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Abstract— Nowadays, more and more workflows with different
computing requirements are migrated to clouds and executed
with cloud resources. In this work, we study the problem of
stochastic multi-workflows scheduling in clouds and formalize
this problem as an optimization problem that is NP-hard. To solve
this problem, an efficient stochastic multi-workflows dynamic
scheduling algorithm called SMWDSA is designed to schedule
multi-workflows with deadline constraints for optimizing multi-
workflows scheduling cost. The proposed SMWDSA consists
of three stages including multi-workflows preprocessing, multi-
workflow scheduling and scheduling feedback. In SMWDSA,
a novel task sub-deadlines assignment stretagy is design to
assign the task sub-deadlines to each task of multi-workflows for
meeting workflow deadline constraints. Then, we propose a task
scheduling method based on the minimal time slot availability to
execution task for minimizing workflow scheduling cost while
meetingt workflow deadlines. Finally, a scheduling feedback
strategy is adopted to update the priorities and sub-deadlines of
unscheduled tasks, for further minimizing workflow scheduling
cost. We conduct the experiments using both synthetic data and
real-world data to evaluate SMWDSA. The results demonstrate
the superiority of SMWDSA as compared with the state-of-the-
art algorithms.

Note to Practitioners—Workflow scheduling in clouds is signif-
icantly challenging due to not only the large scale of workflows
but also the elasticity and heterogeneity of cloud resources.
Moreover, minimizing workflow scheduling cost and satisfying
workflow deadlines are two critical issues in scheduling with
cloud resources, especially the uncertainty of workflow arrive
time and task execution time are considered. To meet workflow
deadlines, it is an effective strategy to decompose workflow dead-
line constraints into task sub-deadline constraints. To minimize
the workflow scheduling cost, each task in a workflow needs
to be assigned to their most suitable VMs for execution. This
article presents a novel workflow scheduling algorithm to sched-
ule stochastic multi-workflows in clouds for optimizing multi-
workflows scheduling cost and meeting workflows deadlines.
This algorithm obtains the task sub-deadline constraints based
on the characteristics of workflows for meeting the worklfow
deadline constraint. Under the premise of meeting task deadlines,
it schedules tasks to a VM with minimum the slot time, for
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minimizing the cost. Case studies based on well-known real-world
workflows data sets suggest that it outperforms traditional ones
in terms of success and cost of multi-workflows scheduling.
It can thus aid the design and optimization of multi-workflows
scheduling in a cloud environment. It can help practitioners
better manage the scheduling cost and performance of real-world
applications built upon cloud services.

Index Terms—Dynamic scheduling, multi-workflows, deadline
constraints, cloud computing.

I. INTRODUCTION

LOUD computing is a new way to provide a powerful

computing infrastructure with virtualized technologies
and is widely used in the industrial and commercial fields
[1], [2]. The cloud model consists of a great number of
servers which are equipped with adequate cloud resources,
such as CPU cores and memory. In clouds, multiple virtual
machines (VMs) instances are running simultaneously on
these servers. The main advantages of such computing model
are virtualization, pay-as-you-use, rapid elasticity, on-demand
access, and so on [3]. With these characteristics, cloud com-
puting is very appropriate to hand the diversity requirements
and various computing applications [4]. As a result, many
workflows applications, such as earthquake science workflow
Cybershake, bioinformatics workflow Epigenomics, Gaussian
elimination workflow, and fast Fourier transform workflow in
mathematics, have been successfully migrated to clouds and
executed with cloud resources [5].

In clouds, workflows scheduling is one of the crucial issues
which is to choose the most appropriate cloud resources to
workflow tasks for satisfying QoS constraints [6]. Workflows
are a type model which is used to describe applications
executed with cloud resources and generally comprised of a
large number of precedence constrained tasks which are con-
nected by controlflow dependencies and data-flow [7]. In gen-
eral, these workflows require lots of distributed computing
resources and need to be processed within deadlines. More-
over, workflows usually show high heterogeneity in deadline
constraints, suggesting the potential performance boost if the
deadline constraint can be effectively processed. Accordingly,
how to satisfy workflow deadline constraints has become an
challenge for scheduling in the cloud environment.

In addition, due to the diversity of workflows, a large
number of VMs with different computing capacity and config-
urations are required for distributed collaborative computing.
With the heterogeneity and the elasticity of cloud resources,
VMs can be dynamically acquired from the infinite cloud
resource pool for processing various workflows and faster

1545-5955 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.


https://orcid.org/0000-0002-5977-4911

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VMs are usually more expensive than slower ones. Moreover,
VMs generally charged per time frame or billing period
because of the different pricing model of cloud resources,
which would lead to unexpectedly high charges if the work-
flow scheduling does not take the cloud pricing model into
consideration. Consequently, it is another challenge to mini-
mize the workflow scheduling cost for scheduling in the cloud
environment.

To tackle these challenges, various scheduling methods
including heuristic scheduling [8], meta-heuristic schedul-
ing [9], hybrid scheduling [10] and learning scheduling [11]
have been investigated. Among these methods, heuristic
scheduling and meta-heuristic scheduling are probably the
most attractive ways to schedule workflows for minimizing
workflow scheduling cost and satisfying workflow deadlines.
Zhu et al. [12] introduced a heuristic algorithm called DyDL
based the list-scheduling framework to schedule workflows
with deadline constraints for optimizing workflow execu-
tion cost. This algorithm prioritizes tasks by their latest
start times and appoints tasks the placements which can
meet their latest start times and incur the minimal cost
increases. Chen et al. [9] modeled the workflow scheduling
as a multi-objective optimization problem and adopted two
colonies to design a multiple objectives framework for mini-
mizing workflow execution time and execution cost.

