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Abstract Botnets are widely used by attackers and they
have evolved from centralized structures to distributed
structures. Most of the modern P2P bots launch attacks in
a stealthy way and the detection approaches based on the
malicious traffic of bots are inefficient. In this paper, an
approach that aims to detect Peer-to-Peer (P2P) botnets is
proposed. Unlike previous works, the approach is indepen-
dent of any malicious traffic generated by bots and does not
require bots’ information provided by external systems. It
detects P2P bots by focusing on the instinct characteristics
of their Command and Control (C&C) communications,
which are identified by discovering flow dependencies in
C&C traffic. After discovering the flow dependencies, our
approach distinguishes P2P bots and normal hosts by clus-
tering technique. Experimental results on real-world net-
work traces merged with synthetic P2P botnet traces
indicate that 1) flow dependency can be used to detect P2P
botnets, and 2) the proposed approach can detect P2P bot-
nets with a high detection rate and a low false positive rate.
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1 Introduction

Botnets have emerged as one of the threats to the Internet.
Attackers use botnets to serve as the infrastructures for a
variety of cyber-crimes, such as distributed denial-of-service
(DDoS) attacks, spamming, click fraud, phishing, keylogging

and so on [1, 2]. As the cloud services become popular [3],
future attackers may use cloud services to establish botnet and
launch attacks. Clark et al. [4] have discussed the threat of
cloud-based botnets and showed that attacks could be
launched from botclouds.

Compare to other malwares, the distinguishing character-
istic of botnet is the Command and Control (C&C) channel,
through which botmaster can send commands to bots and
receive information from them. The traditional C&C chan-
nel is based on IRC protocol. Most flexible botnets are
based on HTTP protocol. Both IRC and HTTP botnets are
centralized structures which provide botnets with the effi-
cient communication. However, centralized structures are
vulnerable to a single point of failure [5] and C&C servers
are easy to be detected due to their heavy traffic [6].

Most recent botnets have evolved to Peer-to-Peer (P2P)
structures. In a P2P botnet, there is no centralized point for
C&C server. Each bot acts as both client and server. Even
some nodes are offline, P2P botnet can continue to operate [7].
When losing some bots, a P2P botnet won’t be disrupted
because it is resilient to dynamic churn [8, 9]. Storm [7,
10–12], Nugache [10, 13] and Waledac [14–16] are some of
the most popular P2P botnets. This paper focuses on the
detection of P2P botnets.

Unfortunately, there are many challenges to detect P2P
botnets: (1) the traffic of P2P botnet is similar to legitimate
P2P network and it is hidden in normal traffic; (2) many P2P
botnets such as Nugache, Storm, Waledac and Conficker
employ encryption mechanisms that making approaches
based on packet contents ineffective; (3) P2P bots launch
malicious activities stealthily; (4) there is no central server
in P2P botnets; (5) bots communicate with each other
through random ports [7, 12, 13].

A number of approaches have been proposed to detect
P2P botnets. Some approaches rely on the malicious
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activities of botnets. However, bots stay idle most of the
time until they receive commands [17, 18]. Besides, many
botnets launch attacks in a stealthy way. Some other
approaches require external systems which provide a list
of known bots to detect P2P botnets. They could not detect
botnets by themselves.

This paper presents a P2P botnet detection approach
which focuses on C&C traffic of P2P bots regardless of
how they perform malicious activities. The approach first
discovers flow dependencies in C&C communications and
then detects P2P bots using true flow dependencies. Com-
pare with other approaches, our approach does not rely on
the malicious activities of bots and focuses on the intrinsic
characteristics of C&C traffic. In addition, it requires no
external system and no a priori knowledge of botnets, such
as traffic signatures [19].

The contributions of this paper are as follows. First, we
found an intrinsic characteristic of C&C communications in
P2P bots, which we called flow dependency. Second, we
proposed a flow dependency extracting algorithm which is
based on time information and a large number of samples.
Third, we proposed a technique which utilizes flow depen-
dency to detect P2P botnet.

The rest of the paper is organized as follows. Section 2
introduces the relatedwork. Section 3 presents the assumptions,
architecture and implementation of our detection approach. The
evaluation of our approach is shown in Section 4. Section 5
makes a discussion and Section 6 concludes the paper.

