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Abstract

In a Wireless Sensor Network (WSN), the sensor nodes rely on each other to forward
packets from the origin to the base station via some routes. Computation of a desirable
route is challenging. Some of the routes can be better than others, which might lead to an
imbalance in contention for disparate routes as one route may be congested more frequently
or exhausted quicker than the others. Since each node’s self-interest is to save its own energy
due to the limited energy resource, it can lead to congestion resulting in higher delays and
additional packet collisions– which may eventually result in quicker energy depletion along
such routes and shorten the lifespan of the network. In this paper, we analyze this issue
from a game theoretic perspective and model the route selection problem in a WSN as an
evolutionary anti-coordination routing game. We derive the evolutionary stable strategy
(ESS) of the game and prove that the derived incumbent strategy cannot be invaded by
a greedy strategy i.e., mutant strategy. Furthermore, we derive the replicator dynamic of
the proposed game in order to show the behavior of the sensors in selecting the paths. The
mechanism of the replicator dynamics also shows how the nodes learn from their strategic
interactions and modify their strategies at every stage of the game until reaching a stable
strategy (ESS). Furthermore, the evolutionary game can be implemented in a distributed
manner. Finally, in order to achieve increased lifetime, we analyze the fairness of the pro-
posed equilibrium solution under the selfish node behavior by utilizing Jain’s fairness index.
The results show that the proposed system is successful in converging the strategy choices
to ESS even under dynamic conditions.

Keywords: Wireless Sensor Networks, Energy Efficient, Evolutionary Game Theory,
Congestion, Stable Strategy, Fairness

1. Introduction

With the rapid advancements in wireless technology, Wireless Sensor Networks (WSNs)
are being widely deployed. A WSN consists of hundreds or even thousands of heterogeneous
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small devices that sense various physical or environmental conditions and communicate with
each other in order to transmit the sensed data to the destination for further analysis. A
unique challenge of these networks is that they usually have very limited resources, especially
energy.

A multi-path routing protocol improves the reliability and load balancing in WSNs,
where it provides heterogeneous paths to choose from. Thus, some paths in this mechanism
could be considered to be better than others. The rational choice of sensor nodes will
be forwarding through the best path (in terms of energy consumption, transmission delay,
etc.), which intuitively results in future congestion on the same path used by multiple data
transmission connections. The congestion, which is one of the main causes of energy waste,
will seriously degrade the overall performance of a sensor network. In some cases, especially
in emergency or disaster monitoring where the sensor networks are deployed in extreme
environmental conditions, high reliability and energy efficiency are extremely important
because a slight transition failure could cause unpredictable damages. However, without any
centralized mechanism to balance the traffic load across heterogeneous paths, it is challenging
to achieve long-term dynamic traffic load balance and hence alleviate congestion to improve
the network lifetime. In this paper, we deal with this challenge and present a new distributed
mechanism of forwarding data packets in order to achieve fair long-term routing of WSNs.

1.1. Problem Definition

Most WSN routing algorithms attempt to route packets to the base station via the most
efficient route [1]. However, utilizing the same shortest or the same most efficient path by
multiple data sources to the destination could result in congestion and increased delays.

The heterogeneity of the paths can be in the sense that each path is associated with
different costs according to the various routing metrics. Paths with lower cost in terms
of transmission energy are more attractive for sensor nodes as compared with higher cost
paths. However, if every node tries to select the shortest path to its target, it will result in
collisions and lead to quick energy depletion among nodes. Thus, forwarding packets through
the lowest energy-consumed path may not always be optimal for the network lifetime. As a
result, nodes are expected to have a clear preference over a set of available paths and every
sensor node should have an incentive for altruism to avoid the overheads of retransmitting
dropped packets due to a collision, which can cause more depletion of the energy. In this
paper, we address the challenges that raise due to the absence of a centralized enforcement
mechanism and present an evolutionary routing congestion game that would ensure long-
term routing with a fair distribution of heterogeneous paths among sensor nodes.

1.2. Our Contribution

Our aim in this paper is to optimize the energy consumption of the sensor nodes so as
to increase the lifetime of a WSN by reducing congestion and optimally distributing data
traffic among multiple heterogeneous paths under a game theoretic framework. The process
of selecting a path to transmit the packets in our game will continue until the destination
node is reached. We establish an evolutionary routing anti-coordination game and present
a stable strategy as a solution that is robust under dynamic network conditions as well as
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distributing the data transmission task on all possible routes in a fair manner. Our major
contributions are as follows:

• We have formulated an incentive based game model of the sensor nodes for forwarding
packets. We have derived the game’s Pure Strategy Nash Equilibria (PSNE) and
Mixed Strategy Nash Equilibria (MSNE).

• We have analyzed the stability of the game’s solutions and showed that MSNE in the
game is an Evolutionary Stable Strategy (ESS), where there are no other strategies
except this ESS dominating the population, and it is robust under dynamic network
conditions.

• We have derived dynamic replicators of the proposed evolutionary routing game, which
describes a dynamic selection process. The players learn from their payoff outcomes
with each strategy’s interaction until they reach a stable state.

• In addition, as fairness in path selection strategies is highly important, we have pro-
posed a fairness analysis of our evolutionary routing game by utilizing Jain’s fairness
index [2].

The rest of the paper is structured as follows: In Section 2, we provide a survey of the
existing work on different solutions for routing issues using game theory. System model
and assumptions of the evolutionary routing game are proposed in Section 3. Section 4
presents the formulation of our proposed game along with the derived replicator dynamics
while Section 5 presents the fairness analysis of the game. The simulation model and results
are discussed in Section 6. Section 7 concludes the paper.