However, most of these studies assume that the task execu-
tion time with a specific VM is certain and can be accurately
estimated in advance [13], [14]. In fact, the performance
of VMs that is running on the servers of real commercial
IaaS clouds can not be kept stable [15], which results that
the actual task execution time may fluctuate frequently and
the execution of tasks is delayed. Moreover, successor tasks
also are delayed with the data dependencies and the contin-
uous cumulative delay may lead to the workflow deadline
violated [16]. In addition, the uncertainty of task execution
time seriously affects the effectiveness of scheduling strategy.
If we use the task execution time is greater than the actual
task execution time in scheduling, more VM instances will
be used to execution tasks which results the idle time slots
between assumed execution time of tasks and their actual
execution time will be wasted in the VM instances. Hence, it is
very significant to design an effective scheduling algorithm
for multi-workflow with uncertain task execution time in
clouds.

In this paper, we consider the stochastic multi-workflows
dynamic scheduling problem in clouds. This work aims
to design an efficient stochastic multi-workflows dynamic
scheduling algorithm called SMWDSA which is used to sched-
ule multi-workflows with deadline constraints for optimizing
multi-workflows scheduling cost. The proposed SMWDSA
consists of three stages including multi-workflows preprocess-
ing, multi-workflow scheduling and scheduling feedback.
In SMWDSA, a novel task sub-deadlines assignment stretagy
is design to assign the task sub-deadlines to each task of
multi-workflows for meeting workflow deadline constraints.
Then, we propose a task scheduling method based on the
minimal time slot availability to execution task for minimizing
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workflow scheduling cost while meetingt workflow deadlines.
Finally, a scheduling feedback strategy is adopted to update the
priorities and sub-deadlines of unscheduled tasks, for further
minimizing workflow scheduling cost. The contributions of
this paper are as follows:

(i) We study the problem of scheduling multi-workflows
with uncertain arrive time and task execution time in
clouds and model this problem as a constrained opti-
mization problem that optimizes workflow scheduling
cost and satisfies workflow deadline constraints.

(i) A novel stochastic multi-workflows dynamic schedul-

ing algorithm (SMWDSA) is developed to minimize
workflows scheduling cost and satisfy workflows dead-
lines. The basic idea is to prioritize the tasks of
multi-workflows and assign the sub-deadlines for these
tasks to meet workflow deadline constraints and satisfy
tasks dependency requirements. Furthermore, we update
dynamically the priorities and sub-deadlines of unsched-
uled tasks by a scheduling feedback strategy to opti-
mize workflow scheduling cost while ensuring workflow
deadlines.
We evaluate the proposed SMWDSA with extensive sim-
ulations. The experimental results show that SMWDSA
can significantly reduce the workflows scheduling cost
compared with benchmark algorithms.

The remainder of this article is organized as follows.
Section II discusses the related work. We describe the sys-
tem models and the problem formulation in Section III.
Section IV presents a stochastic multi-workflows dynamic
scheduling algorithm (SMWDSA). We evaluate the perfor-
mance of SMWDSA in Section V. We conclude this paper
in Section VI

(iii)

II. RELATED WORK

In the past few years, many researchers have conducted
extensive explorations, among which workflows scheduling
in clouds is a comparatively hot issue [17], [18], [19].
In this section, we introduce some related works on workflow
scheduling in clouds.

The problem of workflows scheduling with deadline-
constrained and cost optimization in a cloud computing sys-
tem was investigated in some recent works. In [20], two
workflow scheduling algorithms which are the IaaS cloud
partial critical paths (IC-PCP) algorithm and the IaaS cloud
partial critical paths with deadline distribution (IC-PCPD?2)
were designed to reduce workflow scheduling cost in clouds.
The IC-PCP and IC-PCPD?2 find the critical path of the work-
flow and distribute the workflow deadline among the critical
nodes with the PCP to minimize the workflow execution
while meeting the deadline constraint. In [21], Singh et al.
proposed a dynamic algorithm based on k-means cluster-
ing to schedule deadline constraint workflow for minimizinf
workflow execution cost. In [22], Sahni ef al. developed a
heuristic algorithm to scheduling science workflows with
deadline constraints for reducing workflow execution cost
in the cloud. Wu et al. [5] proposed a workflow scheduling
algorithm which is based on list ant colony optimization
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(L-ACO) to minimize workflow execution cost for satisfying
the deadline constraint in clouds. Arabnejad et al. [8] focused
on the scientific workflows scheduling problem which aims
to dynamically schedule scientific workflows for reducing the
execution cost while meeting deadline constraints.

In addition, some researches focus on multi-objective opti-
mization problem (MOP) for cost and makespan, which
minimizes cost and makespan in clouds simultaneously.
In [23], an evolutionary optimization algorithm based on
genetic algorithm (GA) was designed by Zhu et al. for solving
the multi-objective workflow scheduling problem in clouds.
Moreover, a novel multi-objective workflow scheduling algo-
rithm based on ant colony optimization was proposed by
Chen et al. [9] to optimal wokflow finish time and work-
flow execution cost. Han ef al. [24] introduced an efficient
two-phase list scheduling algorithm to scheduling workflows
in clouds for reducing the execution cost and the work-
flow makespan. Durillo et al. [25] designed a multi-objective
HEFT (MOHEFT) to optimize workflow execution time and
the execution cost. Wu ef al. [26] proposed an evolution-
ary list scheduling algorithm which adopts the list schedul-
ing and multiobjective evolutionary algorithm for optimizing
makespan and cost.

