conditions on the pnmary degrees of freedom of the
problem are

U=U-=U=0 (8.74)
The specified secondary degrees of freedom are (2l due to symmetry)
0:=0, 0,=0, (,=0 (8.75)

Since U,, Us, and Uj are known, the secondary variables at these nodes, i.e., O, Qs,
and (Js, are unknown, and can be obtained in the post-computation.
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Since the only unknown primary variables are (U, U5, and U5), and (U,, Us, and
;) are specified to be zero, the condensed equations for the primary unknowns can be
obtained by deleting rows and columns 4, 5, and 6 from. the system (8.72). In
retrospect, it would have been sufficient to assemble the element coefficients associated
with the global nodes 1, 2, and 3, i.e., writing out equations 1, 2 and 3:

Kh Kl KL U, fi 0
Kl KL+KhL+Kh  Kh+Kh Uyp=1fi+fi+fip+10 (8.76)
K, KL+Kh  KL+KL+KL LU fi+fi+11 0

The unknown secondary variables 0, O, and Q6 can be computed either from
the equations (i.e., from equilibrium)

Q4 fg 0 K;l 0 Ul
Ost=-Ar1+f3+fir+| 0 Ka+ Ky Khvkh L0 .77)
Qs fi 0 0 K3 U,

or from their definitions (8.73)} and (8.47}. For example, we have,

Q= Qi=f gayidx + f i dy + j gynds (8.78a)
1-Z 2-3 31
where
au u cu
3 2= +— = .= U, —_—
@2 ( LR n,)HL 0 (n o 3 0)
du ou au
(@s = (Som+ > n) =20 (=1, m=0
3N L b 3N _
('4’2)2—3 =1- E"‘ b (4’2)14 =0
23
Thus,

A h By y
=03 = —f{1 -
0-0n=["5(1-3)

where 8u/dx from the finite ¢lement interpolation is

ax 5424,
We obtain (hyy=a, Bi=—a, 24;=4d%, U;=U;=0)
A Ao 3 303
== > w?B = —0.5U, (8.78b)
44,75

Using the numerical values of the coefficients Kj and f7 (with f; = 1), we write the
condensed equations for U,, U5, and U} as

05 —0s o |fu] (1
~05 20 ~10 [ Up=593 (8.79)
0 -10 20/ 3
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Solving (8.79) for U; (i = 1, 2, 3), we abtain

u] 3 ot oesT{1] | (7s 0.31250
t, Y 1- 1 065 3 = 5.5 p=140.22917 (8.80)
U, 0.5 0.5 0.75 3 4.25 0.17708
and, from (8.77), we have O ASLTE
0% 1) [o -es o)fw) [ -o0197917)
0L +0% = 24 3¢+§0 0 13U, p=19 —0.302083 (8.81)
04, 1 ¢ o olly —0.041667

By interpolation, Q%,, for example, is equal to —0.50,, and it differs from 03
computed from equilibrium by the amount f3 (=).

Solution by lnear rectangular elements. Note that we cannot exploit the symmetry
along the diagonal x = y to our advantage when we use a mesh of rectangular elements,
Therefore, we use a 2 X 2 uniform mesh of four linear rectangular elements (see Fig.
8.13) to discretize a quadrant of the domain. Once again, no discretization error is
introduced in the present case.

Since all elements in the mesh are ldentlcal we shall compute the element
matrices for only one element, say element 1. We have

Yi=(1-20)(1-27), ¢.=20(1-29), ya=4%5, y,=(1-20)2

3.5 (0.5 81}1 atp awaw
K;= ( =y ‘~’) ¥ dy :
7 L f ot ar oy oy ) BY (8:82)
.5 .5
fi= r f fow: di dy
(H] (V]
u=10 u=1{
7 8 9 21 022 23 024 325
o > )
®
w _ 9 @ 16 o4 520
ax 5
4 6[;:011( o 15u=10
W B ®]@
©) @ x 6o 10
| o|olo|o
1 2,3 4 3
1 2 3 1 2
LA g
ay ay
Four-element mesh Sixteen-element mesh
Qh 0%
ot 0%
FIGURE 8.13

Finite element discretization of the domain of Example 8.3 by linear rectangular elements.
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Evaluating these integrals, we obtain {see (8.44): [K°}=[S""] + [$*]}

4 -1 —2 -1 1 on

-1 4 -1 -2 1]t 08
K== Fy=—1d4 b4 83
KYi=¢| o -1 4 1 ¢ 16)1 0: (8.834)

-1 -2 -1 4 1 o8

where

0i= [ lawtE y-adz + j OV Py

x ¥a
Xy ¥t
+ J’_ fgwiE, Plp-s di + J: [awix, P)lzmo 4 (8.83b)
53 &7

A
and (%, j;) denote the local coordinates of the element nodes (and a =%, — X, =%, — %4

and b= — 5= =)

The coefficient matrix of the condensed equations for the primary unknowns can
be directly assembled. There are four unknowns (at nodes 1, 2, 4, and 5). The
condensed equations are

Kll K]Z KM KIS Ul ‘Fl

KZI KZZ KZ-!- K?J UZ = P‘2 (8.84(1)
Ky Ko Ko Kis [T I

Ko Ky Ksi Kss1\Us E
where K, and F, are the global coefficients
K, =K. Kn=Kbh Ku=Ki Ks=Kib
Kp=KL+ K2, Ku=Ki, Ku=Kn+Kjy
Ko=Ki+ K}, Ke=Kh+Kh Ks=Kh+tKi+Ki+K, (8.84D)
F=f1+0, B=f+f+0i+0} E=fi+fi+0i+Q
E=f+A+fl++ 0+ Q1+ 01+ Q3

The boundary conditions on the secondary variables are

Q1=0, Q1+01=0, Qit+Q0i=0 (8.854)
and the balance of secondary variables at global node 5 requires
Qi+ Qi+ 2+ Q=0 (8.850)

Thus, we have

4 -1 -1 =2(U
ij-1 8§ -2 —2llw] 1
6l -1 —2 8 —2|]w[ 16

—2 -2 -2 16 3\Us

(8.86)

IS S

The solution of these equations is

U, =0.31071, (5,=024107, U,=024107, Us=0. 19286 (8.87)
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‘The secondary -variables Q;, O, angl Q;, at nodes 3, 6, and 9, respectively, can be
computed from the equations ((J; = 03, U= 03+ 03, 0,= 0%

N . U
0s £i ] [ K Ko Ks K|
Ost=—1fitfit+| Ka Ko Ko Kes Uz (8.88a)
Q. f3 Ko Ko Kou Kos ]|/
5
where
K, =0, Kyp= K%,, Ky, =0, Ky = Kéj
Kq=0, K62:K§1: Ke=0, Kg= K§4+ K;I (8-885)
Ky, =10, Ky =10, K94=0; Kgs-_*K;:
We have _
. U,
O, LI o 1o 2 U‘ 0.16697
O = —7212( 5|0 2 0 2 U2 = —1 0.26964 (8.89)
[oR 1 0 00 2 U“ 0.12679 '
5

The finite element solutions obtained using two different meshes of triangular
elements and two different meshes of rectangular elements are compared in Table 8.2
with the 50-term series solution (at x =0 for varying y) in (2.102) (set k=1, go=fo=1)
and the one-parameter Ritz solution in (2.101); see also Fig. 8.14. The finite element
solution obtained using 16 triangular elements {in an octant) is the most accurate one
when compared with the series solution. The accuracy of the triangular element mesh is
due to the large number of elements it has compared with the number of elements in
the rectangular element mesh for the same size of domain.

The solution u and its gradient can be computed at any interior point of the
domain. For a point {x, y) in the element €, we have

Utx, y) =?_‘, w5 Wi (x, ¥) (8.90a)
=1 R
U & oy AU & Loy
=% ;zts 5y % y)——ax—gjiuf = (8.900)

TABLE 8.2
Comparison of the finite element solutions u(0, y) with the

series solution and the Ritz solution of (8.65) (Example 8,3)

Triangular elements Rectangular elements Series
Ritz solution
¥ 4 clenents 16 elements 4 elements 16 elements (2.101) (2.102)

0.0 03125 0.3013 0.3107 0.2084 03125 0.2947
0.25 0.2709% 0.2805 0.2759% 0.2824 02930 0.2789
0.50 0.2202 0.2292 0.2411 0.2322 0.2344  0.2293
0.75  0.1146f 0.1393 0.1205¢ 0.1414 0.1367 0.1397
1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 Interpolated values.
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0.35
~— u(x, 0y= u(0,
0.30% ~~o (x, 0)=u(0, y)
0,25
0.20~
d
- Lx ) = 4
ax
ax "
0.15 o 4 elements { FEM 0.6 ,
o 16elements |, triangles . “"“u‘_‘o s
--- Ritz solution (2.101) i ,
i —0.4

0.10~ _ Series solution (2,102)
prcert
= 16 elements i
0.05— (rectang!e§_)=_____ -'.:';--_-:i
r 16 elements
Feevvenennnnnd (triangles)

pool—t £t 1111 11 Xy
0.0 0.1 02 03 04 05 06 07 08 09 1.0

FIGURE 8.14
Comparison of the finite element solution with the two-parameter Ritz solution and the series
solution (8.65) and (8.66) (Example 8.3).

Note that for a linear triangular element, g, and g, are constanis over an entire
element, whereas g, is linear in y and g, is linear in x for a linear rectangular element.
For example, consider element 1. For triangular elements (4 elements),

1 3
qx =51 ulpl=2(U,— U)) = —0.166 67
) o (8.91a)
gl =— > ulyi =2(U;— Up) = —0.104 17
24,5
while for rectangular elements (4 clements),
4 awl_.
gr= 2 == 201 = 29) + 201 = 2y) + 4y Us = 4y Us
=1
1(0.25, 0.25) = —0.11783
4x( ) (8.91b)

4 8 1
a=3 ul éiy'= _2UL(1 — 2x) + 2U5(1 — 2x) + 4xUs — 4xU,
i=1

(0.2, 0.25) = —0.11785

Plots of g,, obtained using the 16-element meshes of linear triangular and rectangular
elements, as a function of x (for y = 0.125) are also shown in Fig. 8.14,
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The computation of isolines, i.e., lines of constant u, for linear finite
elements is straightforward. Suppose that we wish to find the u = uy (constant)
isoline. On a side of a linear triangle or rectangular element, the solution u
varies according to the equation

e

us — uj

Us(s)y=us + s
where s is the local coordinate with its origin at node 1 of the side, (15, u3) are
the nodal values (see Tig. 8.15), and h is the length of the side. Then, if u=u,
lies on the line (i.e., ui<up<uj or u§<ue<uf), the point s, at which
U*(sp) = up is given by

5= Lo~ MO (8.92)
H3z— Uy
Similar equations apply for other sides of the element. Since the solution varies
linearly between any two points of linear elements, the isoline is determined by
joining two points on any two sides of the element for which (8.92) gives a
positive value (and sy <<h).
For quadratic elements, isolines are determined by finding three points s;
in the element at which U(s))=u, (i=1, 2, 3):

so  —bx(b*—dac)?
Y >
h 2a 0

(8.93a)

where
e=ui—up, b=-3uit4ui—ui, a=2(ui-2u5+ui) (8.93b)

Equation (8.93a) is to be applied on any three lines in the element until three
different values & > 54 >0 are found.

The computational problem considered here [i.e., (8.65)] has several
physical interpretations (see Table 8.1). The problem can be viewed as one of
finding the temperature u# in a unit square with uniform internal heat
generation, where the sides x =0 and y =0 are insulated and the other two
sides are at zero temperature (see Section 8.4.1). Another interpretation of the
equation is that it defines the torsion of a cylindrical bar of 2in square
cross-section (see Section 8.4.3). In this case, # denotes the stress function W,

K= U

b :

59

1

FIGURE 8.15
Isolines for triangular and quadrilateral elements (linear elements).
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and the components of the gradient of the solution are the stresses (which are
of primary interest):
¥ v
O =GO0—, o0,=-G0——
3y Ix
where G is the shear modulus and 8 is the angle of twist per unit length of the
bar.

A third interpretation of (8.65) is provided by groundwater (seepage) and
potential flow problems. In this case, u is the piezometric head ¢, stream
function 1 or velocity potential ¢ (see Section 8.4.2). The x and y components
of the velocity for the groundwater flow are defined as

3 3
u1=_311'§;—p: uzz_azza—f , ~
where a,; and a5, are the permeabilities of the soil along the x and y directions,
respectively. ’

Examples of each of these field problems will be considered in Section

8.4.

8.3 SOME COMMENTS ON MESH
GENERATION AND IMPOSITION OF
BOUNDARY CONDITIONS

8.3.1 Discretization of a Domain

The representation of a given domain by a collection of finite elements
requires engineering judgement on the part of the finite element practitioner.
The number, type (c.g., linear or quadratic), shape (e.g., triangular or
rectangular), and density (i.e., mesh refinement) of elements used in a given
problem depend on a number of considerations. The first is to discretize the
domain as closely as possible with elements that are admissible. As we shall
see later, one can use one set of elements for the approximation of a domain
and another set for the solution. In discretizing a domain, consideration must
be given to an accurate representation of the domain, point sources,
distributed sources with discontinuities (i.e., sudden change in the intensity of
the source), and material and geometric discontinuities, including a re-entrant
corner. The discretization should include, for example, nodes at point sources
(so that the point source is accurately lumped at the node}, re-entrant corners,
and element interfaces where abrupt changes in geometry and material
properties occur. A second consideration, which requires some engineering
judgement, is to discretize the body or portions of the body into sufficiently
small elements so that steep gradients of the solution can be accurately
calculated. The engineering judgement should come from both a qualitative
understanding of the behavior of the solution and an estimate of the
computational costs involved in the mesh refinement (i.e., reducing the size of
the elements). For example, consider inviscid flow around a cylinder in a
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FIGURE 8.16
Flow of an inviscid fluid around
L] 2 cylinder (streamlines).

I
—_—

channel. The flow entering the channel at the left goes around the cylinder and
exits the channel at the right (sce Fig. 8.16). Since the section at the cylinder
is smaller than the inlet section, it is expected that the flow accelerates in the
vicinity of the cylinder. On the other hand, the velocity field far from the
cylinder (e.g., at the inlet) is essentially uniform. Such knowledge of the
qualitative behavior of the flow allows us to employ a coarse mesh (i.e.,
elements that are relatively large in size) at sites sufficiently far from the
cylinder, and a fine one at closer distances to the cylinder (see Fig. 8.17).
Another purpose of using a refined mesh near the cylinder is to accurately
represent the curved boundary of the domain there. In general, a refined mesh
is required in places where acute changes in geometry, boundary conditions,
loading, material properties or solution oceur.

A mesh refinement should meet three conditions: (1) all previous meshes
should be contained in the refined mesh; (2) every point in the body can be
included within an arbitrarily small element at any stage of the mesh
refinement; and (3) the same order of approximation for the solution may be
retained through all stages of the refinement process. The last requirement
climinates comparison of two different approximations in two different meshes.
When a mesh is refined, care should be taken to avoid elements with very large
aspect ratios (i.e., the ratio of the smallest to the largest side of the element)

FIGURE 8.17
Finite element mesh considerations for inviscid flow around a cylinder. A typical mesh for a
quadrant of the domain.
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or small angles. Recall from the element matrices (8.41) and (8.68) that the
coefficicnt matrices depend on the ratios of a to b and b to a. If the value of
a/b or b/a is very large, the resulting coefficient matrices are ill-conditioned
(i.e., numerically not invertible). Although the safe lower and upper limits on
b/a are believed to be 0.1 and 10, respectively, the actual values are much
more extreme (say, 1000), and they depend on the nature of the physical
phenomenon being modeled. For example, in the inviscid flow problem
discussed above, large aspect ratios are allowed at the entrance of the channel.

The words “coarse” and “fine” are relative. In any given problem, one
begins with a finite element mesh that is believed to be adequate (based on
experience and engineering judgement) to solve the problem at hand. Then, as
a second choice, one selects a mesh that consists of a larger number of
elements (and includes the first one as a subset) to solve the problem once
again. If there is a significant difference between the two solutions, oné sees
the benefit of mesh refinement, and further refinement may be warranted. If
the difference is negligibly small, further refinements are not necessary. Such
numerical experiments with mesh refinements are not always feasible in
practice, mostly because of the computational costs involved. In cases where
computational cost is the prime concern, one must depend on one’s judgement
concerning what is a reasonably good mesh, which is often dictated by the
geometry and qualitative understanding of the variations of the solution and its
gradient. Since most practical problems are approximated in their engineering
formulations, one should not be overly concerned with the numerical accuracy
of the solution. A feel for the relative proportions and directions of various
errors introduced into the analysis helps the finite element practitioner to make
a decision on when to stop refining a mesh. In summary, scientific (or
engineering) knowledge and experience with a given class of problems is an
essential part of any approximate analysis.

8.3.2 Generation of Finite Element Data

An important part of finite element modeling is mesh generation, which
involves numbering the nodes and elements, and the generation of nodal
coordinates and the connectivity matrix. While the task of generating such data
is quite simple, the type of the data has an effect on the computational
efficiency as well as on accuracy. More specifically, the numbering of the nodes
directly affects the bandwidth of the final assembled equations, which in turn
increases the storage requirement and computational cost if equation solvers
with the Gauss eclimination procedure are used. The elements can be
numbered arbitrarily, because this has no effect on the haif-bandwidth. In a
general-purpose program with a preprocessor, options to minimize the
bandwidth are included. The saving of computational cost due to a smaller
bandwidth in the solution of equations can be substantial, especially in
problems where a large number of nodes and degrees of freedom per node are
involved. While element numbering does not affect the half-bandwidth, it may
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affect the computer time required to assemble the global coefficient matrix—
usually, a very small percentage of the time required to solve the equations.

The accuracy of the finite element solution can also depend on the choice
of the finite element mesh. For instance, if the selected mesh violates the
symmetry of the problem, the resulting solution will be less accurate than one
obtained using a mesh that agrees with the physical symmetry of the problem.
Geometrically, a triangular element has fewer (or no) lines of symmetry
compared with a rectangular element, and therefore one should use meshes of
triangular elements with care (e.g., one should select a mesh that does not
violate the mathematical symmetry present in the problem).

The effect of the finite element meshes shown in Fig. 8.18 on the solution
of the Poisson equation in Example 8.3 is investigated. The finite element
solutions obtained by the three meshes are compared with the series solution
in Table 8.3. Clearly, the solution obtained using mesh 3 is less accurate. This
is to be expected, because mesh 3 is symmetric about the diagonal line
connecting node 3 to node 7, whereas the mathematical symmetry is about the
diagonal line connecting node 1 to node 9 (see Fig. 8.18). Mesh 1 is the most

, { 8 9 71? 3 9

1% 7 X 1 2=
(a) (b}
y
. 8 9
/‘
f
4
Z
7
42 3 6
7
2 3
1 Ve /_-—x
(e}

FIGURE 8.18

Various types of triangular-clement meshes for the domain of Example 8.3: (a) mesh 1; (b) mesh
25 (c) mesh 3.



338 FINITE ELEMENT ANALYSIS OF TWO-DIMENSIONAL PROBLEMS

TABLE 8.3
Comparison of the finite element solutions ob-

tained using various linear triangular-element
meshes] with the series solution of the problem
in Example 8.3

Finite element solution
Series
Node Meshi Mesh 2 Mesh 3 sofation

1 0.31250 0.29167 0.25000 0.29469
2 0.22917 0.20833 0.20833 0.22934
4 0.22917 0.20833 (.20833 0.22934
5 0.17708 0.18750 0.16667 0.18114
t 8ee Fig. 8.18 for the finite efement meshes. Vs >

desirable of the three, because it does not violate the mathematical symmetry
of the problem. ‘

Next, the effect of mesh refinement with rectangular elements is
investigated. Four different meshes of rectangular elements are shown in Fig.
8.19. Each mesh contains the previous mesh as a subset. The mesh shown in
Fig. 8.1%(c) is nonuniform; it is obtained by subdividing the first two rows and
columns of elements of the mesh shown in Fig. 8.19(b). The finite element
solutions obtained by these meshes are compared in Table 8.4. The numerical

(a) &
(c) (d)
FIGURE 8.19

Mesh refinement; the meshes in (), (b), and (4) are uniform; the mesh in (¢} is nonuniform: {a)
2% 2 mesh; (b) 4 X 4 mesh; (¢) 6 X 6 mesh; (d) 8 X 8 mesh.
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TABLE 8.4
Convergence of the finite element solution (with mesh

refinementt} of the problem in Example 8.3

Location Finite element solntion
Series
x ¥ IxX2 4x4 6X6 8x8 solution
0.0 0.0 0.31071 0,29839 0.29641 0.29560 0.29469
0.125 0.0 — — 0.29248 0.29167 0.29077
0.250 0.0 — 0.28239 {1,28055 0.27975 0.27888
0.375 0.0 —- — 0.26022 0.24943 0.25863
0.50 0.0 0.24107 0.23220 0.23081 0.23005 0.22934
0.625 0.0 — — — 0.19067 0,19009
0.750 0.0 — 0.14137 0.14064 0.14014 0.13973
(.875 0.0 —_ — — 0.07709 0.07a687
0.125 0.125 — — 0.28862 0.28781 0.28692
0.250 0.250 — 0.26752 0.26580 0.26498 0.26415
0.375 0.375 — — 0.22960 0.22873 0.,2279%
0.50 0.50 0.19286 0.18381 0.18282 0.18179 0.18114
0.625 0.625 —_ — —_ 0.12813 0.12757
0.750 0.750 — 0.07506 0.07481 0.07332 0.07282
0.875 0.875 — — — 0.02561 0.02510

1 8ee Fig. 8.19 for the finite-element meshes,

convergence of the finite element solution of the refined meshes to the series
solution is apparent from the results presented.

8.3.3 Imposition of Boundary Conditions

In most problems of interest, one encounters situations where the portion of
the boundary on which natural boundary conditions are specified has points in
common with the portion of the boundary on which the essential boundary
conditions are specified. In other words, at a few nodal points of the mesh,
both the primary and secondary degrees of freedom may be specified. Such
points are called singular points. Obviously, one cannot impose boundary
conditions on both the primary and secondary variables at the same point. As
a general rule, one should impose the essential boundary condition (i.e., the
boundary condition on the primary variables) at the singular points and
disregard the natural boundary condition (i.e., the boundary condition on the
secondary variables), because the essential boundary conditions are often
maintained more strictly than the natural ones, Of course, if the true situation
in a problem is that the natural boundary conditions are imposed and the
essential boundary conditions are a result of this then consideration must be
given to the former.

Another type of singularity that one encounters in the solution of
boundary value problems is the specification of two different values of a
primary variable at the same boundary point. An example of such a case is
provided by the probiem in Fig. 8.20, where u is specified to be zero on the
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1 i

Us=1 i Us=10
| e

25 5 25

1 6 11 16 21 1 6 11 w6 2
{a) 4 % 4 mesh (mesh 1) (k) -
,
Us = 1 r Up=0 / J
_9 81 9 . 81
110 ... 73 110... 73
(c) 8 % 8 mesh (mesh 2) (d)
FIGURE 8.20

Effect of specifying (either of the) two values of a primary variable at a boundary node frode 5 in
{a) and (b) and nade 9 in (c) and (d)].

boundary defined by the line x =0 (for any y), and to be unity on the
boundary defined by the line y =1 (for any x). Consequently, at x = 0 and
y =1, u has two different values. In the finite element analysis, one must make
a choice between the two values, or a weighted average of the two values can
be used. When a choice is made between two values, often the larger one is
imposed. In any case, the true boundary condition is teplaced by an
approximate condition. The closeness of the approximate boundary condition
to the true one depends on the size of the element containing the point (see
Fig. 8.20). A mesh refinement in the vicinity of the singular point often yields
an acceptable solution.

8.4 APPLICATIONS
8.4.1 Heat Transfer

In Chapter 3, Section 3.3.1, heat transfer (by conduction and convection) in
one-dimensional (axial and radially symmetric) systems was considered, Here
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we consider heat transfer in two-dimensional plane and axisymmetric systems,
The derivation of two-dimensional heat transfer equations in plane and
axisymmetric geometries follows the same procedure as in one dimension, but
considers heat transfer in the two directions. Details of such derivations can be
found in textbooks on heat transfer (see the references at the end of the
chapter). Here we record the governing equations for various cases, construct
their finite element models, and present typical applications.

For heat conduction in plane or axisymmetric geometries, the finite
element models developed in Sections 8.2 and 8.3 are immediately applicable
with the following interpretation of the variables:

u = T = temperature (in °C)
g, = negative of heat flux (in W m™2°C™1)

a4y, @3; = conductivities (in W m™! °C™*) of an orthotropic medium

whose principal material axes coincide with the (x, y) axes (8.94)

f=internal heat generation (in Wm™°C™1)
on = O

For convective heat transfer, i.e., when heat is transferred from one
medium to the surrounding medium (often a fluid) by convection, the finite
element model developed earlier requires some modification. This is because,
in two-dimensional problems, the convective boundary is a curve as opposed to
a point in one-dimensional problems. Therefore, the contributions of the
convection {or Newton-type) boundary condition to the coefficient matrix and
source vector are to be computed by evaluating boundary integrals involving
the interpolation functions of elements with convective boundaries. The model
to be presented allows the computation of the additional contributions to the
coefficient matrix and source vector whenever the element has the convection
boundary condition.

PLANE SYSTEMS. The governing equation for steady-state heat transfer in
plane systems is a special case of (8.1), and is given by

a 2 3 3 ' :
i () —5, k5 ) =1y (8.95)
where T is the temperature (in °C), k. and k, are the thermal conductivities (in
Wm™'°C™) along the x and y directions, respectively, and f is the internal
heat generation per unit volume (in W m™). For a convective boundary, the
natural boundary condition is a balance of energy transfer across the boundary
due to conduction and/or convection (i.e., Newton’s law of cooling):

aT ar
ke gy ety oy + BT = 1) =4, (8.96)

where B is the convective conductance (or the convective heat transfer
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coefficient) (in W m™2°C™"), T.. is the (ambient) temperature of the surround-
ing fluid medium, and §, is the specified heat flow. The first two terms account
for heat transfer by conduction, the third for heat transfer by convection, while
the term on the right-hand side accounts for the specified heat flux, if any. 1t is
the presence of the term B(7 — 7..) that requires some modification of (8.10).

" The weak form of (8.95) can be obtained from (8.8). The boundary
integral should be modified to account for the convective heat transfer term in
(8.96). Instead of replacing the coefficient of w in the boundary integral by ¢,
we use (8.96) (§, is replaced by g,, which is obtained on the e¢lement
boundary}:

aw T aw aT T
0= (k P vk w———wf)dxdy § ( —gn,-!-kewny)ds

dxax “oya 7 By
.
awsT  awadT g
- L‘ (kra_xa_x oG wf) dx dy — Eﬁ Wig, — ﬁ(T 7,)] ds
=B(w, T)—Il(w) (8.97a)

where w is the weight function, and B(-, -) and /(+) are the bilinear and linear

forms
aw aT ow 3
B(w, T :f (kx————-+k de d +3£
(w, T) S Ty y pwT ds
(8.97b)

H{w)= f wfdxdy + 3g pwT., ds + § wq,, ds
Qe jad e

The finite element model of (8. 58) is obtained by substituting the finite
element approximation of the form ——

L ’e
T=2 Tiyj(s y) (8.98)
for T and v} for w into (8.97): )
> (K5+ HST:=F:+ P; (8.99a)
j=1

where

Oy: 9Yy;  , O 31}’)
€ kx__)‘ i i
d J ( ox 8x+k’8y8 dx dy

- [ rwdxdy+§ qrwas=fi+ 0 (8.995)
QF I

=B § vnds, Pi=p§ wTds




SINGLE-VARIABLE PROBLEMS 343

Note that by setting the heat transfer coefficient 8 equal to zero, we obtain the
heat conduction model with no account taken of convection.

The additional coefficients Hj and P} due to the convective boundary
conditions can be computed by evaluating boundary integrals. These
coefficients must be computed only for those elements and boundaries that are
subject to the convective boundary condition. The computation of the
cocfficients for the linear triangular and rectangular elements is presented in

the following paragraphs. The coefficients Hj; and Pf for a linear triangular
element are defined by
k5 hs kS
Hi=pn ; Yiyjds + % 5 Yivids + 5 | wiyjds
Q
i ) A5 (8.100)

Pi=pols | yids+ PRIl | yids+pLTd | yids
0

where 5 is the film coefficient (assumed to be constant) for the side
connecting nodes i and j of the clement ©°, T is the ambient temperature on
that side, and Aj is the length of the side. For a rectangular element, the
expressions in (8.100) must be modified to account for four line integrals on
four sides of the element.

Boundary of the discretized
domain

True boundary
of the domain

Boundary flux

FIGURE 8.21

Triangular and quadrilateral elements, with node numbers and local coordinates for the evaluation
of the boundary integrals. Also shown are the boundary approximation and flux representation
using linear and quadratic elements.
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The boundary integrals are line integrals involving the interpolation
functions. The local coordinate s is taken along the side, with its origin at the
first node of the side (see Fig. 8.21). As noted earlier, the interpolation
functions on any given side are the one-dimensional interpolation functions.
Therefore, the evaluation of integrals is made easy. Indeed, the integrals

ey

(V]

5
Wiy ds, L s ds

have been evaluated in Chapter 3 in connection with mass matrix coefficients
and source vector coefficients for linear and quadratic elements. We sum-
marize the results here.