2 Related work

Since P2P botnets emerged on the Internet, many studies
focus on analyzing the behaviors and structures of some
popular P2P botnets, such as Storm [7, 10–12], Nugache
[10, 13] and Waledac [14–16]. These studies provide us a
good understanding of P2P botnets.

So far, many approaches have been proposed to detect
centralized botnets. However, the techniques to detect P2P
botnets are still ongoing. BotHunter [20] can detect central-
ized or P2P botnets by identifying a series of malicious
behaviors, such as scanning, binary download and control
channel establishment. BotMinner [21] is able to detect
botnets regardless the C&C structures and network proto-
cols. It assumes that bots in the same botnet communicate
with the same C&C servers/peers and perform similar ma-
licious activities. BotMinner finds clusters of hosts which
share similar communication traffic and similar malicious
traffic and considers such hosts as bots.

BotGrep [22] is an algorithm to detect P2P botnets by
analyzing the communication graphs of the large network.
Nodes in the graph represent hosts and edges represent the
communications between hosts. BotGrep first identifies group

of P2P hosts then differentiates P2P botnets from legitimate
P2P networks based on the information of external system.
BotTrack [23] detects P2P botnets using linkage analysis
algorithm PageRank. It first creates a dependency graph be-
tween hosts and then runs the PageRank to extract nodes
which are strongly linked to each other and outputs the hub
rank and authority rank of each node. Given the authority and
hub values, a density-based clustering algorithm is applied to
find nodes with similar roles within the network. To identify
bot groups, the data from honeypot is leveraged. The clusters
which contain known bots are considered to be bot clusters.
Coskun et al. [24] proposed a method which can identify
potential members of an unstructured P2P botnet starting from
a known peer. The paper is based on the hypothesis that in an
unstructured P2P botnet, any given pair of P2P bots commu-
nicate with at least one common external bot during a given
time window. The approach first constructs a mutual con-
tacts graph then applies an iterative algorithm to identify
other members of the botnet by computing a level of
confidence to each host on the graph. The hosts with high
level of confidence are declared as members of the same
P2P botnet as the seed-bot.

Contrast to previous work, our approach does not rely on
malicious activities of botnets. We focus on the C&C commu-
nications of botnet and detect the intrinsic characteristic of
C&C communications. Besides, our approach does not require
external tools to get bots’ information, such as honeypots and
intrusion detection systems. Our approach can detect P2P bot-
nets by discovering the flow dependencies in C&C traffic.

3 Detection architecture and implementation

In this section, we first present the problem statement and
motivations of the paper then propose the architecture and
implement of our detection approach.

3.1 Problem statement and motivations

Botnets perform both malicious activities and C&C com-
munication activities. However, bots does not perform ma-
licious activities all the time. Before receiving commands,
bots may stay idle. What’s more, some bots perform mali-
cious activities in a stealthy way. For example, bots send
spam stealthily. It’s hard to detect the malicious traffic [25].
On the other hand, the C&C communication activities are
constant throughout the life-cycle of bots. That’s because
bots need to maintain connections with other bots to receive
commands or updates. Therefore, we only focus on the
C&C communication traffic to detect P2P botnet.

Compared with centralized botnets, the C&C communi-
cations of P2P botnets are relatively complex. To detect P2P
botnets, we make use of the following observations: 1) there
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are flow dependencies in the C&C traffic of P2P bots, and 2)
although different bots connect different peers, it is probable
that any given pair of P2P bots connect with at least one
common external bot during a given time period [24, 25].
We now explain the two observations in detail.

In the first observation, why C&C traffic of P2P bots has
flow dependencies? Note that many P2P botnets apply the
publishing/subscribing mechanism [26], namely “pull”mech-
anism. In this mechanism, botmasters publish the commands
over the P2P botnet. The commands are associated with
special keys. In order to gain commands, bots search their
neighbor peer lists for specific keys frequently/periodically
[8]. In addition, bots frequently communicate with peers in
their neighbor peer lists to send keep-alive messages [21].
Take the Storm botnet for an example, it utilizes pull mecha-
nism. Every day 32 different keys are generated by an algo-
rithm, which takes the current day and a random number
between 0 and 31 as input [8].