Recently, the stochastic workflows scheduling problems
are considered by some scholars in cloud environments.
In [27], a job scheduling problem was studied, which aims
to dynamically schedule jobs with requesting different cloud
resources. In [28], Cai et al. considered a effective method
to provision cloud resources and dynamic schedule Bag-
of-Tasks workflows which are with uncertain task execu-
tion times for decreasing the workflow scheduling cost.
Chen et al. [29] proposed a dynamic scheduling algorithm for
solving the uncertainty-aware workflow scheduling problems.
Furthermore, an uncertainty-aware online scheduling algo-
rithm (ROSA) was designed by Chen ef al. [30] to schedule
online workflows with stochastic task execution time for mini-
mizing workflow execution cost and satisfying workflow dead-
lines. Furthermore, Liu ef al. [31] extended the ROSA and
introduced an new workflow scheduling framework (NOSF)
to schedule online multi-workflows which are with the
stochastic task execution time and workflow arrival rates.
Arabnejad ef al. [32] presented a new algorithm, dynamic
workload scheduler (DWS) that handles the dynamics of mul-
tiple deadline constrained workflows arriving randomly and
scheduling these workflows with reducing cost. Gu et al. [33]
considered the problem of scheduling microservice work-
fows with hybrid resource provisioning and proposed an
adaptive-learning based scheduling algorithmic framework to
intelligently sequence, allocate and online adjust tasks as well
as monitor spot instance. Ma et al. [34] proposed a real-time
multiple-workflow scheduling (RMWS) scheme to schedule
workflows dynamically with minimum cost under different
deadline constraints. Dong ef al. [35] studied the workflow
scheduling problem considering the performance variation of
cloud resources and proposed a dynamic workflow scheduling
approach based on deep reinforcement learning (RLWS) to
minimize the makespan. In addition, some learning-based

TABLE I
SYMBOL AND NOTATION

Symbol Notation
w Workflow set
w# sth workflow
N The number of total workflows
Nsuce The number of success workflows
cTs Complete time of sth workflow
A® Arriving time of W*
D3 Deadline of W*
G* The dependence relation graph of W*
N* The number of tasks in W*
t]S. The jth task of W*
ST(t3) Start time of ¢}
FT(t3) Finish time of ¢;
Aet(t2) Basic approximate execution time of ¢?
TT(ejk) Transmission time between ¢3 and ¢} in W*
IT(t3(k)) Idle time of 7 in W with the VM instance Iy,
Est(t3) Earliest start time of ¢}
Ect(t3) Earliest finish time of ¢
Let(t3) Last finish time of ¢
ET(t3) Execution time of ¢7
pre(t]) Parent tasks set of ¢
succ(t3) Children tasks set of ¢}
T VM instances set
1] The number of rental VM instances for scheduling
Iy k-th VM instance
P(Iy) The price of the k-th VM

algorithms [36], [37] are used to solve the workflow schedul-
ing problem in cloud computing.

III. SYSTEM MODEL

In this section, we firstly introduce cloud resource model
and application model. Then, we formulate workflows schedul-
ing as a constrained optimization problem that minimizing
total cost while satisfying workflow deadlines. The important
definitions and notations are shown in Table I.

A. Cloud Resource Model

A cloud service platform provides different cloud resources,
such as CPU, RAM, disk storage and bandwidth to deal with
different applications based on their requirements. These cloud
resources are elastically used to process computing appli-
cations with different types of VMs. These VMs providing
services to end users are commonly measured in terms of
central processing unit (CPU) capacity, memory, and storage;
this allows VMs to be classified based on rankings and
costs [3]. A VM with a higher ranking provides a higher task
execution speed, which is more expensive to rent [26]. In this
paper, the available VM types is set as M and each VM type
is equipped with a price and configuration of cloud resources.
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VMs are pay-per-use on-demand in clouds and the VMs set
for executing workflows is denoted by Z = {[l; [,k = 1,2, ...}
which consists of M types of VMs, where [; represents the
k-th VM. For a VM [, we use P(l;) to represent the VM
unit price with a billing period. The parameter r; denotes the
VM weight for task execution time with VM [, which is
defined as the ratio between the task execution time on /; and
shortest task execution time. Specifically, Rank(l;) = 1 if task
execution time in minimal with VM [;. In addition, by the
pricing model of cloud resources, VMs are leased with the
whole hour by users at any time [38], that is the rental time
of a VM is generally billed in multiples of a unit of time.

B. Application Model

We consider a stochastic workflow set W = {W!, ..., WV}
with N independent sporadic workflows in this work. Let N
denote the total number of the workflow set WW. A work-
flow W* has the following features:

W' = (A", D', G\ T", E'}, M

where the arrival time is denoted as A* and the deadline of W*
is D®. Moreover, the directed acyclic graph (DAG) of work-
flow W* [39] is denoted as G*. A DAG G* consists of a task
set and a edge set which are represented as 7° = {t], ..., 3.}
and E° = {ef’j|i,j = 1,..., N°}, respectively. The jth task
of W* is denoted as 7; which has a stochastic execution time
E T(tjs.) with the highest rank of VMs for processing task ¢,
where ET(#}) is a random variable with normal distribution.
The edge ¢}, is the data dependency between task 77 and
t; and indicates that task ¢ is a immediate predecessor of
task 7} and task 7} is a immediate successor of task #;. We use
pre(tj ) and succ(tjs- ) to represent the immediate predecessors
set and the successors set of task tjs- , respectively. Then, for
each task the 7} in pre()), task ' is a immediate successor
of task ;. Specially, the workflow entry task 7;,,, has no
the immediate predecessor a and the exit task £ ;, has no
immediate successors.

