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Abstract— Nowadays, more and more workflows with different1

computing requirements are migrated to clouds and executed2

with cloud resources. In this work, we study the problem of3

stochastic multi-workflows scheduling in clouds and formalize4

this problem as an optimization problem that is NP-hard. To solve5

this problem, an efficient stochastic multi-workflows dynamic6

scheduling algorithm called SMWDSA is designed to schedule7

multi-workflows with deadline constraints for optimizing multi-8

workflows scheduling cost. The proposed SMWDSA consists9

of three stages including multi-workflows preprocessing, multi-10

workflow scheduling and scheduling feedback. In SMWDSA,11

a novel task sub-deadlines assignment stretagy is design to12

assign the task sub-deadlines to each task of multi-workflows for13

meeting workflow deadline constraints. Then, we propose a task14

scheduling method based on the minimal time slot availability to15

execution task for minimizing workflow scheduling cost while16

meetingt workflow deadlines. Finally, a scheduling feedback17

strategy is adopted to update the priorities and sub-deadlines of18

unscheduled tasks, for further minimizing workflow scheduling19

cost. We conduct the experiments using both synthetic data and20

real-world data to evaluate SMWDSA. The results demonstrate21

the superiority of SMWDSA as compared with the state-of-the-22

art algorithms.23

Note to Practitioners—Workflow scheduling in clouds is signif-24

icantly challenging due to not only the large scale of workflows25

but also the elasticity and heterogeneity of cloud resources.26

Moreover, minimizing workflow scheduling cost and satisfying27

workflow deadlines are two critical issues in scheduling with28

cloud resources, especially the uncertainty of workflow arrive29

time and task execution time are considered. To meet workflow30

deadlines, it is an effective strategy to decompose workflow dead-31

line constraints into task sub-deadline constraints. To minimize32

the workflow scheduling cost, each task in a workflow needs33

to be assigned to their most suitable VMs for execution. This34

article presents a novel workflow scheduling algorithm to sched-35

ule stochastic multi-workflows in clouds for optimizing multi-36

workflows scheduling cost and meeting workflows deadlines.37

This algorithm obtains the task sub-deadline constraints based38

on the characteristics of workflows for meeting the worklfow39

deadline constraint. Under the premise of meeting task deadlines,40

it schedules tasks to a VM with minimum the slot time, for41
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minimizing the cost. Case studies based on well-known real-world 42

workflows data sets suggest that it outperforms traditional ones 43

in terms of success and cost of multi-workflows scheduling. 44

It can thus aid the design and optimization of multi-workflows 45

scheduling in a cloud environment. It can help practitioners 46

better manage the scheduling cost and performance of real-world 47

applications built upon cloud services. 48

Index Terms— Dynamic scheduling, multi-workflows, deadline 49

constraints, cloud computing. 50

I. INTRODUCTION 51

CLOUD computing is a new way to provide a powerful 52

computing infrastructure with virtualized technologies 53

and is widely used in the industrial and commercial fields 54

[1], [2]. The cloud model consists of a great number of 55

servers which are equipped with adequate cloud resources, 56

such as CPU cores and memory. In clouds, multiple virtual 57

machines (VMs) instances are running simultaneously on 58

these servers. The main advantages of such computing model 59

are virtualization, pay-as-you-use, rapid elasticity, on-demand 60

access, and so on [3]. With these characteristics, cloud com- 61

puting is very appropriate to hand the diversity requirements 62

and various computing applications [4]. As a result, many 63

workflows applications, such as earthquake science workflow 64

Cybershake, bioinformatics workflow Epigenomics, Gaussian 65

elimination workflow, and fast Fourier transform workflow in 66

mathematics, have been successfully migrated to clouds and 67

executed with cloud resources [5]. 68

In clouds, workflows scheduling is one of the crucial issues 69

which is to choose the most appropriate cloud resources to 70

workflow tasks for satisfying QoS constraints [6]. Workflows 71

are a type model which is used to describe applications 72

executed with cloud resources and generally comprised of a 73

large number of precedence constrained tasks which are con- 74

nected by controlflow dependencies and data-flow [7]. In gen- 75

eral, these workflows require lots of distributed computing 76

resources and need to be processed within deadlines. More- 77

over, workflows usually show high heterogeneity in deadline 78

constraints, suggesting the potential performance boost if the 79

deadline constraint can be effectively processed. Accordingly, 80

how to satisfy workflow deadline constraints has become an 81

challenge for scheduling in the cloud environment. 82

In addition, due to the diversity of workflows, a large 83

number of VMs with different computing capacity and config- 84

urations are required for distributed collaborative computing. 85

With the heterogeneity and the elasticity of cloud resources, 86

VMs can be dynamically acquired from the infinite cloud 87

resource pool for processing various workflows and faster 88
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VMs are usually more expensive than slower ones. Moreover,89