2. Related Work on Game Theoretic Applications to WSNs

2.1. Basics of Game Theory

Game theory is a powerful mathematical tool that models strategic interaction and anal-
ysis of competition, conflict, or cooperation with multiple entities [3]. Fundamentally, it
is the study of decision-making and analysis of the behavior of two or more participants in
a situation involving rewards or punishments. Players may be either cooperative or non-
cooperative while aiming to maximize their outcomes according to their preference (utility
function). The utility in any game is expressed by the motivation of the players.

Nash Equilibrium (NE) is one of the most common solutions that describes a steady
state condition of the game; no player can benefit by changing her/his strategy while the
other players keep their strategies unchanged. Evolutionary game theory is another elegant
means in game theory which models and studies the evolution of the population, and the
interaction among rational agents, towards the optimal strategies that evolve over time by
focusing more on the dynamics of strategic change (i.e., strategy adaptation over time).
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2.2. Related Work

Game theoretic techniques have been applied to numerous areas of wireless communi-
cation for analyzing and predicting the rational behaviors of agents that have also proven
very useful in the design of wireless sensor networks [4]- [5]. Important and essential issues
in WSNs, including routing protocol design, energy saving, packet forwarding, security, and
other sensor management tasks, have been modeled and described by the game theoretic ap-
proaches for efficient solutions that maximize the network lifetime. Finding optimal routes
is one of the most interesting research topics in communication networks. Various research
tools have been proposed to investigate this issue, including game theory. This paper pro-
vides a game theoretic model, with utility functions, considering forwarding and routing. In
this section, we provide an overview of some previous works in the domain of WSNs, and
some of the game theoretic solution concepts used in WSNs.

Furthermore, in [6], the authors proposed a detailed study of different energy efficiency
trade-off mechanisms in green communication in all network layers including routing. Estab-
lishing and maintaining a successful wireless communication link to simultaneously achieve
the objectives of having high Quality of Service and Quality of Expectation becomes chal-
lenging since the energy consumption requirements of the user and network are different for
different objectives. The effect of energy efficiency trade off in the network has been dis-
cussed and classified based on each protocol layer. Several approaches should be considered
to enhance user as well as network performance along with the energy efficiency. Therefore,
the authors provide several studies of the inter-dependencies of different standoffs, which
could be varied with different applications objectives. In [7], the authors presented the fun-
damental issue on exploring electronic vehicles (EVs)s mobility to balance power demand
among districts in the smart grid. A dynamic complex network model of Vehicle-to-grid mo-
bile energy networks is proposed with considering the fact that EVs travel across multiple
districts, and hence EVs can be acting as energy transporters among different districts. The
authors of [8] provide trade-offs between application requirements and lifetime extension that
arise when designing wireless sensor networks. A new classification of energy-conservation
schemes is presented as found in the recent literature. Severals techniques applied in WSNs
to achieve a trade-off between multiple requirements are discussed.

The pricing and payment model is presented as a cooperative game in [9]. The goal of
the game is to find an optimal path in a WSN by considering reliability, energy, and traffic
load, where the nodes have incentives to cooperate in the game. Buttyan and Hubaux [10]
proposed Nuglets, which is virtual currency in the system, to stimulate the cooperation of
the nodes participating in forwarding packets in mobile ad hoc networks. Furthermore, a
reliable length-energy constrained routing scheme in WSNs has been presented in [11], where
a game-theoretic approach is utilized. In this approach, the sensors cooperate as rational
agents in order to find the optimal route and maximize their payoffs in the game. Two
different possible payoff models and utility functions were illustrated.

The issue of energy efficiency in WSNs has been addressed in [12]. It provided a game
theoretic adaptive algorithm in order to manage sensor behavior for achieving complete de-
centralized control in an energy-constrained sensor network. Evolutionary game theory has
emerged as a robust tool to investigate and solve dynamic networking issues. An evolution-
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ary game theory was applied in [13] where the authors proposed a three-dimensional game
theoretic energy balance (3D-GTEB) routing protocol to enhance the routing decisions and
to decrease the overhead in a WSN. They addressed the unbalanced energy consumption
problem by applying evolutionary and classical game theory at two levels of game theoretic
decision making. The two levels were called wedge level energy balance and node level energy
balance.

In [14], a joint duty cycle scheduling and energy aware routing approach (DREG) is
presented based on evolutionary game theory. The solution for this game is proposed as
evolutionary equilibrium. The authors aimed to prolong the network lifetime in WSNs by
finding an optimal wakeup/sleep scheduling policy, based on a trade-off between network
throughput and energy efficiency for each sensor. The issues of duty cycle scheduling and
energy conservation are modeled as a multi-agent non-cooperative game, and the game is
repeated until a steady state is reached. Authors of [15] have also applied the evolutionary
game theory to solve the routing problem in a general network topology. The authors
consider the link costs that are linear in the link flow.

Furthermore, authors of [16] model the evolutionary game to study the dynamic coop-
erative behavior of selfish nodes under AODV routing. In the game, packet-forwarding is
repeated, and includes two distinct modes, in order to learn and predict the neighbors’ node
behavior to improve network performance. The first mode is deterministic to analyze the
behavior of the network for standard strategic patterns. Random mode is the second one
that applies a genetic algorithm to predict the best strategy randomly. Proposed in [17] is an
adaptive and distributed routing algorithm for correlated data that gathers and exploits the
data correlation between nodes based on a game theoretic framework. Specifically, the issue
of effective energy minimization is addressed and a routing solution is presented. The en-
ergy metric, interference awareness and opportunity for multi-hop partial data aggregation
are considered. The authors formulate the game by incorporating a general multi-hop data
aggregation model into the problem definition to describe data reduction in a congestion
game.