For a linear triangular element, the matrices {H°] and {P°} are given by
W

I
c,e |2 10 ce |0 00 c,e 2 01
[H'-']=_ﬁ‘26h‘2 120 +———ﬁ236h23 02 1 +—wﬁ3;h3} 000
000 012 10 2
(8.101a)
i 0 1
e l2pe e 231.¢ e 3lpe
(P} = 12T;h12 1 +ﬁ237;mh23 1 +331T;h31 0% (8.1010)
0 1 1
For a quadratic triangular element, we have
4 2 -1 000 00 0 0 00
2 16 2000 606 0 0 00
epe|-1 2 400 0] gegpel0 0 4 2 -1 0
{H‘]=E-‘§0—“000000+%§00 216 20
0 0 0000O0 600 -1 2 40
0 0 0000 60 0 0 00
4 000 -1 2
0000 0 0
Bsihs ] 0 0 6 0 0 0
+ 30 0000 0 0 (8.102{1)_
-1 000 4 2
2000 2 16
1 0 1
7 13 4 35 0 51 0
o _BRTE )1 pTEhs 1| BTy o
{p}= 5 of ¥ ¢ a FT e 0 (8.102b)
0 1 1
0 0 4
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For a linear rectangular clement, the matrix [H] is of the form

21 00 0 0 00
(B[ 12 0 0 Bohsl0 2 10
6 0000 6 01 2 0
0 0 060 0 000
0 0 0 Q 2 00 1
P3h3 ] 0 0 0 0| BLhy|0 0 0 0
+T 00 2 1 + 6 lo 00 0 (8.1034)
0 0 1 2 100 2
and {P°} is given by
i 0 0 i
{Pg}zﬁ‘iszhiz 1|, BosTohsy J 1] BuTohs ) O | Buleh | O
2 0 2 1 2 1 2 0
0 0 1 1
(8.103b)

Similar expressions hold for a quadratic rectangular element.

AXISYMMETRIC SYSTEMS. For symmetric heat transfer about the z axis
(i.e., independent of the circumferential coordinate), the governing equation is

given by
[r ar( 37) az( aj.)} =f{r, 2) (8.104)

where r is the radial coordinate and z is the axial coordinate. The temperature

gradient vector is defined by
' T, T,
q=r(k P —itk, —H‘])

and the normal derivative of T (i.e., the negative of the heat fiux) across the
surface is

ar
where #n, and n, are the direction cosines of the unit normal &,

q,,=r(k c’;Tn,.+k 8;7:‘ Z) (8.105)

= nj + nzi
The weak form of (8.104) is given by

Ozzﬂjg,w{ [rar( aT) az( aj)]“f}rd’dz

ow arT ow aT
—ZnJ‘ (k ag;-i—k Ez—g——wf)rdrdz ~2Jrjg wq, ds  (8.100)
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where the factors of Zx come from the integration with respect to the
circumferential coordinate over (0,2x), and g, is given by (8.105). The
convective boundary condition is of the form

dn + rﬁ(T - Tm) = éu
Substituting for g, = —rB(T — T..} + §,, in (8.106), we obtain

0=2m N (k,%;g+ . 2—2—)%%1_ wf)r drdz —2x £ w|—rf(T —T.)+ 4, ds
(8.107)
The finite element model of this equation is
(K +HUTY = {f}+{P}+{Q}  +  (81080)

where

auiovf . 3uiay;

d
3r or Pz 8z )rdr z

Ki=2m (k,
-
Hy =2 fjg Bwivirds, fi=2m f Wifr drdz (8.108b)
Ie fvid

Oi=2n§ quids, Pi=2m Ty ds
T Fe

Evaluation of the line integrals in [H?] and {P°} once again follows along the
lines of Example 8.3.

The finite element models in {8.99) and (8.108) are valid for conductive
and convective heat transfer boundary conditions, Radiative heat transfer
boundary conditions are nonlinear, and therefore are not considered here. For
problems with no convective boundary conditions, the convective contributions
[H?] and {P°} to the element coefficients are omitted. Indeed, these
contributions have to be included only for those elements whose sides fall on
the problem boundary with convective heat transfer specified. For example, if
side 2-3 of the element Q° is on the boundary with convective boundary
conditions then the only contribution to [H*] and {P*} comes from the second
integrals in (8.100).

Next we consider a couple of examples of heat transfer.

Example 8.4. Consider steady-state heat conduction in an isotropic rectangular region
of dimensions 3a by 2a (see Fig. 8.22a). The origin of the x and y coordinates is taken
at the lower left corner such that x is parallel to the side 3a and y is parallel to the side
2a. The boundaries x =0 and y = 0 are insulated, the boundary x = 3a is maintained at
zero temperature, and the boundary y =2a is maintained at a temperature T =
Tycos{mx/6a). We wish to determine the temperature distribution using the finite
element method in the region and the heat required at the boundary x = 3a to maintain
it at zero temperature.



SINGLE-VARIABLE PROBLEMS 347

¥ i wY
T = Tacos —
e
Insulated -—_
2ﬂ - T = 0
~—l» 3a
X

Insulated

g 10 11 B
@ | ® ®
5 6 7 8
0 ( > | o
1 2 3 "4
{e)
FIGURE 8.22

Finite element analysis of a heat conduction problem over a rectangular domain: () domain; {b)
mesh of linear triangular efements; {¢} mesh of lincar rectangular elements.

To analyze the problem, we first note that it is governed by (8.95) with zero
internal heat generation, f =0, and no-convection boundary conditions:
—kVT =0 (8.109)

Hence, the finite element model of the problem is given by (8.99) with [H¢] and {P*}
omitted:

KU} = {0 ({F}= {0} (8.110a)

where uf is the temperature at node i of the element Q°, and

¢ awt STPI a'lp‘ a‘lp]) . %
K= | k[ 2HiS¥s, SVl _ _ "
' L (ax ax oy ay) A Q=P ands (8.110b)
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Suppose that we use a 3 X 2 mesh (i.e., 3 subdivisions along the x axis and 2 along the y
axis) of lincar triangular elements and then a 3 X 2 mesh of linear rectangular elements,
Both meshes have the same number of global nodes (12) but differing numbers of
clements.

Triangular element mesh (12 elements). The global node numbers, element numbers,
and element node numbers used are shown in Fig. 8.22(b). Of course, the global node
numbering and element numbering are arbitrary (they do not have to follow any
particular pattern), although the global node numbering dictates the size of the
half-bandwidth of the assembled equations, which in turn affects the computational
time of Gauss elimination methods used in the solution of algebraic equations on a
computer. The element node numbering scheme should be that used in the develop-
ment of element interpolation functions. In the present study, a counter-clockwise
numbering system was adopted {see (8.19) and Fig. 8.4]. According to the element
node numbering scheme used in Fig. 8.22(a), all elements in the mesh fall into one of
two geometric shapes: one with its base at the bottom of the element and another with
its base at the top of the element. By renumbering the element nodes, as shown in Fig.
8.12(b}, all elements can be made to have a common geometric shape, and thus the
element coefficients need to be computed only for a single element. Such considerations
are important only when hand calculations are carried out.

For a typical element of the mesh of triangles in Fig. 8.22(b), the element
coefficient matrix is [see (8.69a) and (8.70)]

1 -1 0
[K"]=§ -1 2 -1
0 -1 1

where k is the conductivity of the medium. Note that the element matrix is independent
of the size of the element, as long as the latter is a right-angled triangle with base equal
to height.

The assembly of the elements (on a computer) follows the logic discussed earlier.
The boundary conditions require that

U=U=Un=0, U=T, Uow=V3T, U,=1%

. {8.111)
F=FE=FE=F=0 (zero heat flow due to insulated boundary)

We first write the six finite element equations for the six unknown primary
variables. These equations come from nodes 1, 2, 3, 5, 6, and 7:

2 -1 0 -1 0 07 rU; 6
-1 4 -1 0 -2 01l 0
k 0 -1 4 0 0 —2ijul K 0
s -1 0 0 4 —2 olluuf "2 & (8.112).
0 -2 0 -2 8 -—2]{us V3T,
¢ 0 -2 0 -2 s\, Ta
The solutiont of these equations is (in °C)
U =06362T, U,=0.55107, U, =03181T,
1 Q 2 0 3 [H] (8, 113)

Us= 072141, Us=0.6248T,, U;=0.3607T;
The exact solution of {8.109) for the boundary conditions shown in Fig. 8.22(a) is

cosh (zy/6a) cos {7x/6a)

Ti{x, v) =T,
=T cosh3m

(8.114a)
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Evaluating the exact solution at the nodes, we have (in °C)

1,=0.62497,, ©1,=05412T,, T,=0.3124T,

_ , (8.114b)
T.=0.7125T,, T,=06171T, T =0.3563T,

The heat at node 4, for example, can be compared from the fourth finite ¢lement
equation:

F=0i=KyU + Kol + Ky Us + Ky Uy + K5 Us (
+ KU+ KU + KU +. .. (8.115a)

Noting that Ky = K= Kys=. .. =Ky =0 and U, = Uy =0, we obtain
Q3= -tk Us=—0.1591K T, (in W) : {8.115b)
Rectangular element mesh (6 efements). For a 3 X2 mesh of linear rectangular

elements (see Fig. 8.22¢), the element coefficient matrix is given by (8.34) and (8.44)
with 20 =0, gy =a=k, a,=0, anda=b=1:

4 -1 -2 -1
e _]_C -1 4 -1 =2 L
KI=gl 2 -1 4 o =@ (8.116)
-1 -2 -1 4

The present mesh of rectangular elements is node-wise-equivalent to the triangular
element mesh considered in Fig. 8.22(b). Hence the boundary conditions in (8.111) are
valid for the present case. The six finite element equations for the unknowns Uy, U,
5, Us, U, and U5 have the same form as before.

The equations for the unknown temperatures (i.e., the condensed equations for
the unknown primary variables) are given by

4 -1 0 -1 -2 00U 0
-1 8 -1 -2 =2 =2||lu 0
kj o -1 8 o0 -2 20wl % 0
6l-1 -2 0 8 -2 o[ytu{T6) L+\V3T (8.117)
-2 -2 =2 =2 16 =2||u 2L+V3IT,+ T,
0 -2 -2 o0 -2 16l\ly 3T+ T,
Their solution is
U,=0.6128T,, U,=0.5307T,, U,=03064T,
1 0 2 [ ] (8.118)

U;=0.7030T,, U;=0.60887,, U;=0.3515T;
The value of the heat at node 4 is given by

QI=Kulh+ KU, = —g ;- 26_k U, = —0.1682kT; (in W)

We note that the results obtained using the 3 X 2 mesh of rectangular elements is
not as accurate as that obtained with 3 X 2 mesh of triangular elements. This is due to
the fact that there are only half as many elements in the former case as in the latter.

Table 8.5 gives a comparison of the finite element solutions with the analytical
solution (8.114a) for two different meshes of linear triangular and rectangular elements,
and Fig. 8.23 shows plots of T(x, 0) and ¢,(x, 0)/T;, computed using various meshes of
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TABLE 8.5 :
Comparison of the nodal temperatures T(x, y)/Tp, obtained

using various finite element meshes,i with the analytical
solution of (8.109) (Example 8.4)

Triangles Rectangles Analytical
solution
x ¥ Ix2 6x4 IxX2 6x4 (8.114a)

0.0 0.0 0.6362 0.6278 0.6128 6.6219 0.6249

65 0.0 — 0.6064 — 0.6007  0.6036
1.0 006 05510 05437 05307 0538  0.5412
1.5 00 — 0.4439 — 04398 0.4419
20 00 03181 03139 03064 03110 03124
25 00 - 0.1625 — 0.1610  0.1617
0.0 1.0 07214 07148 07030 07102 07125 “
05 1.0 — 0.6904 — 0.6860  0.6882 7
1.0 1.0 06248 06150 06088  0.6150  0.6171
1.5 1.0 — 0.5054 — 0.5022  0.5038
20 1.0 03607 03574 03515 03551 0.3563
25 1.0 — 0.1850 — 01838 0.1844

1 See Fig. 8.22 for the geometry and meshes.

trangular and rectangular elements. Note that OF are heats (in W) whereas g, is the
flux (in W m™") in the x direction (g, = —k 37T /3x}.
Next we consider an example involving convective heat transfer,

Example 8.5. Consider heat transfer in a rectangular region of dimensions a by b,
subject to the boundary conditions shown in Fig. 8.24. We wish to write the finite
element algebraic equations for the unknown nodal temperatures and heats. For
illustrative purposes, a 4 X 2 mesh of rectangular elements is chosen. We assume that
the medium is orthotropic, with conductivities &, and %, in the x and y directions,
respectively. It is assumed that there is no internal heat generation.

The heat transfer in the region is governed by the equation

3 g g 2]
‘5}("*59‘5;(’@5; =0

The finite element model of the equation is given by
(K*+ BN u}={Q}+ (P} ({f}={0D) (8.119)

where uf denotes the temperature at node { of the element Q°.
The element matrices are

2 -2 -1 1 -2 1 -1 -2

krl-2 2 1 <1 x| 1 2 -2 -1
K] = Ky
KI="cl 21 1 2 =2 |Yer|~1 -2 2 1
1 -1 -2 2 2 -1 1 2
00 0 0]
Buhi:l0 2 10
e = 22l -
=579 1 2 o| ©=%®
0000
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¥ T="T
1 - a o
i} 12/ 13 1 15
— W) =0
Insulated Q) &) @ k + B(T — Tu.)
) d 9 100,

@ @ ©) @

L X ]
)\ Insulated

FIGURE 8.24
Domain and boundary conditions for convective heat transfer in a rectangular domain. A mesh of
lincar rectangular elements is also shown (Example 8.5). w
’
’
0
TBh 1
(P} = BiT=ha | (e=4,8) (8.120)
0
where

r=1ibfta=2bta

There are 10 nodal temperatures that are to be determined, and heats at all nodes
except nodes 7, 8, 9 and 10 are to be computed. To illustrate the procedure, we write
algebraic equations for only representative temperatures and heats.

Node 10 (for temperatures)
KUy + (K3, + HR)Us + (K + K3) Uy
+(Kh+ Hy+ K+ HaUin+ K3 U+ (K5 + H3)Ups
=(Q3+ P+ (Q3+P5)=Pi+ P§ (known)
Node 14 (for heat G ,)
0= 01+ 0= KL Us + (KL + KS)Us + KLU + KUy + (Ko + KD U + KU s

From the boundary conditions, we know the temperatures at nodes 11--15 (i.e,,
Uy, Vs, . - -, Uys are known), Substituting the values of K3, Hj, and P}, we obtain
explicit form of the algebraic equations. For example, the algebraic equation
corresponding to node 10 is

_1 ky o kY, 1 iy i‘z) (_ ﬁ)]
6(kr+ )04 [6(;” ) lzﬁb]U5+6[( 2her+2) + (<2kr +2) |0,

[(k + ) 5”]0,” ;( k,r—%)UM+%[k 2k+1ﬁb}Uls 1BbT.
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8.4.2 Fluid Mechanics .

Recall from Section 3.3.2 that there are three basic differential equations of
fluid motion. They are as follows [see (3.100), (3.103), and (3.108)]:

Conservation of mass

dp

5tV =0 (8.121)

Conservation of linear momentum

D
P =f—VP+V.1 (8.122)

Dt

Conservation of energy
De

o PPV =V (V) + @ (8.123)

p

Here p is the density, v is the velocity vector, f is the body force vector, P is
the pressure, T is the viscous stress tensor, e is the internal energy, k is the
thermal conductivity, T is the temperature and @ is the dissipation,

O =Vvit

The operator D/Dt denotes the material time derivative,

D_9% vy
Dt e

Equations (8.121)—(8.123) are supplemented with constitutive equations.
A fiuid js said to be incompressible if the volume change is zero,

Vev=0 (8.124)

and it is termed inviscid if the viscosity is zero, u =0. A flow with negligible
angular velocity is called irrotational,

VXy=0 (8.125)

The irrotational flow of an ideal fluid (i.e., p = constant and i =0) is called a
potential flow, _

For an ideal fluid (v =0), the continuity and momentum equations can be
written as ’

Vev=0 (8.126a)
V(v v)— p[¥ X (VX v)]=—VP (8.1265)
where VP = VP —£. For irrotational flow, the velocity field v satisfies (8.125).
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For two-dimensional irrotational flows, these equations have the forms

Ju Ju

—+-—=0 8.12

ax 3y (8.126c)
1p(u®+ v®) + P = constant (8.126d)

du Jdu

—— = 126

3y ox 0 (8.126¢)

Equations (8.132), (8.133) and (8.126d) are used to determine u, v, and P.
The problem of determining u, v, and P is simplified by introducing a
function y(x, y) such that the continuity equation is identically satisfied: «
I

%y %
u—ay, v=-o , (8.127)

Then the irrotational flow condition in terms of 1 takes the form

Fy  FY_ . _
a—yz-l-“a":'ri=vw—0 (8.128)

This equation is used to determine 1, and then the velocities # and v are
determined from (8.127) and P from (8.1264).

The function 3 has the physical significance that lines of constant i are
lines across which there is no flow, i.e., they are streamlines of the flow.
Hence, y(x, y) is called the stream function.

In cylindrical coordinates, the continuity equation takes the form

ou 13v_

S t35=" : (8.129)

where u and v are the radial and circumferential velocity components. The
stream function w(r, 8) is defined by

-2 ,=_ZF (8.130)

and {8.128) takes the form

Fy 19y 138y
Vy=—ot-———t 5 5= 1
V=G Y e TR e 0 (8.131)
There exists an alternative formulation of the potential flow equations
(8.126). We introduce the function ¢(x, y), called the velocity potential, such
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that the condition of irrotational flow is identically satisfied: ‘

_% 9%
'ax’ v= 3y (8.132)

Then the continuity equation (8.126¢) in terms of the velocity potential takes
the form

~Vp =0 (8.133)

Comparing (8.127) with (8.132), we note that

_%=§yf, _@=__32 (8.134)
8x Jy gy 3x
The velocity potential has the physical significance that lines of constant ¢ are
lines along which there is no change in velocity. The equipotential lines and
streamlines intersect at right-angles.

Although both 1 and ¢ are governed by the Laplace equation, the
boundary conditions on them are different in a flow problem, as should be
evident from the definitions (8.127) and (8.132). In this section, we consider
applications of the finite element method to potential flows, i.e., the solution
of (8.128) and (8.133).

We consider two examples of fluid flow. The first deals with a
groundwater flow problem and the second with the flow around a cylindrical
body. In discussing these problems, emphasis is placed on certain modeling
aspects, data generation, and postprocessing of solutions, Evaluation of
element matrices and assembly is amply illustrated in previous examples, and
will not be discussed, since it takes substantial space to write the assembled
equations even for the crude meshes used in these examples.

Example 8.6 Groundwater flow or seepage. The governing differential equation for a
homogeneous aquifer (i.., one where material properties do not vary with' position) of
unit depth, with flow in the (x, y) plane, is given by

_a_i (a“_gg) _a_i(“”%g) “f (8.135)

where @, and ay, are the coefficients of permeability (in m day ') along the x and y
directions, respectively, ¢ is the piezometric head (in m), measured from a reference
tevel (usually the bottom of the aquifer), and fis the rate of pumping (in m*day ' m™).
We know from the previous discussions that the natural and essential boundary
conditions associated with (8.135) are

Natural

@ 3
iy %n, + azz—é%ny =¢, onl, (8.136a)
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Essential

p=¢, onl, (8.136h)

where T, and [, are the portions of the boundary T of Q such that I' + T, =T

Here we consider the following specific problem: find the lHnes of constant
potential ¢ (equipotential lines) in a 3000 m X 1500 m rectangular aquifer Q (see Fig.
8.25) bounded on the long sides by an impermeable material (i.e., a8¢fon =0) and on
the short sides by a constant head of 200m (¢,=200m). In the way of sources,
suppose that a river is passing through the aquifer, infiltrating it at a rate of
0.24m*day"'m 2, and that two pumps are located at (1000, 670) and (1900, 900),
pumping at rates Q,=1200m’day'm ' and Q,=2400m’day™' m™’, respectively.
Pumping is considered as a negative point source.

A mesh of 64 triangular elements and 45 nodes is used to modet the domain {see
Fig. 8.26a). The river forms the interelement boundary between elements
(33,35,37,39) and (26,28, 30,32). In the mesh selected, neither pump is located at a
node. This is done intentionally for the purpose of illustrating the calculation of the
generalized forces due to a point source within an element. If the pumps are located at
a node then the rate of pumping Q, is input as the specified secondary variable of the
node. When a source (or sink) is located at a point other than a node, we must
calcufate its contribution to the nodes. Similarly, the source components due to the
distributed line source (i.e., the river) should be computed.

First, consider the line source. We can view the river as a line source of constant
intensity, 0.24'm>day ' m™. Since the length of the river is equally divided by nodes
2125 (into four parts), we can compute the contribution of the infiltration of the river
at each of the nodes 21-25 by evaluating the integrals (see Fig. 8.26b):

k
node 25: J (0.24)y1 ds
a

h ]
node 24: f(0.24)w;ds+ J (0.24)yt ds
(¢} 4}

a¢

Impermeable boundary, —— =

§ 1000 m e Al
o~ ; LA
| T
i 5

Pump 2 3
3 p
< B (1900, 900) 3
8 = Pump 1 g
5 37 S River, 0.24 m’ ie
= (1000, 670) day”' m™ g8
L < |
"g° k @y = 2a3; = 40 m day ! /8 &
o7+ -

i

f Z_ 3000 m
Impermeable boundary, Z& =0
¥

FIGURE 8.25
Geometry and boundary conditions for the groundwaler Bow problem of Example 8.6.



SINGLE-VARIABLE PROBLEMS 357

0w 15 20 25 30 35 40 45

go = 0.24

1

25 FT RN S S S
@ @ ©) @

do
A,

—
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FIGURE 8.26.

Finite element mesh, and computation of force components for the groundwater (seepage) flow:
(a) finite element mesh of triangular elements (45 nodes and 64 elements); (b) computation of
global forces due to the infiltration of the river; (c) computation of global forces for pump 1,
located inside clement 19 {Example 8.6).

h ]

node 23: f 0.2 ypids + j (0.2d)y5 ds
'3 1]
h i

node 22: f (0.24)p3ds + J (0.24)ytds
il (1]

h
node 21: j {0.24)y3 ds
0

For constant intensity g, and the linear interpolation functions ¢§(s)=1—s/k and
¥5{(s)} = s/h, the contribution of these integrals is well known:

h -
j Gowids =dguh,  h=3[(1000) + (150072,  qo=0.24
(1]

Hence, we have
By = %%ks Ey=FEs=Fy=qph, F;= %610’1-

Next, we consider the contribution of the point sources. Since these are located
inside an element, we distribute them to the nodes of the element by interpolation (see



358 FINITE ELEMENT ANALYSIS OF TWO-DIMENSIONAL PROBLEMS

Fig. 8.26¢):

1= [ 003 =0,y = 390iCe, ) de dy = Qo¥iteo, 1)

where the two-dimensional Dirac deita function is defined by

[ [ PG 936G =50,y =30 dx dy = F(so, 3

For example, the source at pump 1 (located at xo=1000m, y,=670m) can be
expressed as .

O.(x, y) = —12008(x — 1000, y — 670)

The interpolation functions ¥ for element 19 are {in terms of the local coordinates ¥
and 7; see Fig. 8.26¢) ’

WD = (@ PR
A=L3757  a,=(3757 ap=--375(125), o =375(125)
B,=0, B.=375, B:=-375, vi=-315, v.=125, y5=250
We have £ =x — 750 and § =y - 375, and, therefore,
¥,(250, 295) = 0.2133, 1, =(250,295) =0.5956, ;= (250, 295)=0.1911

Similar computations can be performed for pump 2.
In summary, the primary variables and nonzero secondary variables are

Uy=Uy= U= Uy = Us= Uy = Uy = Uy = Uy = Uys = 200.0
By =54.08, Fu=F,=FE,=108.17, Fs=>54.08
Fp=-255.6, F,=-200.2, Fo=-7152, Fy=—1440.0
Fo=—410.4, F,=—549.6

The secondary variables at nodes 6-11, 14-17, 19, 20, 26, 27, 30-33, and 35-40 are
zero. This completes the data generation for the problem.

The assembled equations are solved, after imposing the specified boundary
conditions, for the values of ¢ at the nodes. The equipotential lines can be determined
using (8.92) or a postprocessor. The lines of constant ¢ are shown in Fig. 8.27(a) and
the velocity vectors in Fig. 8.27(b). The greatest drawdown of water occurs at node 28,
which has the largest portion of discharge from pump 2. .

The solution of the same problem by an alternative mesh that puts pumps 1 and 2
at nodal points is left as an exercise.

Next, we consider an example of irrotational flow of an ideal fluid {i.e., a
nonviscous fluid). Examples of physical problems that can be approximated by
such flows are provided by flow around bodies such as weirs, airfoils, buildings,
and so on, and by flow of water through the earth and dams. The Laplace
equations (8.128) and (8.133) governing these flows are special cases of (8.1},
and therefore one can use the finite element equations developed earlier to
model] these problems.
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FIGURE 8.27
Plots of constant piezometric head and velocity vector for the groundwater Aow: (a) lines of

constant ¢; (b} plot of velocity vectors (Example 8.6).

Rigid cylinder
Uy~ {2 cm diameter)

_"—-_—‘—'—4 cm

FIGURE 8.28
Domain and boundary conditions for the stream function and velocity potential formulations of

irrotationat flow about a cylinder (Example 8.7).
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Example 8.7 Confined flow around a circular cylinder. The irrotational flow of an
ideal fluid about a circular cylinder, placed with its axis perpendicular fo the planc of
the flow between two long horizontal walls (see Fig. 8.28) is to be analyzed using the
finite element method. The equation governing the flow is

—Vu=0 in Q
where u is either (1) the stream function v or (2) the velocity potential ¢. If it is the
former, the velocity components u = {u,, u,) of the flow field are given by

ayp 3y

= "gy”, s = i

If u is the velocity potential ¢, the velocity components can be computed from

dx 3y
In either case, the velocity field is not affected by a constant term.in the solution u. To
determine the constant state of the solution, which does not affect the velocity field, we
arbitrarily set the functions 3y and ¢ equal to zero (or a constant) on appropriate
boundary lines. We analyze the problem using both formulations. For both, symmetry
exists about the horizontal and vertical centerlines; therefore, only a quadrant of the
flow region is used as the computational domain.

Strezm function formalation. The boundary conditions on the stream function y can
be determined as follows. Streamlines have the property that flow perpendicutar to them
is zero. Therefore, the fixed walls correspond to streamlines. Note that, for inviscid
fiows, fluid does not stick to rigid walls. Because of the biaxial symmetry about the
horizonta! and vertical centerlines, only a quadrant (say, ABCDE in Fig. 8.29) of the
domain need to be used in the analysis. The fact that the velocity component
perpendicular to the horizontal line of symmetry is zero allows us to use that line as a
streamline. Since the velocity field depends on the relative difference of two
streamlines, we take the value of the stream function that coincides with the horizontal
axis of symmetry (i.e., on ABC) to be zero, and then determine the value of 4 on the
upper wall from the condition

oy
3y

where I, is the inlet horizontal velocity of the field. We determine the value of the
strearn function on the boundary x =0 by integrating the above equation with respect

=0,

b ¥ = 2Up

FIGURE 8.29

Computational ~ domain  and

boundary conditions for the

stream function formulation of in-
~. viscid flow around a cylinder (see

g o=yl =0 Fig. 8.28).
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to y:

o dlp ¥
f —dy=[ Uedy + 9, =Uyy +0 {8.137)
o dy a

because 4, = 0 from the previous discussion. This gives the boundary condition on AE,
Since the line ED is a streamline and its value at the point E is 20/, it follows that
3 =2U, on the line ED. Lastly, we assume that the vertical velocity is zero on the line
CD (i.e., U;=0); hence 3y/3x =0 on CD. The boundary conditions are shown on the
computational domain in Fig. 8.29,

In selecting a mesh, we should note that the velocity field is uniform (i.e.,
streamlines are horizontal} at the inlet, and that it has a parabolic profile at the exit
(along CD). Therefore, the mesh at the inlet should be uniform, and the mesh close to
the cylinder should be relatively more refined to be able to model the curved boundary
and capture the rapid change in 1. Two coarse finite element meshes are used to
discuss the boundary conditions, and results for refined meshes will be discussed
subsequently. Mesh T1 consists of 32 triangular elements and mesh Q1 consist of 16
quadrilateral elements. Both contain 25 nodes (see Fig. 8.30), The mesh with the solid
lines in Fig. 8.30 corresponds to mesh Q1, and that with both the solid and dashed lines
corresponds to mesh T1. It should be noted that the discretization error is not zero for
this case.