VMs generally charged per time frame or billing period90

because of the different pricing model of cloud resources,91

which would lead to unexpectedly high charges if the work-92

flow scheduling does not take the cloud pricing model into93

consideration. Consequently, it is another challenge to mini-94

mize the workflow scheduling cost for scheduling in the cloud95

environment.96

To tackle these challenges, various scheduling methods97

including heuristic scheduling [8], meta-heuristic schedul-98

ing [9], hybrid scheduling [10] and learning scheduling [11]99

have been investigated. Among these methods, heuristic100

scheduling and meta-heuristic scheduling are probably the101

most attractive ways to schedule workflows for minimizing102

workflow scheduling cost and satisfying workflow deadlines.103

Zhu et al. [12] introduced a heuristic algorithm called DyDL104

based the list-scheduling framework to schedule workflows105

with deadline constraints for optimizing workflow execu-106

tion cost. This algorithm prioritizes tasks by their latest107

start times and appoints tasks the placements which can108

meet their latest start times and incur the minimal cost109

increases. Chen et al. [9] modeled the workflow scheduling110

as a multi-objective optimization problem and adopted two111

colonies to design a multiple objectives framework for mini-112

mizing workflow execution time and execution cost.113

However, most of these studies assume that the task execu-114

tion time with a specific VM is certain and can be accurately115

estimated in advance [13], [14]. In fact, the performance116

of VMs that is running on the servers of real commercial117

IaaS clouds can not be kept stable [15], which results that118

the actual task execution time may fluctuate frequently and119

the execution of tasks is delayed. Moreover, successor tasks120

also are delayed with the data dependencies and the contin-121

uous cumulative delay may lead to the workflow deadline122

violated [16]. In addition, the uncertainty of task execution123

time seriously affects the effectiveness of scheduling strategy.124

If we use the task execution time is greater than the actual125

task execution time in scheduling, more VM instances will126

be used to execution tasks which results the idle time slots127

between assumed execution time of tasks and their actual128

execution time will be wasted in the VM instances. Hence, it is129

very significant to design an effective scheduling algorithm130

for multi-workflow with uncertain task execution time in131

clouds.132

In this paper, we consider the stochastic multi-workflows133

dynamic scheduling problem in clouds. This work aims134

to design an efficient stochastic multi-workflows dynamic135

scheduling algorithm called SMWDSA which is used to sched-136

ule multi-workflows with deadline constraints for optimizing137

multi-workflows scheduling cost. The proposed SMWDSA138

consists of three stages including multi-workflows preprocess-139

ing, multi-workflow scheduling and scheduling feedback.140

In SMWDSA, a novel task sub-deadlines assignment stretagy141

is design to assign the task sub-deadlines to each task of142

multi-workflows for meeting workflow deadline constraints.143

Then, we propose a task scheduling method based on the144

minimal time slot availability to execution task for minimizing145

workflow scheduling cost while meetingt workflow deadlines. 146

Finally, a scheduling feedback strategy is adopted to update the 147

priorities and sub-deadlines of unscheduled tasks, for further 148

minimizing workflow scheduling cost. The contributions of 149

this paper are as follows: 150

(i) We study the problem of scheduling multi-workflows 151

with uncertain arrive time and task execution time in 152

clouds and model this problem as a constrained opti- 153

mization problem that optimizes workflow scheduling 154

cost and satisfies workflow deadline constraints. 155

(ii) A novel stochastic multi-workflows dynamic schedul- 156

ing algorithm (SMWDSA) is developed to minimize 157

workflows scheduling cost and satisfy workflows dead- 158

lines. The basic idea is to prioritize the tasks of 159

multi-workflows and assign the sub-deadlines for these 160

tasks to meet workflow deadline constraints and satisfy 161

tasks dependency requirements. Furthermore, we update 162

dynamically the priorities and sub-deadlines of unsched- 163

uled tasks by a scheduling feedback strategy to opti- 164

mize workflow scheduling cost while ensuring workflow 165

deadlines. 166

(iii) We evaluate the proposed SMWDSA with extensive sim- 167

ulations. The experimental results show that SMWDSA 168

can significantly reduce the workflows scheduling cost 169

compared with benchmark algorithms. 170

The remainder of this article is organized as follows. 171

Section II discusses the related work. We describe the sys- 172

tem models and the problem formulation in Section III. 173

Section IV presents a stochastic multi-workflows dynamic 174

scheduling algorithm (SMWDSA). We evaluate the perfor- 175

mance of SMWDSA in Section V. We conclude this paper 176

in Section VI. 177

II. RELATED WORK 178

In the past few years, many researchers have conducted 179

extensive explorations, among which workflows scheduling 180

in clouds is a comparatively hot issue [17], [18], [19]. 181

In this section, we introduce some related works on workflow 182

scheduling in clouds. 183

The problem of workflows scheduling with deadline- 184

constrained and cost optimization in a cloud computing sys- 185

tem was investigated in some recent works. In [20], two 186

workflow scheduling algorithms which are the IaaS cloud 187

partial critical paths (IC-PCP) algorithm and the IaaS cloud 188

partial critical paths with deadline distribution (IC-PCPD2) 189

were designed to reduce workflow scheduling cost in clouds. 190

The IC-PCP and IC-PCPD2 find the critical path of the work- 191

flow and distribute the workflow deadline among the critical 192

nodes with the PCP to minimize the workflow execution 193

while meeting the deadline constraint. In [21], Singh et al. 194

proposed a dynamic algorithm based on k-means cluster- 195

ing to schedule deadline constraint workflow for minimizinf 196

workflow execution cost. In [22], Sahni et al. developed a 197

heuristic algorithm to scheduling science workflows with 198

deadline constraints for reducing workflow execution cost 199

in the cloud. Wu et al. [5] proposed a workflow scheduling 200

algorithm which is based on list ant colony optimization 201
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(L-ACO) to minimize workflow execution cost for satisfying202

