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ABSTRACT Energy management strategy (EMS) is important to ensure energy-saving performance of
hybrid electric vehicle (HEV). However, the power coupling property between different power sources,
together with stochastic power demand fluctuation poses great challenges for EMS to achieve desirable
performance in real-world scenario. This paper presents an uncertainty-aware energy management strategy
for HEV. A speed predictor combining convolutional neural network and long short-term memory neural
network is proposed to extract temporal features that could reveal speed change mechanism. Then an online
self-adaptive transition probability matrix is constructed to estimate the speed prediction uncertainty. Tube
model predictive control (tube-MPC) is finally used to solve the optimization control problem in a receding
horizon manner. The robust set introduced in the tube-MPC greatly enhances the optimality and robust-ness
of the control sequence under the scenario with speed prediction uncertainty. Simulations are conducted to
verify the effectiveness of the proposedmethod. Results show that the speed prediction accuracy is 47.4% and
23.1% higher than exponential decay rate prediction model and autoregressive integrated moving average
model respectively. Compared with traditional rule-based andMPCmethod, the proposed tube-MPCmethod
could achieve 10.7% and 3.0% energy-saving performance improvement in average.

INDEX TERMS Uncertainty-aware energy management, hybrid electric vehicle, hybrid deep learning, tube
model predictive control.

I. INTRODUCTION
Energy shortage is one of the main problems confronted
by all countries around the world in the 21st century [1].
As the main roles in modern transportation, internal com-
bustion engine vehicles are not only the main consumer
of energy, but also one of the main sources of environ-
mental pollutants [2]. For traditional internal combustion
engines, the efficiency of diesel engines is generally lower
than 55%, and that of gasoline engines is even no higher than
45% [3]. Therefore, in order to promote the energy-saving
and low-carbon development of transportation, in recent
years, the whole automobile industry is transforming from
‘‘oil-dependent’’ to ‘‘new energy-dependent’’, and hybrid
electric vehicle (HEV) is the first step in the transformation
of transportation electrification [4], [5].
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The primary goal of HEV is to improve the efficiency of
power system and reduce fuel consumption.When the power-
train configuration is given, the most important factor on
HEV fuel consumption is the power allocation ratio between
the engine and the electrical system. Energy management
strategy (EMS) needs to coordinate the power distribution
between the engine and the electrical system under the con-
straint that the power demand is satisfied. For the same vehi-
cle model and the same driving cycle, the fuel consumption
corresponding to different energy management strategies can
vary by 20% [6]. Thus, it is of great significance to study the
EMS of HEV.

Generally speaking, EMS can be divided into two cate-
gories: rule-based and optimization based. In terms of rule-
based methods, Dextreit et al. [7] divided the engine working
area into high load, medium load and medium and low load
areas, and determined the working mode based on the cal-
culated demand power according to the driver’s accelerator
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pedal opening and opening change rate. Li [8] proposed an
instantaneous rule-based optimal energy allocation algorithm
considering the impact of the timing of engine entering/
exiting the powertrain on the fuel economy. The rule-based
control method has the advantages of low computation and
easy implementation, so it has been widely used in mod-
ern mass-produced HEV [9]–[11]. However, the rule-based
method also has obvious disadvantage. The designed control
strategy usually has the optimality only under the specific
condition used for rule calibration, while the real situation
the vehicle will undergo is very complex. The rule-based con-
trol algorithm lacks adaptability under non-standard working
conditions and the energy-saving performance will be greatly
weakened in real-world scenario [12].

Optimization-based algorithms are another kind of EMS
that have been widely studied in recent years, including
particle swarm optimization (PSO), genetic algorithm (GA),
convex optimization and the most representative dynamic
programming (DP) [13]–[16]. For example, Zhang et al. [17]
used the optimization results of DP to improve the rule-
based EMS and achieved better energy-saving effect.
Correa et al. [18] used DP to find the optimal power distri-
bution principle between engine and motor, and designed a
fuzzy logic controller on the basis of considering SOC bal-
ance and driving style recognition. Although DP can obtain
the global optimal solution, it needs to obtain future working
conditions in advance and can only be realized in offline
manner [19].