The specified primary degrees of freedom (i.¢., nodal values of 1) for meshes T1
and Q1 are

U[=U2=...=U5=U[U=U]5=U20=U25=0.0

8.138
Us=1.0, Uy=Ug=U,=2.0 (8.138)

There are no nonzero specified secondary variables; the secondary variables are
specified to be zero at the nodes on the line CD:

F:rz=F23=Fz4=0

Although the secondary variable is specified to be zero at nodes 21 and 25, where the
primary variable is also specified, we choose to impose the boundary conditions on the
primary variable instead of the secondary variables,

Table 8.6 gives the values of the stream function and its derivative 8y/3y (= )
at selected points/elements of the meshes. The finite element program FEM2DV?2 {(see
Chapter 13 for details) is used in the analysis. The stream function values obtained with
meshes T1 and Q1 are very close to each other. Recall that the derivative AyYy/3y is
constant in a linear triangular element, whereas it varies linearly with x in a linear

16
11 - —= 21
) 6 17@ =
12~ > = 122
s / B JIn
TG | Oy 19124
6 ”____—— 14¢ ”, 20’ “95
@ Proa D/ - s | FiourE 830
P - i ] Meshes T1 and Q1 (remove the
- e ,@ e K 10 dashed lines for the mesh of qua-
Ny e - DY 1 drilaterals) used for inviscid fow

around a cylinder.
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TABLE 8.6
Finite element results from the stream function formulation of inviscid

flow around a cylinder (Example 8.7)

Stream function Velocity w, = dy/3y Velocity 4, = —~3¢/0x

x ¥ Mesh T1 Mesh Q1 Mesh T1 Mesh Q1 Mesh T1 Mesh Q1.

13183 07354 07092  0.7095  0.9643(1)F 0.9852(F)  0.9922(1)  0.9989(1)
22705 05444 0.4372 04379  0.8032(3)  0.9002(2) 0.9371(3)  0.9408(2)
28564 04268 0.1667 0.1650 03906(5) 0.6432(3)  0.7047(5}  0.7018(3)
L4112 1.4459 1.4241 14270  0.0000(7)  0.2679(4)  0.299%(7)  0.3197(4)
24305 1.0457 0.8730 0.8823  0.4469(15) 0.8746(8)  0.6469(15) 0.8364(8)
30577 07995 03357 03384 1.636(24)  1.586(12)  1.873(24)  1.453(12)
26931 1.5388 1.3758 1.4010 2.544(32)  2.4551(16) 2.163(32)  2.075(16)
3.1937 12057 0.7706  0.7980 .
35018 1.0007 02520 0.2658

40000 15714 1.2395  1.2065

40000 12619 0.6191  0.57% ,
40000 1.0714 01817  0.1588

 Denotes element number; the derivatives of y and ¢ are evaluated at the center of this element.

rectangular element. Therefore, the results for meshes T1 and Q1 will not be the same.
The velocities inciuded in Table 8.6 correspond to elements closest to the symmetry line
(i.e., the y =0 line) and the surface of the cylinder.

The tangential velocity 4, on the cylinder surface can be computed from the
relation

a a
14,(6) = u, sin 6 + u; cos 6=a—;psin Bw-a%cos 6 (8.139)
where 8 is the angular distance along the cylinder surface.

Velocity potential formulation. The boundary conditions on the velocity potential ¢
can be derived as follows (see Fig. 8.31). The fact that w,=—3¢/dy=0 (no
penetration) on the upper wall as well as on the horizontal line of symmetry gives the

3 d
- af =l LY
A E 5
- $=0
a4 C
S
i % _ 4
A B an
X
g
ay =0
FIGURE 8.31

Computational domain and boundary conditions for the veloeity potential formulation of inviscid
flow around a cylinder (see Fig. 8.28).
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boundary conditions there. Along AE, the velocity u, = —3¢/3x is specified to be U,
On the surface of the cylinder, the normal velocity, u, = — 8¢/8n is zero. Thus all
boundary conditions, so far, are of the flux type. On the boundary CD, we must know
either ¢ or d¢p/on=2a¢/3x. Tt is clear that —3¢/3x =u, is not known on CD,
Therefore, we assume that ¢ is known, and we set it equal to ¢, = constant. The
constant ¢, is arbitrary and does not contribute to the velocity field (because
—9¢/3x =u, and —~3¢/3y =u, are independent of @,). It should be noted that
specification of ¢ at least one point of the mesh is necessary to determine the constant
part in the solution for ¢ (i.e., eliminate the rigid body motion). We take ¢ = ¢» =0 on
CD.

The mathematical boundary conditions of the problem must be translated into
finite element data. The boundary conditions on the primary variables are from the
boundary CD. We have

Uy=Un=Us=U=U;=0.0

The only nonzero boundary conditions on the secondary variables come from the
boundary AE, There we must evaluate the boundary integral

a¢ _
[ Zua-u] wms

We obtain
By 7
Q1=UQJ (1""‘;{“) dy~=%Uuh[=“0.5Uo
11
hl }7
0,=Us hdy + Uof (1 —h—) dj = 3Uy(ty + b) = U
hy y
Q3= U() _d}' ZhlUﬂ=0-SUﬂ
o ha
The finite element solutions for u, = —9¢/dx obtained with meshes T1 and Q1

are listed in Table 8.6. Note that there is a difference between the velocities obtained
with the two formulations (for either mesh). This is primarily due to the nature of the
boundary value problems in the two formulations. In the stream function formulation,
there are more boundary conditions on the primary variable than in the velocity
potential formulation.

Contour piots of streamlines, velocity potential, and horizontal velocity u, =
3y/dy obtained with mesh Q1 (and a plotter routine) are shown in Figs 8.32(a—c). A
plot of the variation of the tangential velocity with the angular distaince along the
cylinder surface is shown in Fig. 8.33, along with the analytical potential solution

u, = Up(l + R*/r*) sin 8 (8.140a)

valid on the cylinder surface. The finite element solution of a refined mesh, mesh Q2, is
also included in the figure. The angle &, radial distance r, and tangential velocity u, can
be computed from the relations

g=tan™! (ﬁ;), r={d-x+y% w=usinf+u,cos 0 (8.1400)

The finite element solution is in general agreement with the potential solution of the
problem. However, the former is not expected to agree closely, because u, is evaluated
at a radial distance r > R, whereas the potential solution is evaluated at r = R only.
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FIGURE 8.32
Contours of (a) stream function, (b) velacity potential, and {c} x component of velocity (with the
stream function formulation), as obtained using mesh Q1.

. This completes the section on fiuid mechanics problems that are cast in
terms of a single dependent unknown, such as the stream function or velocity
potential. We return to fluid mechanics later in this book to consider
two-dimensional flows of viscous incompressible fluids. The governing equa-
tions of such problems consist of several dependent variables and as many
differential equations (see Chapter 11). —
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FIGURE 8,33

Variation of the tangential velocity along the cylinder surface: comparison of the finite element
results with the potential theory solution (mesh Q2 contains 96 elements and 117 nodes).

8.4.3 Solid Mechanics

In this section, we consider two-dimensional boundary value problems of solid
mechanics that are cast in terms of a single dependent unknown. These
problems include torsion of cylindrical members and transverse deflection of
membranes. The discussion is restricted to small deformations.

TORSION OF CYLINDRICAL BARS. Consider a cylindrical bar (i.e., a long
member of uniform cross-section), fixed at one end and twisted by a couple
(i.e., a moment or torque) of magnitude M directed along the axis (z) of the
bar (see Fig. 8.34a). Suppose that the bar is not subjected to any body forces
and is free from external forces on the lateral surface. We wish to determine
the amount of twist and the associated stress field in the bar. To this end, we
first describe the deformation of the bar analytically, and then analyze the
equation using the finite element method.

In general, a member of noncircular cross-section subjected to a torsional
moment experiences warping at any section. We assume that all cross-sections
warp in the same way {which holds true for small twisting moments and
deformation). This allows us to take the displacements (u, v, w) along the
coordinates (x, y, z) to be of the form (see Fig. 8.34b)

u=—6zy, v=6zx, w=0¢(,y) (8.141)

where ¢(x, y) is a function to be determined and 6 is the angle of twist per
unit length of the bar.

The displacement field in (8.141) can be used to compute the strains, and
stresses are computed using an assumed constitative law. The stresses thus
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(a)

Moment
M

a =0z

X

(b)

FIGURE 8.34

Torsion of cylindrical members: (g) 2
cylindrical member; {b) domain of
analysis.

determined must satisfy the three-dimensional equations of stress equilibrium

00, 30,y , 00, _

dx gy dz
da,, do, 3oy,
—Zp =+ —==0 8.142
3x Jy @z ( )
30,, 380y, iqi _

x dy 9z B

and the stress boundary conditions on the lateral surface and at the ends of th¢
cylindrical bar. Calculation of strains and then stresses using the generalized

Hooke’s law gives the expressions

o¢
xz = 6(—_“—
. G e ¥

)

Oyz

= Gﬁ(% + x) (8.143)

3y

and all other stresses are identically zero. Here G denotes the shear modutus
of the material of the bar. Substitution of these stresses into (8.142) gives [the
first two equations in (8.142) are identically satisfied, and the third leads to this
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result}

Hoo)egleo)o |

throughout the cross-section £ of the cylinder. The boundary conditions on
the [ateral surfaces I" require that

Oy + 0y, =0

915_) (?_? ) _
(Sx ¥yl + ay+x n,=0
or
¢
an ‘ynx—xny on I’ (8.145)

Here (n,, n,) denote the direction cosines of the unit normal at a point on T.

In summary, the torsion of a cylindrical bar is governed by (8.144) and
(8.145). The function ¢(x, y) is called the forsion function or warping function.
Since the boundary condition in (8.145) is of the flux type, this function can be
determined to within an additive constant. The stresses in (8.143), however,
are independent of this constant. The additive constant has the meaning of
rigid-body movement of the cylinder as a whole in the z direction. For
additional discussion of this topic, the reader is referred to Sokolnikoff (1956).

The Laplace equation (8.144) and the Neumann boundary condition
(8.145) governing ¢ are not convenient in the analysis because of the nature
and form of the boundary condition, especially for members of irregular
cross-section. The theory of analytic functions can be used to rewrite these
equations in terms of the function W(x, y), called the stress function, which is
related to ¢(x, y) by the equations

o 3¢ ¥ a9
—_— =T .
o 2 X, 5y oy (8.146)
Eliminating ¢ from (8.144) and (8.145) gives, respectively, the results
Py Fw
— =)= .
( Vo ) 2 (8.147)
Y oW '
. B;nx—a—xn,—-() (8.148)

The left-hand side of (8.148) denotes the tangential derivative d¥/ds, and
dW/ds = 0 implies that

Y ==constant on T
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Since the constant part of ¥ does not contribute to the stress field,

v W
xz’:GG_: z=_G - 4
o] 3 o, 0 rw (8.149)

we take W = 0 on the boundary.
Now the torsion problem can be stated as one of determining the stress
function W such that

-~V =2 in £

8.150
YW=0 onT ¢ )

Once W has been determined, the stresses can be computed from (8.149) for a

given angle of twist per unit length, 6, and shear modulus G. » ~
The finite element model of (8.150) follows immediately from that of

(8.1):

£

(K} = {f} + {0} (8.151a)

where u¢ is the value of W at the ith node of Q° and

Kff.:f (%%_F%_fa_%)dxd
-\ Ox dx Fy Jdy
- (8.151b)
fi=[ amdray,  0f=¢ Jweds
F = on

Next we consider an example of a torsion problem.

Example 8.8 Torsion of a square cross-section bar. It should be recalled that (8.1) can
also be interpreted as the equation associated with the torsion of a square cross-section
cylindrical bar of cross-sectional dimensions a by b. Note that the actual problem is
antisymmetric as far as the [oading and stress distribution are concerned; however, the
stress function, being a scalar function governed by the Poisson equation, is symmetric
about the x and y axes as well as the diagonal lines. When using rectangular elements,
one quadrant of the bar cross-section can be used in the finite element analysis. The
biaxial symmetry about the x and y axes requires imposition of the following boundary
conditions on ¥ .

\
a—mO on the line x =0
ox

o
——={ onthe liney=0
dy

In addition, on the actual boundary we have the boundary condition

‘W=0 onthelinesx=a, y=h
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The analytical solution of the problem is given by

(—1)" coshk,ycosk,x

Wi y) = 4“ = 2 o(Zn+ 1) coshik,b (8.152)
SaGG {—1)" sinhk,ycosk,x
= .152
z 2(2n+1¥  cosh ik, b (8.1526)
(—1)" coshk,y sin k,,x]
.= 6[2x -2 .
G2 =G 2 {@n+1°  coshk.b (8.152¢)

where k, = 3(2n + 1)7. The problem is analyzed here for shear stresses o,, and U, [see
{8.149)}.

Here we investigate the convergence of the finite element solutions wusing
gradually refined meshes of linear and quadratic rectangular elements. The results of
this study are summarized in Tables 8.7 and 8.8. The convergence of the finite element
solutions for the stress function and stresses to the analytical solutions (8.152) can be
seen from these results. The contour lines of the surface W(x, y} = constant, g,, =
constant, and g,, = constant are shown in Fig. 8.35.

TRANSVERSE DEFLECTION OF MEMBRANES. Suppose that a membrane,
with fixed edges, occupies a region Q in the (x,y) plane. Initially, the
membrane is stretched so that the tension g in the membrane is uniform and
that @ is so large that it is not appreciably altered when the miembrane is
deflected by a distributed normal force f(x, y). The equation governing the
transverse deflection u of the membrane is

&u  Fu -
—a(gj—;-%-é?) =flx,y) inQ (8.153a)

TABLE 8.7
Convergence of the finite element solutions for ¥ using linear and

quadratic rectangular elements (four-nede and nine-node elements)
in Example 8.8

Linear elements Quadratic elemen{st

x y 2X2 4xX4 8§x8 1%X1 2x2 4 x4

0.0000 0.0000 0.15536 (L14920 0.14780 0.14744  0.14730 0.14734
0.0625 0.0000 — — 0.14583 e — 0.14538
0.1250 0.0000 — 0.14120  0.13987 — 013941 0.13944
0.1875 0.0000 — — 0.12972 — — 0.12931
0.2500 0.0000 0.12054 0.11610 0.11502  0.11378 0.114563  0.11467
0.3125 0.0000 — — 0.09534 - — 0.09505
0.3750  0.0000 — 0.07069  0.07007 e 0.06983  0.06986
0.4375  0.0000 —_ = 0.03854 — — 0.03844
0.1250 0.2500 — 0.11031  0.10925 — 0.10887  (.108%0
02500 0.2500 0.09643  0.0919%1  0.09090 0.09095 0.09056  0.09057
0.3750 0.2500 — 0.05729  0.05660 — 0.05626  0.05636

T The 4 x 4 mesh of nine-node quadeatic elements gives a soluticn that coincides with the analytical
solution to five significant decimal places.
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TABLE 8.8
Comparison of finite element solutions for the
shear stress 0,,(x,y) [=—0,.:(y, x)], computed

using various meshes, with the analytical solution
(Example 8.8)

Mesh
Analytical
x ¥ 2X2 4Xd4 8X8  solution
0.03125 — — 00312 0.0312
0.09375 - — 0.0946  0.0946
0.15625 — — 0.1612  0.1611
0.21875 — — 02332 02331
0.28125 0.03125 — — 03127 03124 N
0.34375 — — 0.4015 0.4011 ’
0.40625 l — —  0.5013  0.5008
0.46875 — — 0.6135 0.6128
0.06250 — 006175 — 00618 °
0.1875 — 01942 — 01939
93125 0.0625 — 03529 —  0.3516
0.4373 i} —  0.5528 —  0.5504
01250 01250 90.1179  — — 01183
8.3750  0.1250 04339  — — 04272
with
u=0 onT (8.153b)

Note that this equation and boundary conditions are of the same form as those
for the torsion of cylindrical bars [see (8.150)]. The finite element mode! of the
equation is obvious. In view of the close analogy between this problem and the
torsion of cylindrical bars, we shall not consider any numerical examples here,

8.5 EIGENYALUE AND TIME-DEPENDENT
PROBLEMS '

8.5.1 Introduction

This section deals with the finite element analysis of two-dimensional eigen-
value and time-dependent problems involving a single variable. We use the
results of Section 6.2 to develop finite element algebraic equations from the
semidiscrete finite element models of time-dependent problems. Since the
weak form and temporal approximations have already been discussed in detail
in Section 6.2, attention is focussed here first on the development of the
semidiscrete finite element models and then on the associated eigenvalue and
fully discretized models. The examples presented are very simple, because they
are -designed to illustrate the procedure for eigenvalue and time-dependent
problems; solution of two-dimensional problems with complicated geometries
requires the use of numerical integration. Chapter 9 is devoted to the
discussion of various two-dimensional elements and their interpolation func-
tions and numerical integration methods.
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The development of finite element models of cigenvalue and time-
dependent problems involves, as described in Section 6.2, two main stages.
The first, called semidiscretization, is to develop the weak form of the
equations over an element and to seek spatial approximations of the
dependent variables of the problem. The end result of this step is a set of
ordinary differential equations in time among the nodal values of the
dependent variables. For transient problems, the second stage consists in time
approximation of the ordinary differential equations (i.c., numerical integra-
tion of the equations) by finite difference schemes. This step leads to a set of
algebraic equations involving the nodal values at time £, [ = (s + 1) Af, where
s is an integer and At is the time increment] in terms of known values from the
previous time step(s). For eigenvalue problems, the second stage consists in
seeking a solution of the form u(?) = Ue™™ for nodal values and determining
the eigenvalues A and eigenfunctions Unpi(x, y) (no sum on i} The two-stage
procedure was clearly illustrated for one-dimensional problems in Sections 6.1
and 6.2. It will be applied here to two-dimensional problems involving a single
equation in a single variable. Since the emphasis in this section is on the time
approximations, the development of the weak form and spatial finite element
mode! will not be covered explicitly here, and the reader is referred to Sections
8.2 and 8.3 for details.

8.5.2 Parabolic Equations

Consider the partial differential equation governing transient heat transfer and
similar problems in a two-dimensional region € with total boundary I,

c%lti—%(au %) —"a%(a”‘%) +agu=f(xy ) (8.154)
with the boundary conditions
u=dor qg,=§, onT (t=0). (8.155a)
where
qn ﬂau%nx +a22%;—£ny (8.155b)
The initia! conditions (i.e., at t = 0) are of the form
u(x, y, 0) = ug(x, y) in Q2 (8.156)

Here ¢ denotes time, and ¢, @1, @22, Go, &, o, [ and &, are given functions of
position and/or time. Equation (8.154) is a modification of (8.1) in that it
coniains a time-derivative term, which accounts for time variations of the
physical process represented by (8.1).

The weak form of (8.154) and (8.155) over an element £° is obtained by
the standard procedure: muitiply (8.154) with the weight function v(x, y) and
integrate over the element, integrate by parts (spatially) those terms that
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involve higher—ordei‘ derivatives using the gradient or divergence theorem, and
replace the coefficient of the weight function in the boundary integral with the
secondary variable [i.e., use (8.155b)]. We obtain

Su Bu Ju du

E aya]dxdy %q"vds

(8.157)

3 .
0= ” [U(c§+ Aol —f) +ay

Note that the procedure for obtaining the weak form for time-dependent
problems is not very different from that used for steady-state problems in
Section 8.2.3. The difference is that all terms of the equations may be functions
of time. Also, there is no integration by parts with respect to time, and the
weight function v is not a function of time.

The semidiscrete finite element model is obtained from (8.157) by
substituting a finite element approximation for the dependent variable u. In
selecting the approximation for u, once again we assume that the time
dependence can be separated from the spatial variation:

RPN ) (8.158)

where «; denotes the value of u(x, y, t) at the spatial location (x;, ;) at time &,
The ith differential equation (in time) of the finite element model is obtained
by substituting v = 17(x, y) and replacing « by (8.158) in (8.157):

0=, (M Ud’+1<; u) ~i- 0f (8.159a)
j=1
or, in matrix form,
[MHa} + [KHuc} = {f} +{Q°} (8.1598)
where a superposed dot on u denotes the time derivative (i = 9u/3¢), and
e ] alpi aw aw! aw
Mt‘j = fge C’lpf'tpj dx dy, i= f (a“ 5x axl [12%) ay ayj + ﬂg'fp,'lpj) dx dy
(8.159¢)

= [ sy, 0w axdy
Qt
This completes the semidiscretization step.

EIGENVALUE ANALYSIS. The problem of finding uf(f) = Uje ™ such that
(8.159) holds for homogeneous boundary and initial conditions and f =0 is
called an eigenvalue problem. Substituting for uf(f) in (8.159b), we obtain

(=AM°] + [KD{uc} = {Q°} (8.160)

Upon assembly of the element equations (8.160), the right-hand-side column
vector of the condensed equations is zero (because of the homogeneous
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boundary conditions), giving rise to the global eigenvalue problem
([K] - AIMD{U} = {0} (8.161)

The order of the matrix equations is N X N, where N is the number of nodes at
which the solution is not known. A nontrivial solution to (8.161) exists only if
the determinant of the coefficient matrix is zero:

I[K]—A[M]| =0

which when expanded, resuits in an Nth-degree polynomial in A. The N roots
A (=12,..., N) of this polynomial give the first N eigenvalues of the
discretized system (the continuous system, in general, has an infinite number
of eigenvalues). There exist standard eigenvalue routines for solving (8.1§1),
which give the N eigenvalues and eigenvectors. s

TRANSIENT ANALYSIS. Note that the form of (8.159) is the same as the
parabolic equation discussed in Section 6.2. The spatial dimension does not
appear in (8.159a,b) because it is taken into account in the spatial approxima-
tion. Thus, irrespective of the spatial dimension, the finite element model of all
problems with a first time derivative is the same. Therefore, the time
approximation schemes discussed in Section 6.2.3 for parabolic equations can
be readily applied.
Using the a-family of approximation (6.39),

(W) = {uds + AL — )i}, + i), n] O=a<])  (3162)

we can transform the ordinary differential equations (8.159) into a set of
algebraic equations at time £, ¢!

Rlafu)sn= {Flosn ‘ (8.163a)

where

(KL= [M]+ ay[K]oa
(Y = At (@{F} o + (1= ) {F)) + (M] - a[KL) (). |(8.163D)
ay=aAt, a;=(1—a)At

Equation (8.163a), after assembly and imposition of boundary conditions, is
solved at each time step for the nodal values w; at time £, = (s + 1) At. At time
t=0 (i.e., s =0), the right-hand side is computed using the initial values {1t}o;
the vector {F}, which is the sum of the source vector {f} and the internal flux
vectar {Q}, is always known, for both times ¢, and 4, at all nodes at which
the solution is unknown [because f(x, f) is a known function of time, and the
sum of Qf at these nodes is zero].

Tt should be recalled from Section 6.2.3 that, for different values of a, we
obtain different well-known approximation schemes, with given order of
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accuracy:
0, the forward difference scheme (conditionally stable); O(At)
1 the Crank-Nicolson scheme (unconditionally stable); O(AL)?
o= . "
2, the Galerkin scheme (unconditionally stable); O(At)?
1, the backward difference scheme (unconditionally stable); O(A?)

For the forward difference scheme, the stability requirement is

At <At = o<} (8.164)

(1—2)Amax

where Apax is the largest cigenvalue of the finite element equations (8.161).
We next consider examples of eigenvalue and time-dependent problems.

Example 8.9 Eigenvalue analysis, Consider the differential equation

ou (Fu Fu
- (§+5)ﬁ) =f (8.1654)

in a square region, subject to the boundary conditions

3 a
5%(0, y, =0, 3—;0:, 0,)=0, wux 1,0=0, u(l,y, =0 (81650)
and initial condition

u{x, y, 0y =0 (8.165¢)

As a first choice, we take a 1X 1 mesh of triangular (2 elements) and rectangular
elements. Alternatively, for the choice of triangles, we can use the diagonal symmetry
and model the domain with one triangular element. The triangular element matrices are

1 1 -1 0 1211
Kl=x|-1 2 -1}, GI==11 2
K1=3 (M]3, 1

0 -1 1 11 2

The eigenvalue problem becomes

A 2 11 1 1 -1 0 U, 0
54 121 +‘2“ -1 2 -1 Uer=390
11 2 0 -1 1 U, 0

The boundary conditions require U, = U; = 0. Hence, we have
(—=A+ DU, =0, or A=6
The eigenfunction becomes
Ulx, ) =ulx, y)=1-~x

which js defined over the octant of the domain. For a quadrant of the domain, by
symmetry, it becomes U(x, y) = (1 —x)(1-y).
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For one rectangular element, we have

-1 -2 -1 4 2 1 2

. 4 -1 -2 S 12 421

(K= 2—1 4 | M= 6[1 2 4 2

-1 -2 -1 4 12 1 2 4

4 2 1 2 4 -1 =2 -1\ (U 0

_Af2 42 1| 1l -t 4 -1 20

3611 2 4 2)1°6]-—2 -1t 4 -1 uv,{ 1o

212 4 -1 -2 -1 41/ ly, 0

Using the boundary conditions U, = Uy = U, =0, we obtain

(—ng4+%)Ut={], or A=6 -

The eigenfunction over the quadrant of the domain is given by

Ulx, y) =19z, y)=(1-x)}(1-y) ‘

For this problem, the one-clement mesh of triangles in an octant of the domain gives
the same solution as the one-element mesh of rectangular elements in a quadrant of the
domain,

Table 8.9 gives eigenvalues obtained with various meshes of triangular and
rectangular elements, along with the analytical solution of the problem. It is clear that
the convergence of the minimum eigenvalue obtained using the finite element method
to the analytical value is rapid compared with the convergence of the higher
eigenvalues; i.e., the errors in the higher eigenvalues are always larger than that in the
minimum eigenvalue. Also, the minimum eigenvalue converges faster with mesh
refinements. The mesh used must be such that the required eigenmodes are represented
accurately.

Example 8,10. We wish to solve the transient heat conduction equation

ST T 5
2 ( ax2+a_);)=1 | (8.1664)

TABLE 8.9
Comparison of finite element solutions for ecigenvalues, obtained using

various meshes, with the analytical solntion (Example 8.9)

Triangles Rectangles
Analyticalt

b Ix1 2x2 1)(4 8xX8 1IX1 2x2 4x4 8xX8 A

A (k) 6.000 5415  5.068 4.969 6.000 5193 4.999 4951  4.935
A (A)3) 32.000 27.250 25.340 — 34290 27.370 25330 24.674
A3(A;)  — 38200 28920 25.730 — 34290 27.370 25330 24.674
Ae(As3)  — 76,390 58220 48.080 —  63.380 49.740 45710 44,413
Ay — — 85350 69.780 — —  B4.570 69.260 64.152
As(hs) —  —  B6.790 69.830 —  —  84.570 69.260 64.152

+ The analytical solution is A, =t}.fr1(m2+nz) {mn=143,5...)




SINGLE-VARIABLE PROBLEMS 377
subject fo the boundary conditions, for ¢ =0,

oT oT
— )= — =
y 0,y,)=0, 3 (x,0,8)=0

.166b
T{l,y, =0, T(x,1,0N=0 @ )

and the initial condition
T(x,y, =0 forall{x,y)in Q (8.166¢)

We choose a 4 X 4 mesh of linear triangular elements (see Fig. 8.36) to model the
domain, and investigate the stability and accuracy of the Crank—Nicolson method (i.e.,
a=1.5) and the forward difference scheme (a = 0.0) for the temporal approximation.
Since the Crank—Nicolson method is unconditionally stable, one can choose any value
of At. However, for large values of A¢, the solution may not be accurate. The forward
difference scheme is conditionally stable; it is stable if At < Ar,, where

2 2
=——=0.00518

At =—=
T T 3864

where the maximum eigenvalue of (8.1664) for the 4 X 4 mesh of triangles is 386.4.

The element equations are given by (8.163), with [M*], [K*], and {f°} defined by
(8.159¢), wherein ¢ =1, a;1=1, ap =1, ¢;=0, and f = 1. The boundary conditions of
the problem for the 4 X 4 mesh are given by

U5=Um=U1s=U20=Um“—"Uzz:Uza:Uz.stls:O-O

Beginning with the initial conditions U;=0 {i=1, 2, ..., 25), we solve the assembled
set of equations associated with (8.163).

The forward difference scheme would be unstable for At > 0.00518. To illustrate
this point, the equations are solved using o =0, Ar=0.01 and o =0.5, Ar=0.01. The
Crank—Nicolson method gives a stable and accurate solution, while the forward
difference scheme yields an unstable solution (i.e., the solution error grows unbound-
edly with time), as can be seen from Fig. 8.37. For At=0.005, the forward difference
scheme yields a stabie solution.