the deadline constraint in clouds. Arabnejad et al. [8] focused203

on the scientific workflows scheduling problem which aims204

to dynamically schedule scientific workflows for reducing the205

execution cost while meeting deadline constraints.206

In addition, some researches focus on multi-objective opti-207

mization problem (MOP) for cost and makespan, which208

minimizes cost and makespan in clouds simultaneously.209

In [23], an evolutionary optimization algorithm based on210

genetic algorithm (GA) was designed by Zhu et al. for solving211

the multi-objective workflow scheduling problem in clouds.212

Moreover, a novel multi-objective workflow scheduling algo-213

rithm based on ant colony optimization was proposed by214

Chen et al. [9] to optimal wokflow finish time and work-215

flow execution cost. Han et al. [24] introduced an efficient216

two-phase list scheduling algorithm to scheduling workflows217

in clouds for reducing the execution cost and the work-218

flow makespan. Durillo et al. [25] designed a multi-objective219

HEFT (MOHEFT) to optimize workflow execution time and220

the execution cost. Wu et al. [26] proposed an evolution-221

ary list scheduling algorithm which adopts the list schedul-222

ing and multiobjective evolutionary algorithm for optimizing223

makespan and cost.224

Recently, the stochastic workflows scheduling problems225

are considered by some scholars in cloud environments.226

In [27], a job scheduling problem was studied, which aims227

to dynamically schedule jobs with requesting different cloud228

resources. In [28], Cai et al. considered a effective method229

to provision cloud resources and dynamic schedule Bag-230

of-Tasks workflows which are with uncertain task execu-231

tion times for decreasing the workflow scheduling cost.232

Chen et al. [29] proposed a dynamic scheduling algorithm for233

solving the uncertainty-aware workflow scheduling problems.234

Furthermore, an uncertainty-aware online scheduling algo-235

rithm (ROSA) was designed by Chen et al. [30] to schedule236

online workflows with stochastic task execution time for mini-237

mizing workflow execution cost and satisfying workflow dead-238

lines. Furthermore, Liu et al. [31] extended the ROSA and239

introduced an new workflow scheduling framework (NOSF)240

to schedule online multi-workflows which are with the241

stochastic task execution time and workflow arrival rates.242

Arabnejad et al. [32] presented a new algorithm, dynamic243

workload scheduler (DWS) that handles the dynamics of mul-244

tiple deadline constrained workflows arriving randomly and245

scheduling these workflows with reducing cost. Gu et al. [33]246

considered the problem of scheduling microservice work-247

fows with hybrid resource provisioning and proposed an248

adaptive-learning based scheduling algorithmic framework to249

intelligently sequence, allocate and online adjust tasks as well250

as monitor spot instance. Ma et al. [34] proposed a real-time251

multiple-workflow scheduling (RMWS) scheme to schedule252

workflows dynamically with minimum cost under different253

deadline constraints. Dong et al. [35] studied the workflow254

scheduling problem considering the performance variation of255

cloud resources and proposed a dynamic workflow scheduling256

approach based on deep reinforcement learning (RLWS) to257

minimize the makespan. In addition, some learning-based258

TABLE I

SYMBOL AND NOTATION

algorithms [36], [37] are used to solve the workflow schedul- 259

ing problem in cloud computing. 260

III. SYSTEM MODEL 261

In this section, we firstly introduce cloud resource model 262

and application model. Then, we formulate workflows schedul- 263

ing as a constrained optimization problem that minimizing 264

total cost while satisfying workflow deadlines. The important 265

definitions and notations are shown in Table I. 266

A. Cloud Resource Model 267

A cloud service platform provides different cloud resources, 268

such as CPU, RAM, disk storage and bandwidth to deal with 269

different applications based on their requirements. These cloud 270

resources are elastically used to process computing appli- 271

cations with different types of VMs. These VMs providing 272

services to end users are commonly measured in terms of 273

central processing unit (CPU) capacity, memory, and storage; 274

this allows VMs to be classified based on rankings and 275

costs [3]. A VM with a higher ranking provides a higher task 276

execution speed, which is more expensive to rent [26]. In this 277

paper, the available VM types is set as M and each VM type 278

is equipped with a price and configuration of cloud resources. 279
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VMs are pay-per-use on-demand in clouds and the VMs set280

for executing workflows is denoted by I = {Ik |, k = 1, 2, . . .}281

which consists of M types of VMs, where Ik represents the282

k-th VM. For a VM Ik , we use P(Ik) to represent the VM283

unit price with a billing period. The parameter rk denotes the284

VM weight for task execution time with VM Ik , which is285

defined as the ratio between the task execution time on Ik and286

shortest task execution time. Specifically, Rank(Ik) = 1 if task287

execution time in minimal with VM Ik . In addition, by the288

pricing model of cloud resources, VMs are leased with the289

whole hour by users at any time [38], that is the rental time290

of a VM is generally billed in multiples of a unit of time.291

B. Application Model292

We consider a stochastic workflow set W = {W 1, . . . , W N }293

with N independent sporadic workflows in this work. Let N294

denote the total number of the workflow set W . A work-295

flow W s has the following features:296

W s = {As, Ds , Gs , T s, Es}, (1)297

where the arrival time is denoted as As and the deadline of W s
298

is Ds . Moreover, the directed acyclic graph (DAG) of work-299

flow W s [39] is denoted as Gs . A DAG Gs consists of a task300

set and a edge set which are represented as T s = {t s
1, . . . , t s

N s }301

and Es = {es
i, j |i, j = 1, . . . , Ns }, respectively. The j th task302

of W s is denoted as t s
j which has a stochastic execution time303

ET (t s
j ) with the highest rank of VMs for processing task t s

j ,304

where ET (t s
j ) is a random variable with normal distribution.305

The edge es
ji is the data dependency between task t s

i and306

t s
j and indicates that task t s

i is a immediate predecessor of307

task t s
j and task t s

j is a immediate successor of task t s
i . We use308

pre(t s
j ) and succ(t s

j ) to represent the immediate predecessors309

set and the successors set of task t s
j , respectively. Then, for310

each task the t s
j in pre(t s

l ), task t s
l is a immediate successor311

of task t s
j . Specially, the workflow entry task t s

entry has no312

the immediate predecessor a and the exit task t s
exit has no313

immediate successors.314

In addition, the existing workflow scheduling approaches315

adopted the normal distributions to address the fluctuation316

of the task execution time which is along with the variation317

of the VM computing capability. In our work, the inde-318

pendent and normal distributions are used to describe the319

task execution time on a VM. Similar to [40], we use an320

approximate value Aet (t s
j ) to compute the task execution time321

ET (t s
j ), where ET (t s

j ) denotes the task execution time with322

the highest rank VM. Let ET (t s
j ) follow a normal distributions323

N(e(t s
j ), v(t s

j )) with the expected value e(t s
j ) and the variance324

v(t s
j ). Then, the Aet (t s

j ) is calculated as325

Aet (t s
j ) = e(t s

j )+ v(t s
j ). (2)326

C. Problem Formulation327

In this subsection, we model this problem as a constrained328

optimization problem. Let W denote the mutil-workflows set329

which contains N independent sporadic workflows. In this330

paper, we find a feasible schedule solution to minimize the331

workflows scheduling cost W SC(W) for the workflow set W .332

We use P(Ik) to be the price of Ik and the leased time of 333

VM Ik is denoted as LTk . The finish time of workflow W s is 334

denoted as FT s and is defined as 335

FT s = max
ts

j∈T s
FT (t s

j ), (3) 336

where FT (t s
j ) denotes finish time of task t s

j and T s is the task 337

set for workflow W s . The data transmission time between task 338

t s
j and t s

l is calculated as 339

T T (es
jl) =

ds
jl

bw
, (4) 340

the data transferred from t s
j to t s

l is represented as ds
jl and bw 341

represents the average network bandwidth between different 342

VMs. Then, the problem formulations are as 343

min W SC(W) =
�
Ik∈I

P(Ik)LTk, (5) 344

subject to: 345

CT s ≤ Ds , (6) 346

FT (t s
j )+ T T (es

jl) ≤ ST (t s
l ), (7) 347

|I |�
k=1

xs
j,k ≤ 1, (8) 348

where the binary variable xs
j,k is defined as 349

xs
j,k =

�
1, if t s

j is scheduled on Ik;
0, otherwise.