A reliable delivery routing issue in WSNs is addressed in [18] through the game theoretic
framework. The authors aim to ensure stable cooperation among nodes for delivering the
packet and minimizing the routing cost as well. The proposed reliable coalition formation
routing protocol (RCFR) is presented using a coalitional game theory, which selects the
route according to the principle of lowest cost. In order to introduce a fair allocation
method for payoff division, a characteristic function is designed by leveraging performance
metrics. RCFR protocol is elaborated by extending the AODV protocol, where the path
with minimum cost will be selected to transmit packets, and route maintenance is achieved
by adding route residual energy ratio monitoring.

In our paper, we leverage concepts from evolutionary game theory and model the routing
decisions in a WSN as an anti-coordination evolutionary game. We provide detailed analysis
of the system stability and fairness of the solution as well. The payoff for every node, also
referred to as a player, is determined by the packet transmitting cost, which depends on
the distance between the nodes. We study the behavior of the population and induce the
equilibrium even under dynamic network conditions.
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3. System Model and Assumptions

3.1. System Model

We consider an anti-coordination routing game where there is a set of N homogeneous
sensors (i.e., players) that are randomly distributed in a designated area. Each player has
to select a path to transmit packets. We model the set of next hops that are available for a
node R = {1, 2, 3, ..r}. We consider a routing game where each packet’s path is controlled
independently by a rational player in order to minimize the cost of transmission and latency.
Furthermore, each node takes its own decision to transmit a packet without cooperation with
other nodes. Each selected hop (i.e., hop r) has a specific cost Cr which is related to the
distance between the transmitter and receiver (different hops sustain diverse transmission
energy costs). For example, if the distance between the next hop and the transmission
node is increased, the cost of transmission will also increase. This is because all receivers
must have the signal to interference and noise ratio (SINR) above a certain threshold in
order to decode received signals correctly. Players are assumed to be non-cooperative and
rational, i.e., they are interested in minimizing their own cost of transmission and they do
not share a common goal to cooperate with each other. The energy model will determine
the transmission cost C and payoff u for selecting a specific hop, which will be introduced in
the following subsection. As demonstrated subsequently, the evolutionary game is concerned
with the evolution of the strategies, payoffs, and stability [19]. Thus, the number of sensor
nodes is not significant in the game model.

3.2. Cost Model

Most of the sensors’ energy is used during packet forwarding. Many energy models [20,
21] have been used for energy consumption in WSNs. In our model, the total cost C of
forwarding a packet consists of two parts: i) the energy spent for transmitting the packet
and ii) the energy consumed for receiving the packet. Thus,

C = Ctx(d) + Crx (1)

where Ctx(d) is the cost of transmitting the packet to another over distance d, and Crx is
the cost of receiving it. Ctx is defined as:

Ctx(d) = e(tx−elec) + eamp · dα (2)

where etx−elec is the energy consumption of the transmission circuit, and eamp is the transmit
amplifier dissipation in order to achieve the required signal level. α represents the propa-
gation loss exponent (i.e., typically α = 2 for free space). The cost of receiving the packet
is:

Crx = e(rx−elec) (3)

where e(rx−elec) is the receiving circuitry dissipation. In our game model, it is noteworthy
that any other positive value for the cost of packet forwarding derived from other energy
models can be used in the game without affecting our analysis and the outcome.
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3.3. Assumptions and Notations

The assumptions of the incentive game model are as following:

• Populations: All sensor nodes are grouped into several populations according to their
geographical positions, and we model the game as an asymmetric routing game between
two populations (i.e., υ = {A,B}). All nodes in each population have the same
strategy set and payoff matrix. In an evolutionary game, the number of nodes does
not play any role in the game model, where the payoff of a strategy depends on the
strategy adopted by the others, but not on who is playing the strategy [22].

• Strategy space: Each node has a set of available actions/strategies represented as
S = {sr|r ∈ R}, where R is the set of next hops available in the game.

• Payoffs and cost: Obtaining the nearest hop will result in a lower transmission cost
and thus a higher payoff. Similarly, selecting a farther hop will result in a higher
transmission cost and a lower payoff. The next hops selected by different players
simultaneously may interfere with each other, raising the contention situation, and
wasting the transmission energy of all nodes in question. Each selected hop for either
node will incur a specific amount of energy that is the cost of transmitting the packet.
This cost is denoted by C (as was defined in equation ( 1)). As an example, selecting
r as the next hop to transmit the packet individually from population A will cost CAr.

• Non-cooperative behavior: All sensor nodes are independent as they do not cooperate
with each other for a common goal. Nodes are expected to have a clear preference
of selecting the best paths over a set of available choices, and the nodes are always
interested in transmitting packets through the route with the least possible minimum
cost (i.e., the minimum value of C). Each node needs to recognize its neighbor nodes,
the distances, and the cost of the packet transmission through each available route.
Therefore, if many nodes take this same routing strategy, this rational behavior of
sensor modes will intuitively result in further congestion and lead to energy depletion
of the nodes along those paths.

For reader’s convenience, we list the main mathematical notations and acronyms in Table
1.

4. An Evolutionary Routing Game

In this section, we first provide some basic concepts of evolutionary game theory as well
as the structure of our routing game. Then, we derive the equilibrium state for the game
as a solution for 2-hop scenario, followed by extension for multi-hop scenario by driving the
so-called Replicator Dynamics of the game.