According to the previous analysis, we assume that each
bot in P2P botnets maintains a peer list to exchange keep-alive
messages and receive commands or updates. It communicates
with the same hosts repeatedly [27]. What’s more, bots con-
nect the peers of their lists in the same the order. This botnet
model fits with the most current P2P botnets and other botnet
models are outside the focus of our paper. We consider that
flows between bots and different hosts in their lists manifest
dependency relationship. Normal hosts behave randomly
since human may think when they connect the Internet, while
bots run programs and behave regularly. Thereby, the flow
dependencies of bots are clearer than normal hosts.

Example of flow dependency in C&C traffic of P2P bot is
shown in Fig. 1. Suppose that bot H is a P2P bot and four
hosts are in its peer list. Bot H frequently/periodically com-
municates with the peers in its list. Every time bot H

communicates with the peers in the same order. flow A, flow
B, flow C, flow D are flows between bot H and peers in its
list. The following flow always arrives after the previous
flow within a predefined time window θ. Each random or
fixed time Δ, bot H connects the peers in its list. In our flow
dependency model, we assume previous flows trigger the
following ones. We present a flow dependency graph which
visualizes the dependency relationship between flows. Each
node in the flow dependency graph represents a flow. A
directed dotted line from flow A to flow B indicates that flow
B is dependent on flow A, that is, flow B always appears
shortly after flow A, denoted as flow A→ flow B.

The second observation is obvious. Bots frequently con-
nect peers in their lists to receive commands or updates. For
a P2P botnet with an unstructured topology, peers in the lists
of different bots have overlap. Thus, different bots in the
same P2P botnet may connect common peers. However,
aside from P2P bots, legitimate hosts may connect common
peers. For example, there are popular servers that most hosts
connect, such as Google and Yahoo etc. But they may not
show flow dependencies. So we make use both of the two
observations.

In summary, to detect hosts within a monitored network
which are infected by P2P bots,we focus on C&C commu-
nications of P2P bots. We first discover flow dependencies
in C&C traffic and then identify bots according to the
common hosts in their flow dependencies.

3.2 Architecture and implementation of detection approach

In this section, we present the architecture and the imple-
mentation of our detection approach. As shown in Fig. 2,
our approach consists of three components: flow capture,
flow dependency extractor and bots detector.

flow A
flow B

flow C
flow D

flow A
flow B

flow C
flow D

flow A
flow B

flow C
flow D

bot A bot B bot C bot D
flow dependency graph

time

flow A

flow B

flow C

flow D

bot H

Δ

θ

Fig. 1 Example of flow
dependency
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Flow capture is to obtain the candidate flows. It contains
two modules: flow generation and filter. Flow generation
translates the raw packets to TCP/UDP flows based on
packet headers. Filter is to exclude the traffic which is
unlikely related to P2P bots.

Flow dependency extractor discovers flow dependencies
and considers the hosts which have flow dependencies as
candidate hosts. Given a maximum time interval T_dep and
difference of occur times N_dep between two dependency
flows, flow dependency extractor first discovers two-level
flow dependencies and then finds multi-level flow depen-
dencies based on the two-level flow dependencies. The flow
dependencies with score larger than Sdep_th are considered
as true flow dependencies.

Bots detector is to identify P2P bots. It first computes the
distance between any given pair of candidate hosts. The
distance between two hosts relies on true flow dependencies
and the common external hosts the two hosts connect with.
Then bot detector applies a hierarchical clustering algorithm
over hosts according to the distance computed above to
identify P2P bots. The parameter dist_th is used to separate
bot and normal clusters. We describe each of the compo-
nents in detail in the following sections.

3.2.1 Flow capture

(1) Flow generation

To identify the flow dependencies, we translate raw
packets into flows. It is nontrivial because, firstly, multiple
packets belong to a flow and analyzing packets can not
convey explicit dependency information and may introduce
much redundancy. Secondly, flow records need much
smaller storage and computation costs than packets.

A flow is defined as a sequence of packets between a
source and a destination within a connection. A flow is
generated in terms of IP addresses, ports and protocol.
Packets with the same five tuple (localIP, localPort, remoteIP,
remotePort, protocol) compose a flow. localIP and localPort
are the IP address and port of host inside the monitored
network. remoteIP and remotePort are the IP address and port
of host outside the monitored network. The flow is bi-
directional. The source IP address/port and the destination IP
address/port are swappable. The time interval between any
two consecutive packets in a flow must be less than the time-
out threshold.