(9) 350

Constraint (6) explains that each workflow deadline is sat- 351

isfied. Constraint (7) indicates the data dependencies between 352

tasks are satisfied. Constraint (8) and (9) guarantee that every 353

task should be scheduled once only. 354

IV. SCHEDULING ALGORITHMS 355

In clouds, multi-workflows are executed with many hetero- 356

geneous VMs which have different computing capacity and 357

billing modes. For the heterogeneity of VMs, this paper uses 358

the VM weight and the VM service price to represent the 359

execution capacity and rental cost of VMs for the multi- 360

workflows scheduling. In addition, the elasticity is another 361

feature of cloud resources. In the process of multi-workflow 362

dynamic scheduling, VMs can be used flexibly, which greatly 363

improves the work efficiency. The cloud computing system 364

can provide unlimited VMs for workflow scheduling and 365

VMs can be scaled up at any time. In this section, we first 366

introduce the lower bound of multi-workflows scheduling cost 367

with heterogeneous VMs in clouds. After that, we propose 368

an efficient multi-workflows scheduling algorithm with elastic 369

VMs and analyze its computational complexity. 370

A. Lower Bound of Multi-Workflows Scheduling Cost 371

To assist the workflow scheduling algorithm design to 372

optimize multi-workflows scheduling cost in Section IV.B, 373

we first give the lower bound of workflow scheduling cost 374

for multi-workflows in this subsection. 375
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Fig. 1. Stochastic Multi-Workflows Dynamic Scheduling Process.

Lemma 1: Let W = {W 1, . . . , W N } be a workflow set376

and m ∈M = {1, 2, . . . , M} be the available types of VMs,377

then the lower bound of the workflows scheduling cost for378

workflows W can be obtained as379

W SC(W) ≥
N�

s=1

N s�
j=1

min
k∈M
{P(Ik) ∗ ETk(t

s
j )}380

+
|I |�

k=1

(P(Ik) ∗�k), (10)381

where P(Ik) represents the price of VM Ik , ETk(t s
j ) is the382

actual execution time of task t s
j with VM Ik and �k corre-383

sponds to the time slot between last task real finish time and384

the released time of VM Ik .385

Proof: For the workflow set W = {W 1, . . . , W N }, the386

workflows scheduling cost is calculated as387

W SC(W) =
|I |�

k=1

P(Ik) ∗ LTk388

=
|I |�

k=1

P(Ik) ∗ (

nk�
l=1

(ET k
l )+�k)389

=
|I |�

k=1

P(Ik) ∗
nk�

l=1

(ET k
l )+

|I |�
I=1

P(Ik) ∗�k390

=
N�

s=1

N s�
j=1

P(Ik) ∗ ETk(t
s
j )+

|I |�
k=1

P(Ik) ∗�k391

≥
N�

s=1

N s�
j=1

min
k∈M
{P(Ik) ∗ ETk(t

s
j )}392

+
|I |�

k=1

(P(Ik) ∗�k), (11)393

where nk represents the number of tasks scheduled on VM Ik 394

and ET k
l is the execution time of l−th task on VM rk . Hence, 395

the lower bound of the workflows scheduling cost is as: 396

N�
s=1

N s�
j=1

min
Ik∈M
{P(Ik) ∗ ETk(t

s
j )} +

|I |�
k=1

(P(Ik) ∗�k). (12) 397

By inspiring with the Lemma 1, we optimize the workflow 398

scheduling cost via the following two ways: 1) reducing the 399

VM idle time slots for scheduling workflows
�|I |

k=1(P(Ik) ∗ 400

�k); and 2) minimizing the executing cost for each task 401

mink∈M{P(Ik) ∗ ETk(t s
j )}. With this two ways, a heuristic 402

algorithm is designed to schedule multi-worklfows in clouds 403

in Section IV. B. 404

B. Stochastic Multi-Workflows Dynamic Scheduling 405

Algorithm 406

In this part, we present the details of our proposed 407

algorithm, which has three phases. First, workflow monitor 408

estimates the task execution time for each workflow and 409

obtains the task sub-deadlines constraints without violating 410

their respective completion time constraints in the workflows 411

preprocess stage. Second, Workflow scheduler constructs a 412

ready task priority queue for multiple workflows without 413

violating their respective deadlines and schedules tasks to 414

VMs to reduce multi-workflows scheduling cost in the work- 415

flow scheduling stage. Finally, feedback regulator updates the 416

original priorities and sub-deadlines of unscheduled tasks to 417

reduce the multi-workflows scheduling cost in the scheduling 418

feedback stage. The multi-workflows scheduling process is 419

shown in Fig. 1. The detailed description of the proposed 420

algorithm is given in Algorithm 1 and Algorithm 2. 421

1) Mutil-Workflows Preprocessing: When a workflow set 422

arriving, we firstly compute the approximation task execution 423
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Algorithm 1 Stochastic Multi-Workflows Dynamic Schedul-
ing Algorithm (SMWDSA)

Input: The current workflows set W = (W 1, . . . , W N ).
Output: A schedule solution S for workflows set W .
1: W L ← empty, W S ← empty;
2: while termination conditions not met do
3: for each workflow W k in W do
4: Calculate the execution time of each task in W ;
5: Calculate the Earliest Start Time and the Earliest

Finish Time of each task in W k .
6: Calculate the Least Start Time and the Least Finish

Time of each task in W k .
7: Calculate the workflow minimum finish time M f tk

for W k ;
8: if M f tk > BU then
9: add W k to W L

10: else
11: add W k to W S

12: while a new workflow does not arrive do
13: for each workflow W in W L do
14: for each task t in W do
15: Calculate the sub-deadline of each task in W

with latest complete time by Eq. (17).