In addition, the existing workflow scheduling approaches
adopted the normal distributions to address the fluctuation
of the task execution time which is along with the variation
of the VM computing capability. In our work, the inde-
pendent and normal distributions are used to describe the
task execution time on a VM. Similar to [40], we use an
approximate value Aet (tj ) to compute the task execution time
ET(t}), where ET (t}) denotes the task execution time with
the highest rank VM. Let E T(tjf) follow a normal distributions
N(e(t}), v(z})) with the expected value e(7;) and the variance
v(r}). Then, the Aet(t}) is calculated as

Aet (17) = e(t}) +o(r}). )

C. Problem Formulation

In this subsection, we model this problem as a constrained
optimization problem. Let VW denote the mutil-workflows set
which contains N independent sporadic workflows. In this
paper, we find a feasible schedule solution to minimize the
workflows scheduling cost WSC (W) for the workflow set W.
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We use P([;) to be the price of I; and the leased time of
VM I is denoted as LT. The finish time of workflow W* is
denoted as FT* and is defined as

FT® = max FT(tjf), 3)

;T

where FT (t}) denotes finish time of task 7} and 7* is the task
set for workflow W¥. The data transmission time between task
t‘; and # is calculated as

A

TT (e i
(e5) = 22 )

the data transferred from 7} to " is represented as d}, and bw
represents the average network bandwidth between different
VMs. Then, the problem formulations are as

min WSC(W) = > P(L)LT;, 5)
IkEI
subject to:
CT* < D, (6)
FT () +TT(¢}) < ST()), (7
1]
<1, (®)

N
pIESA
k=1

where the binary variable x} , is defined as

ik =

s {l, if 7} is scheduled on I; )

0, otherwise.

Constraint (6) explains that each workflow deadline is sat-
isfied. Constraint (7) indicates the data dependencies between
tasks are satisfied. Constraint (8) and (9) guarantee that every
task should be scheduled once only.

IV. SCHEDULING ALGORITHMS

In clouds, multi-workflows are executed with many hetero-
geneous VMs which have different computing capacity and
billing modes. For the heterogeneity of VMs, this paper uses
the VM weight and the VM service price to represent the
execution capacity and rental cost of VMs for the multi-
workflows scheduling. In addition, the elasticity is another
feature of cloud resources. In the process of multi-workflow
dynamic scheduling, VMs can be used flexibly, which greatly
improves the work efficiency. The cloud computing system
can provide unlimited VMs for workflow scheduling and
VMs can be scaled up at any time. In this section, we first
introduce the lower bound of multi-workflows scheduling cost
with heterogeneous VMs in clouds. After that, we propose
an efficient multi-workflows scheduling algorithm with elastic
VMs and analyze its computational complexity.

A. Lower Bound of Multi-Workflows Scheduling Cost

To assist the workflow scheduling algorithm design to
optimize multi-workflows scheduling cost in Section IV.B,
we first give the lower bound of workflow scheduling cost
for multi-workflows in this subsection.
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Fig. 1. Stochastic Multi-Workflows Dynamic Scheduling Process.

Lemma 1: Let W = {(W',..., W"} be a workflow set
and m ¢ M = {1,2,..., M} be the available types of VMs,
then the lower bound of the workflows scheduling cost for
workflows W can be obtained as

N N
> in{P (I ET. (¢
WSC(W) = ZZ,{Q%}{ (L) * ETy(1})}
s=1 j=
1]

+ D (P) * Ap),
k=1

(10)

where P (i) represents the price of VM I, ETi(z}) is the
actual execution time of task tj- with VM [ and A, corre-
sponds to the time slot between last task real finish time and
the released time of VM I.
Proof: For the workflow set W = {W!,..., WV}, the

workflows scheduling cost is calculated as

1]

WSCOW) = > P(I) * LTy
k=1

|1] ni
= > P+ Q_(ET} + Ay
k=1 =1

1] 1

=D P * D (ET) + D P(I) * Ay
k=1 I=1 I=1

N N 1

=D > P() * ETu(t}) + > P(L) * Ay

s=1 1 k=1

v

>
4

|1]

+ D (P(Ix) * Ag),

=1

min (P () * ETi(1})}

N
ke
= 1

j=
N$
j=

©

Y

laa$S Cloud

where n; represents the number of tasks scheduled on VM [
and E Tzk is the execution time of / —th task on VM ry. Hence,
the lower bound of the workflows scheduling cost is as:

N N° |7]
D2 min {P(L) x ET(t)} + X (PU) * Ap). (12)
s=1 j=1 < P

By inspiring with the Lemma 1, we optimize the workflow
scheduling cost via the following two ways: 1) reducing the
VM idle time slots for scheduling workflows Zy:ll(P(Ik) *
Ar); and 2) minimizing the executing cost for each task
minge (P (1) * ETk(tj)}. With this two ways, a heuristic
algorithm is designed to schedule multi-worklfows in clouds
in Section IV. B.

B. Stochastic Multi-Workflows Dynamic Scheduling
Algorithm

In this part, we present the details of our proposed
algorithm, which has three phases. First, workflow monitor
estimates the task execution time for each workflow and
obtains the task sub-deadlines constraints without violating
their respective completion time constraints in the workflows
preprocess stage. Second, Workflow scheduler constructs a
ready task priority queue for multiple workflows without
violating their respective deadlines and schedules tasks to
VMs to reduce multi-workflows scheduling cost in the work-
flow scheduling stage. Finally, feedback regulator updates the
original priorities and sub-deadlines of unscheduled tasks to
reduce the multi-workflows scheduling cost in the scheduling
feedback stage. The multi-workflows scheduling process is
shown in Fig. 1. The detailed description of the proposed
algorithm is given in Algorithm 1 and Algorithm 2.

1) Mutil-Workflows Preprocessing: When a workflow set
arriving, we firstly compute the approximation task execution
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Algorithm 1 Stochastic Multi-Workflows Dynamic Schedul-
ing Algorithm (SMWDSA)

Input: The current workflows set W = (W', ..., WV).
Output: A schedule solution § for workflows set W.

1: WE < empty, WS < empty;

2: while termination conditions not met do

3. for each workflow W* in W do

4: Calculate the execution time of each task in W,

5 Calculate the Earliest Start Time and the Earliest
Finish Time of each task in W*.

6: Calculate the Least Start Time and the Least Finish
Time of each task in W¥.