The incentive anti-coordination routing game proposed in this paper is a non-cooperative
repeated game with perfect information, where the nodes have perfect knowledge about the
utility function, which is common information to all nodes. The nodes are able to know other
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Notation Definition

NE Nash Equilibrium
ESS Evolutionary Stable Strategy

PSNE Pure Strategy Nash Equilibrium
MSNE Mixed Strategy Nash Equilibrium
R Set of available hops in the game
S Strategy space, (set of actions that are available for the players (S =

{sr|r ∈ R}))
U Set of hops’ utilities
sr Strategy of selecting hop r
ur Utility/payoff for selecting hop r.

u(sr, st) The utility/payoff for playing strategy sr and st when competing against
each other

si Strategy played by player i
s∗i Strategy of player i which is the best response to s∗i
s∗−i Best strategy played by player other than player i

υ ∈ {A,B} Population
Cυr Transmission cost of the packet through hop r
Cυt Transmission cost of the packet through hop t

P̂ Probability distribution over set of of pure strategies for any player (col-
lection of wights in MSNE)

(p̀, q̀) Incumbent strategy/ESS probability distribution over set of hops
(MSNE)

(p̂, q̂) A mutant strategy that is greedier than ESS
EUυ(sr) Expected Utility from selecting hop r

Table 1: List of Notations and Acronyms

nodes’ selection and their payoffs in the past. Furthermore, each node in WSNs behaves
rationally and selfishly in order to obtain the best route to forward his own packets with
minimum cost of energy consumption (maximizing the own utility).

4.1. An Evolutionary Game Theory

The evolutionary game provides an effective modeling tool to describe and analyze models
of population behavior as well as design efficient strategies in communication networks.
The difference compared with a classical game theory is that evolutionary game theory
focuses more on the dynamics of strategy change, where the decision processes can be seen
as the strategy evolution over time. An evolutionary stable strategy is a behavior that,
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when adopted by a population of players, cannot be invaded by an alternative strategy.
In this paper, we consider the action of selecting a specific hop as nodes’ strategy in our
routing game. We need to provide the evolutionary stability analysis of Pure Strategy Nash
Equilibrium (PSNE) and Mixed Strategy Nash Equilibrium (MSNE) in the game in order
to seek a fair and stable solution for the long term. In addition, we prove that MSNE can
not be invaded by a greedier strategy (i.e., mutant strategy).

4.2. Routing Game Structure

The evolutionary routing game is represented as G =< R,S,U >, where R represents
the set of next hops available in the game; S = {sr|r ∈ R} is the strategy space, which is
the set of actions that are available for the players. The payoff for playing strategy sr and
st is denoted by u(sr, st) ∈ U when competing against each other. This happens when the
player who is adopting the strategy sr meets another player who is adopting the st strategy.
In our game, the cost of transmission is always preferred to be low, which will increase the
payoff and prevent energy wastage. Thus, we define the payoff as:

u(sr, st) =

{
( 1
Cυr

, 1
Cυt

) when r 6= t, υ ∈ {A,B}
(0, 0) when r = t

(4)

where Cυr is the transmission cost of the packet through hop r, which either belongs to
the population A, or belongs to the population B. For example, CBr denotes the cost of
selecting hop r by the player, who belongs to population B.

We define the routing game as a strategic matrix shown in Table 2 with a player set
composed of players that comprise υ = {A,B} populations. The payoff for players playing
strategies sr and st, which are competing against each other, is denoted by u(sr, st). For the
sake of clarity in analysis and without loss any generality, we assume that ur > ut regarding
the variety of the available routes in the network, and transmitting the packet by using the
strategy sr will cost less than transmitting the packet by using strategy st according to the
distance between the nodes. Thus, it is preferable for all the nodes to forward the packets
through hop r, which produces a high payoff. In addition, transmitting the packet through
the same hop (i.e., r or t) will cause a collision, and hence, the payoff will be zero (see
Eqn. 4).

sr st
sr 0 , 0 1

CAr
, 1
CBt

st
1
CAt

, 1
CBr

0 , 0

Table 2: Strategies competition form of evolutionary routing game (i.e., strategies sr and st)

In addition, we initially consider a 2-available hop game i.e., we show competition be-
tween the two strategies sr and st as a demonstration to clarify and analyze the performance
of the game besides deriving its PSNE and MSNE. Later, we utilize the same technique in
the case of multiple hops, as will be presented in the experimental results in Section 6.
The players in our game adopt one of the two available hops (i.e., r or t). We analyze the
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payoff based on Table 2, and employ the same game formulation to answer the fundamen-
tal questions as: 1) What does a strategy sr gain as a payoff when it meets another same
strategy sr or another different strategy st? 2) How does the equilibrium solution make the
player satisfy and respect the other’s choices? As we consider the players in our game are
to be rational, all players would maximize their payoff by minimizing the cost of energy
consumption and all players’ interest to not end up selecting the same strategy.

4.3. Pure Strategy Nash Equilibrium and Evolutionary Stability for the Game

In this subsection, we derive the PSNE as first potential solutions for our evolutionary
anti-coordination routing game. Then, we analyze its evolutionary stability.

4.3.1. Pure Strategy Nash Equilibrium

According to definition 1, we prove that our evolutionary routing game has two pure
Nash Equilibrium strategies.

Definition 1: A Pure Nash Equilibrium [3] of the routing game is a strategy profile
s∗ ∈ S of actions, such that:

u(s∗i, s
∗
−i) ≥ u(si, s

∗
−i),∀i ∈ N (5)

In other words, the strategy s∗i, to be pure NE, must satisfy the above condition. This
condition means that no player i has an incentive to deviate to another strategy to gain a
higher payoff than the one who is playing s∗i, given that the other players’ strategies remain
the same s∗−i.

Lemma 1: In the evolutionary routing congestion anti-coordination game, strategy pairs
(sr, st) and (st, sr) are pure strategy NE.