16: for each workflow W in W S do
17: for each task t in W do
18: if t is an entry task or the parents of t are

assigned then
19: the task cluster number C N(t) = 1;
20: if t is not an entry task and the parents of t are

assigned then
21: C N(t)=maxt∗∈par(t) C N(t∗)+ 1;

22: Calculate the sub-deadline of each task in W
by Eq. (19).

23: Add each task of W into T askpool
24: if T askpool is not empty then
25: for each task t in T askpool do
26: if each parent tasks of t is scheduled and t is

not scheduled || t is an entry task then
27: Add task t into the ready task set RT S;

28: if RT S is not empty then
29: Call Tasks scheduling(RT S);

30: end while
31: if a new workflow W ∗ arrives then
32: W ←W +W ∗;
33: return A schedule S

time by Eq. (2). Then, we calculate the earliest start time and424

the earliest completion time by VM weight rk = 1. The earliest425

start time Est (t s
i ) for task t s

i is calculated as426

Est (t s
i ) =

⎧⎨
⎩

As, if t s
i = t s

entry;
maxts

p∈pre(ts
i ){Est (t s

p)+
Aet (t s

p)+ T T (es
pi)}, otherwise.

(13)427

where Aet (t s
p) is the approximation execution time and can be428

calculated by Eq. (2). The transmission time between t s
p and429

Algorithm 2 Tasks Scheduling
Input: A ready task set RT S and the active VMs set I.
Output: A VM I ∗ for scheduling each task t in R.
1: I∗ ← empty, Finshset ← empty, idleMax ←∞, I ∗ =

null;
2: Sort RT S by non-descending sub-deadlines of tasks;
3: for each task t in R do
4: for each Ik in active VMs set I do
5: the finish time FTk(t) and cost Ck(t) of the task

t4 with Ik ;
6: for each Ik in active VMs set I do
7: if FTk(t) ≤ Dsub(t) and Ck(t) = mini∈ICi (t); then
8: Add Ik into I∗, and C(t)← Ck(t);
9: if I∗ is not null then

10: for each VM instance Ik in I∗ do
11: Calculate the idle time idlek(t) on Ik ;
12: if idlek(t) ≤ idleMax then
13: I ∗ = Ik ;
14: else
15: Start a new VM instance I+ with the minimum

execution cost while finish time FT+(t) ≤ Dsub(t) ;
16: I ∗ = I+;
17: Scheduling task t on the VM I ∗;
18: Add task I ∗ into I;
19: Add task t into Finshset;
20: R← R − t ;
21: for each task t in FinishedT askSet do
22: Calculate the actual finish time of task t ;
23: for each successor task succ(t) of t do
24: if succ(t) is a ready task then
25: Update Est (succ(t)) of succ(t) by Eq. (28);
26: Update Ect (succ(t)) of succ(t) by Eq. (29);
27: Update Dsub(succ(t)) of succ(t) by Eq. (30);

28: return results;

t s
i is denoted as T T (es

pi) and can be calculated by Eq. (4). 430

Accordingly, we calculate the earliest completion time Ect (t s
i ) 431

as 432

Ect (t s
i ) = Est (t s

i )+ Aet (t s
i ). (14) 433

Then, we calculate the latest completion time Lct (t s
i ) as 434

Lct (t s
i ) =

⎧⎨
⎩

Ds if t s
i = t s

exit ,
maxts

q∈succ(ts
i ){Lct (t s

q)−
Aet (t s

q)− T T (es
iq)} otherwise.

(15) 435

For a workflow W s , the minimum finish time (MFT) is defined 436

as 437

M f ts = max
ts
i ∈W s

Ect (t s
i ). (16) 438

In addition, to reduce the the idle time slots cost of all 439

rented VM instance
�|I |

k=1(P(Ik) ∗ �k), the workflow set is 440

divided into the long term workflow set and the short term 441

workflow set based on their MFT for reducing the number 442

of rented VMs I . The workflow is a long term workflow 443

with M f t (W s) > BU and the short term workflow with 444
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M f t (W s) ≤ BU , where BU is the time of billing unit.445

In order to deal with the difference of two workflow type,446

we adopt two different workflow deadline constraint decom-447

position strategies to set task sub-deadline constraints for long448

term workflows and short term workflows, respectively. For the449

long term workflow, we make full use of the margin between450

deadline and minimum completion time and set the latest451

completion time of the task as the task sub-deadline to reduce452

the workflow execution cost. Then, the task sub-deadline of453

the lager workflow is denoted as DL (t s
j ) and calculated as454

DL (t s
j ) = Lct (t s

j ). (17)455

Furthermore, we design a cluster-based deadline distribution456

strategy for the short term workflows. The all tasks of a short457

term workflow are divided into some clusters by satisfying the458

dependency constraints between tasks. The the cluster number459

of task t s
i is defined as460

C N(t s
i ) =

�
1, if t s

i = t s
entry,

maxts
p∈pre(ts

i ){CN(ts
p)+1}, otherwise.

(18)461

In this way, the sub-deadline DS(t s
i ) for task t s

i can be462

described as463

DS(t
s
i ) = AEst (t s

i )+
Ect (t s

i )− Est (t s
imin

)

Ect (t s
imax

)− Est (t s
imin

)
464

×(Lct (t s
imax

)− Est (t s
imin

)). (19)465

where the minimal earliest start time Est (t s
imin

) with the same466

cluster number of t s
i is as follow:467

Est (t s
imin

) = min
CN(ts

j )=CN(ts
i )

Est (t s
j ), (20)468

and the maximal earliest complete time Ect (t s
imax

) with the469

same cluster number of t s
i is defined as470

Ect (t s
imax

) = max
CN(ts

j )=CN(ts
i )

Ect (t s
j ). (21)471

Similarly, the maximal last complete time lct (t s
imax

) with the472

same cluster number of t s
i is denoted as473

Lct (t s
imax

) = max
CN(ts

j )=CN(ts
i )

Lct (t s
j ). (22)474

Then, we calculate the sub-deadline Dsub(t s
j ) for task t s

j of475

multi-workflows as:476

Dsub(t
s
j ) =

�
DL(t s

j ), if M f t (W s) > BU ,

DS(t s
j ), otherwise.