7: Calculate the workflow minimum finish time M ft*
for W*;

8: if Mft* > BU then

9: add Wk to Wt

10: else

11 add W* to WS

12:  while a new workflow does not arrive do

13: for each workflow W in W’ do

14: for each task # in W do

15: Calculate the sub-deadline of each task in W
with latest complete time by Eq. (17).

16: for each workflow W in WS do

17: for each task # in W do

18: if 7 is an entry task or the parents of ¢ are
assigned then

19: the task cluster number CN(t) = 1;

20: if ¢ is not an entry task and the parents of ¢ are
assigned then

21: CN(t)=max;epary CN(t*) + 1;

22: Calculate the sub-deadline of each task in W
by Eq. (19).

23: Add each task of W into Taskpool

24: if Taskpool is not empty then

25: for each task ¢ in Taskpool do

26: if each parent tasks of 7 is scheduled and ¢ is
not scheduled || 7 is an entry task then

27: Add task ¢ into the ready task set R7S;

28: if RTS is not empty then

29: Call Tasks scheduling(RTS),

30:  end while

31:  if a new workflow W* arrives then
32: W« W+ W¥

33: return A schedule S

time by Eq. (2). Then, we calculate the earliest start time and
the earliest completion time by VM weight r, = 1. The earliest
start time Est(¢’) for task ¢} is calculated as

AS,
maxt;epre(t;){ESt (t;;)_’_
Aet(t,) + TT(e),)},

if tt:g = tgntry;
Est(t}) = (13)

otherwise.

where Aet(t';,) is the approximation execution time and can be
calculated by Eq. (2). The transmission time between 7, and

Algorithm 2 Tasks Scheduling

Input: A ready task set R7 S and the active VMs set 7.

Output: A VM I* for scheduling each task ¢ in R.

1: Z, < empty, Finshset < empty, idleMax < oo, I* =
null;

2: Sort R7T S by non-descending sub-deadlines of tasks;

3: for each task 7 in R do

4:  for each I; in active VMs set 7 do

5: the finish time FTi(f) and cost Ci(z) of the task
t4 with Iy;

6 for each I; in active VMs set Z do

7: if FT;(t) < Dy, (t) and Cy(t) = min;czC;(¢t); then

8 Add I into Z,, and C(t) < Ci(t);

9 if Z, is not null then

10: for each VM instance I; in 7, do

11: Calculate the idle time idle(t) on Ii;

12: if idley(t) <idleMax then

13: I =I;

14 else

15: Start a new VM instance I with the minimum

execution cost while finish time FT, (t) < Dy, (?) ;
16: =1t
17:  Scheduling task ¢ on the VM [*;
18:  Add task I* into Z;
19:  Add task ¢ into Finshset;
20: R <« R—1;
21: for each task 7 in FinishedTaskSet do
22:  Calculate the actual finish time of task 7;
23:  for each successor task succ(t) of t do

24: if succ(t) is a ready task then

25: Update Est(succ(t)) of succ(t) by Eq. (28);
26: Update Ect(succ(t)) of succ(t) by Eq. (29);
27: Update Dy, (succ(t)) of succ(t) by Eq. (30);

28: return results;

tf is denoted as TT(e;i) and can be calculated by Eq. (4).
Accordingly, we calculate the earliest completion time Ect(t;')
as

Ect(t}) = Est(t)) + Aet (t}). (14)
Then, we calculate the latest completion time Lct(t]') as
D* i1 =,
Lct (l‘lig) = maxt;esucc(ti‘){LCt ([5)— (15)

Aet (1)) =TT (efq)} otherwise.

For a workflow W*, the minimum finish time (MFT) is defined
as

Mft' = max Ect(t]). (16)
tews

In addition, to reduce the the idle time slots cost of all
rented VM instance ZL’Z‘I(P(I;() * Ay), the workflow set is
divided into the long term workflow set and the short term
workflow set based on their MFT for reducing the number
of rented VMs . The workflow is a long term workflow
with Mft(W*) > BU and the short term workflow with
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Mft(W*) < BU, where BU is the time of billing unit.
In order to deal with the difference of two workflow type,
we adopt two different workflow deadline constraint decom-
position strategies to set task sub-deadline constraints for long
term workflows and short term workflows, respectively. For the
long term workflow, we make full use of the margin between
deadline and minimum completion time and set the latest
completion time of the task as the task sub-deadline to reduce
the workflow execution cost. Then, the task sub-deadline of
the lager workflow is denoted as Dy (¢}) and calculated as

Dp(1}) = Let (). (17)

Furthermore, we design a cluster-based deadline distribution
strategy for the short term workflows. The all tasks of a short
term workflow are divided into some clusters by satisfying the
dependency constraints between tasks. The the cluster number
of task #; is defined as

if tiS = tgntry’

CN ) = [1’ (18)

MAaXys e pre(r)(CN(1)+1)> otherwise.
In this way, the sub-deadline Dg(#7) for task # can be

described as
Ect(t)) — Est(t; )

Ect (tg"m) — Est(] )
x(Let(t; ) — Est(t] )).

Ds(r)) = AEst(£)) +

19)

where the minimal earliest start time Esz (7} ) with the same
cluster number of #; is as follow:

Est(t; )= min

: Est(t}
Imin CN([}Y):CN(I,:Y) ( J)’

(20)
and the maximal earliest complete time Ect(z; ) with the
same cluster number of ¢ is defined as

Ect(tl )= max

; Ect(t9).
Imax CN()=CN() ( J)

(2D
Similarly, the maximal last complete time [ct(#; ) with the
same cluster number of ¢} is denoted as

Let(r; )=  max

A 22
fmax ™ CN () =CN (G} -

)Lct(tj).
Then, we calculate the sub-deadline Dsub(t‘;) for task t‘; of
multi-workflows as:

Dy(t}), if Mft(W*) > BU ,

J . (23)
Dy (t‘j), otherwise.