To further enhance the energy-saving performance,
advanced researches incorporate speed prediction to make
EMS has prior knowledge about future driving cycle, thus
making optimal decision not only focus on current state
but also consider future situations [20]–[22]. In addition, by
substituting DP with reinforcement learning (RL) or model
predictive control (MPC), control policy could be operated
online [23], [24]. For example, Teng et al. [25] presented a
predictive online energy management strategy for a parallel
HEV based on velocity prediction and RL.Menglin et al. [26]
adopts deep learning to predict future power demand, thus
proposing an online adaptive EMS and realizing efficiency
improvement. However, the future speed or power demand is
affected by so many stochastic factors (including traffic flow,
weather, driver’s driving style) that the prediction uncertainty
is unneglectable in real-world driving scenarios [27]–[29].
Although above methods could enhance energy-saving per-
formance when prediction is accurate, their robustness under
circumstance of uncertain prediction is still in question.

Several advanced EMS researches start to focus on
uncertainty introduced by real-world stochastic factors. For
example, Shangguan et al. [30] proposed a robust energy
management for plug-in hybrid electric buses considering
the uncertainties of driving cycles and vehicle mass using
Pontryagin’s minimum principle method. He et al. [31] incor-
porated the uncertainty of renewable energy and load when
designing EMS for hybrid energy storage system. However,
above methods do not work in a predictive manner.

To exploit the advantage of predictive EMS while consid-
ering the stochastic factors in real-world driving [32], [33],
Zeng et al. [34] proposed a stochastic model predictive
control-based EMS using the vehicle location, traveling
direction, and terrain information of the area for HEVs
running in hilly regions with light traffic. The stochastic
property of road grade is modeled as a Markov chain.
Zhao et al. [35] proposed a stochastic model predictive con-
trol (SMPC) method to exploit the potential performance of
dual-motor coupling powertrain, where the uncertainty of
velocity prediction is captured and modeled through a novel
Signed Markov Chain Monte Carlo method. However, the
optimization result output by traditional MPC or SMPC may
deviate from the optimal control policy or fail to realize
stable control if the uncertainty is not properly quantified.
The robustness of proposed method may still confront with
challenges when facing strong stochastic factors in dynamic
traffic scenes.

Heavy reliance on a model makes traditional MPC or
SMPC susceptible to modeling error and external distur-
bances, often leading to poor performance or instability.
Robust MPC (RMPC) addresses this limitation (at the
expense of additional computational complexity) by optimiz-
ing over control policies instead of open-loop control actions.
Tube MPC is a tractable alternative that decomposes RMPC
into an offline robust controller design and online open-loop
MPC problem [36]. Fig.1 gives an intuitive illustration of
tube-MPC. Given an ancillary control and associated robust
control invariant tube �, a constraint-tightened version of
the nominal MPC problem can be solved to generate an
open-loop control input u∗ and trajectory x∗. Even suspected
to model uncertainty inference, the control sequence could
constrain the system within tolerance scope �, ensuring the
optimality and stability of the solution.

FIGURE 1. Illustration of tube-MPC. If the state x begins in � then it
remains in � indefinitely for all realizations of the model error or external
disturbance.

In addition, an uncertainty-aware speed predictor, which
combines hybrid deep learning model with transition proba-
bility matrix (TPM) based estimation error quantification, is
proposed to assist the application of tube-MPC. Thanks to the
powerful automatic feature extraction ability of deep learning
method, the proposed speed predictor could realize accurate
speed prediction, which helps to enhance the stability and
optimization of the result output by tube-MPC.
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Generally, in this paper, a predictive uncertainty-aware
EMS for HEV based on tube-MPC is proposed. Firstly, an
adaptable online energy management framework is proposed
for HEV, considering the uncertainties in speed prediction
profiles. Secondly, a hybrid deep learning model is estab-
lished to forecast the future information and the prediction
errors are quantified via TPM. Thirdly, tube-MPC is adopted
to optimize the control policy over a moving time win-
dow and the method’s superiority is verified against some
traditional EMS.

The remainder of this paper is organized as follows.
Section II gives the general framework of the proposed
uncertainty-aware EMS together with highlights of its inno-
vation. Section III and section IV introduce two vital parts
in the proposed EMS, namely hybrid deep learning-based
speed prediction model and tube-MPC algorithm, respec-
tively. The performance of the proposed method is well eval-
uated through simulation in Section V.

II. PREDICTIVE ONLINE ENERGY
MANAGEMENT STRATEGY
Fig.2 shows the overall architecture of the predictive online
energy management strategy. Firstly, at each step, history
speed trajectorywill be fed into the speed predictor to forecast
the vehicle speed in a fixed-length future time window. Then,
TPM will be combined with the speed prediction to give out
the speed estimation error. Afterwards, tube-MPC is used to
solve this tricky problem, which could ensure the stability of
the control policy even under the uncertain speed prediction
scenario. Finally, only the first of optimized control sequence
u(h) is executed on the system and system will transfer to
a new state after control execution. The information of new
state will be fed into the MPC controller for the control
optimization at the next time step.