(23)477

2) Multi-Workflows Scheduling: The basic idea of the work-478

flows scheduling phase is to assign one VM with the minimal479

task execution cost for each task while satisfying the task sub-480

deadline. We first obtain a ready task set from workflows with481

the same arrival time. Moreover, we create a task scheduling482

priority queue for the ready task set by increasing earliest483

start time of tasks. Finally, each ready task is assign to a VM484

according to the task priority. The detailed steps are shown in485

following.486

Ready Task Queue: We put the workflows with the same487

arrival time into the workflow pool. Then, the ready tasks are488

obtained from the workflow pool. A ready task has no parent489

task or its parent tasks are scheduled. Furthermore, we obtain 490

the task sub-deadline for each task based on the workflow 491

deadline distribution methods and construct a task priority 492

queue for these ready tasks by increasing order of task sub- 493

deadlines. In this way, we prioritize one task with smaller sub- 494

deadline i.e., a higher priority to be scheduled is assigned for 495

one task with more stringent sub-deadline. Therefore, a ready 496

task priority queue is obtained with the task sub-deadlines. 497

VM Instance Selection: We aim to identify VMs for 498

executing the current ready tasks. We choose task t s
j with 499

highest task priority from the ready task priority queue and 500

compute the ready time RTk(t s
j ) of task t s

j on VM Ik as 501

RTk(t
s
j ) = max{ max

ts
i ∈pre(ts

j )
AFT (t s

i ), AFT (Ik)}. (24) 502

where AFT (t s
i ) and AFT (Ik) denote the actual finish time of 503

task t s
i and VM Ik , respectively. Then, we compute task finish 504

time FTk(t s
j ) on VM Ik as 505

FTk(t
s
j ) = RTk(t

s
j )+ ETk(t

s
j ). (25) 506

where ETk(t s
j ) represents task execution time on VM Ik and 507

is calculated as 508

ETk(t
s
j ) = Aet (t s

j ) ∗ rk . (26) 509

where Aet (t s
j ) denotes the approximate task execution time of 510

task t s
j with the highest rank VM according to Eq. (2) and rk 511

denotes the rank parameter of VM Ik . To minimize the cost 512

for executing each task minIk∈I {P(Ik) ∗ ETk(t s
j )}, the VM set 513

I ∗ that satisfy the task sub-deadline and are with minimal 514

execution cost are selected from the active VM set. To further 515

minimize the VM idle time slots
�I

k=1(P(rk) ∗�k), the VM 516

with minimal idle time is chosen from I ∗ to execute tasks, 517

where idle time I T (t s
j,k) is calculated as: 518

I T (t s
j,k) = RT (t s

j )− RT (Ik). (27) 519

where RT (t s
j ) denotes the task ready time and RT (Ik) denotes 520

the VM ready time. If all active VMs can not satisfy the task 521

sub-deadline, we will start a new VM with minimal execution 522

cost and satisfying task sub-deadline. Specially, if multi- 523

workflows are sparse tasks, we can construct a workflow 524

priority queue for these sparse tasks by increasing order of 525

workflow deadlines. Then, we choose the sparse task with 526

highest task priority from the workflow priority queue and 527

compute the ready time for it. Finally, these sparse tasks are 528

assigned to a most suitable VM for execution by Algorithm 2. 529

3) Scheduling Feedback: To ensure that all workflows are 530

finished within their deadlines, we adjust the original priorities 531

and sub-deadlines of the next ready tasks from Short term 532

workflows according to the actual finish time of scheduled 533

task in the scheduling feedback stage. For a ready task of the 534

small workflow, we calculate the new earliest start time and 535

earliest complete time as: 536

Est∗(t s
j ) = max

ts
p∈pre(ts

j )
{A f t (t s

p)+ T T (es
p, j)}, (28) 537

and 538

Ect∗(t s
j ) = Est∗(t s

j )+ Aet (t s
j ), (29) 539
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where A f t (t s
p) denotes the actual finish time of task t s

p and540

T T (es
p, j) is the data transmission time from task t s

p to task t s
j541

with Eq.(4). Then, we update the sub-deadline for task t s
j as:542

D∗sub(t
s
j ) =

�
DL (t s

j ), if M f t (W s) > BU,

min{D∗S(t s
j ), Lct (t s

j )}, otherwise.
543

(30)544

where D∗S(t
s
j ) is the new sub-deadline for the short term545

workflow tasks and calculated as:546

D∗S(t
s
i ) = Est∗(t s

i )+
Ect∗(t s

i )− Est∗(t s
imin

)

Ect∗(t s
imax

)− Est∗(t s
imin

)
547

×(Lct (t s
imax

)− Est∗(t s
imin

)). (31)548

A new ready task priority queue can be obtained by increasing549

the order of sub-deadlines of multiple ready tasks.550

C. Complexity Analysis551

The complexity of Algorithm 1 is analyzed with two sec-552

tions, i.e multi-workflows preprocessing and task scheduling.553

In multi-workflows preprocessing stage, the complexity is554

determined by line 2-11 of Algorithm 1. The time complexity555

for computing tasks executing time and classify workflows556

are O(T ) and O(N), respectively. The task number of N557

workflows is denoted T . Then, the time complexity of O(H ) is558

to obtain the task sub-deadline of long term workflows, where559

H is the task number of long term workflows. The complexity560

of O(L) is used to obtain the task sub-deadline for short term561

workflow tasks, where L denotes the task number of short562

term workflows. Next, the time complexity of O(Rlog R) is563

used to obtain the ready task scheduling ordering, where R564

denotes the number of ready tasks. It requires O(R|I |) time565

for task scheduling in Algorithm 2 (line 3-23), where the566

number of active VMs is denoted as |I |. Thus, it requires567

O(Rlog R) + O(R|I |) time to schedule ready tasks. For the568

scheduling feedback in line 24 − 30 of Algorithm 2, it has569

the complexity of O(FS) to adjust the sub-deadlines and570

scheduling ordering of new ready tasks, where F and S denote571

the number of finished tasks and new ready tasks, respectively.572

Thus, the time complexity of Algorithm 2 and Algorithm 1573

are O(Rlog R) + O(RI ) + O(FS) and O(T ) + O(N) +574

2O(H )+2O(L)+O(Rlog R)+O(RI )+O(FS), respectively.575

V. PERFORMANCE EVALUATION576

In this section, we use four evaluating metrics, such as total577

cost, number of VMs, resource utilization and success ratio to578

demonstrate the experimental results.579

A. Experimental Setting580

1) Environment Configurations: The experiments are per-581

formed via WorkflowSim [36] and conducted on a a PC with582

3.00GHz Intel Core i5 processor and 16GB memory, Windows583

10, JAVA, Eclipse, and JDK 7.0.584

In our experiments, five real scientific workflow applications585

which are Montage, Epigenomics, Inspiral, CyberShake, and586

Sipht, are used to evaluate the performance of our algorithm.587

Fig. 2. Structures of five realistic workflows.