¥ ¥
=0 0 15 20
1.0 55 25
Z
Insulated . Z
' g8 e A
2o H ar T=0 Z
x4 2 _vreg & %V
4 a A3
Z 24 22
Z ans1 e g
G , a1 21
; e % X 1 = e e = X
aT 1.0 6 1 16
Insulated, — = 0
3y
FIGURE 8.36

Domain, boundary conditions, and finite element mesh for the transient heat conduction problem
of Example 8.10.
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FIGURE 8.37

Stability of the transient solutions of the heat conduction problem in Example 8.10 analyzed using
a 4%X 4 mesh of lincar triangular elements and the Crank—Nicolson {«=:0.5) and forward
difference (@ = (.0) time integration schemes.
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Variation of the temperature as a function of position x and time ¢ for the transient heat

conduction problem of Example 8.10.
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TABLE 8.10
Comparison of finite difference and finite element solutions

with the exact solution of the heat conduction problem in
Example 8.10

Finite
Finite element
Finite element solution
Exact difference solution (unsteady)
Node solution solution Error (steady) Error at t=10

1 0.2947 0.2911 0.0036 0.3013 ~0.0066 0.2993
2 0.2789 0.2755 0.6034 0.2805 —0.0016 0.2786
3 0.2293 0.2266 0.0027 0.2292 0.0001 0.2278
4 0.1397 0.1381 0.0016 0.1392 0.0005 0.1385
5 0.6000 0.0000 0.0000 0.0000 0.0000 0.0000
7 0.2642 0.2609 0.0033  0.2645 ~0,0003 0.2628
8 0.2178 0.2151 0.0027 0.2172 0.0006 0.2159
9 0.1333 0.1317 0.0016 0.1327 - 0.0006  0.1320
10 0.0000 0.0000 0.0000  0.0000 0.0000  0.0000
13 0.1811 0.1787 0.0024 0.1801 00010 0.1791
14 0.1127 0.1110 0.0017 0.1117 00010 01111
15 0.0000 0.0000 0.6000 0.0000 00000  0.0000
19 0.0728 0.0711 0.0017 0.0715 0.0013 0.0712
20 0.0600 0.0000 0.0000 0.0000 0.0000  0.0000
25 0.0060 0.0000 0.0000 0.0000 0.0000  0.0000

The Crank-Nicolson method gives a stable and accurate solution even for
At =0.05. The temperature T(x, G, £} is plotted versus x for various values of the time
in Fig. 8.38(a). The steady state is reached at time ¢ =1.0. The temperature 7(0, 0, )
predicted by the Crank—Nicolson method is plotted versus time in Fig. 8.38(b}), which
indicates the evolution of the temperature from zero to the steady state. Table 8,10
gives a comparison of the transient solution at =10 with the steady-state finite
element, the finite difference, and the analytical solutions. Table 8.11 gives the finite
element solutions for temperature predicted by 4 X 4 meshes of triangles and rectangles
and various values of At and a=0.5.

8.5.3 Hyperbolic Equations

‘The transverse motion of a membrane, for example, is governed by a partial
differential equation of the form
Fu 3 duy 8 Au

Cﬁ_'é}(““a_x) wa—y(azza—y)+agu =flx, y, 1) {8.167a)
where u(x, y, t) denotes the transverse deflection, c is the material density of
the membrane, a;, and ay, are the tensions in the x and y directions of the
membrane, a, is the modulus of the elastic foundation on which the membrane
is stretched (often a,=0, i.e., there is no foundation), and f(x, y, t) is the
transversely distributed force. Equation (8.167a) is known as the wave

equation, and is classified mathematically as a hyperbolic equation. The
function u must be determined such that it satisfies (8.1674) in a region L,
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TABLE 8.11 :
Comparison of the transient solutions of (8.166)

obtained msing a mesh of triangular and rectan-
gular elements (o = 0.5) (Example 8.10)

Temperature along the line y=0: T(x, 0, 1) x 10

Time

t Elementi x=0.0 x=0.25 x=05 x=0735

0.1 T1 09758 09610 09063 0.7104
R1 0.9684 0.9556 0.8956  0.6887
T2 0.9928 0.9798 0.9168 0.6415
RZ 09841 09718 0.9020 0.6323

0.2 Ti 1.8003 17238 14891 0.9321
R1 1.7723 17216 1.4829  0.9367 .
T2 1.7979  1.7060 14644 09462 ~
R2 17681  1.6990 1.4626  0.9469

0.3 T1 23130 21671 17961  1.1466
R1 22747  2.1650 18084  1.1499
T2 22829  2.1448 1,7943  1.1249 v
R2 22479 2.1432  1.8018  1.1319

1.0 T1 29960 27871  2.2804  1.3843
R1 2.9648  2.8053  2.3090  1.4059
T2 25925 27862  2.2776  1.3849
R2 2.9621  2.8037 23065 1.4053

t TE, triangular element mesh with Ar=0.1; T2, trigngular element

mesh with A¢ = 0.05; K1, rectangular element mesh with Ar=0.1; R2,

rectangular element mesh with A¢ =0.05.

together with the following boundary and initial conditions: )
u=# orgq,=§4, onIT (t=0) (8.1676)
Ju
u(x y, 0)=uolx, y), (%, 0) = vo(x, ¥) (8.167¢)

where # and 4, are specified boundary values of u and g, [see (8.155b)}, and
iy and vg are specified initial values of u and its time derivative, respectively.

The weak form of (8.167a,b) over a typical element Q° is similar to that
of (8.154) [sec (8.157)], except that here we have the second time derivative.
of u:

v du Sv du

3*u
; ulc t2 figit ayy oz 3 X y q U

(8.168)

where v = wv(x, y) is the weight function.
The semidiscrete finite element model of (8.167a4) is obtained by
substituting the finite element approximation (8.158) for u and v =1); into
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(8.168):
) n dZ 4 .
0 ?Z:I (M i d;’ + K?}uf) —fi-0f (8.1694)
ot, in matrix form, .
[Me{a} + [K W'} = {7} + {Q°} (8.169b)

The coefficients M§, Kj, and f§ are the same as those in (8.159¢).

EIGENVALUE ANALYSIS. The problem of finding u;(t) = Ue ™ (i=V 1)
such that (8.169) holds for homogencous boundary and initial conditions and
f =01is called an eigenvalue problem of (8.167). We obtain

(- (M) + [KD{e} = (27} (8.170)

The eigenvalues @? and eigenfunctions Y7, Uny,(x, y) are determined from
the assembled equations associated with (8.170), after imposing the homoge-
neous boundary conditions. For a membrane problem, @ denotes the
frequency of natural vibration. The number of eigenvalues of the discrete
system (8.170) of the problem is equal to the number of unknown nodal values
of U/ in the mesh.

Example 8,11. Consider the free vibrations of a rectangular membrane of homoge-
neous material, of dimensions a by b (in ft}, material density p (in slugs ft~%), and fixed
on all its edges, i.e., u=0 on T'. Although the problem has symmetry about the
horizontal centerline and vertical centerlines of the domain (see Fig. 8.39), use of any
symmetry in the finite element analysis will eliminate the unsymmetric modes of
vibration of the membrane. For example, if we consider a quadrant of the domain in
the finite element analysis, the frequencies w,,, (m,n++1,3,5,...) and associated
eigenfunctions will be missed in the results [i.e., we can only obtain w,, (m,n=
1,3,5,...)]. By considering the full domain, the first N frequencies allowed by the
mesh can be computed, where & is the number of unknown nodal values in the mesh.

Y[ ¥y ¥ u=10
) P VITITIIPIIITT /I I 17 A7 77 3
T % : 7
2 ft .

f’ z Cu=10

4

i / a_u B O, ;

4 axx 4 b4

B 4 ft wf ou
= =p =
By O 0
(@) ' (b)

FIGURE 8.39

Geometry, computational domain, finite element mesh, and boundary conditions for the transient
analysis of a rectangular membrane with initial deflection: (2) actnal geometry; (b) computational
domain, finite element mesh of rectangular elements, and boundary conditions (4 X 4 mesh of
linear elements or 2 X 2 mesh of nine-node quadratic elements).
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TABLE 8.12
Comparison of natural frequencies computed using various

meshes of linear triangular and rectangular elements with the
analytical solution of a rectangular membrane fixed on all its
sides (a,; = a4, =12.5, p=T =2.5)

s
Teiangular (linear) Rectangular (linear)
@, 2%2 4xX4 8BXE 2x2 4x4 BXB  Analytical
ay 50000 42266 4.0025 4.3303 40285  3.9522 39270
Wy — — 59083 52068 — 52899 5.0478 4.9673
@ — 82392 6.8788 — 72522 6.6020 6.3321
ay  — 83578 7.5271  —  7.9527 7.4200 7.2410
wp  —  10.0618  8.4565 —  8.6603 8.057t 7.8540
wy - 121021 8.8856 —  9.9805 8.5145 7.8540 =
0y  — 132011 99280 — 127157 9.1117 87810
ws,  — 146942 111193  —  13.1700 10.5797 9.4574
Wy,  — 158117 114425 —  14.0734 10.7280 5.9346

If only the first eigenvalue my, is of interest or only symmetric frequencics are
required, one can use a quadrant of the domain in the analysis. Indeed the results of
Example 8.9 are applicable here, with A,,, = @2, The results presented in Table 8.9
can be interpreted as the squares of the symmetric natural frequencies of a square
a = b =2) membrane with p =1 and a;; = a,; =T = 1. The exact natural frequencies of
a rectangular membrane of dimensions a by b, with tensions 4, = a,, = T and density p

are
iz 2 2y B2
m’ n
wmn=n(g) (?+E) (m,n=1,2,...)
To obtain all frequencies, the full domain must be modeled.

Table 8.12 contains the first nine frequencies of a rectangular membrane of 4 ft by
21t, tension T=12.5Ibft"", and density p=2.5 slugs ft™, computed using various
meshes of linear triangular and rectangular elements. The convergence of the finite
element results to the analytical solution is clear. The mesh of linear rectangular
element yields more accurate results than the mesh of linear triangular elements.

TRANSIENT ANALYSIS, The hyperbolic equation (8.1695) can be reduced to
a system of algebraic equations by approximating the second time derivative.
As discussed in Section 6.2, the Newmark time integration scheme is the most
commonly used method, and therefore it is used here. Since the mathematical
form of (8.169b) is exactly the same as that in (6.44), the results in (6.47) and
(6.49) are immediately applicable to the former. For the sake of convenience,
the results are repeated here. The Newmark scheme is

()1 ={u), + At{a}, + 2(A0H i} sry
{it}err= {0} + At{ii}ssa (8.171a)
{ﬁ}s+8 == (1 - 9){1&}5 + B{ﬁ}_,_H
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where, for example,

a=3 y=3 the constant-average acceleration method (stable)
a=13%  y=3, the linear acceleration method (conditionally stable)
w=3%, y=0, the central difference method (conditionally stable)
(8.171b)
The stability criterion is
At< At =Bot (o= o=l y<a (8.172)

where ®%,, is the maximum eigenvalue of the corresponding  discrete
eigenvalue problem (8.170) (i.e., the same mesh and element type used in the
transient analysis must be used in the eigenvalue analysis). Note that a more
refined mesh will yield a lower maximum eigenvalue and a higher At.,.

Time marching scheme . A
{Ke}.¢+1{ue}s+1 = {Fe}s,s+l (8. 173&)

where (the superscript e is omitted for brevity in the following)

{K]5+1 = [K]s+1 "{' aS[M]s+1
{F}s,:+1 = {F}+ [M}s+1(a3{” }s tag{i}s + as{ii};)
1

gy =~ = Ata,, =—=—1
3 y(At)g a4 a3 fs y

(8.173h)

Once {u},., has been calculated from (8.173a), the velocitics and accelera-
tions at time £, = At (s + 1) are calculated from (6.49):

{ii}s+1 = a3({u}s+1 - {u}s) - a‘i{a}s - as{fi}s
(i} = {a}, + ap{ii}, + a, (i}, 4 (8.174)
a=olAl, a,=(1-a)At
Note that (8.173a) is valid for an element. Therefore, the operations
indicated in (8.173b) are carried out for an element, and [K®]= {F*} are
assembled as in a static analysis. For the first time step, the initial conditions

on u and Bu/3¢t are used to compute {u}, and {1}, for each element of the
entire mesh. The acceleration vector {ii}, is computed from (8.169b) at ¢ = (:

{it}o=[M]""({F}o— [K]{U}o) (8.175)

It is often assumed that {F},={0}. If the iritial conditions are zero,
{u}o= {0}, and the applied force is assumed to be zero at =0, we then take

{ii}o={0}.
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Example 8.12. Consider a homogeneous rectanguiar membrane of sides a =4 1ft and
b=2ft, fixed on all its four edges. Assume that the tension in the membrane is
12.51b ft™" (i.e., @ =a,=12.5) and the density is p =c =2.5slugs ft~2. The initial
deflection of the membrane is assumed to be '

tox, y) =0.1(4x — x")(2y = ¥%) {8.176)

and the initial velocity is vo=0. We wish to determine the deflection u(x, y, #) of the
membrane as a function of time using the finite element method. The analytical
solution of this problem is [see Kreyszig (1988), p. 684],

409.6 1
— >, 5 COS &, ¢ sin dmmx sin jnoy (8.177a)
m,n=13,...

wlx,y, )=

By = S7[5(0” 4 407 (8.177b)

where the origin of the {x, y) coordinate system is located at the lower corner of the
domain (see Fig. 8.394).

In the finite element analysis, we can utilize the biaxial symmetry of the problem
and model one quadrant of the domain (see Fig. 8.395). We set Up a new coordinate
system (%, 7) for the computational domain. The inital displacement in the new
coordinates is given by (8.176), with x and y replaced in terms of ¥ and ¥:

x=i+2, y=y+l1

The initial values of i are calculated using (8.175), with {F}o= {0} and {u}, as
given in (8.176) by uo(x, ¥). At £=2 and y =1, all nodal values for the function « and
its time derivatives are zero.

As for the critical time step, we calculate A,,., from the solution of (8.170) using
the same mesh as that used for the transient analysis, and then use (8.172) to compute
At,,. Of course, for @ = { and y =1, there is no restriction on the time step for a stable
solution. For a 4 x 4 mesh of linear rectangular elements, A, = (14.0734)" (see Table
8.12), and At,, = 0.246 for the linear acceleration scheme (@ =0.5, y= .

Figure 8.40 shows plots of the center deflection u(0, 0, £) versus time ¢, and Fig.
8.4]1 shows the stability of the solutions computed using the constant-average
acceleration {&=0.5, y=0.5) and linear acceleration (& =0.5, vy =1%) schemes for
Af=90.25> At,,. Figure 8.40 also shows a comparisen of the finite element solutions
with the analytical solution (8.177). The finite element solutions are in good agreement
with the analytical one.

8.6 SUMMARY

A step-by-step procedure for finite element formulation of second-order
differential equations in two dimensions with a single dependent variable has
been presented. The Poisson equation in two dimensions has been used to
illustrate the steps involved. These include weak formulation of the equation,
development of the finite element model, derivation of the interpolation
functions for linear triangular and rectangular elements, evaluation of element
matrices and vectors, assembly of element equations, solution of equations,
and post-computation of the gradient of the solution. A number of illustrative
problems of heat transfer (conduction and convection), fluid mechanics and
solid mechanics have been discussed. Finally, the eigenvalue and time-
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Comparison of the center deflection obtained using various meshes with the analytical solution of a
rectangular membrane with initial deflection: RL4, 4 X 4 mesh of linear rectangular elements;
RL2, 2x2 mesh of linear rectangular elements; RQ2, 2xX2 mesh of nine-node quadratic

elements,
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Stability characteristics of the constant-average acceleration and linear acceleration schemes (a
4 % 4 mesh of linear rectangular elemenis is used in a quadrant of the domain).
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dependent problems associated with the model equation have also been
discussed. This chapter constitutes the heart of the finite element analysis of
two-dimensional problems to be discussed in Chapters 10-12.

PROBLEMS

Note

that most of the problems given here require hand calculations only. When four

or more simultaneous algebraic equations are to be solved, they should be left in matrix

form.

New problems can be created just by changing data and meshes.

Section 8.2

8.1.

8.2

8.3.

8.4,

The electrostatic potential ¢(x, y) of electrical charges in a region Q is governed
by the Poisson equation

-V =f(x,) . ’ ~
where f is the distributed electric charge.
(a) Develop the finite element model of the equation. .
(b) Identify the element coefficient matrices for linear triangular and rectangular
elements from those available in this book.
(¢) Write the specified primary and secondary variables at all boundary nodes
and their specified values for the problem shown in Fig. P8.1.

¢ = ¢, (constant)

¥
161 17 / i8 19 20
11 15
O
¢ =0 @ @ @ L ¢’ = {
6 10
@ 3@
L4 (D2 ¢
—_— X
1 3 4 5
2 \¢, =0 FIGURE P8.1

Consider the partial differential equation
. I -
—Vu+cu=0 in Q°, with a_-!-ku:() on I
H

Develop the weak form and finite element model of the equation over an element
Q°, )
Assuming that ¢ and k are constant in Problem 8.2, write the element coefficient
matrix and source vector for (@) a linear rectangular element and (b) a linear
triangular element.

Develop the finite element modet of the following differential equation governing
an axisymmetric problem,

13 du g ( du
—— ki [ - =
r [ar (r ar) 3z (r 82)] fr,2)
and compute the coefficients Kj and f7 for a linear triangular element in terms of
1. of (8.36).
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8.5. Calculate the linear interpolation functions for the linear triangular and rectangu-

8.6.

8.7.

lar elements shown in Fig. P8.5.

Y
¥ 1\ n
RS, 4 (1, 3.5
14 3
(4, 1.5) ! 5
@ ol
(1,1 (L.'D (4.5, 1)
- Y il 4
@ (&)

FIGURE P3.5

Answer: 1, ={12.25 - 2.5x — 1.5y}/8.25.

For the linear triangular element shown in Fig. P8.6, show that the element
coefficient matrix associated with the Laplace operator —V?,

By 8y |, dyr 31}’7)
Ko = ( + ¥V g
4 ,[;. 9x dx 3y 8y Y

is
at+p ~a —PB
a
K== -« & 0|, «a=-, '6=E
-8 0 B
¥ )’f
l 3 ] 4 3
b b
l 1 2 Ll 2
1. i ¥ —
S—— | | ‘ N
FIGURE P8.6 FIGURE P8.7

For the linear rectangular element shown in Fig. P8.7, show that the element
coefficient matrix associated with the Laplace operator is

Ho+p) —2a+8 —(x+8) o-28
[Kelz-l- -2a+f 2a+ph) a-28 —(a+f) a’=l—) B=
6] {e+p8) a-28 2a+p) 2a+B | a’
a-28 —(a+B) 20+ 2a+p)
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8.8. Find the coefficient matrix associated with the Laplace operator when the
rectangular element in Fig. P8.7 is divided into two triangles by joining node 1 to
node 3.

8.9. The nodal values of an element in the finite element analysis of a field problem
V2 =f; are Uy =389.79, U, =337.19, and U, =395.08 (see Fig. P8.9). Find
the gradient of the solution in the element. Also determine where the 392 isoline
intersects the boundary of the element in Fig. P8.9.

Answer: VT =10.768, — 105.028,.

¥ 11 Node 19: (3.5, 1)
Nade 11: {3.5, 1.5)
Node 12: {4, 1)

10 12

x FIGURE P8.9 '

8.10. If the nodal values of the elements shown in Fig. P8.10 are uj=0.2645,
1, =0.2172, u;=0.1800 for the triangular element and u, =0.2173, u,=10.1870,
u, = ti,=0.2232 for the rectangular element, compute u, du/dx, and du/fdy at
the point (x, y) = (0.375, 0.375).

T4 yi
T 4 3) ]
0.5 0.5
P 1 2 L
@ ol e D —————— 1) x
f——0.5—> f——0.5—
(2) Q)

FIGURE P8.10

8.11. Compute the element matrices
a pb dTP a b dw
S°‘=jj —dx dy, S??=jj —drd
if gow:dxxy i Duw:dyxy

where 1 are the linear interpolation functions of a rectangular element with sides
g and b.

8.12. Give the assembled coefficient matrix for the finite element meshes shown in Fig.
P8.12. Assume one degree of freedom per node and let {K°} denote the element
coefficient matrix for the eth element. Your answer should be in terms of element
matrices Kj,.
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(@) (b}

FIGURE P8.12

8.13. Compute the global source vector corresponding to the nonzero specified
boundary flux for the finite element meshes of linear elements shown in Fig.

P8.13.
1cm
q1 1em
1em
1.5cm
1.5 c¢m
‘QD B t ~
2em Zem  Zem 2cem FIGURE P8.13

8.14. Repeat Problem 8.13 for the finite element mesh of quadratic elements shown in
Fig: P8.14.

]

+ + U=

o= Ug-]

FIGURE P3.14

8.15. A point source of magnitude (J,, is located at the point {x, y) = (1.25, 2.5} inside
the triangular element shown in Fig. P8.5(a). Determine the contribution of the
peint source to the element source vector,

8.16. Repeat Problem 8.15 for the rectangular element in Fig. P8.5(b).

8.17. A line source of intensity g, is located across the triangular element shown in Fig,

8.17. Compute the element source vector.



390

8.18,

8.19.

8.20.

8.21.

8.22,

8.23.
8.24.

8.25,
8.26.
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Y (4,5
(5, 4) Line source
(3.3,
(7,2)
2.1) —= X FIGURE P3.17

Repeat Problem 8.17 %hen the line source has varying intensity g(s) = go5/L,
where s is the coordinate along the line source.

When a,, and a; in {8.1) are bilinear functions of the global coordinates x and y,
ay =aj+ayx + aiy, and @y =8y =de="10, determine the explicit form of the
coefficient matrix [K¢] in (8.14b) for the linear triangular element. Express_the
result in terms of the integrals defined in (8.36). s

Repeat Problem 8,19 for the linear rectangular element with local coordinate
system (%, 7). Use (8.42) and (8.43) to evaluate the integrals. You may also use
the coefficient matrices in (8.44).

Determine the source vector

fi=| fmdrdy

for linear rectangular elements when f is a function of the form f=ap+ax -+
a,y, where x and y are the global coordinates.

Evaluate the coefficient matrix K§ and source vector f; in {8.64b) for a linear
triangular element when &1, f2, and f are constant, and de = 0. Note that the
results of Problem 8.19 are useful here.
Repeat Problem 8.22 for a linear rectangular element.
For the mesh of linear triangular elements shown in Fig. P8.1, give the condensed
set of equations for the unknown nodal values when f =f,= constant. Use the
symmetry of the problem. Write algebraic equations for the secondary variables
0! and Q1 (from equilibrium).
Repeat Probler 8.24 with the equivalent mesh of linear rectangular elements.
Solve the Laplace equation

Fu  Fu

- (—3_? + 5;5) =0 in &
on a rectangle, when u(0, y) = u{a, y) = u(x, 0) =0 and u(x, b) = uyfx). Use the
symmetry and (2} a mesh of 2X 2 triangular elements and (b) a mesh of 2X2
rectangular elements (see Fig. P8.26). Compare the finite element solution with
the exact solution
nay

u(x,y)= 2, A, sin P72 Ginh 22
n=1 a b

where

2 “ HxX
pme 2 [y
asinh (nwh/fa) Jy to(¥) sin a dx
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Takea=b= I,' and u(x) = sin zzx in the computations. For this case, the exact
solution becomes

sin srx sinh Ty

u(x y) = sink 7

Answer: for a 2 X 2 mesh of triangles, U, =(0.23025 and U; =0.16281; for a
2% 2 mesh of rectangles, Us =(.15202 and U, = (.10750.

¥ =
1 ;s u = g (%)

FIGURE FP8.26

8.27. Solve Problem 8.26 when uy(x) = 1. The analytical solution is given by

4 < osin 2n+ Dy sin (26 + Dy
wlx, y) = nzﬂ (2n + 1) sinh (2n + D

Answer: (@) U;=0.26471 and Us = 0.20588.
8.28. Solve Problem 8.26 when uy(x) = 4(x — x7).
Answer: U, =0.23529 and U; =0.16912.
8.29. Solve the Laplace equation for the unit square domain and boundary conditions
given in Fig. P8.29. Use one rectangular element.

y? i+u=2

oy

© o
i:{) _vZuz ﬂzg
ox [iky

o, Q—= X

u=1 FIGURE P3.29
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8.30. Use two triangular clements to solve the problem in Fig. P8.29. Use the mesh
obtained by joining points (1, 0) and (0, 1).

8.31. Solve the Poisson equation —Vu =7"in the square whose vertices are at (0, 0),
(1,0), (1,1), and (0, 1). The boundary conditions are u(0, y)=y% ulx, 0)=x7,
u(l,y)=1—y and u(x, 1) =1-x. Use four linear rectangular elements (a 2 X2
mesh}.

8.32. Solve Problem 8.31 using four triangular elements in the upper half of the triangle
because of the symmetry about the x =y lines; join node 2 to 5 in Fig, P8.32.

Answer: U;=0.5.

®

x
1.0 FIGURE P8.32

8.33. Solve Problem 8.31 using the mesh of a rectangle and two triangles, as shown in
Fig. P8.32.

Answer: Uy =0.675.
Solve the Poisson equation —V?x =2 in Q, with boundary conditions u = OonT,
and du/on =0 on I';, where € is the first quadrant bounded by the parabola
y=1—x" and the coordinate axes (see Fig. P8.34), and T'; and I, are the
boundaries shown in Fig. P8.34.

8.34

Vi

1.0

h)
0 N2 33 -

; 0 )
rpe 0/ 06 10 FIGURE P3.34

8.35. Show that a variable approximated by the quadratic interpolation functions of a
rectangular element is continuous along interelement boundaries.
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$.36, Solve the axisymmetric field problem shown in Fig. P8.36 for the mesh shown
there. Note that the problem has symmetry about any line z = constant. Hence,
the problem is essentially one-dimensional. Compare the finite element solution
with the exact one.

-

Insulated

k., = k, = constant, k

go, internal heat
generation = constant

Ty=100C, Ry =002m 132345
g =10" x 2r Wm™3
k=20Wm'eC!

Insulated

FIGURE P8.36

8.37. Formulate the axisymmetric field problem shown in Fig. P8.37 for the mesh
shown. Compute the secondary variable at r = 3R using (a) equilibrium and (b)
the definition. Use the element at the left of the node,

Z
7 8 9
3
4 67T,
g ] /
- -"\
r 4 P R
Ny | /R, 1\2 3
T=T,
T=Tg

FIGURE P8.37

Section 8.4

8.38. A series of heating cables have been placed in a conducting medium, as shown in
Fig. P8.38. The medium has conductivities of k,=10Wem™°C™ and k, =
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8.39,

8.40.

8.41.
8.42.
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Tw=—-5C, B =5Wem2C!

2 cm
| ™~
8 em p— 4 em —| Qg = 250 Wom™*

k, = 10 Wem™t°C!

ky = 15 W em~! °C™!
Insulating material
FIGURE P8.38

.

15W em ™t °C™, the upper surface is exposed to a temperaturelof —5°C, and the
jower surface is bounded by an insulating medium. Assume that each cable is a
point source of 250 W cm . Take the convection coefficient between the medium
and the upper surface to be f =5Wcm™2°C™" Use a 2x8 mesh of linear
rectangular (or triangular) elements in the computational domain (use the
symmetry available in the problem), and formulate the problem (i.e., give
element matrices for a typical element, give boundary conditions on primary and
secondary variables, and compute convective boundary contributions).
Formulate the finite element analysis information to determine the temperature
distribution in the molded asbestos insulation shown in Fig. P8.39. Use the
symmetry to identify a computational domain and identify the specified boundary
conditions at the nodes of the mesh. What is the size of the assembled coefficient
matrix?

w3 in =] Insulated b3 in

+ £ /1; 21§ 25
i 3in 500"16’ 20
| 1

6in WY 15
| k=ke=k,=0.0%"9
l Btuh~! ft~1°F~! 110
: | 100°F

i T 5

FIGURE P8.39

Consider steady-state heat conduction in a square region of side 24. Assume that
the medium has conductivity k (in Wm™'°C™") and uniform heat (energy)
generation f; (in W m™). For the boundary conditions and mesh shown in Fig.
P8.40, write the finite element algebraic equations for nodes 1, 3, and 7.

Repeat Problem 8.40 for nodes 4, 5, and 9.

For the convective heat transfer problem shown in Fig. P8.42, write the four finite
element eguations for the unknown temperatures. Assume that the thermal
conductivity of the material is k=5Wm '°C™, the convective heat transfer
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FIGURE P8.40

coefficient on the left surface is f=30Wm™2°C™?, and the internal heat
generation is zero. Compute the heats at nodes 2, 4, and 9 using () element
equations {i.e., equilibrium) and (b) the definition (use the temperature field of

elements 1 and 2).

Insulated # 2a

SINGLE-VARIABLE PROBLEMS

k=3 Wm!eC!
B =60 Wm2°C!
Tw = 0.0

To = 100°C

g = 2 X 10° W m™2
fo=10"Wm3
a=1cm
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8.43. Write the finite element equations for the unknown temperatures of the problem

shown in Fig, P8.43,

Insulated
serfserreregnen
7 f 9
T = 0°C @ @
4 3 5 30|cm
B=28Wm2Cl' < @ | @ i
k=5wWmteCt :
1 2 3
re—— 30 cm —>{
T3 = Tﬁ = Tg = 40°C
T, =T, = 10°C FIGURE P8.42
¥
T =0C
Ry BT 16
k=10 W ml°C?
@ @ fﬂ = 00
9 m T 12
L m T =150°C @ ® | T=s0C
NS —= s/
®|® .3
R 2 3
F_ \ X
i T 250°C 4
b tm —]

FIGURE P8.43
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8.44,

8.45.

8.46.

8.47.
8.48.

8.49.
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Write the finite element equations for the heats at nodes 1 and 13 of Problem
8 43. The answer should be in terms of the nodal temperatures T, ..o, Tis.

Write the finite element equations associated with nodes 13, 16, and 19 for the
problem shown in Fig. P8.45.

T="T, cos%
n, B3 U

21 25
B |06
16 20
Insulated | (§) @ @ @ .
| T=0C
4a!£ 13
®|® |0 - N
G 10 ’
1213 | D
o1 2 \3 4 5 * ’
T=0C
%‘ 4a |
FIGURE P8.45

The fin shown in Fig. P8.46 has its base maintained at 300°C and is exposed to
ambient temperature on its remaining boundary. Write the finite element
equations at nodes 7 and 10.