FIGURE 2. Architecture of the predictive online energy management
strategy.

III. UNCERTAINTY-AWARE SPEED PREDICTION MODEL
Fig.3 gives the architecture of hybrid deep learning based
speed prediction model. The input is first fed into the
convolutional neural network (CNN) layer to extract high-
dimensional features that can reflect the internal character-
istics of speed change. Then max-pooling layer is used to

down-sample the output to the patch that could highlight the
most valuable features. Another set of CNN and max-pooling
layer is added to further distill the features. Afterwards, long
short term memory (LSTM) layer is appended to incorporate
the extracted features for time series prediction. Finally, fully
connected layer is adopted to realize final speed prediction.
In order to compensate the speed prediction error, a TPM is
accompanied with the hybrid network to realize awareness of
uncertainty. Details of each part are described as follows.

A. INPUT LAYER
The general idea of the model is to use data from last several
intervals to predict the speed in the future time window. Let
m denotes the input data length, p denotes the number of input
variables, then the input can be expressed as:

Di =

dvar1(h− m) · · · dvar1(h)
...

. . .
...

dvarp(h− m) · · · dvarp(h)

 (1)

In this paper, the input variables include speed, acceleration,
mean and standard deviation of speed over time window L
(L < m), which means p = 4 here.

B. CNN AND MAX-POOLING LAYER
The calculation of CNN layer generally includes two
steps [37]: first, convolution operation is carried out by mul-
tiplying convolution kernel with each small patch. Then non-
linear function is applied to realize de-linearization function.
The values zli,j,k at the position (i, j) in the k-th characteristic
diagram of the l-st layer are calculated as following equation:

zli,j,k = wlkx
l−1
i,j + b

l
k (2)

where wlk and b
l
k are the weight coefficient vector and offset

of the k-th convolution kernel of the l-th layer respectively.
The notations w and b used are also used in following equa-
tions to represent weight and offset vector when introducing
LSTM layer. x l−1i,j is a piece of input data centered on position
(i, j) in layer l−1. The activation function is used to introduce
nonlinearity into CNN, so that CNN can detect nonlinear
characteristics. Let a(·) be a nonlinear activation function,
then the activation values ali,j,k of the convolution features
zli,j,k can be calculated according to following equation:

ali,j,k = a(zli,j,k ) (3)

Here, ReLU activation function is used.
The function of pooling layer is to summarize the features

extracted from the convolution layer and compress the infor-
mation, so that the feature range that CNN can extract could
be much wider. Let the pooling function is denoted as pool(·),
then for each characteristic graph ali,j,k , we can get output
yli,j,k as follows:

yli,j,k = pool(ali,j,k ) (4)

The kernel size of CNN and max-pooling layers are set as
2× 2 in this paper.
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FIGURE 3. Architecture of the hybrid deep learning model.

C. LSTM LAYER
LSTM neural network is a special recurrent neural network
(RNN), which is mainly to solve the problem of gradient
disappearance in the process of long sequence training [38].
For each LSTM layer, it needs to process two states, namely
hidden state aim and memory state ctm. The candidate memory
value c̃tm of the m-th LSTM layer at a certain time t is:

c̃tm = tanh(wcm
[
at−1m , atm−1

]
+ bcm) (5)

where at−1m represents the activation value obtained from the
same layer at the last time. atm−1 represents the activation
value obtained from the last LSTM layer at the same time.

For the m-th LSTM layer, three gating operations, namely
memory gate 0um, forget gate 0

f
m and output gate 0om need

to be recorded. These three gates determine the true memory
value ctm and activation value atm of the LSTM unit. Memory
gate 0um and forget gate 0fm of m-th LSTM layer can be
obtained by following equations:

0um = σ (w
u
m

[
at−1m , atm−1

]
+ bum) (6)

0fm = σ (w
f
m

[
at−1m , atm−1

]
+ bfm) (7)

where σ represents sigmoid activation function. Then, the
memory value ctm at time t of m-th layer can be obtained
through two ways. One is generated by the candidate value
at current time, the other is obtained from the memory value
at previous time. They are controlled by the memory gate 0um,
forget gate 0fm as follows:

ctm = 0
u
mc̃tm + 0

f
m
˜ct−1m (8)

The hidden state atm at time t of m-th layer can be obtained
from the output gate 0om according to following equations:

0om = σ (w
o
m

[
at−1m , atm−1

]
+ bom) (9)

atm = 0
o
mc

t
m (10)

The output sequence yt is obtained from the last softmax
activation layer:

yt = softmax(atM ) (11)

where M represents the total layers of LSTM.