Dsub(fj’) = [
2) Multi-Workflows Scheduling: The basic idea of the work-
flows scheduling phase is to assign one VM with the minimal
task execution cost for each task while satisfying the task sub-
deadline. We first obtain a ready task set from workflows with
the same arrival time. Moreover, we create a task scheduling
priority queue for the ready task set by increasing earliest
start time of tasks. Finally, each ready task is assign to a VM
according to the task priority. The detailed steps are shown in
following.
Ready Task Queue: We put the workflows with the same
arrival time into the workflow pool. Then, the ready tasks are
obtained from the workflow pool. A ready task has no parent

task or its parent tasks are scheduled. Furthermore, we obtain
the task sub-deadline for each task based on the workflow
deadline distribution methods and construct a task priority
queue for these ready tasks by increasing order of task sub-
deadlines. In this way, we prioritize one task with smaller sub-
deadline i.e., a higher priority to be scheduled is assigned for
one task with more stringent sub-deadline. Therefore, a ready
task priority queue is obtained with the task sub-deadlines.
VM Instance Selection: We aim to identify VMs for
executing the current ready tasks. We choose task #; with
highest task priority from the ready task priority queue and
compute the ready time RT; (tjs- ) of task #; on VM I as

RTk(tJS-):max{ max AFT(t]), AFT(I;)). (24)

1 epre(t})
where AFT (t7) and AFT (I;) denote the actual finish time of

task #7 and VM I, respectively. Then, we compute task finish
time FTk(tJS-) on VM I, as

FTi(t) = RTi(t}) + ETi(1}). (25)

where ETj (tj.' ) represents task execution time on VM I and
is calculated as

ETk(tj.') = Aet(t';) * Tp. (26)

where Aet (tjf) denotes the approximate task execution time of
task 7} with the highest rank VM according to Eq. (2) and ri
denotes the rank parameter of VM [;. To minimize the cost
for executing each task ming, ¢;{P(Iy) * ET (tjs-)}, the VM set
I* that satisfy the task sub-deadline and are with minimal
execution cost are selected from the active VM set. To further
minimize the VM idle time slots 21121 (P(ry) * Ay), the VM
with minimal idle time is chosen from [* to execute tasks,
where idle time / T(tjs-jk) is calculated as:

IT(t,) = RT(t}) — RT (). 27)

where RT(t';) denotes the task ready time and RT (/) denotes
the VM ready time. If all active VMs can not satisfy the task
sub-deadline, we will start a new VM with minimal execution
cost and satisfying task sub-deadline. Specially, if multi-
workflows are sparse tasks, we can construct a workflow
priority queue for these sparse tasks by increasing order of
workflow deadlines. Then, we choose the sparse task with
highest task priority from the workflow priority queue and
compute the ready time for it. Finally, these sparse tasks are
assigned to a most suitable VM for execution by Algorithm 2.

3) Scheduling Feedback: To ensure that all workflows are
finished within their deadlines, we adjust the original priorities
and sub-deadlines of the next ready tasks from Short term
workflows according to the actual finish time of scheduled
task in the scheduling feedback stage. For a ready task of the
small workflow, we calculate the new earliest start time and
earliest complete time as:

kS K} s
Est' (@) = max (A1) +TT(c; ) (28)

and

Ect*(t}) = Est*(t]) + Aet(t}), (29)
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where Af t(t';,) denotes the actual finish time of task 7, and
TT(e), ;) is the data transmission time from task 7, to task 7;
with Eq (4). Then, we update the sub-deadline for task 7} as:

D min{D§(r;), Let (1)},

if Mft(W*) > BU,
otherwise.

(30)

where D§(77) is the new sub-deadline for the short term
workflow tasks and calculated as:

D Est*(1 Ect*(t)) — Est*(t} )

Y = Est* (¢

s S + Ect*(t; ) — Est*(1] )
x(Let(t;] ) — Est” (t,mm)). 3D

A new ready task priority queue can be obtained by increasing
the order of sub-deadlines of multiple ready tasks.

C. Complexity Analysis

The complexity of Algorithm 1 is analyzed with two sec-
tions, i.e multi-workflows preprocessing and task scheduling.
In multi-workflows preprocessing stage, the complexity is
determined by line 2-11 of Algorithm 1. The time complexity
for computing tasks executing time and classify workflows
are O(T) and O(N), respectively. The task number of N
workflows is denoted 7. Then, the time complexity of O (H) is
to obtain the task sub-deadline of long term workflows, where
H is the task number of long term workflows. The complexity
of O(L) is used to obtain the task sub-deadline for short term
workflow tasks, where L denotes the task number of short
term workflows. Next, the time complexity of O(RIogR) is
used to obtain the ready task scheduling ordering, where R
denotes the number of ready tasks. It requires O(R|I|) time
for task scheduling in Algorithm 2 (line 3-23), where the
number of active VMs is denoted as |/|. Thus, it requires
O(RlogR) + O(R|I]) time to schedule ready tasks. For the
scheduling feedback in line 24 — 30 of Algorithm 2, it has
the complexity of O(FS) to adjust the sub-deadlines and
scheduling ordering of new ready tasks, where F and S denote
the number of finished tasks and new ready tasks, respectively.
Thus, the time complexity of Algorithm 2 and Algorithm 1
are O(RlogR) + O(RI) + O(FS) and O(T) + O(N) +
20(H)4+20(L)+O(RlogR)+O(RI)+ O(F'S), respectively.