Proof. Suppose two nodes are picked randomly from two large populations of sensor nodes
in the network. These nodes are supposed to select one of the two strategies, each competes
against the other, in order to transmit the packet. In Table 2, assume the row and the
column are the two players from populations A and B, respectively. These players select
strategy pairs (sr, st) and (st, sr). The payoffs of the selection are 1

CAr
, 1
CBt

and 1
CAt

, 1
CBr

,
respectively. Let us say that the players select strategy pairs (sr, sr) and (st, st) instead.
Thus, the payoffs for those strategy pairs will be zero. This means that the player who is
playing strategy sr does not have an incentive to change the strategy to st because of the
penalty of reducing the payoff according to equation 4. As a result, we can say that strategy
pairs (sr, sr) and (st, st) are not profitable deviations. According to the PSNE definition 1,
the strategy pairs (sr, st) and (st, sr) are a pure strategy NE for this game.

4.3.2. Evolutionary Stability of the Game’s PSNE

We examine the PSNE evolutionary stability of the routing game according to definition
2 as follows:

Definition 2: In a symmetric game, the strategy s is evolutionary stable ESS in pure
strategies if:

1. u(s, s) is NE; u(s, s) >u(ś, s) for all ś and
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2. if u(s, s) = u(ś, s), then u(s, ś) >u(ś, ś)

That means the players will play (s, s), which is a symmetric Nash equilibrium (NE). The
symmetric Nash equilibrium is an equilibrium where all players use the identical strategy.
Strategy s is called evolutionary stable if a small group playing different strategy, mutant
strategy ś, would be less and less as time evolves. Eventually, it will not be played at all.

4.4. Mixed Strategy Nash Equilibrium and Evolutionary Stability for the Game

In this subsection, we derive the MSNE as a second potential solution for our evolutionary
anti-coordination routing game, and we analyze its evolutionary stability.

4.4.1. Mixed Strategy Nash Equilibrium

Definition 3: The Mixed Strategy Nash Equilibrium [23] of the routing game is a
probability distribution P̂ (collection of weights) over the set of pure strategies S for any
player such that:

P̂ = (p1, p2, p3, ..., pr) ∈ RR ≥ 0, and
R∑

t=1

pt = 1 (6)

The pure strategy will be available with certain probabilities where the payoffs from all
opponents of their strategies are eventually equal. Thus, the expected payoffs given to
strategies in a Mixed Nash Equilibrium are equal.

In our game, let p̀ = {p, 1− p} denotes the proportions of the population A adopting sr
and st strategies, respectively, and q̀ = {q, 1− q} denotes the proportion of the population
B adopting sr and st strategies, respectively. In a 2-hop scenario, player 1, who belongs to
population A, plays strategy sr with probability p and strategy st with 1 − p probability.
Player 2, who belongs to population B, plays strategy sr with probability q and strategy st
with 1− q probability. We calculate those probabilities using the mixed strategy algorithm
and the payoff in Table 3.

Prob.(sr) = p Prob.(st) = 1− p
Prob.(sr) = q 0 , 0 1

CAr
, 1
CBt

Prob.(st) = 1− q 1
CAt

, 1
CBr

0 , 0

Table 3: Strategies competition form of evolutionary routing game with probability distribution p̂ over the
pure strategies (i.e., strategies sr and st).

According to Mixed Nash definition 3, the expected utility from playing strategy sr is
equal to the expected utility for playing strategy st for any player as follows:

EUυ(sr) = EUυ(st), υ ∈ {A,B} (7)

The expected utility for playing strategy sr for the player who belongs to A population
and the player who belongs to population B, respectively, are:
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EUA(sr) = q · 0 + (1− q) 1

CAr
(8)

EUB(sr) = p · 0 + (1− p) 1

CBr
(9)

The expected utilities for playing strategy st for the players in the two populations are:

EUA(st) = q
1

CAt
+ (1− q) · 0 (10)

EUB(st) = p
1

CBt
+ (1− p) · 0 (11)

Setting (8) and (10) equal as in (7), then solve it to find the probability distribution
p̀ = {p, 1 − p}. Similarly, setting (9) and (11) equal as in (7), then solve it to find the
probability distribution q̀ = {q, 1− q} such as:

p =
CAt

CAt + CAr
, 1− p =

CAr
CAt + CAr

(12)

q =
CBt

CBt + CBr
, 1− q =

CBr
CBt + CBr

(13)

The players from A and B populations adopt the strategy sr with probabilities (p, q),
respectively, and the strategy st with probabilities (1 − p, 1 − q), respectively. The players
in the routing game mix their selections of the next hop to transmit the data packet with
(p, q) and (1 − p, 1 − q) probabilities. In addition, none of the players would change the
strategy with an expectation of gaining a better payoff. The reason behind this behavior is
that adopting the strategies in that manner will represent the same outcome.

4.4.2. Analysis Evolutionary Stability of the Game’s MSNE

Previously, we proved that the game solution is a Mixed Strategy Nash Equilibrium (p̀, q̀).
Here, we analyze the evolutionary stability of Mixed Strategy Nash Equlibrium (MSNE) (i.e.,
(p̀, q̀)) in our asymmetric routing game according to definition 4 of asymmetric evolutionary
stable strategy [24] such as:

Definition 4: Defines (p̀, q̀) as a two-species evolutionary stable strategy [24] if it is
asymptotically stable under the two-dimensional equation whenever it is based on the strat-
egy pair (p̀, q̀) and (p̂, q̂), when (p̀, q̀) 6= (p̂, q̂).

In other words, the two-species ESS with strategy pair (p̀, q̀) cannot be invaded by a
mutant subsystem, which uses a different strategy pair (p̂, q̂).

Lemma 2: Our mixed strategy Nash equilibrium (p̀, q̀) is a two-species evolutionary
stable strategy.