B=4Wm?2C! T,=20C k=5Wm'°C"

12 ® 13 @ 14 15 L0 em
7 @ 8 €)) ? @ 071 0cm
2 3 4 5
l-—-2 cm —°I"_2 cm —
8 cm

FIGURE P8.46

Compute the heat loss at nodes 10 and 13 of Problem 8.46.

Consider the problem of groundwater flow beneath a coffer dam. Formulate it
using the velocity potential for finite element analysis. The geometry and
boundary conditions are shown in Fig. P8.48.

Formulate the groundwater flow problem for the domain shown in Fig. P8.49 for

" finite element analysis. The pump is located at (8263, 400).

8.50.
8.51.

Repeat Problem 8.49 for the domain shown in Fig. P8.50.

Consider steady confined flow through the foundation soil of a dam (see Fig.
P8.51). Assuming that the soil is isotropic (k, =k,), formulate the problem for
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finite element analysis (identify the specified primary and secondary variables and
their contribution to the nodes). In particular, write the finite element equations
at nodes 8 and 11. Write the finite element equations for the horizontal velocity
component in the fifth and tenth elements.

8.52. Formulate the problem of flow about an elliptical cylinder using {a) the stream
function and (b) the velocity potential. The geometry and boundary conditions
are shown in Fig. P8.52.

8.53, Repeat Problem 8.52 for the domain shown in Fig. P8.53.

: , .

’ i
=1 1 cm 4 cm
| _L =1 7 b
I«—Z cm:E—
T, T R ¢
r 8 ¢m [ FIGURE P3.52
s 2 7
T
/o T i
4 cm | Fls cm——1 w=1
; '] T 7
= I
u=1 2 cmf
il
2 v 7 %
,~— 12 cmy sl FIGURE P8.53

8.54. The Prandtl theory of torsion of a cylindrical member leads to

—Vu=2G8 in Q;, u=0 onT

where Q is the cross-section of the cylindrical member being twisted, I' is the
boundary of 2, G is the shear modulus of the material of the member, 8 is the
angle of twist, and u is the stress function. Solve the equation for the case in
which Q is a circular section (see Fig. P8.54) using the mesh of linear triangular
elements. Compare the finite element solution with the exact one (valid for

FIGURE P8.54
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elliptical sections with axes a and b)

Usea=1, b=1, and 2G6 =10,
8.55. Repeat Problem 8.54 for a member with elliptical section. Use @ =1 and b = 1.5,

8.56. Repeat Problem 8.54 for the case in which Q is an equilateral triangle (see Fig.
P8.56). The exact solution is

u=—GOR(" +y?) — ja(x’ - 3xy*) — 5a’]
Take a=1 and 2GA8 = 10.

o
i~

)
)

[
(I
e
R

1
;

y FIGURE P8.56

8.57. Consider the torsion of a hollow member with square cross-section. The stress
function ¥ is required to satisfy the Poisson equation (8.150) and the following
boundary conditions:

W={ on the outer boundary; W=2r" on the inner boundary

where r = a/c is the ratio of outside to inside dimensions. Formulate the problem
for finite element analysis using the mesh shown in Fig. P8.57.

¥ b
~ . Domain 9_{
. m
R |-¢-2a-)-I T modeled 7 @ _I_
el TN 8
A 2a /;\\ x @ @ a
1 AL G—X_
s M ROIRORN
-~ | - o 3* x
} 6];1 ; ’(_a*aq
() (&)

FIGURE P8.57

8.58. Repeat Problem 8.57 with the mesh of linear tnangles (join nodes 1 and 5, 2 and
6, and 5 and 8 in Fig. P8.57b).
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8.59. The membrane shown in Fig. P8.59 is subjected to a uniformly distributed load of
intensity f, (in N m™). Formulate the problem for finite element anatysis.

o
——

u = 10x — x?
-

7 8 9

—]
TN

=
il
Lo
i
"
SUANNETIRERAN BN
-9
Th
=)
~ \\\\\\\\\\\/\\\\\\\\\\
b~
]
[as]

-
(1]
=]

0 FIGURE P8.59

8.60. Repeat Problem 8.59 for the membrane shown in Fig. P8.60.

K

Section 8.5

FIGURE P8.60

8.61. Determine the time step for the transient analysis (with & =< 3) of the problem

a .
§"V2u=l inQ; wu=0 in € atr=0

by determining the minimum eigenvalue of the problem

-Vy=Au in &, u=0 onT
‘The geometry of the domain and mesh are shown in Fig. P8.26.

Answer: A=24 for a 1 X 1 mesh.

8.62. Set up the condensed equations for the transient problem in Problem 8.61 for the
« family of approximation. Use the finite element mesh shown in Fig. P8.26.

8.63. Set up the condensed equations for the time-dependent analysis of the membrane
" in Problem 8.60.

8.64. (Central difference method) Consider the following matrix differential equation in
time:

IM{T} + [C}{f'f_} + KU} ={F}
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8.67.

8.68

8.69.
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where the superposed dots indicate differentiation with respect to time. Assume

.. 1 . 1
{U} = {Uloer —2{UL + {U}on), {U)a =§E"A}“5({U}n+1 ~{U},-0)

and derive the algebraic equations for the solution of {U/},,,, in the form
[AH{U}ar 1= {F}. — [BHU}. — [DHU}os

Define [A4}, {B], and [D] in terms of [M], [C], and [K].

Repeat Problem 8.64 using the Newmark time approximation scheme,

Consider the first-order differential equation in time

du
a—+bu=

dt f
Using linear approximation, u(f)=up(t) +1wayft), yo=1—-t/At, and yn=
t/ At, derive the associated algebraic equation and compare it with that obtained
using the o family of approximation.
(Space—time element) Consider the differential equation

du o ( ou

c———la—
ax

=f f <x<< =
% 2 )forOxL,OtT

with
u®@,)=u(L,t)=0 for O0=:=<7T; ulx,0)=uqx) for O<x <L

where ¢ =c(x), a=a(x}), f =f(x, 1}, and uy are given functions. Consider the
rectangular domain defined by

Q={(x,N0<x<L,0=t<T}

A finite eclement discretization of Q by rectangles requires a space-time
rectangular element (with y replaced by #). Give a finite element formulation of
the equation over a space-time clement, and discuss the mathematical and
practical limitations of such a formulation. Compute the element matrices for a
linear element. ’

(Space-time finite elemenis) Consider the time-dependent problem

Fu  Gu
—_— = — 0<x<l, t>
a3t for x<1, =0

a
(0, 1) =0, ?‘:(1, =1, u(x, 0)=x

Use linear rectangular elements in the (x, ) plane to model the problem. Note
that the finite element model is given by [K*}{u*} = {Q°}, where

A gy gy Ay
K= Y oY Lm!) dt
d J; L(Sx ax TV ) H
. A Su
= (-] 5e)

o 3y

, 2= — dr)
2 ( e OX

For the heat transfer problem in Problem 8.45, set up the equations {for nodes

13, 16, and 19) for the transient case (see Fig. P8.45).

x=xy X=Xp
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8.70. The collocation time approximation methods [see Hughes (1987), p. 530] are
defined by the following relations:

{ﬁ}s+a = (I - CY){H}X + ‘Y{u}sﬂ
{d}oro= () + & At [(1 - )i}, + vt}
{t}yre= {0}, + o At {1}, + 2o A (1 —28) (e}, +28{ii},..0]

The collocation scheme contains two of the well-known schemes: a =1 gives the
Newmark scheme; § =1, y =1 gives the Wilson scheme. The collocation scheme
is unconditionally stable and second-order-accurate for the following values of the
parameters:

. @ 207 -1
Y=§! —:Bﬂ; 3
201+ @) 4(2a° - 1)

a=l,
, LS
Formulate the algebraic equations associated with the matrix differential equation

tMI{a} +[ClRa} + [KI{u}={F}

using the collocation scheme.
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CHAPTER

9

INTERPOLATION
FUNCTIONS,
NUMERICAL

INTEGRATION,
AND MODELING
CONSIDERATIONS

9.1 LIBRARY OF ELEMENTS AND
INTERPOLATION FUNCTIONS

9.1.1 Infroduction

In the previous chapter, we studied the finite element analysis of a model
second-order equation and its analogues in the fields of heat transfer, fluid
mechanics, and solid mechanics. During this study, we developed the
interpolation functions for the basic elements, namely, the linear triangular
and rectangular elements. These elements, which were developed in connec-
tion with the finite element analysis of a second-order partial differential
equation in a single variable, are useful in all finite element models that admit
Lagrange interpolation of the primary variables of the weak formulation.

The objective of this chapter is to develop a library of two-dimensional
triangular and rectangular elements of the Lagrange family, i.e., elements over
which only the function—not its derivatives-—is interpolated. Once we have
elements of different shapes and order at our disposal, we can choose
appropriate elements and associated interpolation functions for a given
problem. The regularly shaped elements, called master elements, for which
interpolation functions are developed here, can be used for numerical

404
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evaluation of integrals defined on irregular elements. Of course, this requires a
transformation of the geometry from the actual element shape to an associated
master element. Section 9.2 deals with the transformation and numerical
integration. With these preliminary comments, we now proceed to the
discussion of interpolation functions for triangular and rectangular master
elements.

9.1.2 Triangular Elements

The linear (three-node)} triangular element was developed in Section 8.2.5.
Higher-order triangular elements (i.e., those with interpolation functions of
higher degree) can be systematically developed with the help of the so-called
Pascal’s triangle, which contains the terms of polynomials of various degrees in
the two coordinates x and y, as shown in Fig. 9.1, Here x and y denote some
local coordinates—they do not, in general, represent the global coordinates of
the problem. One can view the position of the terms as the nodes of the
triangle, with the constant term and the first and last terms of a given row
being the vertices of the triangle. Of course, the shape of the triangle is
arbitrary—it is not necessarily an equilateral triangle, as might appear from the
position of the terms in Pascal’s triangle. For example, a triangular element of
order 2 (i.e., one for which the degree of the polynomial is 2) contains six
nodes, as can be seen from the top three rows of Pascal’s triangle. The
position of the six nodes in the triangle is at the three vertices and at the
midpoints of the three sides. The polynomial involves six constants, which can
be expressed in terms of the nodal values of the variable being interpolated:

6
=, ui(x, y) (9.1)
i=1
Pascals triangle Degree of the Number of  Element with nodes
complete terms in the
polynomial polynomial
1 1 —
A X VAN
P 3
oty —yt ————12 6 ——
o 2 N
/f—xy—.ty ~—yi —3 10—
X ——13y~.t2y2 -Xy 3—)'4 4 15
N .
L—rty— - xzyjuxy”‘-ys\ -—5 2
65 4.2 3 2.4 5N\
My —xty Pyt S
Y, \ 6 28
FIGURE 9.1

Pascal’s triangle for the generation of the Lagrange family of triangular elements.
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where 1, are the quadratic interpolation functions obtained following the same
procedure as used for the lincar element in Section 8.2.5. In general, a
pth-order triangular element has n nodes, with

n=3p+(p+2) 2)
and a complete polynomial of the pth degree is given by

u(x, y)= 21 ax'y’ = EI w, r+ssp {9.3)
i= j=

The location of the entries in Pascal’s triangle gives a symmetric location of
nodal points in elements that will produce exactly the right number of nodes to
define a Lagrange interpolation of any degree. It should be noted that the
Lagrange family of triangular elements (of order greater than zero) should be
used for second-order problems that require only the dependent variables (not
their derivatives) of the problem to be continuous at interelement boundaries.
It can easily be seen that the pth-degree polynomial associated with the
pth-order Lagrange element, when evaluated on the boundary of the latter,
yields a pth-degree polynomial in the boundary coordinate. For example, the
quadratic polynomial associated with the quadratic (six-node) triangular
element shown in Fig. 9.2 is

us(x, ) =a, +ax +asy + agxy +asx> + agy® 9.9

The derivatives of u® are

[:4 -4

U
I =a2+a4y +2a5x, Y =a3+a4x+2a6y (95)

The element shown in Fig. 9.2(a) is an arbitrary quadratic triangular element.
By rotating and translating the (x, y) coordinate system, we obtain the (s, f)
coordinate system. Since the transformation from the (x, y) system to the (s, )
system involves only rotation (which is linear) and translation, a kth-degree
polynomial in the (x, y) coordinate system is still a kth-degree polynomial in
the (s, #) system:

ue(S, t) = é} + &23 + ﬁgt + 645'1‘ + &532 + &Gtz (9.6)

where & (i=1,2,...,6) are constants depending on g; and the angle of
rotation &. Now, by setting ¢ =0, we obtain the restriction of u to side 1-2-3
of the element Q°:

ue(S, 0) == &1 + &23 + &55‘2 (9.7)

which is a quadratic i:)olynomial in s. If a neighboring element Q/ has its side
5-4-3 in common with side 1-2-3 of the element ©Q° then the function u on
side 5-4-3 of the element Q is also a quadratic polynomial:

(s, 0) = b, + bys + bss® (9.8)
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¥
X
(a)
T i1
‘__-‘—-—s
)
1-D element
&)
FIGURE 9.2

Variation of a function along the interelement boundaries of Lagrange (triangular) elements: {a) a
typical higher-order element; (b) interelement continuity of a quadratic function, '

Since the polynomials are uniquely defined by the same nodal values
U=u=uf, h=us=ul, and Uy=u$=ul, we have u°(s, 0)= (5, 0), and
hence the function u is uniquely defined on the interelement boundary of the
elements Q° and Q7.

The above ideas can easily be extended to three dimensions, in which
case Pascal’s triangle takes the form of a Christmas tree and the elements are
of a pyramidal shape, called tetrahedral elements. We shall not elaborate on
this any further, because the scope of the present study is limited to
two-dimensional elements only. An introduction to 3-D elements is presented
in Chapter 14.

Recall from (8.19)—(8.25) that the procedure for deriving the interpola-
tion functions involves the inversion of an # X » matrix, where n is the number
of terms in the polynomial used to represent a function. When n >3, this
procedure is algebraically very tedious, and therefore one should devise an
alternative way of developing the interpolation functions, as was discussed for
one-dimensional elements in Chapter 3.

The alternative derivation of the interpolation functions for the higher-
order Lagrange family of triangular elements is simplified by use of the area
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L3 =1.0

Ly = 0.5
L3 ={.0

A;
L= Y (A = ibh, A = lbs, Ly = AJA = sth, etc.)

FIGURE 9.3 :
Defirition of the natural coordinates of a triangular element. N
-
coordinates L, For triangular elements, it is possible to construct three
nondimensionalized coordinates ; (i =1, 2, 3), which reldte respectively to

the sides directly opposite nodes 1, 2, and 3, such that (see Fig. 9.3)

) 3
Li==i A=Y A (9.9)
e

where A; is the area of the triangle formed by nodes j and k& and an arbitrary
point P in the element, and A is the total area of the element. For example A,
is the area of the shaded triangle, which is formed by nodes 2 and 3 and point
P. The point P is at a perpendicular distance s from the side connecting nodes
2 and 3. We have A, = 3bs and A = 3bk. Hence,

L]zAI/A=S/h

Clearly, L, is zero on side 2-3 (and hence zero at nodes 2 and 3), and has a
value of unity at node 1. Thus, L, is the interpolation function associated with
node 1. Similarly, L, and L, are the interpolation functions associated with
nodes 2 and 3, respectively. In summary, we have

Y=L (9.10)

for a linear triangular clement. We shall use L; to construct interpolation
functions for higher-order triangular elements.

Consider a higher-order element with & nodes (equally spaced) per side
(see Fig. 9.4a). Then the total number of nodes in the element is

n=§(k—i)=k+(k—1)+...+1==%k(k+1) 9.11)

and the degree of the interpolation functions is £ — 1. For example, for the
quadratic element, we have k —1=2 and n==6. Let the corner (i.e., vortex)
nodes be denoted by 1, J, and K, and let k, be the perpendicular distance of
node I from the side connecting J and K. Then the distance s, to the pth row
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s;=sk_]=1,sp=ﬁmﬂl- 5\0
0 =

(a)

FIGURE 94
Construction of the element interpolation functions of the Lagrange triangular elements: (a) an
arbitrary (k — 1)th-order element; (&) linear, quadratic, and cubic clements,

parallel to side J-K (under the assumption that the nodes are equally spaced
along the sides and the rows) is given in nondimensional form by

P

S =

p ;‘“‘_._1, S0=0, S‘rask_l""—'l (9.12)

The interpolation function v, should be zero at the nodes on the lines L; =0,
1/k=1),...,plk—=1) (p=0,1,...,k~2), and 1, should be unity at
L,;= S5, Thus we have the necessary information for constructing the inter-
polation function y,:

(Ly—so)(Ly—s )Ly —52) - - (L; — 5¢2) _ 2L -5,
(57— s0)(s: — 51)(S7—52) * + - (5, — Sk2) p=051 — 5,

Y= (9.13)

Similar expressions can be derived for nodes located other than at the vertices.
In general, y; for node i is given by

k-1
w=11% (9.14)
=

Thiew
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where f; are functions of Ly, L, and L,, and f! i is the value of f; at node i. The
functions f; are derived from the equations of k -1 lines that pass through all
the nodes except node i. The procedure is illustrated below via an example.

Example 9.1, First consider the triangular element that has two nodes per side (i.e.,
k =2). This is the linear triangular element with total number of nodes equal to 3
{n = 3). For node 1 (see Fig. 9.4b), we have k —2=0 and

n =Y, s =4, ‘P1= = dq L1ad
Sa="0 1 L (9.154)
§y— S8q

Similarly, for 1, and 5, we obtain
Yy=L,, Y3=1L, (9.15b)

Next, consider the triangular element with three nodes per side (k 3). The fotal
number of nodes is 6. For node 1, we have

50=0, $,=3, s5=1
Ly—soLi—
Y= 17 S0z '81=L1(2L1_1)

§2 = 8p 5z — &

(9.16a)

The function 9, (see Fig. 9.4b) should vanish at nodes 1, 3, 4, 5, and 6, and should be

unity at node 2. Equivalently, v, should vanish along the lines connecting nodes 1 and

5, and 3 and 5. These two lines are given in terms of [, L, and L {note that the

subscripts on L refer to the nodes in the three-node triangular element) by L,=0 and
= (. Hence,

_L,— SOLI'_SO L,—0L;—0
$1—850 8 —5 -0 45-0

2=

—4L,L, (9.16b)

Similarly,
Ps=L,(2L,—1), a=4L,L;, s=L;20,-1), ye=4L,L; (9.16¢)
As a last example, consider the cubic element (i.e., k —1=3). For y,, we note
that it must vanish along the lines L, =0, Ll =4, and L, =3§. Therefore,
11}1 — L1 h 0 L1 3 L]
1-0 1-% 1-%

=3L,(3L, - 1)(3L1 2)

Similarly,
—0f,—-0L,—1%
=2 S S = 3,L,(3L, — 1)
3—0 5—-0 5—3
and so on. We have
Yy =351, L,(30, - 1), Wa=2L(3L,— 1)(3L,—2)
Ys=30,L(3L,—1), Y= L0430 — 1) .17
Yy = LLL(BL—D(B3La—2), yp= $L,L(3L,— 1) .
Wo=3L,L,(3L,— 1), Ya=270,L,Ly

In closing this section, it should be pointed out that the area coordinates
L, facilitate not only the construction of the interpolation functions for the
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higher-order elements but also the integration of functions of L; over line paths
and areas. The following exact integration formulae prove to be useful:

1 m!n!
L*LA ds = —r—— " (b — .
J; 1 (m+n+1)! (b a) (9 181’1)
m!lnlp!
myrnrp ELARLAT S
J‘fareaLl LQLB’ o (m-{~n+p+2)! (918b)

where m, n, and p are arbitrary (positive) integers, A is the area of the domain
of integration, and m! denotes the factorial of m. Of course, one should
transform the integrals from the x and y coordinates to L; coordinates using

X = Z xL;, y= 2 yiLy (8.19)
i=1 i=

where (x;, y;) are the global coordinates of the /th node of the element.

9.1.3 Rectangular Elements

Analogous to the Lagrange family of triangular elements, the Lagrange family
of rectangular elements can be developed from Pascal’s triangle in Fig. 9.1 or
the rectangular array shown in Fig. 9.5. Since a linear rectangular element has
four corners (and hence four nodes), the polynomial should have the first four
terms 1, x, y, and xy (which form a parallelogram in Pascal’s triangle and a
rectangle in the array given in Fig. 9.5). The coordinates (x, y) are usually
taken to be the element (i.e., locgl) coordinates. In general, a pth-order
Lagrange rectangular element has » nodes, with

n=(p+1Y (p=0,1,...)

and the associated polynomial contains the terms from the pth parallelogram
or the pth rectangle in Fig. 9.5. When p =0, it is understood (as in triangular
elements) that the node is at the center of the element (i.e., the variable is a
constant on the entire element). The Lagrange quadratic rectangular element
has nine nodes, and the associated polynomial is given by

ulx, y) = a;+apx + a3y +asxy F asx’ + agy’

+ a;x%y + agxy® + agx®y? (9.20a)
ou 2, - 2
—é;= ay +asy +2asx + 2a.xy + agy© + 2a0xy
9.208
ou ( )

g); =qs 4+ gu.x + 20y + a-,;rz + 2agxy + 2aqx’y

The polynomial contains the complete polynomial of the second degree plus
the third-degree terms x%y and xy” and also an x*y* term. Four of the nine
nodes are placed at the four corners, four at the midpoints of the sides, and
one at the center of the element. The polynomial is tniquely determined by
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specifying its values at each of the nine nodes. Moreover, along the sides of the
element, the polynomial is quadratic (with three terms—as can be seen by
setting y = 0), and is determined by its values at the three nodes on that side.
If two rectangular elements share a side, and the polynomial is required to
have the same values from both elements at the three nodes of the elements,
then u is uniquely defined along the entire side {shared by the two elements).
Note that the normal derivative of u approximated by the quadratic Lagrange
polynomials is quadratic in the tangential direction and linear in the normal
direction (i.e., du/3x is quadratic in y and linear in x, and 3u/3y is quadratic
in x and linear in y). Plots of 4, ¥, and 15 (the node numbers correspond to
those in Fig. 9.6) of the nine-node rectangular element are shown in Fig. 9.7,

The - pth-order Lagrange rectangular element has the pth-degree
polynomial

u(x, y) =2, axly* (j+k=p+1;i,j=p)
i=1

=3 u; ©.21)
i=1

and ; are called the pth-order Lagrange interpolation functions.
The Lagrange interpolation functions associated with rectangular ele-
ments can be obtained from corresponding one-dimensional Lagrange inter-

-1 Db
d= i1 - 01— )
Yy = i1+ £ - n)
Yy = {1 - 1+ )
b=yl + 81+ 7

g = - O~ M) =1 - )P - 1)
¥ = (& + O - 1), gy = &2 — &L — 72)
¥s = (1 =~ €)1 - 52), e = (€2 + (1 — n?)

r=HE - O+ ). Yy =11 - F)nt )
P = (&2 + H(n* + 1),

g Use (9.25)-(9.27) to develop
the interpolation functions.

FIGURE 9.6
Node numbers and interpolation functions for the rectangular elements of the Lagrange family.
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polation functions by taking the tensor product of the x-direction (one-
dimensional) interpolation functions with the y-direction (one-dimensional)
interpolation functions. Let the x and y coordinates be taken along element
sides, with the origin of the coordinate system at the lower left corner of the
rectangle. Then for an element with dimensions @ and b along the x and y
directions, respectively, the interpolation functions are given as follows:

Linear {(p =1)
fluf
Y Y] a Yy
[tpz wJ_* x {1 b b}
L
B x y X\ y
(=203 (=23
= (9.22)
5(1_2) xy
a b ab
Quadratic (p =2)
((x —3a)(x —a)Y ((y —3D)(y —bN\T
(—3a)(-a) 12
v Y iy
5 x(x —a) y(y—b)
iz $5 ig = la(3a —a) 'S —ip? (
A x(x —4a) ¥y —b/2)
\ a(3a) J\ ip? J
f1& fig2 figs
={fHe}" =| her f8& £s (9.23)

381 [g2 fgs

where f(x) and g;(y) are the one-dimensional interpeolation functions along the
x and y directions, respectively. We obtain

(- 2)a-De- 23

b

w0-90-00-3) weiE-90-26-
w-0-D80- wt0-DY0-D oo
wEEOH0D (D003
L HE SO RO
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At pth order

P, Yorz - Wy
wz fl b 41 T
: — b &2
' : : 9.25
v, . 9.25)
1 Ep+1
Worr Wopea -+ W

k=(p+Dp+1, n=(p+1)

where fi{(x) and g;(y) are the pth-order interpolants in x and y, respectively.
For example, the polynomial

o E)E-E) EE)E-Ew) b))
B = (e TENE —E) =B E =B E B 0

(where &; is the & coordinate of node i} is the pth-deg'ree interpolation
polynomial in & that vanishes at the points &), &, ..., Ei iy Eiers oo s Bpur
We recall that (x, y) are the element coordinates.

It is convenient (for numerical integration purposes) to express the
interpolation functions in (9.25) in terms of the natural coordinates Eand n:

_2Ax—x)—a _2Ay-y)-b
a o 1 b

& (9.27)

where x, and y, are the global coordinates of node 1 in the local x and y
coordinates, For a coordinate system with origin fixed at node 1 and
coordinates parallel to the sides of the element, we have x, =y, =0. In this
case, the quadratic interpolation functions in (9.24) can be written in terms of
Eand 5 as

p=il-H-mEy,  Ps=(1—E)(1-1)

o= H1-E-mn, =301+ EA-1)E

w= =Y+ EA-mEn, Y= -i1-HA+mE (029
vo=—J1-BDA-1)E  Pe= 31— N1+ )

Po=3(1+ &)1+ n)én

The reader should be cautioned that the subscripts of 1; refer to the node
numbering used in Fig. 9.6. For any renumbering of the nodes, the subscripts
of the interpolation functions should be changed accordingly.

9.1.4 - The Serendipity Elements

Since the internal nodes of the higher-order elements of the Lagrange family
do not contribute to the interelement connectivity, they can be condensed out
at the element level so that the size of the element matrices is reduced. The
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serendipity elements are those rectangular elements that have no interior
nodes. In other words, all the node points are on the boundary of the element.
The interpolation functions for serendipity elements cannot be obtained using
tensor products of one-dimensional interpolation functions. Instead, an alter-
native procedure that employs the interpolation properties in (8.26) is used.
Here we show how to construct the interpolation functions for the eight-node
(quadratic) element using the natural coordinates (&, 5).

The interpolation function for node 1 should be zero at nodes
2,3,...,8, and unity at node 1. Equivalently, 4, should vanish on the sides
defined by the equations 1~ £=0, 1—5n=0, and 1+ & -+ n =0 (see Fig. 9.8).
Therefore, 4, is of the form

YU M =c1-HA-n){1+E+n) (9.2%)

where c is a constant that should be determined so as to yield y,(—1, ~1)=1.

We obtain ¢ = —1%, and therefore

P& ) =—1-5 -l +E+n) (9.290)
Similarly, we obtain
Yo=3(1-E)1—9), Ys=11+EA-(-1+E~n)
Ya=3(1-E)1 - 7%, s=3(1+ &1~ 7% (9.30)

Pe=d1-EA+m(—1-E+m), P, =31-E)1+7)
Pe=31+EA+n(—1+E+7)

U= (L= £)(1 - g)~1- & - ¢)
g = 5(1 - EHL -~ )
th={1+&0 - n)}-1+¢&-7)
Py =31 - (1 - 9%
s =1+ &1 — %)
g5 =31 - A + g)—1- £+ 7}
$=81— 1+ 9)
L+£=0 1-¢=0 v =31+ E + g)(~1+ £+ q)

See (8.32) for the interpolation
functions

FIGURE 9.8 .
Node numbers and interpolation functions for the serendipity family of elements.
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FIGURE 9.9
Geometric variation of the interpolation functions associated with nodes 1 and 2 of the eight-node
serendipity element (see Fig. 9.8).