Due to most P2P botnets use UDP or TCP protocol for
communication, we analyze UDP and TCP flows. TCP 3-way
handshake (SYN, SYN-ACK, ACK) packets between a client
and a server indicate the start of a TCP flow. TCP 4-way
handshake (FIN, ACK, FIN, ACK) or RST packets indicate
the termination of a TCP flow. While processing TCP flow
records, we only analyze the successful TCP flows and ignore
flows that do not have a completed handshake. UDP packets
with the same five tuple (localIP, localPort, remoteIP,
remotePort, protocol) are aggregated into a UDP flow
and the time interval between any two consecutive
packets in a flow is less than the timeout threshold.

To discover flow dependencies, we use TCP/UDP packet
headers and time information. Such information is easy to
obtain and independent of packet payload. The flow infor-
mation is recorded as follows: (1) five-tuple; (2) start time,
that is the arrival time of the first packet within a flow; (3)
end time, that is the arrival time of the last packet within a
flow; (4) the duration time of a flow, that is the difference
between end time and start time; (5) the number of packets
in a flow; (6) the bytes of a flow, that is the sum of bytes of
the packets in a flow.

(2) Filter

To reduce the volume and noise in network traces, we
filter out all the traffic unlikely related to P2P botnets. We
note that the filter is not critical for our detection approach.
However, it is useful to reduce the traffic and make the
detection more efficient. The filter is down in three steps.
In the first step, we filter out the flows with small bytes. The
C&C flows of botnets generally consist of small packets.
The total bytes of C&C flows are usually small. On the other
hand, the total bytes of many legitimate flows may large,
such as the media flows.

In the second step, we filter out long flows. Another
characteristic of C&C flows is that the duration time of
C&C flow is usually short. The long running flows are
common in network, such as long SSH sessions and remote
desktop connections, which could be kept alive for hours.
We ignore all flows that are active over a long period of
time.

Flow generation

Filter

Two-level flow
dependency

Multi-level flow
dependency

Distance computation

Hosts clustering

Candidate flows

True flow dependencies
and candidate hosts

dist_th

Sdep_th

T_dep

N_dep

Flow capture

Flow dependency
extractor

Bots detector

bots

Fig. 2 Architecture of detection approach
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In the third step, we filter out the flows rarely happen.
Due to P2P bots frequently connect to the peers in their peer
lists, the flows between bots and the peers in their lists
frequently happen. Those flows between two hosts rarely
happen may not be related to botnets. Due to P2P bots
usually use random port to communicate, such as Nugache
[13], we ignore the port number and only consider the IP
addresses and protocol of a flow.

3.2.2 Flow dependencies extractor

Flow dependencies extractor is to discover flow dependencies
and identify candidate hosts likely to be bots. Hosts having
flow dependencies are considered as candidate hosts. Flow
dependencies extractor first discovers two-level flow depen-
dencies and then discovers multi-level flow dependencies.

(1) Two-level flow dependency

How to extract two-level flow dependencies in a given
trace? Our key insight is that if a pair of flows consistently
occurs together, they may have dependency relationship. We
discover flow dependencies by looking for the time corre-
lation of flows. For example, if flow B is observed shortly
after flow A, we can assume flow B is dependent on flow A.
While time correlation may not always indicate a true de-
pendency, we rely on a large number of samples to reduce
the false positives. In other words, our idea is to extract a
pair of flows which occur together frequently and repeat
consistently over time.

However, there may be too many flows within a few
hours. Examining every pair of flows is expensive and not
scalable and efficient. To solve the issue, our approach
applies two heuristics. Given a current flow, firstly, we only
analyze the flows that start after a short time of the current
flow because a flow is usually dependent on the flow which
occurs recently. To capture all the possible flow dependen-
cies, the time window should be set larger. Secondly, we
only analyze the flows which occur with nearly number of
times. If two flows always occur together, the number of
occurrences of these flows are almost equal to each other
during the same period.