V. PERFORMANCE EVALUATION

In this section, we use four evaluating metrics, such as total
cost, number of VMs, resource utilization and success ratio to
demonstrate the experimental results.

A. Experimental Setting

1) Environment Configurations: The experiments are per-
formed via WorkflowSim [36] and conducted on a a PC with
3.00GHz Intel Core i5 processor and 16GB memory, Windows
10, JAVA, Eclipse, and JDK 7.0.

In our experiments, five real scientific workflow applications
which are Montage, Epigenomics, Inspiral, CyberShake, and
Sipht, are used to evaluate the performance of our algorithm.
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Fig. 2. Structures of five realistic workflows.

TABLE II
VM INSTANCES PARAMETERS OF EXPERIMENTS

VM type | vCPU | Price per time unit($) | VM weight
Vi 8 0.98 1.0
& 4 0.49 1.2
& 4 0.35 13
V4 2 0.245 1.4
Vo 2 0.175 1.6
V6 1 0.087 1.8
1% 1 0.044 2.0

These workflows are widely used in workflow scheduling
problems [26] and have different structure and scharacter-
istics [42]. Specially, we show the structures of five real
workflows in Fig. 2. In addition, we take seven different
types of VMs from Amazon EC2 to simulate the cloud
platform [31]. The prices and processing capabilities of these
VMs are shown in Table II, where VM weight are used to
characterize the rank of VMs. The average bandwidth among
VMs and the billing period (BP) are the same as Amazon EC2
and set to 100 Mbps and 3600 seconds, respectively.

2) Parameter Settings and Baselines: The baseline exe-
cution time ET(ff) for task # is obtained by the task
runtime recorded on the highest rank VM from a workflow
traces [30]. In this paper, the execution time of task f is
considered as a stochastic variable with the normal distrib-
ution N(ET(t/), BET(t;)), where the variance factor f €
{0.6,0.7,0.8,0.9, 1.0} is used to represent the fluctuation of
task execution time. The workflow number N for scheduling
is set as {100,200, 400} and the workflow arrival rate is a
Possion distribution with 4 = 1.

In addition, similar to [5], we evaluate the impact of
different deadlines on our algorithm with the baseline schedule
S}ase Which is expressed as:

Sj"asz = Z ETmin(tis)‘

ews

(32)
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Fig. 4. Total cost of multi-workflows with different variance factors f.

where the task execution time ET,,;,(t’) is obtained by the
highest ranking VM. Then, the workflow deadline is obtained
by

D' = A"+ aS}» (33)
where the deadline factor a € {2.1,2.2,2.3,2.4,2.5}.

In this paper, three related algorithms are used to evaluate
the performance of the proposed approach. ROSA [30] is
designed to schedule online workflows with stochastic task
execution time for minimizing workflow execution cost and
satisfying workflow deadlines. Furthermore, NOSF [31] is
an new workflow scheduling framework to schedule online
multi-workflows which are with the stochastic task execution
time and workflow arrival rates, which is based on ROSA.
NOSF solved an online workflows dynamic scheduling prob-
lem in TaaS clouds and tasks execution times in NOSF are
considered as random variables which are following normal
distributions. In NOSF, the ready tasks are ranked based on
task earliest start time. Then, NOSF schedules these tasks
based on the task priorities. Finally, the scheduling order
and sub-deadlines of ready tasks can be updated to improve
workflow success ratio in the feedback processing. DWS [32]
handles the dynamics of multiple deadline constrained work-
flows arriving randomly and scheduling these workflows with
reducing cost.

3) Performance Metrics: In this paper, four metrics are used
to evaluate the performance of methods. The details are shown
as follows.

« Total cost (TC): We calculate the normalized cost with
all used VMs as:
|1]
TC=> LT,P(l,).
m=1
where LT, represents the leased time of VM [, for
executing workflows and the price of VM [, is denoted
as P(I,).

« Success ratio (SR): We use Ny to denote the number
of fail workflows whose the completion time exceeds
their deadlines. SR is the ratio between Nj,.. and total
workflow number N, expressed as:

SR = NN (35)

« Number of VMs: The number of VMs leased is a
important metric for scheduling multi-workflows in cloud
and is used to evaluate our algorithm.

o Resource utilization (RU): We evaluate these algorithms
with the resource utilization of all VMs, which is defined

as
1]
RU = Zm:l ETm
- 1] ’
Zm:l L Tm
where ET,, represents the processing time of VM 1, for
executing multi-workflows and LT, represents the leased

time of VM 1,,.

(34)

(36)

B. Experimental Results

1) Total Cost for Scheduling Multi-Workflows: According to
Figs. 3 and Fig. 4, the total cost obtained by SMWDSA is less
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than the cost of the other three algorithms with the deadline
factor a and the variance factor f increasing. In Fig. 3,
we set the variance factor f as 0.8 and show the total
cost by three algorithms with different workflow number N.
Fig. 3 illustrates the results of the total cost by four algorithms
with varying deadline factors. It slightly decreases when the
deadline factor increase. The reason is that when the deadline
factor increase, the task are more likely to be assigned to a
cheaper VM with meeting its subdeadline. In Fig. 4, we set
the deadline factor f as 2.3 and show the total cost obtained
by three algorithms with different workflow number N and
variance factors. According to Fig. 4, the total cost obtained by
SMWDSA are always the best compared with the other three
algorithms when changing variance factors. Moreover, the total
cost of three algorithms increase when the variance factor
increase. This can be explained as follows: When the vari-
ance factor increases, the disturbance of task execution time
increases, which leads to more cost. Furthermore, Fig. 3(a) and
Fig. 4(a) show the total cost for scheduling 100 workflows with
three algorithms under different deadline factors and variance
factors. The total cost for scheduling 200 workflows with three
algorithms under different deadline factors and variance factors
are shown in Fig. 3(b) and Fig. 4(b). For 400 workflows, the
total cost obtained by three algorithms are shown in Fig. 3(c)
and Fig. 4(c). It can be see that SMWDSA outperforms he
other three algorithms in all cases.