Note that all the ; for the eight-node element have the form
Wi =1+ CoE + can) + CoEN + €58+ e’ + 6,57 + s’

The derivatives of ; with respect to & and 5 are of the form

S,
8—1? = ¢y + caff + 205E 4 2c4En + can®
Y,
—;1: =3+ CE + 2¢en + 18 + 205D

(9.31a)

(9.31b)

Plots of 4, and ¥, {the node numbers correspond to those in Fig. 9.8) for the
eight-node serendipity element are shown in Fig. 9.9. It should be noted that
1, of the nine-node element is zero at the element center, whereas 1, of the

eight-node element is nonzero there.
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The interpolation functions for the cubic serendipity element, which has
12 nodes, are

=% - 51— n)[-10+9(& + 772)} Yo =% - )1 - EH1-38)
=-”—(1 — A —EY1+3E), =51+ E)(L— p[~10+9(E + n)]
Ps =51 - E)(1 - 7?1 -3n), wr (1 + E)(1— 771~ 3n)
w =3A-EA -1 +3n),  we=H(1+ET— (L +3n)
s=H(1 -1+ M[-10+9E + 1], wi=5(+n)(1- EH(1-38)

’Pu =51 +n)(1—-EHA+3E), =51+ EI+n[—10+9(& + n?)]
(9.32)

The interpolation functions v, for the 12-node element are of the form

1y, = terms of the form in (9.31a) + ¢o&> + 101> + €115 + cEn°  (9.33)

TABLE 9.1
Interpolation functions for the Hnear and quadratic Langrange rectangular

elements, quadrafic serendipity element and Hermite cubic rectangular
elementy

Element type Interpolation functions Remarks

Lagrange elements:

Lincar L+ EEN( + ) Nodei(i=1,...,4)

Quadratic 1EE(1 + EEYm,{1 + 1) Corner node
31+ )1 - §7) Side node, £ =0
EE(L+EEN1 - ) Side node, 1,=0
(1=-8)(1-n% Interior node

Seredipity efement:

Quadratic I+ EE)Q + qy)EE + n— 1) Corner node
-850+ ny) Side node, & =0
I+ EEN(1 - 1D Side node, 1, =0

Hermite cubic element;
Interpolation functions for

variable 1 16(5 + 55— 2)(n + n)’ (g~ D)
derivative du/d& - 16‘5 (E+ E)(EE,— 1)(n + 1,) (s — 2 For node {
derivative 3u/dy ~75(& + E)(EE, — 2m,(n + 2 (nn, — 1) (f=L...,4)

derivative &°u/oE an  5E(5 + &) (EE ~ Dn(n + miY (o — 1)
Interpolation functions for

variable Y+ Do + DR+ Eo+ 10— & ) .
derivative 8u/o& LE(& + 15— Do+ 1} F_or node §
derivative du/dy LB+ D116+ 10— D] - (i=1,...,4)
E=(x—xJ)la, n=(y—y)Mb (2a and 2b are the
Eo=85 no=nm sides of the
rectangular
element)

t See Fig. 9.10 for the coordinate system; (£;, ;) denote the natural coordinates of the ith node of the ¢lement;
(x., .} are the plobal coordinates of the center of the element.
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In the above discussion, we developed only the Lagrange interpolation
functions for triangular and rectanguiar elements, The Hermite family of
interpolation functions (which interpolate the function and its derivatives)
were not discussed. We recall that such functions are required in the finite
element formulation of fourth-order (or higher-order) differential equations
(e.g., the Buler-Bernoulli beam theory of Chapter 4 and the classical or
Kirchhoff plate theory of Chapter 12). For the sake of completeness, while not
presenting the details of the derivation, the Iermite cubic interpolation
functions for two rectangular elements are summarized in Table 9.1. The first
is based on the interpolation of (u, du/8x, 8u/dy, &u/3x dy) at each node,
and the second is based on the interpolation of (i, 8u/3x, du/dy) at cach
node. The node numbering system in Table 9.1 refers to that used in Fig. 9.10.
The notation used in Table 9.1 and Fig. 9.10 is also followed in the computer
program FEM2DV2, which will be discussed in Chapter 13. ’

(b)
A7
T 4 3
2 3
il 2
P— 2a —~
(e)

FIGURE 9.10
Triangutar and rectangular elements: {2) linear and quadratic triangular elements; (b) linear and
quadratic Lagrange elements; (c) Hermite cubic element.
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9.2 NUMERICAL INTEGRATION
9.2.1 Preliminary Comments

An accurate representation of domains with curved boundaries can be
accomplished by the use of refined meshes and/or curvilinear elements. For
example, a nonrectangular region cannot be represented using rectangular
elements; however, it can be represented by quadrilateral elements. Since the
interpolation functions are easily derivable for a rectangular element, and it is
easier to evaluate integrals over rectangular geometries, we transform the
finite element integral statements defined over quadrilaterals to a rectangle.
The transformation resuits in complicated expressions in terms of the
coordinates used for the rectangular element. Therefore, numerical integration
is used to evaluate such expressions. Numerical integration schemes, such as
the Gauss-Legendre scheme, require that the integral be evaluated on a
specfic domain or with respect to a specific coordinate system. Gauss
quadrature, for example, requires that the integral be expressed over a square
region £ of dimension 2 by 2 and that the coordinate system (&, 1) be such
that —1=<(§, n)<1. The transformation of the geometry and the variable
coefficients of the differential equation from the problem coordinates (x, y) to
the coordinates (, ) results in algebraically complex expressions, and this
precludes analytical (i.e., exact) evaluation of the integrals. Thus, the
transformation of a given mtegral expression, defined over the element Qe to
one on the domain € must be such as to facilitate numerical integration. Each
element of the finite element mesh is transformed to Q, only for the purpose of
numerically evaluating the integrals. The element Q is called a master element.
For example, every quadrilateral element can be transformed to a square
element with side 2 that facilitates the use of Gauss-Legendre quadrature to
evaluate integrals defined over the quadrilateral element.

The transformation between Q° and  [or, equivalently, between x,
and (&, )] is accomplished by a coordinate transformation of the form

x= Zl XHE ), y= Zl yipiE 1) (9.34)
i= j=

where ﬁ)" denote the finite element interpolation functions of the master
element Q Although the Lagrange interpolation of the geometry is implied by
(9.34), one can also use Hermite interpolation. Consider, as an example, the
master element shown in Fig. 9.11. The coordinates in the master element are
chosen to be the natural coordinates (&, 1) such that —1=(§, n)=1. This
choice is dictated by the limits of integration in the Gauss quadrature rule that
is used to evaluate the integrals. For this case, the ‘P; denote the interpolation
functions of the four-node rectangular element shown in Fig. 9.11 (i.e.,

m = 4). The transformation (9.34) maps a point (&, ) in the master element Q
onto a point (x, y) in the element Q°, and vice versa if the Jacobian of the
transformation is positive definite. The transformation maps the line £=1in Q
to the line defined parametrically by x =x(1, ) and y =y(1, %) in the (x, y)
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r

FIGURE 9.11
Generation of a finite element mesh from a master element.

plane. For instance, consider the line £ =1 in the master element Q. We have

4
x(1, n) = 21 x {1, ) = 2,0+ 36,1 — 1) + xs(1+ 7) + %0
i=
=1{x, + x5} + %(x:; — X2)1 (9.35)
4 .
y(1, 9= Zl L, M) =3ty +3(nm—y)n

Clearly, x and y are linear functions on 7. Therefore, they define a straight
line. Similarly, the lines £= —1 and n = *1 are mapped into straight lines in
the element £2°. In other words, the master element Q is transformed, under
the linear transformation, into a quadrilateral element (i.e., a four-sided
element whose sides are not parallel) in the (x, y) plane. Conversely, every
quadrilateral element of a mesh can be transformed to the same four-noded
square (master) element Q in the (&, ) plane (see Fig. 9.6).

In general, the dependent variable(s) of the problem are approximated
by expressions of the form

s, )= 3, i, ) 9.36)

The interpolation functions 1} used for the approximation of the dependent
variable are, in general, different from the 9f used in the approximation of the
geometry. Depending on the relative degrec of approximations used for the
geometry [see (9.34)] and the dependent variable(s) [see (9.36)], the finite
element formulations are classified into three categories.

. u/ ,
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. Superparametri¢ (m > n): the approximation used for the geometry is of
higher order than that used for the dependent variable.

2. Isoparametric (m =n): equal degree of approximation is used for both
geometry and dependent variables.

3. Subparametric (m <'n): higher-order approximation of the dependent
variable is used. (9.37)

For example, in the finite element analysis of the Buler-Bernoulli beams,
we used linear Lagrange interpolation of the geometry,

2

x= 3 5y (8) = xa+ 31+ £) (9.38)

whereas Hermite cubic interpolation was used to approximate the transverse
deflection. Such a formulation falls info the subparametric category. Since the
axial displacement is approximated by the linear Lagrange interpolation
functions, it can be said that the isoparametric formulation is used for the axial
displacement. Superparametric formulations are rarely used. Also, the ap-
proximation of geometry by the Hermite family of interpolation functions is
not common.

9.2.2 Coordinate Transformations

It should be noted that the transformation of a quadrilateral element of a finite
element mesh to the master element Q is solely for the purpose of numerically
evaluating the integrals. No transformation of the physical domain or elements
is involved in the finite_element analysis. The resulting algebraic equations of
the finite element formulation are always among the nodal values of the
physical domain. Different elements of the finite element mesh can be
generated from the same master element by assigning the global coordinates of
the elements (see Fig. 9.11). Master elements of different order define
different transformations and hence different collections of finite element
meshes. For example, a cubic-order master rectangular element can be used to
generate a mesh of cubic curvilinear quadrilateral elements. Thus, with the
help of an appropriate master element, any arbitrary element of a mesh can be
generated. However, the transformations of a master element should be such
that there are no spurious gaps between elements and no element overlaps.
The elements in Figs. 9.6 and 9.8 can be used as master elements.

When a typical element of the finite element mesh is transformed to its
master element for the purpose of numerically evaiuating integrals, the
integrand must also be expressed in terms of the coordinates (&, n) of the
master element. For example, consider the element coefficients

| oy 3u; i,
Ki= Le [a(x, ¥) ;p 81'0’ b(x, y)% 8? +elx, y)witp,} dx dy
(9.39)



424

FINITE ELEMENT ANALYSIS OF TWO-DIMENSIONAL PROBLEMS

The integrand (i.e., the expression in the square brackets under the integral} is
a function of the global coordinates x and y. We must rewrite it in terms of &
and 7 using the transformation (9.34). Note that the integrand contains not
only functions but also derivatives with respect to the global coordinates (x, y).
Therefore, we must relate dy;/ox and dyi/dy to 3y;/3E and 3yi/3n using
the transformation (9.34).

The functions ¥:(x, y) can be expressed in terms of the local coordinates
& and 7 by means of (9.34). Hence, by the chain rule of partial differentiation,
we have

oy _ovior uidy

QE 9x 9E& 3y 0§
9.40a
ovi_oviax  ovi oy , B
dy  8x 8n 3y In
or, in matrix notation, '

o) [ (o

9F | _| 98 ok ox (9.405)

ayi[ |2 oy |)out |

In on oy dy

which gives the relation between the derivatives of 1§ with respect to the
global and local coordinates.

The matrix in (9.40b) is called the Jacobian matrix of the transformation
(9.34):

& oY
_| 9 o9&
(#1= o oy (9.41)
on 9n

Note from the expression given for Kj in (9.39) that we must relate
dyi/dx and Syi/dy to Byi/OE and Jvyi/3n, whereas (9.40) provides the -
inverse relations, Therefore, (9.40b) must be inverted by inverting the
Jacobian matrix:

i j i
ax | .., 98

a_,q,}? _\[g} a_,!pf (9'42)
3y on :

This requires that the Jacobian matrix [#] be nonsingular.
Although it is possible to write the relationship (9.42) directly by means
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of the chain rule,- I

dr JE ax 9y ox
avi_ayiak  avian

dvi_aviaE  oyion
(9.43)

3y 9E 3y an dy
it is not possible to evaluate 35/3x, 3E/8y, an/dx, and 8n/3y directly from
the transformation equation (9.34). The transformation equation (9.34) allows
direct evaluation of dx/8E, 8x/3n, dy/JE and y/87, and therefore [#].
Using the transformation (9.34), we can write
ox & aY 3y & 3y
_— x. s —_—= s
E A aeT AV e

- ~ " " 9.444
ox_ <, %Y QIE)L@V’:' (9.444)
én =7 an’ an =7 an
and
" 3x 3y moAY & Y,
X0 (e
| & % |_ 253 A7
ox ay | | sk & aj
— = 2 X—— D y=r
| 8n 9 =t on (57 9y
—_% %.“ awm xI .VI
JE 3 3
~| % 35 o RS (9.44b)
3y 8%y Ot :
| dn 9 on dLxu Ym

Thus, given the glotal coordinates (%, ¥;) of element nodes and the interpola-
tion functions 1]); used for geometry, the Jacobian matrix can be evaluated
using (9.44b). Note that the ﬁ)f are different, in general, from the ¥ used in
the approximation of the dependent variables.

In order to compute the global derivatives of 5 (i.e., derivatives of ¢
with respect to x and y) from (9.42), it is necessary to invert the Jacobian
matrix. A necessary and sufficient condition for [#]™' to exist is that the
determinant ¢, called the Jacobian, be non-negative at every point (&, 1) in

F=det[g]=2F _HV_, (9.45)

o5an 9nodE

From this it is clear that the functions &= £(x, y) and 5 = y{x, y) must be
continuous, differentiable, - and invertible. Moreover, the transformation
should be aigebraically simple so that the Jacobian matrix can be casily
evaluated. Transformations of the form (9.34) satisfy these requirements and
the requirement that no spurious gaps between eclements or overlapping of
elements occur. We consider an example to illustrate the invertibility
requirements.
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=31 - O~ a) v = (L XL+ m)
d= {1+ O~ ) ge =1 - A+ m)

ly

FIGURE 9.12
Examples of transformations of the master rectangular element Qp.

Example 9,2, Consider the three-element mesh of quadrilaterals shown in Fig. 9.12.
The master element is the four-node square. Elements 1 and 2 have counter-clockwise
element node numbering consistent with the node numbering in the master element,
and element 3 has node numbering opposite to that of the master element. Elements 1
and 3 are convex domains in the sense that the line segment connecting any two
arbitrary points of a convex domain lies entirely in the element. Clearly, element 2 is
not convex, because, for example, the line segment joining nodes 1 and 3 is not entirely
inside the element. In the following paragraphs, we investigate the effect of node
numbering and element convexity on the transformations from the master element to
each of the three elements.

First, we compute the clements of the Jacobian matrix (the interpolation
functions are given in Fig. 9.12):

ox &,
a—g= Ele—;g = H—x,(1 - ) + 21 = ) + x5(1+ 7) —x(1+ )]
ax &8,
= D= don( = =L+ Bl + 5 +x(1 = 8]

(9.46)
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4 'a“'_
= 3 TR (1= )+t = ) ) =L )]

98
y & ey
3= 2o = = 8 =yl + ) + (1 + B) + (1 — B)]
g o 9 .
Next, we evaluate the Jacobian for each of the elements.
Element 1. We have x,=x,=10, x,=x,=2, y,=y,=0, y,=3, and y:=35. The
transformation and Jacobian are given by

x=2n+2,=1+5  y=30,+5y,=(1+ n)(2— LE) (9.47a)
F=det[#] = ’ 3 *;(i ;“;) =1(4-5>0 (9.47b)

Clearly, the Jacobian is linear in &, and, for all values of £in —~1<sEs1, itis positive,
Therefore, the transformation (9.47a) is invertible,

Element 2, Here we have x, =x,=2, x,=3, x3=5, y, =0, »,=2, and Ya=y, =3,
The transformation and Jacobian are given by

x=3+E+in+zkn, y=2+3E+n-ifp (9.484)

_|1+in -

F=harn 1-12

=il+n-8§) (9.48b)

The Jacobian is not nonzero everywhere in the master element. It is zero along the line
£=1+ 5 shown by the shaded area in the master element in Fig. 9.12. Moreover, this
area is mapped into the shaded area outside element 2. Thus, elements with any_
interior angle greater than & should not be used in any finite element mesh.

Element 3. We have x,=2, x,=0, x;=x4=5, yy=y;=3, and yp, = y;=15. The
transformation and Jacobian become (note that the nodes are numbered clockwise)

x=3-35++an, y=4+& (9.49q)
_|a-m oy
$= 241 o= 2+i5)<0 (9.49b)

The negative Jacobian indicates that a right-hand coordinate system is mapped into a
left-hand coordinate system. Such coordinate transformations should be avoided.

The above example illustrates, for the four-node master element, that
nonconvex elements are not admissible in finite element meshes. In general,
any interior angle & (see Fig. 9.13) should not be too small or too large,
because the Jacobian § = (|dr,| |dr,|sin 8)/dEdn will be very small. Similar
restrictions hold for higher-order master elements. Additional restrictions also
exist for higher-order elements. For example, for higher-order triangular and
rectangular elements, the placing of the side and interior nodes is restricted.
For the eight-node rectangular element, it can be shown that the side nodes
should be placed at a distance greater than a quarter of the length of the side
from either corner node (see Fig. 9.13).
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= constant
7 Y H
-pdA = TdEdn
* J = jdryl |dra| sin 6/dE dn
dy dry
= constant
dt dry "
£ x

be-0.25

J=1+2(2b~— 1.)§+2(2a— Un >0

. a>0.25

b > 0.35 i

¥ =+ A=)
y=n + d&nlb —3)

0.25 0.25

FIGURE 9.13
Some restrictions on element transformations.

Returning to numerical evaluation of integrals, we have, from (9.42),

i avi ovi
ox _.} 8¢ o) 3
= = .50
ay; (#] aus B! v (9.50)
dy an an
where 5 is the element in position (i, j) of the inverse of the J acobian matrix,
- Fh I
F=1#1= [ ] 9.51
A== g .35
‘The elemental area dA = dx dy in the element Q° is transformed to
dA=dxdy=Fd&dn (9.52)

in the master element €.

Equations (9.42), (9.44), (9.51), and (9.52) provide the necessary
relations to transform integral expressions on any element Q° to an associated
master element €. For instance, consider the integral expression in (9.39)
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where a=a(x, y), b=>b(x,y), and c=c(x, y) are functions of x and y
Suppose that the mesh of finite elements is generated by a master element €.
Under the transformation (9.34), we can write

. _ oY 3y, , I Iy, )
U j (" ax ax TP By oy VW) dxdy

= [ [a(sn Wi, gy, 20 s Sy g1, a“”)

oE 9
+ 5( 3 C;? + #5 31}&) (0%1 81? + agzz ) + 1.”:',";]} d§dn
EL F(&, ) dEdn (9.53)

where §; are the elements of the inverse of the Jacobian matrix in (9.51), and
d=ua(§, 1), and so on. Equations (9.42), {9.44), and (9.51)-(9.53) are valid
for master elements of both rectangular and triangular geometry. The master
triangular and rectangular elements for linear and quadratic triangular and
quadrilateral elements are shown in Fig. 9.14,

9.2.3 Integration over a Master Rectangular Element

Quadrature formulae for integrals defined over a rectangular master element
Qr (such as that shown in Fig. 9.14) can be derived from the one-dimensional
quadrature formulae presented in Section 7.1.5. We have

[, (& m)dsdn = [ 1 f F(& n)dn | dg~ f [f‘, F(& )W, | d&

M N
:gl E} F(&, n)W,W, (9.54)

where M and N denote the number of quadrature points in the £ and p
directions, (&, n,} denote the Gauss points, and W, and W, denote the
corresponding Gauss weights (see Table 7.2). The selection of the number of
Gauss points is based on the same formula as that given in Section 7.1.5: a
polynomial of degree p is integrated exactly employing N = int [3{p + 1)]; that
is, the smallest integer greater than 1(p + 1). In most cases, the interpolation
functions are of the same degree in both & and 7, and therefore one has
M = N. When the integrand is of different degree in £ and 7, the number of
Gauss points is selected on the basis of the largest-degree polynomial. The
minimum allowabie 'quadrature rule is one that computes the mass of the
element exactly when the density is constant,

Tables 9.2 and 9.3 give information on the selection of the integration
order and the location of the Gauss points for linear, quadratic, and cubic
elements. The maximum degree of the polynomial refers to the degree of the
highest polynomial in § or n that is present in the integrands F(E, n) of the
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Master elements Actual elements

FIGURE 9.14
Linear and quadratic master elements and their transformations.

element matrices of the type in (9.53). Note that the polynomial degrec of
coefficients as well as # and ¢ should be accounted for in determining the
total polynomial degree of the integrand. Of course, the coefficients a, b, and c,
and $; in general, may not be polynomials. In those cases, their functional
variations must be approximated by a suitable polynomial (for example, via a
binomial series) in order to determine the polynomial degree of the integrand.

The N x N Gauss point locations are given by the tensor product of
one-dimensional Gauss points &

:, EE) &) .. (kv
2lie,e,... 0= &5 . ©9.55)
&N (SN: El) e (EN: gN)

The values of & (I=1,2, ..., N} are presented in Table 7.2.
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Selection of the integration order and location of the Gauss points for linear,
quadratic, and cubic quadrilateral elements (nodes not shown)

Maximum  Order Order of
Element polynomial of the Location of integration points’
type degree integration residual  in master element
(rxn
e=-fi— {1 e=s
S N
Linear 2 2x2 O E ¢
(r=2) R e N
i !
= i 41 g =
N (= L Ak
‘ ‘
Quadratic 4 3x3 Oy =0 —--de--¢¢lnt
{r=23) s oo
me= i — - -pe o4
] ] i
£=-0861..0 Ty le=0.386l...
7 = 0.861 ... —— {4 —¢-[4= 41—
Cubic 6 4x4 O =033 --Je--pte--ef- :
(r=49 7= —0.339..~~{4--4-—4-4{-
7 = ~0.861 ..o~ 494 -
3 ’

*See Table 7.2 for the integration points and weights for each coordinate

direction.

The following examples illustrate the evaluation of the Jacobian and
element matrices on rectangular elements,

Example 9.3. Consider the quadrilateral element Q' shown in Fig. 9.12. We wish to
evaluate 9y,/0x and 3y,/3y at (£, n)=(0,0) and (3,3) using the isoparametric
formulation (i.e., ¥; = v,). From (9.44b), we have

LR

|

1
0

~(1—n}
~(1-&)
—2(1+7n)

3(4-8)

]

—{1+& 1+¢&

0.0 0.0

1+ —~(1+m1| 290 00
1-¢ ] 2.0 3.0

0.6 5.0
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The inverse of the Jacobian matrix is given by

1
(#1=

agikl:l; f;{l:o) T2=4_§1 22:4_5

From (9.42), we have
v, _ow 1+ndw  dy__2 v

ax &8E 4—-Eon’ 3y 4—-Eoy

where
LS

i i
P, =100+ EE)(L + ), %—%:% 1+ 112, %—E m(1+EE)  (9.56)

(&, ;) being the coordinates of the ith node in the master element (see Fig. 9.12):

Node & 1;

1 -1 -1
2 -1
3 1. 1
4 -1 1

Then we have

oy, 11479
L =lE(l+yn)+>——2
ax 4§r( 71’7:)*'44_&
3y, 1 2

2y =11 ¢ n{1+ EE)

n(1+ E&) -

(& =100 {3 2)

&,

2l g b0+ EnerE)
2 i

a?j: LU Tam(2+ &)

Exami:le 9.4. Consider the quadrilateral element in Fig. 9.15. We wish to compute the
following element matrices using Gauss quadrature and the isoparametric formulation:
ay, d
@ o 9r Ox ©.57)
3y, 3y a3y, 9y .
T2 i i 1z i i
ot M Tdedy, SP=| - dxd
= ey oy Y Y T Ly
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4 FIGURE 9.15
Geometry of the bilinear efement used in Example 9.4

We have

71 =?11 [8:22§n 102525}

F=(@-NE+E+En=20+4E-5y

1 1
s=[ wwardy=[ [ wsdsay
Q —iJ-1

11 3%5%
1o | —H 0.5
8 | x o dx dy (9.58)

1 13
=[] (s Sg s 50 (o0 Se 21 S st an

and so on, where 8,/3E and 3y,/3n are given by (9.56). Note that the integrand of Sy
is a polynomial of order p =3 in each coordinate. Hence, N =M =2 will evaluate S
exactly. Evaluating the integrals in (9.57) using the 2 X 2 quadrative rule, we obtain
[~ 0.40095 —0.36892 —0.20479  0.163767
-0.36892  (.34516  0.25014 —0.22639
—0.20479  0.25014  0.43155 —0.47690

0.16376 ~—0.22639 -—0.476%0  0.53953
[~ 0.26237  0.16389 —0.13107 —0.29520"
0.16389  0.22090 —0.23991 -—0.14489

[s"=

221

[$"1= —0.13107 —0.23991  0.27619  0.09478
| —0.29520 —0.14489  0.09478  0.34530_
© 0.24731  0.25156 —0.25297 —0,24589 ]

(57 = —0.24844 ~0.25090  0.25172  0.24762

—0.25297 —0.24828  0.24671  0.25454
0.25411  0.24762 —0.24546 —0.25627 |
[2.27780 1.25000 0.55556 1.00000
1125000 272220 1.22220 0.55556
[S1= 0.55556 1.22220 2.16670° 0.97222
[ 1.00000 0.55556 0.97222 1.72222

9.2.4 Integration over a Master Triangular Element

In the preceding section, we discussed numerical integration on quadrilateral
elements, which can be used to represent very general geometries as well as



434 FINITE ELEMENT ANALYSIS OF TWO-DIMENSIONAL PROBLEMS

field variables in a variety of problems. Here we discuss numerical integration
on triangular elements. Since quadrilateral elements can be geometrically
distorted, it is possible to distort a quadrilateral element to obtain a required
triangular element by moving the position of the corner node to one of the
neighboring nodes. In actual computation, this is achieved by assigning the
same global node number to two corner nodes of the quadrilateral element.
Thus, master friangular elements can be obtained in a natural way from
associated master rectangular elements. Here we discuss the transformations
from an arbitrary triangular element to a master triangular element.

We choose the unit right isosceles triangle (see Fig. 9.16a) as the master
element. An arbitrary triangular element Q° can be generated from the master
triangular element Q. by a transformation of the form (9.34). The coordinate
lines E=0and n=01in Q. correspond to the skew curvilinear coordinate lines
1.3 and 1-2 in Q°. For the three-node triangular element, the’ transformation
(9.34) is taken to be

£

3

x = E Xi’j’f(gs n), ¥y= 21)’:'@:'(&; 1) (9.59)

i=1

where @I(fg‘, n) are the interpolation functions of the master three-node
triangular element (see Fig. 9.16b),

1:1\)1=1——§"7?) 1}’2=§, 12’3=71 (960)
7 y /
x = X(O, "?)
0,1 { y =0, 1)
[x = x(£ 0)
A y =y 0)
{0, 0) w0 £
X
{a)
n
111 Y 43! )‘3)
| p—
(xl, yl) > )2)
.’ 5 f x
(&)
FIGURE 9.16

Triangular master element and its transformations: (¢} general transformation; (b) lincar
transformation of a master element to a triangular element.
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The inverse transformatlon from the element Q° to Qr is given by inverting
(9.59):

. .
E=={(x—x)(ys ~ y1) = (¥ —y1)(x5 — x1)]
24 (9.61)

=i (= x) (= y2) + (¥ — y)x2— x1)]

where A is the area of Q°.

With the help of (9.61), one can show that the interpolation functions in
(8.25) are equivalent to the 1,!J, in (9.60). Moreover, the area coordinates L; in
(9.9) are also equivalent to ;. The interpolation functions for the linear and
higher-order triangular elements can be obtained from the area coordinates, as
described in Section 9.1.

The Jacobian matrix for the linear triangular element is

L ] B B

where B; and y; are the constants defined in (8.23b). The inverse of the
Jacobian matrix is given by

_1_1 BZ ﬁfi _ _ .
[#] “f[Yz Ys}, F=PBavs—v6:=24 (9.63)

The relations (9.42) for the isoparametric formulation with linear
triangular elements have the explicit form

D
Wi BatBi B W_ _mtn_n
ox 2A 247 9y 24 24
Wb Oh_vn W _f N m
ax 2A° 8y 24" ax 24’ 8y 24
In a general case, the derivatives of 1w, with respect to the global
coordinates can be computed from (9.43), which take the form
3% _ 9wLy 9y, 3Ly
dx 8L1 ox aLz ax -

(9.62)

(9.64)

(9.654)
o _ 0w oLy ow; 3L,
gy 3L, 8y 4L, dy
or
Y A 2% [ox %y
ax e, 8L, 8L,
o, =g [ [#]= i B (9.65b)
Ay 3L, 8L, AL,

Note that only L, and L, are treated as linearly independent coordinates,
because Ly=1—L, - L. .
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After transformation, integrals on Q. have the form

G mdedn= [ Gy Ly L diygdLs (9.66)
21 Qs < £ 32
which can be approximated by the quadrature formula

. 1y
G(Ly, Ly, Ly) dLydlo = > w,G(S) (9.67)
- f=1

Qr

TABLE 9.3
Quadrature points and weights for triangular elements
W
Degree of g
Number polynomiat
?:tegration 3;“:!:;"‘1‘9" Location of integration points
points residual L/{g Ly Ly{ W Geometric locations
1
t o) S _
2 P00 i@
3 o) i t ] ! b
F I T R SR
O S
0.6 0.2
4 oYy 02 06
0.2 02
! ! L0225
5 oy B B
B1 31 B } W3
7 owy P B
o Bz B
B « B2 } w3
B B2 o
a; = 0.797 426 985 353
B, = 0.101 286 507 323 W, =0.125 939 180 544

ay = 0.059 715 871 789

W, =0. 788
B, = 0.470 142 064 105 0.132 394 152
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where W, and §; denote the weights and integration points of the quadrature
rule. Table 9.3 gives the location of integration points and weights for one-,
three-, and four-point quadrature rules over triangular elements. For the
evaluation of integrals whose integrands are polynomials of degree higher than
five {in any of the area coordinates), the reader should consult books on
numerical infegration,

Example 9.5. Consider the quadratic triangular element shown in Fig. 9.17. We wish to
calculate gy, /dx, 3y./3y, 34y,/3x, and By,/8y at the point (x,y)=(2,4) and
evaluate the integral of the product (3v,/3x)(3y./3x).