Given the filtered flows obtained in previous step, all m
flows with the same protocol (TCP/UDP) that share the same
local host h, are aggregated into a group Gh0{fi}i01,2…m,
where each fi is a single TCP/UDP flow. In a given period of
monitor time, we compute the number of occurrences of each
flow. For each groupGh, we sort flows {fi}i01,2…m in the order
of their start time. Metric T denotes the number of times two
flows occur together. On observing a flow record, we look
forward to all the following flows that start within the prede-
fine timeframe T_dep. If such flows exist, we further check
whether the number of occurrences of these flows is almost
equal to the current flow. N_dep denotes the difference of

occur times between two flows. If such flows are found, these
flows may be dependent on the current flow. Each pair of
flows is considered as a candidate flow dependency. We
increase the metric T of these flow dependencies by one.

The identified candidate flow dependencies may have
false positives due to coincidental flows that occur together.
We rely on a large number of samples to reduce the false
positives. A flow dependency is considered as true, if the
score of the flow dependency is greater than Sdep_th. Give a
candidate two-level flow dependency fi→ fj, we use the
following metric to score it:

Sdep fi ! fj
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ti2j

Ni*Nj

s
ð1Þ

Ni is the number of occurrences of flow fi. Tij is the
number of times flow fj happens shortly after flow fi. The
larger the score is, the more likely the two of flows have
dependent relationship. If the score of a flow dependency is
larger than Sdep_th, we consider the flow dependency as
true. Figure 3 shows the algorithm of extracting two-level
flow dependencies.

(2) Multi-level flow dependency

So far, two-level flow dependencies have been discov-
ered. However, two-level flow dependencies also exist in
normal traffic. For example, a flow to a web server is often
dependent on a flow to a DNS server. But flow dependen-
cies of P2P bot usually involve more than two flows, be-
cause the number of peers in the peer list of P2P bot is
usually more than two. To identify P2P bots, multi-level
flow dependencies should be extracted.

Multi-level flow dependencies are extracted by combin-
ing lower level flow dependencies. For example, two-level
flow dependency f1→ f2 and f2→ f3 will infer a three-level
flow dependency f1→ f2→ f3. Further, if f3→ f4 is a true flow

Algorithm 1 Extracting two-level flow dependencies
Input: F-the set of candidate flows during an epoch
Output: Two-level flow dependencies
1: Compute the number of occurrences

for each flow fi in F, denoted as Ni

2: foreach local host h in F do
3: Find the set of flows Gh of h
4: Sort the flows in Gh in the order of start time
5: foreach flow fi in Gh do
6: Find flows Fh start after fi within T_dep
7: foreach flow fj in Fhdo
8: if |Ni-Nj|<N_dep then
9: if fi fj candidate flow dependencies set D then
10: Tij=Tij+1
11: else
12: Insert fi fj to D
13: foreach fi fj in D do
14: Compute Sdep(fi fj)
15: if Sdep(fi fj)>Sdep_th then
16: Label fi fj as true flow dependency

Fig. 3 Algorithm of extracting two-level flow dependencies

324 Peer-to-Peer Netw. Appl. (2014) 7:320–331

 

 

 



dependency, it could deduce a four-level flow dependency
f1→ f2→ f3→ f4. The score of a k-level flow dependency is
calculated as follows:

S f1 ! f2 ! ::: ! fkð Þ ¼
Yk�1

i¼1

S fi ! fiþ1ð Þ ð2Þ

When discovering the multi-level flow dependencies, we
only consider the true flow dependencies whose scores are
larger than Sdep_th. The local hosts which have two-level or
multi-level flow dependencies are more likely to be P2P
bots and they are considered as candidate hosts.

3.2.3 Bots detector

(1) Distance computation

Once flow dependencies are discovered, bots detector
is applied to identify P2P bots. At a first step, the
distance between each pair of candidate hosts is com-
puted. As mentioned early, bots of a P2P botnet com-
municate with peers in their lists to receive commands
or updates. Although different bots connect different
peers in their lists, it is likely that any pair of P2P bots
connect at least one common peer because of bots in
the same botnet use the same P2P protocol and net-
work. Based on the observation, we measure the dis-
tance between candidate hosts according to the overlay
of common hosts in their flow dependencies. Given a
set of k-level flow dependencies, we use the Jaccard
Similarity Coefficient to measure the kth similarity be-
tween two hosts Ha and Hb. The kth similarity is de-
fined as follows:

SimðkÞ Ha;Hbð Þ ¼
DEPðkÞ

a \ DEPðkÞ
b

���
���

DEPðkÞ
a [ DEPðkÞ

b

���
���

if DEPðkÞ
a \ DEPðkÞ

b

���
��� 6¼ 0; DEPðkÞ

a [ DEPðkÞ
b

���
��� 6¼ 0

0 otherwise

8>>><
>>>:

ð3Þ

DEPðkÞ
a and DEPðkÞ

b are respectively the sets of remote
hosts in the k-level flow dependencies of host Ha and Hb.
Then we define distance between two hosts Ha and Hb as:

Dist Ha; Hbð Þ ¼
Xn
k¼2

wk* 1� SimðkÞ Ha;Hbð Þ
� �

;wk

¼ k
Pn
k¼2

k
ð4Þ

wk is the kth weight of distance and wk is not the same
when k changes. As we see previously, normal hosts may
have flow dependencies, but their levels are usually lower
than P2P bots. To identify P2P bots, we increase wk when k
increases.

(2) Hosts clustering

After computing the distance, a distance matrix D0

{dab}a,b01…n consisting of distance dab0dist(Ha, Hb) be-
tween each pair of hosts is generated. n is the number of
candidate hosts. To identify P2P bots clusters, a single-
linkage hierarchical clustering algorithm [28, 29] is applied.
The hierarchical clustering algorithm takes D as input and
outputs a dendrogram which is a tree-like graph (see Fig. 7),
in which the leaves represent the original hosts and the
lengths of the edges represent the distances between clusters
[28]. The dendrogram shows the relationship among hosts.
The smaller the distance between two hosts is, the shorter

edge the hosts are connected in the dendrogram. To group
the hosts into clusters, a parameter dist_th is used to cut the
dendrogram at a certain height. dist_th is set according to
the distribution of distances among hosts. If some hosts have
small distances to each other and form a dense cluster and
other hosts have larger distances, we set dist_th to the
middle of the small distances and large distances. Too large
dist_th may lead to false positives, normal hosts may be
clustered to botnet clusters, while too small dist_th may lead
to false negatives, and some bots may not be detected. Thus,
dist_th should be set according to the distances distribution.
We cut the dendrogram at dist_th and classify the clusters
below dist_th as bot clusters.

4 Evaluation

In this section, we evaluate the effectiveness of our P2P
botnet detection approach. We have tested its performance
on real world traffic merged with synthetic P2P botnet
traffic.

4.1 Dataset and experiment setup

We collected real world traffic by a sensor at the campus
network of Tianjin Polytechnic University. The sensor runs
tcpdump which is configured to collect TCP/UDP packets
between internal and external networks and write to a pcap
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file every hour. The data was captured through port mirroring
on the core switch. The traffic rate is 150Mbps–200Mbps at
daytime. The number of the hosts in the monitored sub-
network is about 200. Because we consider the flows with
the same protocol, in our experiment we analyze the UDP
traffic only. TCP traffic is analogous. The data we used is 5 h
long from eight o’clock on April 4, 2011. The statistics of
background traffic are shown in Table 1.

Given the 5 h background traffic, we counted the number
of flows for each (local IP, remote IP) pair. As shown is Fig. 4,
a lot of pairs have less than five flows. For example, 400697
(local IP, remote IP) pairs have only one flow. 37172 pairs
have two flows. 10047 pairs have three flows. But bots (local
IP, remote IP) pairs may have much more flows because they
need to frequently connect the peers in their lists to get
commands or updates. In our experiment, we filtered the
traffic of (local IP, remote IP) pairs which have less than four
flows.

Ideally, we should capture botnet traces in the Internet and
add them to traces of non-botnet. Unfortunately, real bots
traces are very difficult to obtain, due to the reluctance of ISPs
to share their internal traffic. Besides, it is hard to get ground
truth on which hosts are bots. An accurately labeled data set
should be used to evaluate our approach. Inspired by former
work, such as [22, 23, 30], which applied their approaches to
synthetic traces. We also synthesize botnet traces and inject
them into the real-world traces of non-botnet.