Proof. First, we define the replicator equations, which are ruling the behavior of the system
over time [25], based on the strategy pair (p̀, q̀). In our routing game, we define the replicator
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equation such that the fraction of strategy sr grows at a rate equal to its fitness minus the
average fitness of the player. We have the following replicator equations:

ṗ = p[(
1− q
CAr

)− (
p(1− q)
CAr

+
(1− p)q
CAt

)]

= p(1− p)(1− q
CAr

− q

CAt
)

(14)

q̇ = q[(
1− p
CBr

)− (
q(1− p)
CBr

+
(1− q)p
CBt

)]

= q(1− q)(1− p
CBr

− p

CBt
)

(15)

Second, we need to find the stable fixed point for the two replicator equations. We have the
MSNE point (i.e., equations (12) and (13)), which we calculated in 4.4.1. We proved how
this point is a fixed point under the two replicator equations (14) and (15).

Since we already have a stable point (p̀, q̀) in our model, we need to show that the point
is fixed under the replicator equations. Therefore, we need to satisfy that the last part (i.e.,
( 1−q
CAr
− q

CAt
) and ( 1−p

CBr
− p

CBt
)) in equations (14) and (15), respectively, should equal zero.

Therefore, if we substitute the values of p and q from equations (12) and (13) with these
last parts, we will get zero. As a result, (p̀, q̀) is a asymptotically stable fixed point for
the replicator dynamic. Based on asymmetric ESS [24], our mixed strategy NE (p̀, q̀) is a
two-species evolutionary stable strategy.

4.4.3. Numerical Analysis of Evolutionary Stability for the Game’s MSNE

For the sake of certainty, we will analyze the ESS for the proposed MSNE solution by
satisfying the condition of the following theorem [24] numerically in this part.

Theorem[24]: (p̀, q̀) is a two-species ESS if and only if
either p̀ · (Dp̂+ Eq̂) > p̂ · (Dp̂+ Eq̂)
or q̀ · (F p̂+Gq̂) > q̂ · (F p̂+Gq̂)
for all strategy pairs (p̂, q̂) that are sufficiently close (not equal) to (p̀, q̀). D, E, F , and

G are the payoff matrices for interspecies interaction.
In our routing game, suppose two sensor nodes are picked randomly from two population

(i.e., A and B), and these nodes are supposed to select one of the two strategies (i.e., sr and
st), which compete against each other in order to transmit the data packet. Assume that
we have the payoff matrix values for Table 2 as: CAt = 4, CAr = 2, CBt = 8, and CBr = 6.
Based on those values, we calculate the MSNE and the rest of the elements as: (p̀, q̀) =(

4
7

2
3

3
7

1
3

)
, D =

(
0 1

2
1
4

0

)
, and E =

(
0 1

6
1
8

0

)
. D and E are the payoff matrices for interspecies

interactions. It is supposed that there are small groups adopting a mutant strategy (p̂, q̂)
instead, which is greedier than the incumbent strategy (p̀, q̀). Furthermore, it is assumed
that the mutant strategy selects the near hop r with higher probability (i.e., p + δ, q + δ)
and selects the farther hop t with lower probability (i.e.,(1−p)− δ, (1− q)− δ), where δ is a

small positive number (i.e., δ = 0.1). Thus, (p̂, q̂) =

(
4
7

+ δ 2
3

+ δ
3
7
− δ 1

3
− δ

)
. Then, by substituting
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those values in the first condition of the theorem [24], we have p̀.(Dp̂+ Eq̂) > p̂.(Dp̂+ Eq̂)
(i.e., 0.23 > 0.22). Accordingly, (p̀, q̀) cannot be invaded by the greedier mutation and is
ESS.

4.5. R-Hop Scenario and Replicator Dynamics

In this subsection, we provide a dynamic way to achieve the equilibria and extend our
analysis to the R-Hop scenario for our evolutionary routing game according to the concept
of replicator dynamics. We introduce the replicator dynamic model in order to show how
the players, who repeatedly play the routing game, evolve their behavior at every stage of
the game. The populations learn with each strategy’s interaction until they reach a stable
state. Replicator dynamics describe the populations’ behavior of sharing associated with
different strategies, that evolve over time [25]. In the following equations, we derive the
replicator dynamics of our routing game framework with r hops.

In the following, we introduce fitness defined by our replicator dynamic equations. From
the above sections 4.4, let’s consider two populations of interacting nodes. Each time nodes
from one population (row players A) are randomly paired with nodes from the other pop-
ulation (column players B). All players have a set of hops R, and strategy sr ∈ S are
adopted. Let p̀ = {p1, p2, p3, ..., pr} and q̀ = {q1, q2, q3, ..., qr} denote the proportion of the
two-population adopting s1, s2, s3, ..., sr strategies, respectively, where summation of the pro-

portions equals to 1 (i.e.,
r∑
i=1

pi = 1 and
r∑
i=1

qi = 1 ) as described in section 4.4. Let (p̀, q̀)

represent the incumbent strategy of selecting hop r with probability pr,qr. In addition, let
the set of U = {u1, u2, u3, ...ur} represent the average payoff of the players selecting hop r
at a given stage of our game. Furthermore, let ur denote the utility function of adopting
strategy sr. The payoff of selecting hop r strategy sr for row player (A) is given by:

ur = u0 +

|R|∑

t=1

qru(sr, st), ∀r, t ∈ R (16)

The payoff of selecting hop r strategy sr for column player (B) is given by:

ur = u0 +

|R|∑

t=1

pru(sr, st), ∀r, t ∈ R (17)

where u0 is the initial fitness of every player, and u(sr, st) is the fitness of selecting hop r in
pairwise competition against adopting hop t.