Since the element has straight edges, its geometry is defined by the interpolation
functions of the corner nodes (i.c., a subparametric formulation can be used). Note that
if the element is curvilinear, we cannot use only three corner nodes to describe the
geometry exactly (hence an isoparametric formulation must be used). For the element
at hand, we have

3
x= 2 5L, =T,+2L,=2-2L, +5L,

=1
3
y=2yL;=2L,+6L,=6— 6L, — 4L, (9.68q)
i=1

1= 2w )

The y, for the quadratic triangular element are given by (9.16), with ¥, in {9.16¢) being
equal to ¥, here (compare the node numbering in Figs. 9.17 and 9.4b). The global
derivatives of 1, are given by (9.65):

(3] (59)  (Z4G4L - 1)
E: r—i[_4 6]4 aLi| _ 38

gy [ 38Ll-5 —2l]oy, [ ]-S@L,~1)

[y ) 3L, 38 (©.685)
I ,_i[“‘ 6] 8L, >_"1_{—161Q+24L1}

3y, [ 38L-5 -21)ay,[ 38l -200,-8L,

L 8y J \ 3L, )

/§

(7, D FIGURE 9.17

x A quadratic triangular element in the global (x, ¥) and local
(0, 0) coordinate systems {Example 9.5).




438 FINITE ELEMENT ANALYSIS OF TWO-DIMENSIONAL PROBLEMS

where 9, =L,(2L,— 1) and 9, = 4L, L, [see (9.16) and Fig. 9.4b], so that

S 3P Ay, Yy
=41, -1, = =
aL, 4Ly aL, 0, oL, 4Lz, 3L,

For the point (2, 4), the area coordinates L, can be calculated from (9.684):

=4L,

2=7L,+2L;, 4=2L,+0L,

Once L, and L, have been computed from the above relations, L, is found from the
relation L, =1— L,— L;. We obtain

Lt = "1§9- ] Lz = T2§ ) L3 = 'll%
Evaluating 81,/ 3x and 31,/3y at the point (2, 4), we obtain
awlmm_(@_i)__.}_ % -
Bx 19 T 361
dy, 5 ( 5 ) 5 ‘
— T —— X — = ——
3y ST 7> (.69)

dy,_-16 60 _ 44
ax (197 (199 361
aya_ =0 =20 _—40
3y (197 (197 36l

The integral of the product (3y,/8x)(81,/8x) over the quadratic element is

ways, L _—AF ([T
4 OX Ox dedy =361 J j (4L, = 1)(6L, — AL,) dL, dL,

Since the integrand is quadratic in L, and bilinear in L, and L,, we use the three-point
quadrature (see Table 9.3} to evaluate the integral exactly:

361

_1{—4)x38
T2 361

—4f [ 1 [ T 4Ly~ )(6Ly — 4La) dLy dL,
0 J0

HE-DE-0)+G-DE-H+O-DO-3)] (©70)

19

The result can be verified using the exact integration formula in (9.'8%):
31 Sy 4 [ 1 ]
——-——dxd 6X ~—4X—=— X
b ax ar TP 3110 24>< +16 il
_3
19

The area A of the triangle is equal to 19, and therfore we obtain the same result as
above,
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9.3 MODELING CONSIDERATIONS
9.3.1 Preliminary Comments

Numerical simulation of a physical process or a system requires (i) a
mathematical model that describes the process and (ii) a numerical method to
analyze the mathematical model. In the development of a mathematical
model, we often make a set of assumptions about the process (e.g.,
constitutive behavior, loads, and boundary conditions) to derive the mathe-
matical relationships governing the system. The mathematical model is used to
gain an understanding of how the corresponding process works. If the
relationships are simple, it is possible to obtain exact information on quantities
of interest. This is known as the analytical solution. However, most practical
problems are too complicated to allow analytical solutions of the models.
Hence, these mathematical models must be studied by numerical methods,
such as the finite element method. We use a computer to evaluate a
mathematical model nurmerically to estimate the quantities that characterize the
system.

Finite element analysis is a numerical simulation of a physical process.
Therefore, finite element modeling involves assumptions concerning the
representation of the system and/or its behavior. Valid assumptions can be
made only if one has a qualitative understanding of how the process or system
works. A good knowledge of the basic principles governing the process and the
finite element theory enable the development of a good numerical model of
the actual process. :

Here we discuss several aspects of the development of finite element
models. Guidelines concerning element geometries, mesh refinements, and
load representations are given,

9.3.2 Element Geometries

Recall from Section 9.2 that the numericai evaluation of integrals over actual
elements involves a coordinate transformation from the actual clement to a
master element. The transformation is acceptable if and only if every point in
the actual element is mapped uniquely to a point in the master element, and
vice versa. Such mappings are termed one-to-one. This requirement can be
expressed as [see {9.45)]

‘=det[#°]>0 everywhere in the element Q° (9.71)

where [ #°] is the Jacobian matrix in (9.44b). Geometrically, the Jacobian $#°
represents the ratio of an area element in the real element to the correspond-
ing area element in the master element:

dA=dxdy=g°dEdny
If #° is zero then a nonzero area element in the real element is mapped into
zero area in the master element, which is unacceptable. Also, if $°<0, a

right-handed coordinate system is mapped into a left-handed coordinate
system.
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In general, the Jacobian is a function of £ and 5, implying that the real
element is nonuniformly mapped into the master element, i.e., the element is
distorted. Excessive distortion of elements is not good, because a nonzero area
element can be mapped into a zero or nearly zero area.

To ensure $°>0 and keep within the extreme limits of acceptable
distortion, certain geometric shapes of elements must be avoided. For
example, the interior angle at each vertex of a triangular element should not
be equal to either 0° or 180°. Indeed, in practice the angle should reasonably
be larger than 0° and less than 180° to avoid numerical ill-conditioning of
clement matrices. Although the acceptable range depends on the probiem, the

Yas

N

FIGURE 9.18

Finite elements with unacceptable vertex angles: {a) lincar quadrilateral elements; (b) linear
triangular elements; (¢} guadratic quadrilateral and triangular elements. The angles marked are
either too small compared with 0° or too large compared with 180°.
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Node 5 can be
\Placed anywhbre
05 in this range

FIGURE 9.19

Range of acceptable locations of the midside nodes for quadratic elements: (a) eight-node
quadratic element and six-node quadratic triangular element; (b) the quarter-point quadrilaterat
clement.

range 15°-165° can be used as a guide. Figure 9.18 shows elements with
unacceptable vertex angles for straight- and curved-sided elements.

For higher-order Lagrange elements (also called C° elements), the
location of the interior nodes contributes to the element distertion, and
therefore they are constrained to lie within a certain distance from the vertex
nodes. For example, in the case of a quadratic element, the midside node
should be at a distance not less than one-quarter of the length of the side from
the vertex nodes (see Fig. 9.19). When the midside node is located exactly at a
distance of one-quarter of the side length from a vertex, the element exhibits
special properties (see Problem 9.20). Such elements, called quarter-point
elements, are used in fracture mechanics problems to represent an inverse
square-root singularity in the gradient of the solution at the nearest vertex

node. N ‘ﬁh

9.3.3 Mesh Generation

Generation of a finite element mesh for a given problem should follow the
guidelines listed below:

TR
et
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1. The mesh should represent the geometry of the computational domain and
load accurately.

2. It should be such that large gradients in the solution are adequately
represented.

3. It should not contain elements with unacceptable geometries, especially in
regions of large gradients.

Within the above guidelines, the mesh used can be coarse (i.e., have few
elements) or refined (i.e., have many elements), and may consist of one or
more orders and types of elements (e.g., linear and quadratic, triangular and
quadrilateral). A judicious choice of element order and type could save
computational cost while giving accurate resuits. It should be noted that _the
choice of elements and mesh is problem-dependent. What works well for one
problem may not for another. An analyst with physical insight into the process
being simulated can make a better choice of elements and mesh for the
problem at hand. One should start with a coarse mesh that meets the three
requircments listed above, exploit symmetries available in the problem, and
evaluate the results thus obtained in the light of physical understanding and
approximate analytical and/or experimental information. These results can be
used to guide subsequent mesh refinements and analyses.

Generation of meshes of a single element type is easy because elements
of the same degree are compatible with each other (see Fig. 9.20). Mesh
refinements involve several options. The mesh can be refined by subdividing
existing elements into two or more elements of the same type (see Fig. 9.21a).
This is called h-version mesh refinement. Alternatively, existing elements can
be replaced by elements of higher order (see Fig. 9.210). This is called
p-version mesh refinement. There is also h, p-version mesh refinement, in which
elements are subdivided into two or more elements in some places and
replaced with higher-order elements in other places. Generally, local mesh
refinements should be such that elements of very small size are not placed
adjacent to those of very large size (see Fig. 9.22).

Combining elements of different kinds naturally arises in solid and
structural mechanics problems. For example, plate bending elements (2-D) can
be connected to a beam element (1-D). If the plate element is based on
classical plate theory (see Chapter 12), the beam clement should be based on
the Euler—Bernoulli beam theory so that they have the same degrees of
freedom at the connecting node. When a plane elasticity element (see Chapter
10) is connected to a beam element, which is not compatible with the former in
terms of the degrees of freedom at the nodes, one must construct a special
element that makes the transition from the 2-D plane elasticity element to the
1-D beam element {see Problem 10.8). Such an element is called a fransition
element.

Combining elements of different order, say a linear to a quadratic
element, may be necessary to accomplish local mesh refinements. There are
two ways to do this. One way is to use a transition element that has a different
number of nodes on different sides (se€ Fig. 9.23a). The other way is to
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(@)

55 A

FiGURE 9.20
Connecting elements of the same order. The €% elements of the same order ensure the C"
continuily along the element interfaces: {a) linear elements; (b} quadratic elements.
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FIGURE 9.21
The h-version {a) and p-version (b) mesh refinements.
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(a} ®)

© (d)
FIGURE 9.22

Finite element mesh refinements. Meshes shown in (a) and (c) are acceptable, and those shown in
() and (d)} are unacceptable. The typical element of the mesh is shown in each case.

/ / /
/ / /

Linear element Transition Quadratic element
element
(a)
,
FIGURE 9.23
Combining different order elements: (a)
Linear elementsc _ Quadratic element use of a transition element that has three
onstraint sides linear and one side quadratic; (b)
condition

use of a linear conmstraint equation to
) connect a linear side to a quadratic side.



INTERPOLATION FUNCTIONS, NUMERICAL INTEGRATION AND MODELING 445

impose a condition that constrains the midside node to have the same value as
that experienced at the node by the lower-order element (see Fig. 9.23b).
However, such combinations do not enforce interelement continuity of the
solution. Figure 9.24 shows element connections that do not satisfy C°
continuity along the connecting sides. Use of transition elements and con-
straint conditions in local mesh refinements is a common practice. Figure 9.25
shows a few examples of such refinements.

U} w(x) w}{x)

Ll

L1

-

()
g
1 > 3 s
@ .
(c)

FIGURE 9.24
Various types of incompatible connections of finite elements. In alt cases the interelement
continuity of the function is violated along the connecting side.
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9.3.4 Load Representation

Computation of the nodal contributions of a distributed boundary source was
discussed in Chapter 8 [see (8.45)]. The accuracy of the result depends on the
element and mesh used to represent the domain. For example, in heat transfer
problems, the boundary source is the heat flux across (i.e., normal to) the
boundary. Use of linear elements, for example, to represent the boundary will
change the actual distribution (see Fig. 9.26). Of course, h-version or p-version
mesh refinements will improve the representation of the boundary flux.

Another situation where boundary forces are subject to different ap-
proximations is the force due to contact between two bodies. For example, a
solid plate in contact with a circular disk generates a reactive force that can be
represented either as a point load or a locally distributed force. Representation
of the contact force between deformable bodies as a point load is an
approximation of the true distribution. A sine distribution might be a more
realistic representation of the actual force (see Fig. 9.27).

’

(a) &

(e)

FIGURE 9.25

Some examples of local mesh refinements: (a) with compatible {(Ccontinuous) elements; (b) with
transition elements (or constraint conditions are imposed) between linear elements; (¢} with
transition elements between quadratic elements. In (b) and {c), the transition elements can be
between linear and quadratic, and quadratic and cubic elements, respectively.
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(a) o ® {©

FIGURE 9.26

Approximation of the boundary fluxes in the finite element method: (a} actual geometry of the
domain and distribution of fiux; (b) approximation of the domain by linear finite eléments and
associated representation of the boundary flux; {c) approximation of the domain by quadratic
finite elements and associated representation of the boundary flux.

FIGURE %.27
m‘h .Representation of contact pressure de-
veloped between two bodies: {a) ge-
ometry of the bodies in contact; (b)
T representation of the contact pressure
— .- as a point load; (c) representation of
’ the contact pressure as a distributed
=T surface load. In the latter case, often
' the surface area of the distributed
() force is unknown.
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9.4 SUMMARY

In this chapter three major topics have been discussed: (i) Lagrange
interpolation functions for triangular and rectangular elements; (ii) numerical
integration to evaluate integral expressions over triangular and rectangular
elements; (iii) some modeling guidelines. Interpolation functions for linear,
quadratic, and cubic triangular elements have been developed using the area
coordinates. Linear, quadratic, and cubic interpolation functions for the
Lagrange and serendipity families of rectangular elements have also been
developed. A systematic description of the numerical evaluation of integral
expressions involving interpolation functions and their derivatives with respect
to global coordinates has been presented. This development is suitable for
computer implementation, as will be seen in Chapter 13. Modeling is an art
that can be improved by experience and understanding 9f the physical
interactions involved in the process. It is necessary to critically evaiuate the
computed results before using them. The guidelines given are to encourage
good modeling practice, and they should be followed to determine the actual
“working” model.

PROBLEMS

9.1. Show that the bilinear interpolation functions for the four-node triangular
element in Fig. P9.1 are of the form

!P:=ar+be€+cm+da§n (i=1:---:4)

where
a=1, @m=as=a,=0, -b=b,=1/a, b;=b,=10
6ab — a* —2b° 2b(a +b) a+b —9b
1= A78 s CQ =" Cy =T Ca=— 7~
ac(a —2b) ac{a —2b) cf{a —2b) c(a - 2b)
3
e d = daem el =
di=dy=dy=~Yd=— s

p—¢
1

FIGURE P9.1

9.2, Show that the interpolation functions involving the term £ + 5’ for the five-node
rectangular element shown in Fig. P9.2 are

W, =025(—& — 0+ &) + 0.125(87 + )
1, =0.25( — 5 — &n) + 0.125(8* + 1)
P, =0.25(E + i + En) + 0.125(8% + %)
Py =0.25(—E + n — En) +0.125(5° + %)
s =1-0.5(8+n%)
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(15, =3)

FIGURE P9.3

9.3. Calculate the interpolation functions for the quadratic triangular element shown
in Fig. P9.3.

9.4. Determine the interpolation function 1wy, for the quartic triangular element
shown in Fig. P9.4.
Answer: 321, L, L,(4L,—1).

9.5. Derive the interpolation function of a corner node in a cubic serendipity element,

9.6. Consider the five-node element shown in Fig. P9.6, Using the basic lnear and
quadratic interpolations along the coordinate directions & and 1, derive the
interpolation functions for the element. Note that the element can be used as a
transition element connecting four-node elements to eight- or nine-node
elements.

FIGURE P9.6
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9.7. (Nodeless variables) Consider the four-node rectangular element with interpola-

tion of the form
4

U= 2 wy: + 2 cidi
i=1

i=1

where 1, are the nodal values and ¢; are arbitrary constants. Determine the form
of 4y and ¢, for the element.

9.8-9.10. Determine the Jacobian matrix and the transformation equations for the
elements shown in Figs. P9.8-P9.10.

(6.5,7)

b 10in i

FIGURE P9.8 FIGURE F9.9

y
L—S cm —=—3 cm—=|

3cem ' 3 emgls o FIGURE P9,10

9,11. Using Gauss quadrature, determine the contribution of a constant distributed
source to nodal points of the four-node finite element shown in Fig. P9.9.
Answer: f,(7.7083, 8.5417, 9.1667, 8.3333}.
9.12. Show that the side nodes in the eight-node rectangular element of Fig. 9.13
should be located such that 0.25 < &< (.75,

_A.L._x,g

P+
b=
FIGURE P9.13
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9.13. For a 12-node serendipity (cubic) element, as illustrated in Fig. P9.13, show that
the determinant §# is
F=3(2~10& +98%a +3(—1 + 85 — 9E)b + 3(2 — 18E + 27&3)

What can you conclude from the requirement ¢ > 07

9.14. Determine the conditions on the location of node 3 of the quadrilateral element
shown in Fig. P9.14. Show that the transformation equations are

x=E+&n(a~2), y=n+&nb-2)

{a, b

% £ FIGURE P9.14

9.15. Determine the global derivatives of the interpolation functions for node 3 of the
element shown in Fig. P9.9.

9.16. Let the transformation between the giobal coordinates (x, ¥} and local normal-
ized coordinates (&, #) in a Lagrange element Q¢ be

X = gxﬂfh(a 7?), y= é)’r@f{& 71)

where (xf, ;) denote the global coordinates of the element nodes. The
differential lengths in the two coordinate systems are related by

Lo . ox Oy, B
d"‘_ang’Laqa"’ dy'-’”ag‘EJraqd
or
ox, Ix,
de) | 3 ay {d.g}_ {d&}
{dye}_ . oy, |lan) T ay
3E 9n

In the finite element literature the transpose of {F] is called the Jacobian matrix,
[#]. Show that the derivatives of the interpolation function Yi(E, 1) with respect
to the global coordinates (x, y) are related to their derivatives with respect to the
local coordinates (&, ) by

ot ov;
o ¢ ] 9&
avr [T oy

3y an
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and
7.0\ [ 2 2 =1-:
s (axg) (aye) 26x, 3.
ax? 3t Jk 8E JE
Fyi AN IAY ax, 8y.
e N
3y an an an an
Fyr|  |onon S ., Ond
@xayJ _BE gy oBEdn I SE BE an_
(5] [&x &
a&* 98> B8 |rays
Fycl | P Fv|] ox
x ﬁ a 2 >_ 2 sz- e
n an*  an” (139 Ny
3y &x, Fy. |\ s
980|950 85 am

r

9,17, (Continuation of Problem 9.16) Show that the Jacobian can be computed from
the equation

i du; sl x
8t o8& BE i x5 y3
1= o e A7
3yi 9v: U278
dn  an an 1Lx; ya
9.18. Consider the quadrilateral element shown in Fig. P9.18. Using the linear

interpolation functions of a rectangular element, transform the element to the
local coordinate system and sketch the transformed element.

(4, 5)

(0, 0)

G, -1) FIGURE P9.18

9,19, For the quadrilateral element Q° in Problem 9.18, express the following integral
in the local coordinates:

. i dy; 3_11’7_"_”15) . ]
i L[“( o ox oy ay) OV B

9.20. Find the Jacobian matrix for the nine-node rectangular element shown in Fig.
P9.20. What is the determinant of the Jacobian matrix?
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FIGURE FP9,20 FIGURE P9.21

9.21. For the eight-node element shown in Fig, P9.21, show that the x coordinate along
side 1-2 is related to the & coordinate by

—28(1 — Epxi + 351 + Es + (1 - E9xs
and that the relations

§=2(—)m—1, 85 (xa)'?

hold. Also, show that

o))
[ U e )2
B0 a4 o[ e
i)}

Thus, du./8x grows at a rate of (xa) ' as x approaches zero along side 1-2. In
other words, we have a x™ singularity at node 1. Such elements are used in
fracture mechanics problems.

9.22. Using the tensor product of the one-dimensional Hermite cubic interpolation
functions, obtain the Hermite cubic mterpolatlon functions (16 of them) for the
four-node rectangular element.
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CHAPTER

10

PLANE
ELASTICITY

10.1 INTRODUCTION

In Section 8.4.3, we considered the finite element analysis of second-order
problems of solid mechanics that are described by only one dependent
unknown. These include the torsion of a cylindrical bar and the deflection of a
membrane. The governing equation in each case is the Laplace or Poisson
equation for the dependent variable (e.g., stress function or deflection). Here
we consider plane elasticity problems described by a pair of coupled partial
differential equations expressed in terms of two dependent variables repre-
senting the two components of the displacement vector. The word “coupled” is
used to imply that the same dependent variables appear in more than one
equation of the set, and therefore no equation can be solved independent of
the other({s) in the set. ’

The primary objective of this chapter is twofold: first, to describe the
weak form and associated finite element model of the plane elasticity
equations; and second, to describe how the linear Lagrange elements
developed in Section 8.2 can be used in the solution of plane elasticity
problems in two dimensions. The treatment of both these subjects proceeds
along the same lines as in the one-dimensional problems.

455
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10.2 GOVERNING EQUATIONS
10.2.1 Assumptions of Plane Elasticity

Consider a linear elastic solid @ of uniform thickness h bounded by two
parallel planes (say, by planes z = —ih and z = th) and any closed boundary
T. If the thickness # is very large compared with the size of Q then the
problemm is considered to be a plane strain problem, and if the thickness is small
compared with the size of Q then the problem is considered to be a plane stress
problem. Both of these problems are simplifications of three-dimensional
elasticity problems under the following assumptions on loading: the body
forces, if any exist, cannot vary in the thickness direction and cannot have
components in the z direction; the applied boundary forces must be uniformly
distributed across the thickness (i.e., constant in the z direction); and no lpads
can be applied on the parallel planes bounding the top and botfom surfaces.

The assumption that the forces are zero on the parallel planes implies
that for plane stress problems the stresses in the z direction are negligibly small
(see Fig. 10.1):

g,=90, 0,=0, o¢.=0 (10.1)

For plane strain problems, where the body is very thick in the z direction, the
assumption is that the strains in the z direction are zero (see Fig. 10.2):

€z = 0; Gyz = 01 ez = 0 (10'2)

An example illustrating the difference between plane stress and plane strain
problems is provided by the bending of a beam of rectangular cross-section. 44
the beam is narrow then the problem is a plane stress problem, and if it is very
wide then the problem is a plane strain problem. The reader should consuit the
references on advanced strength of materials and elasticity listed at the end of
the chapter.

Roller

support
Fixed
support
points
Distributed force pg
Y, /.
Support conditions; %)E} ﬁE}_
u=0=0 u=0,v0#F0
FIGURE 10.1

Plane stress problems in two-dimensional elasticity.
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Uniformty
y distributed load

Z Z
Z 2
2 2
2 z
Fixed 2] ;
smooth é z
wall Z ;
/ ~
Z Z
Z Z
Z Z
4 Z
L b
FIGURE 10.2

Plane strain problems in two-dimensional elasticity.

10.2.2 Basic Equations

The governing equations for the two types of plane elasticity problems
discussed above are summarized below. The equations of the two classes of
problems differ from each other only in the constitutive relations.

EQUATIONS OF MOTION

90, , 39y o 3u
ox  dy P o
(10.3)
da,, 3o, Fv
S Dep=p 2
dx  dy ot

where f; and f, denote the body forces per unit volume along the x and y
directions, respectively, and p is the density of the material.

STRAIN-DISPLACEMENT RELATIONS

¢ du . dv du  Ju (10,4
x =, =7 Ey = b ,
ax )" ¥ 8y o&x )
STRESS-STRAIN (OR CONSTITUTIVE) RELATIONS
Oy i ¢z O €y
Oy = C12 ng_ 0 Ey (10. 5)
Oy 0 0 e 2e,,

where ¢ (c; =¢;) are the elasticity (material) constants for an orthotropic
medium with the material principal directions coinciding with the coordinate
axes (x, y, z) used to describe the problem. The c; can be expressed in terms
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of the engineering constants (£, F,, vy, and Gy,) for an orthotropic material,

for plane stress and plane strain given below (vi2E, = va )t

Plane stress

E, B,

Cp =
1

C11 = — —
— Viz¥n

k]
1= vvy

C13 = Y€1 = Vialaz,y ces= Gz

Plane strain (v,: = v3)

E(l1—vy) Eo(1— viavy)

c1 = 3 Caz
1= v —2vpvs

Vi by

€1 Cs6 = Gr2

b ¥
1= vp—2vpva

For an isotropic material,

E,=E;=F, Vi =Vu=1V, G:2(1+V)

BOUNDARY CONDITIONS

Natural

fe= O, b Oy, =1,

_ ~ } on r2
Iy = Oyity + Oy, =4,

Essential
u=#, wv=>D only

(1 vR)(L — Vi — 2vipvyy)
7

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)

where (n,, n,) are the components (or direction cosines) of the unit normal
vector fi on the boundary T, T'; and I, are (disjoint) portions of the boundary
([, and T, do not overlap except for a small number of discrete points—
singular points), f, and {, are specified boundary stresses (ot tractions), and #
and © are specified displacements. Only one element of each pair, (%, £,) and

(v, t,), may be specified at a boundary point.

Equations (10.3) can be expressed in terms of just the displacements u

and v by substituting (10.4) into (10.5), and the result into (10.3):

_i[c (%+@)]_i(c . . .aﬁ)mfm
ax L ®\ay  ax ay\ Zax oyl 7 P

_i(c du @)_i[c (§E+§E)]_f_ Su
ar gy T o) T [e\ay T/ 1T T P e

(10.11)

the boundary stress components {or tractions) can also be expressed in terms
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of the displacements:

Ou ou Bu oJu
L= (cn ——tc —y)nx + cﬁﬁ(— + m)ny

x ) dy ox 10.12
du dv Ot B (10.12)
t, = Cgg a_y + a—x)nx + (cl2 a + ¢ a—y)ny

This completes the review of the governing equations of a plane elastic
body undergoing small deformations (i.e., with strains small compared with
unity) in the (x, y) plane. The material of the body will be assumed in the
present study to be linearly orthotropic.

10.3 WEAK FORMULATIONS
10.3.1 Preliminary Comments

Here we study two different ways of constructing the weak form and associated
finite element model of the plane elasticity cquations (10.11) and (10.12). The
first uses the principle of virtual displacements (or the total potential energy
principle), expressed in terms of matrices relating displacements to strains, and
strains to stresses. This approach is used in most finite element texts on solid
mechanics. The second follows a procedure consistent with the previous
sections and employs the weak formulation of (10.11) and (10.12) to construct
the finite element model. Of course, both methods give, mathematically, the
sante finite element model, but differ in their algebraic forms.

10.3.2 Principle of Virtual Displacements in
Matrix Form

First, we rewrite (10.3)-(10.5) in matrix form:
afex 0 3/ay o,

o el o

xy

or
(e} +(fy=p{ 7} (10.130)
and
£, 8/gx 0 .
e r=| 0 /3y |1“ (10.14a)
2e,, 3/3y &/dx
or

{e}= [T}{Z} . (10.14p)
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and
{o} =[Cl{e} (10.15)
where [T] and {T*] are matrices of differential operators. Note that [T} is the
transpose of {T*]:
3lex O
[T]=[T*"=| 0 /3y (10.16)
a/dy dfex

Next, we use the (dynamic version of the) principle of virtual displace-
ments {sce Reddy (1984)] applied to 2 plane elastic body:

0= J‘ (o Oe; + pit; Suy) dV — jg fi 6u; dV — § i; Ou; ds (1047
Ve V. 5c

where V* denotes the volume of element e {V° = € X (—%h, ih)], S° is the
boundary of €, h, is the thickness of the element, & denotes the variational
operator, og; and €; are the components of stress and strain tensors,
respectively, and f; and #; are the components of the body force and boundary
stress vectors, respectively:

Oy = Oy, T12= Oxy» Oxn= Uy; efc.

f1=.ﬁ:! .er‘ny t1=txr tzsty
The first term in {10.17) corresponds to the virtual strain energy stored in the
body, the second represents the virtual work done by the body forces, and the
third represents the virtual work done by the surface tractions. For plane stress
problems with thickness h,, we assume that all quantities are independent of
the thickness coordinate z. Hence,

0=h, j (0, Be, + 0, 8¢, + 20, €, + pii du + pit dv) dx dy
gt

- hej (f. du +f, Sv) dx dy — h,3§ (t. Ou +1t, Su) ds (10.18)
Qe | A

where f, and f, are now body forces per unit area, and ¢, and ¢, are boundary
forces per unit length. When the stresses are expressed in terms of strains
through (10.5), and strains in terms of displacements by (10.4), (10.18) takes
the form of the principle of total minimum potential energy.

Equation (10.18) can be rewritten using the notation introduced in
(10.13)-(10.16):

T
de, U,

SuT(i
o-n[ (1 oe 1o prelof {5} e

2 ey, Oyy

f (G feo-nd (G e wn
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10.3.3 Weak Form of the Governing
Differential Equations

Here we present an alternative procedure for the weak form of the plane
elasticity equations (10.11)—(10.12). The present approach does not assume
knowledge of the principles of virtual displacements or the total minimum
pofential energy (10.17). It is based on the three-step procedure used
throughout this book. We begin with the governing differential equations
(10.11) of plane elasticity. We use the three-step procedure for each of the two
differential equations, multiplying the first equation with a weight function w,
and integrating by parts to trade the differentiation equally between the weight
function and the dependent variables. We have

w Bu v Iw du  Ju
0= heLf [m-—axI ((,‘11 “a; +c¢qn 5) + —“_"ayl C%(a—y + a};) — Wit + p-w, fi] dx dy
cu ov du Jv
- h,_,ﬁgr? w][(c” o + ¢ Eyu)nx + C“(é; + a)n},] ds (10.20a)

Similarly, for the second equation, we have

a ou 8 3 St 3
0=Izef [——‘chﬁﬁ( u+ U) + e: (c,2—£+ cn—v) —w2]§,+pwzij] dx dy
Qr

ax gy_ By mgja_ dx dy
du Jv ou Qv
- h"jgr, wg[c‘%(g; + a—x)n,, + (cn o +¢a é;)ny] ds (10.20b)

The last step of the development is to identify the primary and secondary
variables of the formulation and rewrite the boundary integrals in terms of the
secondary variables. Examination of the boundary integrals in (10.20) reveals
that the expressions in the square brackets constitute the secondary variabies.
By comparing these expressions with those in (10.12), it follows that the
boundary forces ¢, and 1, are the secondary variables, The weight functions w,
and w, are like the first variations of 1 and v, respectively. Thus, the final weak
form is given by (10.20), with the boundary integrals replaced by

he§ wyt, ds, hejg Wat, ds (10.21)
Ie T*

respectively.