TABLE II

VM INSTANCES PARAMETERS OF EXPERIMENTS

These workflows are widely used in workflow scheduling 588

problems [26] and have different structure and scharacter- 589

istics [42]. Specially, we show the structures of five real 590

workflows in Fig. 2. In addition, we take seven different 591

types of VMs from Amazon EC2 to simulate the cloud 592

platform [31]. The prices and processing capabilities of these 593

VMs are shown in Table II, where VM weight are used to 594

characterize the rank of VMs. The average bandwidth among 595

VMs and the billing period (BP) are the same as Amazon EC2 596

and set to 100 Mbps and 3600 seconds, respectively. 597

2) Parameter Settings and Baselines: The baseline exe- 598

cution time ET (t s
i ) for task t s

i is obtained by the task 599

runtime recorded on the highest rank VM from a workflow 600

traces [30]. In this paper, the execution time of task t s
i is 601

considered as a stochastic variable with the normal distrib- 602

ution N(ET (t s
i ), β ET (t s

i )), where the variance factor β ∈ 603

{0.6, 0.7, 0.8, 0.9, 1.0} is used to represent the fluctuation of 604

task execution time. The workflow number N for scheduling 605

is set as {100, 200, 400} and the workflow arrival rate is a 606

Possion distribution with λ = 1. 607

In addition, similar to [5], we evaluate the impact of 608

different deadlines on our algorithm with the baseline schedule 609

Ss
f ast which is expressed as: 610

Ss
f ast =

�
ts
i ∈W s

ETmin(t
s
i ). (32) 611
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Fig. 3. Total cost of three algorithms with different deadline factors α.

Fig. 4. Total cost of multi-workflows with different variance factors β.

where the task execution time ETmin(t s
i ) is obtained by the612

highest ranking VM. Then, the workflow deadline is obtained613

by614

Ds = As + αSs
f ast , (33)615

where the deadline factor α ∈ {2.1, 2.2, 2.3, 2.4, 2.5}.616

In this paper, three related algorithms are used to evaluate617

the performance of the proposed approach. ROSA [30] is618

designed to schedule online workflows with stochastic task619

execution time for minimizing workflow execution cost and620

satisfying workflow deadlines. Furthermore, NOSF [31] is621

an new workflow scheduling framework to schedule online622

multi-workflows which are with the stochastic task execution623

time and workflow arrival rates, which is based on ROSA.624

NOSF solved an online workflows dynamic scheduling prob-625

lem in IaaS clouds and tasks execution times in NOSF are626

considered as random variables which are following normal627

distributions. In NOSF, the ready tasks are ranked based on628

task earliest start time. Then, NOSF schedules these tasks629

based on the task priorities. Finally, the scheduling order630

and sub-deadlines of ready tasks can be updated to improve631

workflow success ratio in the feedback processing. DWS [32]632

handles the dynamics of multiple deadline constrained work-633

flows arriving randomly and scheduling these workflows with634

reducing cost.635

3) Performance Metrics: In this paper, four metrics are used636

to evaluate the performance of methods. The details are shown637

as follows.638

• Total cost (TC): We calculate the normalized cost with 639

all used VMs as: 640

T C =
|I |�

m=1

LTm P(Im). (34) 641

where LTm represents the leased time of VM Im for 642

executing workflows and the price of VM Im is denoted 643

as P(Im). 644

• Success ratio (SR): We use N f to denote the number 645

of fail workflows whose the completion time exceeds 646

their deadlines. SR is the ratio between Nsucc and total 647

workflow number N , expressed as: 648

S R = Nsucc

N
. (35) 649

• Number of VMs: The number of VMs leased is a 650

important metric for scheduling multi-workflows in cloud 651

and is used to evaluate our algorithm. 652

• Resource utilization (RU): We evaluate these algorithms 653

with the resource utilization of all VMs, which is defined 654

as 655

RU =
�|I |

m=1 ETm�|I |
m=1 LTm

. (36) 656

where ETm represents the processing time of VM Im for 657

executing multi-workflows and LTm represents the leased 658

time of VM Im . 659

B. Experimental Results 660

1) Total Cost for Scheduling Multi-Workflows: According to 661

Figs. 3 and Fig. 4, the total cost obtained by SMWDSA is less 662
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Fig. 5. Success ratio of three algorithms with different deadline factors α.

Fig. 6. Success ratio of three algorithms with different variance factors β.