Let uA and uB denote the average fitness for entire population A, and B, respectively,
which are given by:

uA =
r∑

y=1

py(qyuy), ∀y ∈ R (18)

uB =
r∑

y=1

qy(pyuy), ∀y ∈ R (19)
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Algorithm: Replicator Dynamics

Results: Converge the startegy of selection hops to ESS;

Initialization: Set the available hops R and their related utilities

(payoffs) U, intial fitness u0, population distribution pr and qr, hop

utilities ur ;

begin
for evrey time slot of the game do

At current time caculate:

1. average payoff of selecting hop r for sensors

population (i.e.,A and B) at current time

(equations (16-17))

2. Calculate average fitness u for entire sensor

nodes population (equations (18-19))

3. Calculate hop selection startegies for next time

slot (equations (20-21)) ;

end

end

For each next time slot, the probability (p̌r, q̌r), of selecting next hop r of the game is
calculated by:

p̌r = pr +
qr(ur − uB)

uB
(20)

q̌r = qr +
pr(ur − uA)

uA
(21)

The proportion of sensors selecting hop r in the next time slot will be either increased
or decreased according to the comparison of the average fitness of selecting that hop to the
overall fitness of the entire sensor population in the current time slot. According to our
evolutionary replicator equations, the next particular hop will be selected more frequently
in a subsequent time slot if the payoff of selecting that hop is higher than the average
overall fitness of the entire sensor network. Algorithm shows the summary of the proposed
replicator dynamics. The time complexity of the proposed algorithm is O(n).

5. Fairness Analysis

Fairness is an important performance criteria in routing protocols for resource sharing.
Janin’s fairness index [2] is one of the efficient measurements to determine the fair share
of the system’s resources. In our proposed game, we analyze the fairness of both pure and
mixed solutions of the Nash Equilibria, and consider the case of 2-hop scenario of the routing
sharing game for the sake of clarity. Furthermore, the same concept will be applied in the
case of R-hop scenario. Measuring of the fairness of the derived Nash equlibria, and the
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guaranteeing of the provision of the same utilities to all users, is achieved by following Jain’s
equation:

J (u1, u2, u3, ..., uN) =
(
∑N

i=1 ui)
2

N ·∑Ni=1 ui
2

(22)

where N is the number of sensor nodes and the utility of allocating the hops is given by
ui. The index of the equation are bounded between 0 (worst case and totally unfair system)
and 1 (best case and perfectly fair system). We analyze the fairness of the solutions of the
game as follows:

1. As we proved earlier that the Pure Strategy Nash Equilibrium (PSNE) for the evo-
lutionary routing anti-coordination game is the pair of strategy (sr, st) and (st, sr).
According to our previously named assumption for 2-hop scenario, transmitting the
packet through hop r will provide a higher payoff than transmitting the packet through
hop t. This means that ur 6= ut and the distribution of payoffs for the ratio in equation
(22) are unequal and less than 1. Also, one player in the game always gets a smaller
payoff than the other. Thus, PSNE is not a fair solution because it does not result in
equal payoff for all nodes.

2. Another finding for the game is that a Mixed Strategy Nash Equilibrium (MSNE) is
the probability distribution p̀, q̀ (collection of weights) computed by equations (12)
and (13). Based on definition 3 of MSNE, the expected utility of the strategies for all
players are equal even though the costs of transmitting the packet through the hops
are different, and that makes the opponents indifferent about their choice of strategy.
Having equal payoffs ui will maximize the value of the equation (22) which equals 1.
As a result, the MSNE’s resource distribution is fair.

6. Simulation Model and Results

In order to analyze and study the effects of applying the proposed routing game model
for multiple routes in a wireless sensor network, we have conducted simulation experiments.
We study the behavior of selecting strategies when sensor nodes do not cooperate with each
other, and how the hop selection strategies converge into evolutionary stable states. The
empirical analysis of our evolutionary routing game consists of three aspects: First, we will
demonstrate the results of our experiments in which sensor nodes have only two available
hops to transmit the data packets, show the impact of implementing Replicator Dynamics,
and how the strategies converge to an evolutionarily stable state. Second, we will present
the results of simulation under dynamic network conditions, and show that the evolutionary
game is able to converge to a new ESS. A diversity of wireless network conditions will
result in different transmitting costs. Node failure due to changing conditions can occur for
various reasons, such as uncontrolled environment, battery depletion, or a communication
failure. Node failure will in turn result in the changes of the cost of routing paths. Also,
the mobility of the nodes in a WSN is another possible cause for the dynamic changes of
the cost of routing paths. Finally, we will provide several experimental results with multiple
hops available (i.e., 3 and 4 heterogeneous hops) as well.
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Figure 1: Proportion of selecting strategies for both population (i.e.,A & B) when number of available
hops for forwarding is R = 2. (a) Hop selecting probability when the initial probabilities are unequal. (b)
Hop selecting probability when the initial probabilities under changing conditions, (i.e., cost of forwarding
through hop 1 higher than hop 2 at t=350, when initial probabilities are unequal, and (c) when initial
probabilities are equal.

6.1. Experiment Results

Figures 1 and 2 represent the scenario of having 2 hops available to forward the data
packet. Figure 1a shows the behavior of selecting one of two available hops with some
probability where a transmission through hop 1 produces a lower cost than a transmission
through hop 2. The probabilities of selecting the hops are modified depending on average
fitness, which is gained from strategic interaction in subsequent time slots as shown in
Figure 2a. Moreover, in our simulation, any positive value for the utility function would be
commutable and feasible. In Figures 1 and 2, the cost function of selecting the hops are
assumed to be (u1A = 0.5 & u2A = 0.25) and (u1B = 0.166 & u2B = 0.125) for hops 1 and
2, respectively. MSNE is p̀ = {0.57, 0.43} and q̀ = {0.66, 0.33} for population A and B,
respectively.
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Figure 2: Related Average fitness of selecting strategies in Fig. 1 for both population (i.e.,A & B) when
number of available hops for forwarding is R = 2. (a) Average and weighted sum of fitness when the initial
probabilities are unequal. (b) Related average fitness under changing conditions (i.e., cost of forwarding
through hop 1 higher than hop 2 at t=35) when initial probabilities are unequal, and (c) when initial
probabilities are equal.