We added synthetic P2P botnet flows by taking into ac-
count the local IP address, remote IP address, start time,
duration and protocol since our approach only relies on them.
Each bot maintains a peer list. Every random time Δ (Δ∈[55S,
65S]) bots sequentially connect the peers in their lists. The
internal time interval θ is between 0.01 s and 0.1 s. In the same
botnet, peers in lists of different bots may overlap.We define p
as the percentage of common peers in the lists of different bots
and change p to simulate different botnet models. To simulate
the realistic scenario, we randomly select different IP
addresses from the normal traffic and replace the IP addresses
of bots. That is, the infected hosts show both normal and
botnet-related behavior.

In our experiment, parameter T_dep01 s. Since the time
intervals between most pairs of normal flows which do not
have dependency are beyond 1 s. In our botnet model, the time
interval between the previous flow and the following flow θ is
in [0.01 s, 0.1 s] and less than 1 s. So we set T_dep to 1 s.

Parameter N_dep01. Using the 5 h data, we have exam-
ined the number of dependent flow pairs when N_dep
increases from 1 to 8. The results are shown in Table 2:

Table 2 shows that as N_dep increases, the number of true
botnet dependent flow pairs does not change and all the botnet
flows have been discovered, while the number of true normal
and total dependent flow pairs increase. Our goal is to discov-
er botnet flow dependency, so the number of normal depen-
dent flows is the small the better. So we set N_dep to 1.

4.2 Experiments results

We made a statistic of host percentage for different flow
dependency level. We set common peers percentage p0
60 % and flow dependency score threshold Sdep_th00.5. As
shown in Fig. 5, the percentages of hosts which have two-
level or three-level flow dependencies are higher. All the bots
have two-level and three-level flow dependencies. Some nor-
mal hosts have two-level and three-level dependencies. But
there is no normal host having flow dependencies with level

Table 1 Statistics of
background traffic Description Value

Duration of trace 5 h

Total number of packets 2,376,163

Number of flows 227,863

Number of active local
hosts

181

Number of remote hosts 12,735

Number of (local IP, remote
IP) pairs

468,606
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Fig. 4 The number of flows per
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larger than three while bots still have flow dependencies with
higher level. As the level of flow dependency increases, the
percentages of bots decrease. It confirms the fact that bots
have flow dependencies and their levels are higher. Although
normal hosts have flow dependencies, their levels are lower
and no more than three.

Taking the two-level flow dependencies as example, we
examine the influence of Sdep_th on the true flow dependen-
cy percentage. It is easy to see from Fig. 6, as Sdep_th
increases, the percentages of botnet true flow dependencies
do not change and remain 100 %, while the percentages of
normal true flow dependencies decrease. When Sdep_th
increases from 0 to 0.1, the percentage of normal true flow
dependencies decreases sharply, it is deduced that the scores
of most normal flow dependencies are less than 0.1. This is
due to normal pair of flows happen together coincidently
and their number of samples is small. On the other hand,
botnet flow dependencies have a large number of samples so
their scores are large than Sdep_th regardless of what the
value of Sdep_th. Our goal is to extract botnet true flow
dependencies, so the percentage of normal true flow depen-
dencies should be small. Large Sdep_th will eliminate more
normal true flow dependencies. When Sdep_th is larger than
0.4, the percentage of normal true flow dependencies is very
small. We could set Sdep_th in (0.4, 0.9].

When detecting bots, we applied hierarchical clustering
on the distance matrix. Parameter dist_th is used to identify
dense clusters and find the botnet clusters. Figure 7 shows
an example of hierarchical clustering dendrogram. We set
common peers percentage p060 % and flow dependency
score threshold Sdep_th00.9. P2P bots have common peers

in their lists, thus the remote hosts of flow dependencies
overlap and result in small distances and dense clusters. As
shown in Fig. 7, when we cut the tree at dist_th00.6 to
identify dense clusters, distances between any pair of P2P
bots are smaller than dist_th. P2P bots form a dense cluster,
while normal hosts have larger distances to each other and
can not form a dense cluster.

The performance of our approach is measured by detec-
tion rate (DR) and false positive rate (FPR). DR is the rate
of bots correctly identified. It is defined by the formula:

DR ¼ TP

TP þ FN
ð5Þ

TP is the number of true positives (bots classified as bots)
and FN is the number of false negatives (bots classified as
non-bots). FPR is defined as the rate of normal hosts mis-
takenly classified as bots. It is defined as follows:

FPR ¼ FP

FP þ TN
ð6Þ

FP is the number of false positives (non-bots classified as
bots) and TN is the number of true negatives (non-bots
classified as non-bots).