This completes the development of the weak formulation of the plane
elasticity equations (10.11) and (10.12). The alternative formulation in (10.20)
is exactly the same as that in (10.19); one is in matrix form and the other is in
the form of explicit expressions. Therefore, the finite element models
developed using the weak forms (10.19) and {10.20) would be the same.

10.4 FINITE ELEMENT MODEL
16.4.1 Matrix Form of the Model

First we develop the finite element model of the plane elasticity equations
using the matrix form in (10.19). An examination of the weak form (16.19) or
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(10.20) reveals that (i} u and v are the primary variables, which must be
carried as the primary nodal degrees of freedom; and (ii) only first derivatives
of u and v with respect to x and y appear. Therefore, u and v must be
approximated by the Lagrange family of interpolation functions, and at least
bilinear (i.e., linear in x and y) interpolation should be used, The simplest
clements that satisfy those requirements are the linear triangular and rectangu-
lar elements. Although u and v are independent of each other, they are the
components of the displacement vector. Therefore, both components should
be approximated using the same interpolation.

Let u and v be approximated over Q° by the finite element interpolations

u= 2w y), v = 2, Ui ) (10.22)
= =

P

For the moment, we shall not restrict 3§ to any specific elemént, so that the
finite element formulation to be developed is valid for any admissible element.
For example, for a linear triangular element (n=3), there are two (s, v5)
degrees of freedom per node and a total of six nodal displacements per
element (see Fig. 10.3a). For a linear quadrilateral element, there are a total
of eight nodal displacements per element (see Fig. 10.3b). Since the first
derivatives of 3¢ for a triangular element are element-wise-constant, all strains
(€. €,, €,) computed for the triangular element are element-wise-constant.
Therefore, the linear triangular element for plane elasticity is known as the
constant-strain triangular (CST) element. For a quadrilateral element, the first
derivatives of /¢ are not constant: 94§/ is linear in 7 and constant in &, and
a5/ 3 is linear in & and constant in 4 [see Barlow (1976, 1989)].

y ¥y
A A ;
vs, Fg R Y 5
i, F‘%’ 1
—0 o—wuj, F5

{a) (5)
FIGURE 10.3
Linear triangular and rectangular clements for plane elasticity problems: (a) triangular element;
(b) rectangular clement.
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The displacements and strains are (the element label ¢ is omitted in the
following) '

(1)

o
{“}= gluﬂl'f z[w, Yooy, 0 0...0 j]<u,,>
v ;ijj 0 0...0 9y, ..., Zl
\UnJ
(1)
Yy
=[“"1 0 ¥ 0.y, 0}452>=m{a} (10.23)
0 v, 0 %,...0 w, :2 B '
"
\U,.J
{ U} = [W]{A) (10.24)
and
{e}=[BHA}, {o}=I[C][B}A} (10.25a)
where
(8] =[T][¥] (10.25b)

and [77] is the matrix of differential operators defined in (10.16). We have

{gif} =[WI{8A), {de}=[B]{6A} (10.26)

Substituting these expressions for the displacements and strains into (10.193,
we obtain

0=k, [ (88)(BITICIBI(A) + p{WITHA)) ds dy

_h, Le {6A}T[‘II]T{]]:"} dx dy — hEBEF {6A}T{‘P}T{:‘} ds
= {0A}Y ([KHA} + [MI{A} - {F} - {©}) (10.27)
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Since this equation holds for any arbitrary variations {8A}, it follows that the
expression in parentheses should be identically zero, giving the result

[MNA"} + [KTHA} = (£} +{Q°) (10.284)

where ~

Wﬂ=mfjwrmﬂﬂwﬂ@,[Mﬂ=mewﬁﬂqwﬁﬁ®

ry=nf twpasw, 1oy =ng iy}

(10.28b)
,
The element mass matrix [M¢] and stiffness matrix [K*] are of order 2n X 2n
and the element force vector {F°} = {f°} + {Q°} is of order 2n X 1.
10.4.2 Weak Form Model

Next we use the weak form (10.20) to construct the finite element model.
Substituting (10.22) for 4 and v, and w; = 7 and w; = 97 {to obtain the ith
algebraic equation associated with each of the weak statements in (10.20}], and
writing the resulting algebraic equations in matrix form, we obtain

[ Loy [0 (D) 000
where

M.u = j CU’:"P; dx dy, c= ph
QC

K}f-l=J' h(cnaw‘aw’+c aw’aw’)
Q°

dx Ox oy dy
31; Y 31#531}1)
2 _ p721 .. f Pl i &}
Ky =Kj; J’eh(cm ax 3y + Cgs dy ax dx dy (10.29b)
Y, O aw.aw)
2.2= ——-———" )
K; Jeh(c@ dx Ox e dy o drdy

Fl= hw,-j;dxdy+ig hys, ds, F?EJ htp,-f;dxdy+§ hy;t, ds
Qr r o I

The coefficient matrix [K'?], for example, corresponds to the coefficient of v in
the first equation, i.¢., the first superscript corresponds to the equation number
and the second to the variable number. By expanding (10.28a), one can show
that they yield the same equations as (10.29a).
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10.4.3 FEigenvalue and Transient Problems

For natural vibration study of plane elastic bodies, (10.284) or (10.294) is
reduced to an eigenvalue problem by replacing {A} by

{Ay={A}e™™ (i=y-1)

We obtain [cf. (8.170)]

(=’ [M°] + [KP{A"} = {Q°} (10.30)

For transient analysis, following the discussions of Section 8.5.3, (10.284)
or (10.29a) can be reduced to a system of algebraic equations by using the
Newmark integration scheme (8.171). We have [sec Eq. (8.173)]

(R i{A}su1 = () 0nn (10.31a)

where

{K’€]$+1 = [KE]S-H[ -+ a3[Me}S+1
(FYar = {F* s + M) ar(@afA°), + au{A%), + as{A),)

2 1
_—-—’ = Af , —_— —
as Aoy a, a5 as 1

(10.3156)

For additional details, see Sections 6.2.3 and 8.5.3.

10.5 EVALUATION OF INTEGRALS

For the linear triangular (i.e., CST) element, ¢ has the form

1
¥i =z (of + Bix + yiy)

24

where A, is the area of the triangular element, and [B*]={T)|¥"] [see
(10.23)—(10.25)] is constant. Since [B*] and [C*] are independent of x and y,
the element stiffness matrix for the CST element is given by

(K] = h A [B°}[C*][B] (10.32)

For the case in which the body force components f, and f, are element-wise-
constant (say, equal to f3, and f%, respectively), the force vector {f°} has the
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form
[ f30) -
fyo '
M Ah. | I3
{fr=h. f [‘PE]T{f e°} dedy ===} (10.33)
QF f)'U 3 fyﬂ
fro
S50
For a general quadrilateral element, it is not easy to compute the
coefficients of the stiffness matrix by exact means. In such cases, we use the
numerical integration discussed in Section 9.2. However, for a linear rectangu-
lar element of sides a and b, the element coefficient matrices,in (8.35) 4nd

(8.44) can be used to obtain the stiffness matrix. The load vector for a linear
rectangular element is given by

L

()
fio
h
{f}axa= A_; “4f% (10.34)

fyo

The vector {Q°} is computed only when the element Q° falls on the
boundary of the domain on which tractions are specified (i.e., known).
Computation of {Q°} involves the evaluation of line integrals (for any type of
element), as explained in Section 8.2.6; see also Example 8.2. For plane
elasticity problems, the surface tractions ¢, and ¢, take the place of ¢, in
single-variable problems {see (8.45)]. Often, in practice, it is convenient to
express the surface tractions ¢, and ¢, in the element coordinates. In that case,
{O°} can be evaluated in the element coordinates and then transformed to the
global coordinates for assembly. If {Q°} denotes the element traction vector
referred to the element coordinates then [see (4.58b)] the corresponding global
vector is given by

{Q°} =[R]"{Q°} (10.35a)
where
[ cos o sina . 0 0 ' '\
—sine cosa | O 0
Rl=| 0o 0 icose sinai (10.35b)
LU 0. ;.::§!EI_£1I_-9_Q$_¢.;; _____
i ; e

and a is the angle between the global x axis and #,.
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?‘71

1 2 3
{a) »
FIGURE 10.4 -

Computation of boundary force components for plane elasticity problems: (#) the constant strain
triangle (CST); (b) a typical plane elasticity problem; {c) computation of the boundary forces.

As a specific example, consider the structure shown in Fig. 10.4(a). Side
2-3 of element 7 is subjected to a linearly varying normal force:

L#0, =0

where the subscripts #» and s refer to normal and tangential directions,
respectively. We have for (e =7)

@1=¢ ter{fas= Lﬂ r{y}as + L SUENE
' Li e} (0360

The first and third integrals cannot be evaluated, because we do not know t,
and £, on these sides of the element. However, by internal stress equilibrium,
those portions cancel with like contributions from the neighboring elements
(elements 4 and 5) in the assembled force vector of the structure. Thus, we
must compute the integral over side 2-3 of the element. We have (for e = 7

e[ aonlig)

©ho=[ "t} n=-p(i-)  aoas
where the minus sign in front of p, is added to account for the direction of the
applied traction, which acts toward the body in the present case. The local
coordinate system s used in the above expression is chosen along the side
connecting node 2 to node 3, with its original at node 2 (see Fig. 10.4b). One is
not restricted to this choice. If it is considered to be convenient to choose the
local coordinate system §, which is taken along side 3-2, with its origin at node
3 of element 7, we can write

{Q)2s= L - [‘I""]T{ ;} ds, t.= B (10.36¢)
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where [¥¢] is now expressed in terms of the local coordinate 5. We have

0 O
0 0
{Qe}2-3=fLu< 1}121,,> ds = _@ﬂ{ 2 b (10.37a)
0 0 6 Q
Vit 1
\ 0~ \0

The global components of this force vector are [set @ =90° - 8 in (10.35b}]
£ 0
0 , ~
_ Lypy ) 2sin 8
6 |2cosé
sin 0

\.cos G/

{Q)s= (10.375)

The same procedure applies to linear quadrilateral elements. In general, the
loads due to specified boundary stresses can be computed using an appropriate
local coordinate system and one-dimensional interpolation functions. When
higher-order elements are involved, the same order one-dimensional inter-
polation functions must be used.

10.6 ASSEMBLY AND BOUNDARY AND
INITIAL CONDITIONS

The assembly procedure for problems with many degrees of freedom is the
same as that used when there is a single degree of freedom (see Section 8.2),
except that the procedure should be applied to all degreés of freedom at each
node. For example, consider the plane elastic structure shown in Fig. 10.4(a).
There are eight nodes in the mesh; hence, the total size of the assembled
stiffness matrix will be 16 % 16, and the force vector will be 16 X 1. The first
two rows and columns of the global stiffness matrix correspond to global node
1, which has contributions from node 1 of elements 1 and 2. For instance, we
have

Ku=Kh+K}, Kn=Knp+Kh Kp=Kh+Kh, Ks=Ki,
K=Ky + KL+ K}, Kau=KL+KL+Kif, ete. (10.38)
Note that Kj,, for example, denotes the coupling stiffness coefficient between
the first and second global degrees of freedom, both of which are at global
node 1. Similar arguments apply for the assembly of the force vector.

With regard to the boundary conditions, the primary degrees of freedom
are the displacements and the secondary degrees of freedom are the forces. At
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any node on the boundary of the domain of a plane elasticity problem, one has
the following four distinct possibilities:

Case 1 u and v are specified (and 1, and ¢, are unknown)
Case 2 u and ¢, are specified (and ¢, and v are unknown)
Case 3 t, and v are specified (and u and ¢, are unknown)
Case 4 1 and ¢, are specified (and u and v are unknown)

(10.39)

In general, only one of the quantities of each of the pairs (u, £,) and (v, t,)
must be specified at a point on the boundary.
For time-dependent problems, the initial displacement and velocity must

UO v 4]

10.7 EXAMPLES

Here we consider a couple of examples of plane elasticity problems to illustrate
the load computation and imposition of boundary conditions. The stresses are
evaluated at reduced Gauss points of the elements [see Barlow (1976, 1989)].
These examples are actually analyzed using the program FEM2DV2, which is
discussed in Chapter 13.

Example 10.1. Consider a thin elastic plate subjected to a uniformly distributed edge
load, as shown in Fig. 10.5(a). We wish to determine the equilibrium (i.e., static)
solution. First we consider a two-element discretization of the plate by triangular
elements, and then we perform all the algebra to obtain the nodal displacements.

The assembly of element matrices for elements with two degrees of freedom
{DOF) is described in Section 10.6. For the finite element mesh at hand, the
correspondence between the global and tocal nodes and stiffniess is as follows:

Nodal correspondence Stiffness correspondence
Global (DOF) Local (DOF) Global Local
lof element 1 (1,2) K, KL+ K3
1(1,2) Ky KL+ K3
1ofelement 2 (1,2) K, KL+ K2,
. Kys Kl
2(3,4) 2of element 1(3,4) K, K,
1
K K (10.41)
3of element | (5,6) K Ki+ K%,
3(56) 2of clement 2 (3,4) K K+ K%,
K K+ K,
Kn K
4(7,8) Jofelement 2 (5,6} Ky K,

Kig K3
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b=160i

s Po= 101bin™?

160 in |

FIGURE 10.5
Geometry and finite clement mesh of a plane elasticity problem by the CST elements: (a) a plane
elasticity problem; () etement 1; (¢) element 2.

H two global nodes correspond to two (local) nodes of the same element then the
corresponding stiffness coefficient is nonzero; otherwise it is zero.
The specified (primary) degrees of freedom are

U] “—'Vlz U4=‘/4=0 ] (10-42)

The kaown secondary degrees of freedom (forces) are already included in {F'} and
{F?}. Equilibrium of forces requires that (note that p, is the force per unit length)

Fi=lpsb, Fi=0, Fi+Fi=3pb, FitFi= (10.43)
The first two rows and columns and the last two rows and columns of the

assembled [K] can be deleted (since the specified boundary conditions are homoge-
neous) to obtain the condensed form of the matrix equation:

Ké:s K‘fn K:‘as K:las U, %Pob
KL, K! K! Kl V. 0
:3 :4 1 © 2 1 “ 2 ‘= 1 (10.44)
K53 K5 Ks+K5; K+ K3, U ipab
K, Kl Ké5+K§3 Kl + K3, Vi 0

or (using @ =120in, b =160in, # =0.036in, v =0.25, E=30%x 10°1bin"?, and p,=



10ibin™h) .
93.6 -360 -—16.2
J —36.0 - 720 216
10 -16.2 21.6 -93.0
144 —43.2 0.0
Inverting the matrix, we obtain
U, F4.07 2.34
V[ _10°[234 865
i 3 {017 -16
1A [ 0.59 472
( 11.28
) 1.97{,
=107"¢ 10.10 in
\—1.09
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14.4 U, 800.0
~43,2 V. 0.0

= 10.

0.0 LA 800.0 (10.43)
72.0 Vi 0.0
0.17 0.59 800.0
—-1.6 4,72 0.0
3.63 —-0.99 8.00
-0.99 6.88 0.0

(10.45)

Note that the solution is not symmetric (i.e., U,+ [, V,# —V3) about the
horizontal centerline. The exact solution should be symmetric about the centerline.
This is due to the asymmetry in the finite element discretization.

Table 10.1 gives the finite element solutions (obtained using FEM2DV?2) for the
displacements at the points (120, 0) and (120, 160) of isotropic and orthotropic plates

TABLE 10.1

Finite element results for a thin plate (plane stress assumption) using various
meshes of triangular and rectangular elements and material propertiest

Uy Vs Us; Vi
Mesh Material (X107 (% 107%  (x 1079 {x 107%
P 3, Isotropic: 11201 19637 10113 —~1.08
Y E=30x10°1bin? 10.853 2.3256 10.853 —2.3256
7 = G = ER(l + )
VA
1 2
74 3 Orthotropic:
4 = FEy=31%x10°1Ibin~2
7 FH E=2Tx 108bin?  10.767 1.6662 10.650  ~1.579
7 = G =075x 105 in"? 10.728 2.6758 10,728 -2.6758
] o Viz = 028
“1 2
24 3, Orthotropic: . 10828 2,157 10.821  -2,157
1 same as above 10.778 2.002 10.778 2,002
4 =
7 —
& 2

For each mesh, the first vow corresponds to triangular elements and the second row 1o

one rectangular element.
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TABLE 10.2
Defections and stresses in an isotropic plate subjected {o uniform edge load

(Example 10.1)

u(120,0)  u(120, )

Mesh (X 1074 {x 10™%) o, g, Ty
1x1 11,291 1.9637 285.9 14.40 10.80
(80,53.33)  (80,53.33)  (80,53.33)
Triangular 2%2 11.372 2.1745 279.7 63.36 23.20
(80,53.33)  (20,5333)  (40,26.67)
4x4 11284 2.1255 280.0 69.59 35.93
(80,53.33)  (10,26.67)  (20,13.33)
1x1 10.853 2.3256 271.8 25.84 0.0 “
(60, 80) (60,80)  ~ (60,80)
Rectangular 2x2 11.078 2.0212 277.8 37.46 13.23
(30, 40) (30, 40) (30, 40)
4x4 11150 2.00694 280.4 4974 27.73
(75, 60) (15, 60) (15,20

t Location of the stress.

¥y
v
‘ Z
7=150psi 74 '//’ D 2c=2in
1 Lo
fe———roeee—— g = 10in --a—-—-——-—-—f by
b=1lin
(@)
75
150§ 11 12 13 14 is
75 P IRt I IR
_t 6 — T = 10
1 2 3 4 5
(b)
FIGURE 10.6

Finite-element meshes for an end-loaded cantilever beam.
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for the meshes shown. Table 10.2 gives the deflections and stresses obtained with
refined meshes of triangular and rectangular elements.

Example 10.2. Consider the cantilever beam (E =30 x 10°psi, v=0.25, a=10 in,
b=c=1in) shown in Fig. 10.6(a).” We wish to determine, using the elasticity
equations, the maximum deflection and bending stress in the beam when it is subjected
to a uniformly distributed shear stress v=150psi. The boundary conditions of the
problem are

wla, y)=0, wv(g,c)=0

L,=4=0 at y=0, 2¢foranyx (10.47)
=0, f=-1 atx=0{foranyy

t,=0 at x=gand forany y #c¢

We shall solve the problem using the plane stress assumption. The elastic
coefficients c; for the plane stress case are defined (assuming that steel is isotropic) by

E Ey

E
tn=Ce=7_"3 Co=1 % Cw—m {(=G) (10.48)

Three different finite element meshes, increasingly refined, are shown in Fig.
10.6(b). These meshes are those consisting of linear rectangular elements. Equivalent
triangular element meshes are obtained by joining node 1 to node 3 of each rectangular
element (see the dashed lines). Equivalent meshes of nine-node quadratic Lagrange
elements zre obtained by considering a 2 X 2 mesh of lincar Lagrange elements as a
quadratic element.

For the finite element model, the boundary conditions on the primary and
secondary variables, e.g., for the 15-node mesh, are given by

Us=Uyp=Vy=U;5=00

(10.49)
F=-75.0, Fj=-150.0, F=-75.0

and all other forces are zero on the boundary.

Table 10.3 gives a comparison of the finite element solutions with the elasticity
solutions for the tip deflection {i.e., the deflection at the center node of the left end)
and bending stress o,, obtained using two-dimensional elasticity theory [see Reddy
(1984)]. The linear triangular element mesh has the slowest convergence compared with
the linear and quadratic rectangular elements.

The final example in this chapter deals with free vibration and transient
analysis of a plane elasticity problem. We consider the cantilever beam of
Example 10.2.

Example 10,3, Consider the cantilever beam shown in Fig. 10.6a. We wish to
determine the natural frequencies and transient response using the plane elasticity
elements. We use the finite element meshes of linear triangular and rectangular
elements shown in Fig. 10.6(b} and their nodal equivalent meshes of quadratic elements
to analyze the problem, Table 10.4 gives a comparison of the first 10 natural
frequencies obtained with various meshes. The convergence of the natural frequencies
with mesh refinement is clear.



474  FINITE BELEMENT ANALYSIS OF TWO-DIMENSIONAL PROBLEMS

TABLE 10.3
Comparison of the finite element solution with the elasticity solution for a

cantilever beam subjected to a uniform shear load at the free end

Tip deflection, —v X 102 Normal siress o,

Number of Linear Linear Quadratic Linear Linear Quadratic
nodes triangles  rectangles rectangles triangles rectangles rectangles
15 0.16112 0.31335 0.50310 1209 1196 2196

(15)% (8.75,1.5%  (8.943,1.577)
27 0.26623 0.43884 0.51288 2270 1793 2439

31 (9.375,1.5)  (9.471,1.577)
51 0.316459  0.48779 0.51374 2829 2056 2526

(63) (9.6875,1.5)  (9.736,1.577)
Elasticity§ 0.51875 2876 2180 2528 b

(0.0,1.0) (9.583,1.667) (9.6875,1.5)  (9.736, 1.57T)

1 Element number, .

{Quadrature points. 5 2 2
§ From Reddy (1984), p. 53; v(0, §}=—(PL*3EN[t +3(1 + v)/L'}; o, =Px(1 -/ f=3.

For transient analysis with the linear acceleration scheme (¢=0.5, y= 1), the
time step Af is given by the inequality

12137
Af <At = ()L ) {10.50)
For the 4 X 1 mesh of rectangular elements, for example, we have At =1.617 X 1072,
Figure 10.7 contains plots of the tip deflection v(0, 1, r) versus time, as predicted using
the 4 x 1 mesh of linear rectangular elements and the following two time integration
schemes: (1) =y =1} and (2) @ =3}, y= 3. The time step vsed in these computations,

TABLE 10.4
Comparison of first ten frequencies of the cantilever beam of Example

10.3 as computed using various meshes of linear and quadratic triangular
and rectangular elements ‘

Triangular elements Rectangular elements
Quadratic Quadratic
@  Linear element element Linear element element
%2 §x2 2x1 4x1 4x2 8x2 2x1 4x1

2,019.4 1,583.0 1,184 1,156.7 14655 12423 11699 1,151.8

9207.4 82640 7,896.6 6,496.5 84579 68458 7,179.7 63414
10,449.6 91777 9,158.2 9,156.0 92184 9,171.7 9,1582 9,156.0
25,3392 19,5405 18,369.1 16,219.9 22,3340 16,887.7 17,800.8 15,572.7
29,1932 27,8439 27,8053 274417 29,1133 27,8368 27,869.8 27,266.3
42,363.4 32,727.8 40,3992 28,6969 40,3097 29,433.6 39,5837 2744232
52,937.0 46,8404 50,469.6 39,762.6 52,9919 442311 50,9644 39,302.3
67964.6 48,0144 662609 45815.6 66,8425 474410 67,0153 458399
76,833.2 61,560.4 74,582.1 57,4295 74,5233 60,078.3 74,0646 56,949.9
79,4430 68,257.4 79,241.8 64,8674 76,5155 67,8133 80,0293 64,636.0

[P =N+-ICR - UL, TN R R L g

—_
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100
B
01&1}1?1}{}1y{r{;1r§;*£{;gro—0—0—0—0—0—0—0
‘h.' ::
1 a=05, 6=}
2.5 x107° :
—1001 4 H
Tip A=3 :
deflection | T = B T3
{0, 1, 1)
~200
5]
—300 T T T T T T T T ¥
0 1 2 3 4 5 6
Time ¢ x 10°
FIGURE 10.7

Stability of the finite element solutions predicted by two different time integration schemes
{Example 10.3). The 4 X 1 mesh of lincar rectangular elements is used,

Ar=2.5x107*> At_, makes the second scheme yield unstable solutions. It should be
noted that if Afis close to At but Ar>> Ar,, then the solution predicted by the finear
acceleration scheme may be stable for the first several time steps, but it will eventually
become unstable. Figures 10.8 and 10.9 show the relative accuracies of solutions
predicted by triangular and rectangular elements. It should be noted that the linear
triangular element yields a less accurate solution than the linear rectangular element,

2
04
-2
— 4
Tip —6-
deflection
¢, 1,
o 1] _g]
B =05
~104 * &2 At = 2.5 x 10~
] o 3x10
—12- T ¥ r T T T
0 1 2 3 6
Time ¢ x 10°
FIGURE 10.8

Tip deflection {0, 1, 1) versus time, as predicted by various meshes of linear (L) and quadratic
(Q) triangular clements: L4, 4 X 2 mesh of linear elements; L8, 8 % 2 mesh of linear elements; Q2,
2% I mesh of quadratic elements; Q4, 4 X 1 mesh of quadratic ¢lemenis.
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Tip ~4
deflection
o(0, 1, &) g

—8

a = 0.5
2

Q B =05

4 ~
Q Ar =25 x 107 s

—104

O e D A

—12 —
g 1
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3 4 5 6
Time r x 10°

-

FIGURE 10.9

Tip deflection versus time, as predicted by varicus meshes of rectangular elements: L4, 4 X 2 mesh
of linear elements; L8, 8 X2 mesh of linear elements; Q2, 2% 1 mesh of nine-node quadratic
clements; Q4, 4 X 1 mesh of nire-node quadratic elements.

10.8 SUMMARY

In this chapter an introduction to the equations of plane elasticity (i.e.,
two-dimensional problems of elasticity) has been presented, and their finite
element models have been formulated. The plane strain and plane stress
probiems, which differ only in the use of constitutive relations, have been
discussed. The governing equations have been expressed in terms of the
displacements, and their weak form and finite element maodel developed in two
alternative ways: (i) the matrix formulation, which is standard in most finite
element textbooks on solid mechanics; and (ji) the three-step procedure, which
is used throughout the book. The eigenvalue and time-dependent problems of
plane elasticity have also been discussed. Some numerical examples have been
presented to illustrate the evaluation of element stiffness matrices and force
vectors.

PROBLEMS

10.1-10.3. Compute the contribution of the surface forces to the global force degrees
of freedom in the plane elasticity problems given in Figs. P10.1-P10.3.

10.4-10.6. Give the connectivity matrices and the specified primary degrees of
freedom for the plane elasticity problems shown in Figs. P10.1-P10.3. Give only
‘the first three rows of the connectivity matrix.

10.7. Consider a cantilevered beam of length 6 cm, width 2 cm, thickness 1 cm, and
material properties E =3 x 10" Nem™ and v=0.3, and subjected to a bending
moment of 600 N cm at the free end (see Fig. P.10.7). Replace the moment by

[E—
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5in  5in | pg= 200 lbsin"!
|<—> M‘
Plane stress 1000 Ib 4 I
¥ E = = 204 GPa 31 32
G*?QGPa,v=029,h=5cm 29
—-{Po
3 "5 an ® 2¢
Quadratic - 21 20 in
curve \[ 4—7.5@1)nr>|\
3 g 10 11 9 13
" 6 © 7 @ 8}
5 & 7 g TIATTTRTTTT 77777777577
A — l-(-w-l() m-+|<— 10in —>|
1 2 3 __"
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r k. 3 L 1 4 13
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9 7
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a=1m, py = 600 kN m~2 (plane strain)
= [, = 4{} GPa,

E;
FIGURE P10.3

FIGURE P10.7

G =17 GPa, v = 0,15

E=3x%x10"Ncm?
v =103
My = 600 N cm

Plane stress
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an equivalent distributed force at x =6 cm, and model the domain by (@) a 4 X2
mesh of linear rectangular elements and (b} quadratic rectangular elements.
Identify the specified displacements and global forces.

Answer: Fi=—300 and Fi;=300.

19.8. Consider the (“transition”) element shown in Fig. P10.8. Define the generalized
displacement vector of the element by

{u} = {uh Yy, 61: s, Uy, U3, v3}T
and represent the displacement components u and v by
u =P 1y + Yoty s F 3y, U= Potat Pars

where 1y, is the interpolation function for the beam, and ¥, and 15 are the
interpolation functions for nodes 2 and 3:

Pr=31-8), w=10+81-n), y=i1+E(1+n)

Derive the stiffness matrix for the element.

Uy
7 L‘-l[3

H
L Plane stress

! :
IHAN e 4

1 element
[/ 7 :
Beam b——h I .
element T i .
ransition
element FIGURE FP10.8

10.9. Consider the square, isotropic, elastic body of thickness s shown in Fig. P10.9.
Suppose that the displacements are approximated by

u(x,y)=(1—x)yu;+x(1—y)u2, v(x,y)=0

Assuming that the body is in a state of plane stress, derive the 2 X 2 stiffness

matrix for the unit square:
Uy R
A ={a)
KR 1=

n

be—1.0—+ *4]

FIGURE P10.%

10,10-10.16. For the plane elasticity problems shown in Figs. P10.10-P10.16, give the
boundary degrees of freedom and compute the contribution of the specified
forces to the nodes.
Answer: (Problem 10.10) F%=200/6, F},=800/6, and F;=F
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E,=E,=69GPa, v=10333, G = 26 GPa
thickness = I cm

S12 13 14 15 16 17 18
Plane stress
2cm %g 9 10 114 3 kN em ™2
2 4 3 6 7
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FIGURE P10.10
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123445
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