than the cost of the other three algorithms with the deadline663

factor α and the variance factor β increasing. In Fig. 3,664

we set the variance factor β as 0.8 and show the total665

cost by three algorithms with different workflow number N .666

Fig. 3 illustrates the results of the total cost by four algorithms667

with varying deadline factors. It slightly decreases when the668

deadline factor increase. The reason is that when the deadline669

factor increase, the task are more likely to be assigned to a670

cheaper VM with meeting its subdeadline. In Fig. 4, we set671

the deadline factor β as 2.3 and show the total cost obtained672

by three algorithms with different workflow number N and673

variance factors. According to Fig. 4, the total cost obtained by674

SMWDSA are always the best compared with the other three675

algorithms when changing variance factors. Moreover, the total676

cost of three algorithms increase when the variance factor677

increase. This can be explained as follows: When the vari-678

ance factor increases, the disturbance of task execution time679

increases, which leads to more cost. Furthermore, Fig. 3(a) and680

Fig. 4(a) show the total cost for scheduling 100 workflows with681

three algorithms under different deadline factors and variance682

factors. The total cost for scheduling 200 workflows with three683

algorithms under different deadline factors and variance factors684

are shown in Fig. 3(b) and Fig. 4(b). For 400 workflows, the685

total cost obtained by three algorithms are shown in Fig. 3(c)686

and Fig. 4(c). It can be see that SMWDSA outperforms he687

other three algorithms in all cases.688

2) Success Ratio for Scheduling Multi-Workflows: In this689

subsection, we design the experiments with different deadline690

factors and variance factors for evaluating the success ratio of691

our algorithm and the results are shown in Fig. 5 and Fig. 6.692

In Fig. 5, we set the variance factor β as 0.8 and show results 693

of the success ratio by increasing deadline factors in different 694

workflow number N . As shown in Fig. 5(a), we can see that 695

the success ratio of scheduling 100 workflows are increasing 696

with deadline factors increasing. Fig. 5(b) and Fig. 5(c) show 697

the results of the success ratio with three algorithms for 698

scheduling 200 and 400 workflows under different deadline 699

factors, respectively. From Fig. 5, we can see that the success 700

ratio of SMWDSA can achieve 0.5 when the deadline factor 701

is 0.6 and has a better performance than the other three 702

algorithms when the deadline factor is increasing. In Fig. 6, 703

we set the deadline factor α as 2.3 and show the results of 704

the success ratio by three algorithms with different workflow 705

number N . When the variance factor rises, a decreasing trend 706

is observed in Fig. 6, because the larger variance factor is, the 707

lower the prediction accuracy of task execution time is, which 708

leads to a lower success ratio. From Fig. 6, we can see that 709

SMWDSA outperforms the other three algorithms in all cases. 710

3) Number of VMs for Scheduling Multi-Workflows: In 711

Fig. 7, we set the variance factor β as 0.8 and show the number 712

of VMs via three methods. The proposed algorithm and other 713

two algorithms show their downward trend of number of 714

VMs when deadline factors become larger. The former has 715

obvious advantage than the latter. In addition, from Fig. 7(a) 716

to Fig. 7(c), we can see that three algorithms show their 717

upward trend of number of VMs when workflow number 718

become larger and the number of VMs by SMWDSA is always 719

less than that of the other three algorithms with different 720

deadline factor α. In Fig. 8, we set the deadline factor β as 721

2.3 and show the results of the number of VMs under different 722
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Fig. 7. The number of VMs of three algorithms with different deadline factors α.

Fig. 8. The number of VMs of three algorithms with different variance factors β.

Fig. 9. Resource utilization of three algorithms with different deadline factors α.

variance factors. From Fig. 8, we can see that, as variance723

factor increases, number of VMs by SMWDSA and other two724

algorithms increase too. The difference between them is that725

the proposed algorithm has a significantly smaller number of726

VMs for increasing variance factor. From Fig. 8(a) to Fig. 8(c),727

the number of VMs by three algorithms become larger and728

larger with the increasing workflow number and the number729

of VMs of SMWDSA are always the lowest compared with730

the other three algorithms when changing variance factors.731

According to Fig. 7 and Fig. 8, the experimental results732

show that SMWDSA can reduce the number of VMs for733

multi-workflows scheduling in comparison with the other three734

algorithms.735

4) Resource Utilization for Scheduling Multi-Workflows:736

In this subsection, we design the experiments with differ-737

ent deadline factors and variance factors for evaluating the738

resource utilization of our algorithm and the results are shown739

in Fig. 9 and Fig. 10. We set the variance factor β as 740

0.8 in Fig. 9 which shows the impact of deadline factor on 741

resource utilization. As shown in Fig. 9(a), we can observe 742

that the resource utilization of scheduling 100 workflows 743

slowly increase as the deadline factor increase. Similar to 744

Fig. 9(a), Fig. 9(b) and Fig. 9(c) show the resource utiliza- 745

tion of scheduling 200 workflows and 400 workflows under 746

different deadline factors, respectively. From Fig. 9, we can 747

see that the resource utilization of SMWDSA is increasing 748

and has a better performance than he other three algorithms 749

when the workfolow number is increasing. In Fig. 10, we set 750

the deadline factor α as 2.3. Fig. 10 shows the impact of 751

variance factor on resource utilization by three algorithms. 752

From Fig. 10(a), we can see that the proposed and other two 753

methods show their downward trend of resource utilization 754

of scheduling 100 wokflows when variance factor increases. 755

The former has obvious advantage than the latter for different 756
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Fig. 10. Resource utilization of three algorithms with different variance factors β.

variance factors. Furthermore, Fig. 10(b) and Fig. 10(c) show757

the resource utilization for scheduling 200 workflows and758

400 workflows with three algorithms under different variance759

factors, respectively. From the above results, we can see that760

SMWDSA outperforms the other three algorithms.761

VI. CONCLUSION AND FUTURE WORK762

To reduce the impact of VM performance fluctuations and763

heterogeneity in workflow scheduling in the cloud, this paper764

proposes a stochastic multi-workflows dynamic scheduling765

algorithm (SMWDSA). Due to the uncertainty of work-766

flow arrival time, SMWDSA dynamically allocates tasks and767

divides the scheduling process into three stages which consists768

of three stages which are multi-workflows preprocessing,769

multi-workflows scheduling and scheduling feedback. Firstly,770

we compute the task execution time and obtains the task771

sub-deadlines constraints without violating workflow deadline772

constraints in the multi-workflows preprocess stage. Then,773

we obtain a ready task priority queue from multiple workflows774

and schedules tasks to the VM with minimal task schedul-775

ing cost in the multi-workflows scheduling stage. Finally,776

we update the original priorities and sub-deadlines of unsched-777

uled tasks to reduce workflows scheduling cost in the schedul-778

ing feedback stage. Extensive experiments results demonstrate779

that SMWDSA is superior to the state-of-the-art algorithms in780

terms of total toatl cost, resource utilization, success rate and781

VM number under different conditions. Additionally, we will782

do the empirical study to make the evaluation part more783

comprehensive.784

We discuss some possible developments of our research785

work which may inspire future research work. In the future,786

we will further optimize the performance of the algorithm and787

consider the scheduling strategy when task execution fails due788

to hardware faults. In addition, our proposed algorithm focuses789

on solve the multi-workflows dynamic scheduling problem790

with a cloud computing system. With the development of cloud791

computing, the multi-cloud computing system collaborative792

scheduling has become a development trend. We plan to793

study the online multi-workflows scheduling in the multi-cloud794

computing system in the future work.795
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