Figure 8 shows Receiver Operating Characteristic (ROC)
curves to display the relationship of DR and FPR. The
horizontal axis represents the FPR and the vertical axis
represents the DR. The chains are established by varying
dist_th from 0.1 to 0.9. We can see that the best results have
been achieved which attain the 100 % DR and 0 % FPR. It’s
observed that as dist_th increases, DR increases. But when
dist_th increases to a certain value, DR remains 1. When

Table 2 The number of dependent flow pairs for different N_dep

N_dep 1 2 3 4 5 6 7 8

Number of true botnet dependent flow pairs 834 834 834 834 834 834 834 834

Number of true normal dependent flow pairs 815 1,105 1,300 1,473 1,561 1,611 1,727 1,797

Number of total dependent flow pairs 31,652 47,517 61,192 73,280 83,588 92,636 100,758 107,568
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dist_th<00.7, FPR is equal or nearly equal to 0, while
dist_th>0.7, FPR increases sharply. This is due to normal
host are different from each other and their distances are
larger than dist_th when dist_th<00.7. It’s obvious that the
larger the p is, the larger the DR. This is because larger p
will lead to more common peers that different bots connect,
thus distances among bots will smaller than dist_th and bots
could be detected.

We have estimated the detection performance when there is
no P2P botnet or there are two P2P botnets in the monitored
network. It is possible that no host is compromised by P2P bot
in the monitored network. In this case, we are concerned with
the FPR. We applied our approach on the background traffic,
where we set dist_th00.7. No host is detected as bot and
FPR00 %. It is also possible that two P2P botnets compro-
mise the hosts in the monitored network. We simulated the
C&C traffic of two different botnets and the peers of the two
botnets are different from each other. We applied our approach

on the data and set dist_th00.7. The two botnets are detected.
DR0100 % and FPR00 %. Figure 9 shows the hierarchical
clustering dendrogram of the two cases. Figure 9(a) shows
that normal hosts could not form a dense cluster and Fig. 9(b)
shows that there are two dense clusters which are respectively
the two different P2P botnets.

5 Discussion

Our approach detects P2P botnets by discovering flow
dependencies. The dependency flows have to happen
together frequently. If these flows rarely happen, our
approach may have difficulty to discover the flow de-
pendency. The limitation is common in dependency
discovery techniques based on network. The limitation
can be mitigated by extending the time period of the
collected data.
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The legitimate P2P hosts may frequently connect the
peers in their neighbor lists to search for files or main-
tain the P2P network. They may have flow dependen-
cies too. In our approach, two means can classify the
legitimate P2P hosts and P2P bots. First, since the
active time of the legitimate P2P hosts may be short,
it is usually determined by users. For example, users
may shut down the P2P application when they have
downloaded the files. While the active time of P2P bots

is long since they run as long as the underling system.
Thus, the number of samples of legitimate P2P hosts’
flow dependencies may be less than P2P bots’ and the
metric Tij of legitimate flows may be smaller. Second,
the cluster process can exclude legitimate P2P hosts.
Since different legitimate P2P hosts tend to search for
different files and the peers they connect have small
possibility to overlay, so the distance of legitimate P2P
hosts are large and they could not form a dense cluster.
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On the other hand, P2P bots in the same botnet usually
connect common peers and their distances are small, thus they
could form a dense cluster and can be detected.

6 Conclusion

In this work, we proposed a P2P botnet detection approach
which focuses on C&C communications of P2P bots. Our
approach first translates raw packets to TCP/UDP flows and
filters unrelated flows. Then, it discovers flow dependencies
using an algorithm which relies on time information and a
large number of samples. Finally, it utilizes the true flow
dependencies to cluster hosts and identify P2P bots. We
implemented the approach and evaluated its performance.
The experimental results confirm the fact that flow depen-
dencies could be used to detect P2P bots and our approach
can detect P2P bots with high detection rate and low false
positive rate. In the future, we plan to extend our approach
to detect P2P botnets in real time. In addition, extending our
approach to detect cloud-based botnets is also our future
work.
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