2) Success Ratio for Scheduling Multi-Workflows: In this
subsection, we design the experiments with different deadline
factors and variance factors for evaluating the success ratio of
our algorithm and the results are shown in Fig. 5 and Fig. 6.

In Fig. 5, we set the variance factor § as 0.8 and show results
of the success ratio by increasing deadline factors in different
workflow number N. As shown in Fig. 5(a), we can see that
the success ratio of scheduling 100 workflows are increasing
with deadline factors increasing. Fig. 5(b) and Fig. 5(c) show
the results of the success ratio with three algorithms for
scheduling 200 and 400 workflows under different deadline
factors, respectively. From Fig. 5, we can see that the success
ratio of SMWDSA can achieve 0.5 when the deadline factor
is 0.6 and has a better performance than the other three
algorithms when the deadline factor is increasing. In Fig. 6,
we set the deadline factor a as 2.3 and show the results of
the success ratio by three algorithms with different workflow
number N. When the variance factor rises, a decreasing trend
is observed in Fig. 6, because the larger variance factor is, the
lower the prediction accuracy of task execution time is, which
leads to a lower success ratio. From Fig. 6, we can see that
SMWDSA outperforms the other three algorithms in all cases.

3) Number of VMs for Scheduling Multi-Workflows: In
Fig. 7, we set the variance factor £ as 0.8 and show the number
of VMs via three methods. The proposed algorithm and other
two algorithms show their downward trend of number of
VMs when deadline factors become larger. The former has
obvious advantage than the latter. In addition, from Fig. 7(a)
to Fig. 7(c), we can see that three algorithms show their
upward trend of number of VMs when workflow number
become larger and the number of VMs by SMWDSA is always
less than that of the other three algorithms with different
deadline factor a. In Fig. 8, we set the deadline factor S as
2.3 and show the results of the number of VMs under different
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variance factors. From Fig. 8, we can see that, as variance
factor increases, number of VMs by SMWDSA and other two
algorithms increase too. The difference between them is that
the proposed algorithm has a significantly smaller number of
VMs for increasing variance factor. From Fig. 8(a) to Fig. 8(c),
the number of VMs by three algorithms become larger and
larger with the increasing workflow number and the number
of VMs of SMWDSA are always the lowest compared with
the other three algorithms when changing variance factors.
According to Fig. 7 and Fig. 8, the experimental results
show that SMWDSA can reduce the number of VMs for
multi-workflows scheduling in comparison with the other three
algorithms.

4) Resource Utilization for Scheduling Multi-Workflows:
In this subsection, we design the experiments with differ-
ent deadline factors and variance factors for evaluating the
resource utilization of our algorithm and the results are shown

in Fig. 9 and Fig. 10. We set the variance factor S as
0.8 in Fig. 9 which shows the impact of deadline factor on
resource utilization. As shown in Fig. 9(a), we can observe
that the resource utilization of scheduling 100 workflows
slowly increase as the deadline factor increase. Similar to
Fig. 9(a), Fig. 9(b) and Fig. 9(c) show the resource utiliza-
tion of scheduling 200 workflows and 400 workflows under
different deadline factors, respectively. From Fig. 9, we can
see that the resource utilization of SMWDSA is increasing
and has a better performance than he other three algorithms
when the workfolow number is increasing. In Fig. 10, we set
the deadline factor o as 2.3. Fig. 10 shows the impact of
variance factor on resource utilization by three algorithms.
From Fig. 10(a), we can see that the proposed and other two
methods show their downward trend of resource utilization
of scheduling 100 wokflows when variance factor increases.
The former has obvious advantage than the latter for different
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Fig. 10. Resource utilization of three algorithms with different variance factors f.

variance factors. Furthermore, Fig. 10(b) and Fig. 10(c) show
the resource utilization for scheduling 200 workflows and
400 workflows with three algorithms under different variance
factors, respectively. From the above results, we can see that
SMWDSA outperforms the other three algorithms.

VI. CONCLUSION AND FUTURE WORK

To reduce the impact of VM performance fluctuations and
heterogeneity in workflow scheduling in the cloud, this paper
proposes a stochastic multi-workflows dynamic scheduling
algorithm (SMWDSA). Due to the uncertainty of work-
flow arrival time, SMWDSA dynamically allocates tasks and
divides the scheduling process into three stages which consists
of three stages which are multi-workflows preprocessing,
multi-workflows scheduling and scheduling feedback. Firstly,
we compute the task execution time and obtains the task
sub-deadlines constraints without violating workflow deadline
constraints in the multi-workflows preprocess stage. Then,
we obtain a ready task priority queue from multiple workflows
and schedules tasks to the VM with minimal task schedul-
ing cost in the multi-workflows scheduling stage. Finally,
we update the original priorities and sub-deadlines of unsched-
uled tasks to reduce workflows scheduling cost in the schedul-
ing feedback stage. Extensive experiments results demonstrate
that SMWDSA is superior to the state-of-the-art algorithms in
terms of total toatl cost, resource utilization, success rate and
VM number under different conditions. Additionally, we will
do the empirical study to make the evaluation part more
comprehensive.

We discuss some possible developments of our research
work which may inspire future research work. In the future,
we will further optimize the performance of the algorithm and
consider the scheduling strategy when task execution fails due
to hardware faults. In addition, our proposed algorithm focuses
on solve the multi-workflows dynamic scheduling problem
with a cloud computing system. With the development of cloud
computing, the multi-cloud computing system collaborative
scheduling has become a development trend. We plan to
study the online multi-workflows scheduling in the multi-cloud
computing system in the future work.
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