First, let us consider the scenario where some sensor nodes become greedier and transmit
the packet with a lower cost through hop 1. Thus, the payoff for those nodes who adopt
strategy s1 at time = 1 is less than the payoff for selecting hop 2, as demonstrated in
Figures 1a and 2a. This is because forwarding through the lower cost hop by more nodes
results in collisions and thus gains a zero payoff. As a result, the hop selecting probability
of greedy nodes decreases in time = 2 (as shown in Figure 1a and their payoff increases at
that time, which is still less than the average payoffs of the entire population as shown in
Figure 2a). In a similar yet opposite scenario, the nodes that are less greedy and transmit
through hop 2, which costs more for transmitting, receive a higher payoff at time = 1 than
the nodes transmitting through hop 1. Moreover, this causes the hop selecting probability
to increase in the following time for the less greedy nodes and decreases their payoffs. In
a similar manner, the hop selecting probability is modified until the system becomes stable
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Figure 3: Proportion of selecting strategies and related average fitness for both population (i.e.,A & B)
when number of available hops for forwarding is R = 3. (a) and (b) Hop selecting probability when under
changing conditions and initial probabilities are unequal for population A and B , respectively. (b) and (d)
Related average.

and reaches the ESS, (i.e., time=10 in the case of figure 1a). The amount of time taken to
converge to ESS is important in determining energy wastage in sensor networks due to the
collision and loss of data.

Figures 1b and 2b demonstrate the case of changing network conditions, where the
cost of transmitting through hop 2 becomes less than through hop 1, and hop 2 becomes
more preferable to be selected from the nodes at t = 35. The hop selecting probability still
converges to a new ESS. Similar observations of convergence to ESS can be found in the case
where initial hop selection probabilities are equal and the network conditions are changed
as shown in Figures 1c and 2c.

The previous experiment (i.e., figures 1 and 2) demonstrated that the fairness of probabil-
ity distribution of selecting the two hops are achieved only when the probability of selecting
the two hops equals p1 = 0.57, p2 = 0.43, q1 = 0.66, and q2 = 0.33 as in figure 1a, for both
population, respectively, which is the game’s MSNE as well as the ESS. Next, in order to
present the robustness of our game, we conduct the experiment under changing network
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Figure 4: Proportion of selecting strategies and Related Average fitness for both population (i.e.,A & B)
when number of available hops for forwarding is R = 3. (a) and (b) Hop selecting probability when the
initial probabilities under changing conditions and initial probabilities are equal for population A and B ,
respectively. (b) and (d) Related average.

condition and with equal and unequal initial probabilities for the player as well. The results
show that the strategies are still able to converge to ESS as shown in figures 1b,2b,1c and
2c.

Figures 3 and 4 exhibit the performance of the system and the convergence of hop
selection probabilities to ESS in case of multi-hops (i.e., 3 hops), where each hop has a
different transmitting cost for each population (A and B). Moreover, Figures 3 and 4 show
the behavior of nodes when the network conditions changed (i.e., changed at the time t = 45)
in our proposed evolutionary game, and when the initial probabilities are unequal and equal,
receptively. Figures 3a, 3c, 4a, and 4c show the convergence probabilities of selecting 3 hops
to ESS and related average fitness by population A. Figures 3b, 3d, 4b, and 4d show the
convergence probabilities of selecting 3 hops to ESS and related average fitness by population
B. For example, at the beginning in figure 3a, the game converges to ESS for population A
when hop 2 is more preferable to be selected from the nodes and the initial values for utility
of selecting s1, s2, and s3 are 0.2, 0.9 and 0.5, respectively. At time = 45, the network
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Figure 5: Proportion of selecting strategies for both population (i.e.,A & B) when number of available hops
for forwarding is R = 4. (a) and (b) Hop selecting probability for population A and B , respectively. (b)
and (d) under changing condition of network (i.e., t = 45).

conditions are changed: Hop 1 becomes more attractive for the sensors and adopting s1
will produce higher payoff than selecting s2 or s3. The initial values for utility of selecting
s1, s2, and s3 are changed to 0.5, 0.3 and 0.2, respectively. Similarly in Figure 3b, the
network conditions are changed with different utility values for each strategy selection. The
system reaches stability under new network conditions and converges to a different ESS for
all populations.

Figure 5 shows the convergence of hop selection probabilities to ESS in case of having 4
hops available, and their utilities are varied according to transmitting cost. Figures 5a and 5b
illustrate the converges to the ESS for population A and B, respectively. We notice that the
rate of convergence to ESS is affected by the number of hops, variety of the transmitting cost,
and the initial access probabilities of players, where the convergence rate to ESS decreases
when the number of hops increases. Figures 5c and 5d illustrate the converges to the
ESS under new network conditions for population A and B, respectively. As a result, the
system will be able to reach stability with 2-hop and multi-hops of different transmitting
costs, even under the changing of network conditions and with varied values of initial access
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probabilities.

7. Conclusion

The existence of a heterogeneous set of paths for sensor nodes in WSNs raises many
technical issues related to data routing, where some routes become preferable for the nodes
and lead to an imbalance in contention. Furthermore, some routes may be exhausted more
quickly than others in long-term routing. In this paper, we designed an evolutionary routing
game to reduce the load and avoid collisions on the most used routes in a distributed
manner. We derived the equilibrium strategies of selecting the next hop in the routing
game, and we proved that the Mixed Strategy Nash Equilibrium derived in the game is
an Evolutionary Stable Strategy (ESS) and achieves fairness as well. In addition in our
proposed new evolutionary game, we derived the mechanism of Replicator Dynamics, where
the players learn and modify their strategies, based on the strategies’ interaction in a given
unit of time, in order to eventually achieve the solution.
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