D. OUTPUT LAYER WITH UNCERTAINTY COMPENSATION
The output of the hybrid deep learning model is the predicted
speed over a future time window with length n, which means:

Do = [vp(h+ 1) · · · vp(h+ n)] (12)

In order to compensate the uncertainty inherent in speed
prediction, online uncertainty-aware correction based on
TPM is adopted here. Suppose the real speed at future time
instance ζ is vζ , then:

vζ = vζp + v
ζ
e (13)

where vζp represents the predicted speed and vζe denotes the
stochastic prediction error. Gaussian distribution is used to
model the error property here, which means vζe ∼ N (0, σ 2).
Considering the assumption that speed change confirms to
Markov property, then TPM can be used to model the speed
transition process. An online TPM updating mechanism with
forgetting factor ϕ is adopted here to track the uncertainty
trend [39]:

Pi,j(L) = Pi,j(L − 1)+ ϕ[pi,j (L)− Pi,j (L − 1)] (14)

where Pi,j(L) represents the probability of the transition from
vi to vj. pi,j (L) = 1 if a transition from vi to vj occurs at time
instant L, else equals to 0. The forgetting factor ϕ ∈ (0, 1)
is to determine the effective memory depth and control the
rate of updating Pi,j(L), which is set as 0.1 in this paper.
After obtaining the TPM, speed chain can be sampled. In this
paper, 10 chains with length 5 are sampled for each sampling
instance, and the averaged standard deviation of the 10 chains
is used to approximate the σ value.
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The deep learning based hybrid model can be trained using
Adam method offline and used for speed prediction online.
The TPM can be updated online to track the time-varying and
stochastic change of speed estimation error. it also needs to be
mentioned here that more variables can be incorporated into
the input and output layers if any other predictive information
is needed for subsequent energy management application.

IV. TUBE-MPC BASED PREDICTIVE ONLINE
ENERGY MANAGEMENT STRATEGY
To apply optimal control, HEV system model is prerequisite.
Suppose HEV System with uncertainty can be described by
following equation:

x (h+ 1) = f (x (h) , u (h) ,w(h)) (15)

where x denotes the state variables. u represents control
variables.w is uncertain factor and refers to speed uncertainty
in this paper. The detailed model of investigated HEV can be
found in Appendix. In this paper, x = [vh, SOC, Pveh, vh+1,
vh+2, . . . vh+n] and u = [mode,Teng, neng] (mode refers to
electric drive mode, engine drive mode and hybrid mode).

In this paper, tube MPC with one-step look-ahead robust
set is used to solve the above optimization problem online,
which can achieve close optimal control performance even
under the circumstance of stochastic interference. Generally,
Tube MPC includes two parts, namely offline part and online
part. The standard tube-based MPC algorithm is solved abso-
lutely offline, and the only online calculations are to confirm
which partition the current state lies in. In online part, differ-
ent control laws will be selected according to different states
so as to ensure that the state will be controlled within tolerant
boundary under uncertainty scenario. Table.1 demonstrates
the steps of the algorithm [40], [41].

V. VERIFICATION AND SIMULATION
In this section, effectiveness of the proposed method will be
evaluated through simulation. Generally, two aspects of the
method are discussed here. First, the accuracy of the pro-
posed speed predictor using hybrid deep learning method will
be compared with traditional methods including exponential
decay rate prediction model and autoregressive integrated
moving average model (ARIMA). Then the superiority of the
proposed method will be highlighted compared with rule-
based method and MPC method without considering the
speed estimation uncertainty.

A. SPEED PREDICTION PERFORMANCE EVALUATION
In order to evaluate the accuracy of the proposed deep
learning based speed prediction method, two conventional
methods are used as benchmark here. The first method
is exponential decay rate prediction model, which can be
expressed by:

vh+i = vh × (1+ ε)i (16)

where vh represents the starting speed at time point h. ε is the
exponential decay factor and different ε values correspond to

TABLE 1. Tube MPC algorithm.

different vehicle speed decay rates. Here, ε is set as 0.002
through trial-and-error.

The second method is ARIMA (p, d, q), which is a com-
monly used linear forecasting approach, where p is the autore-
gressive form, q is the moving average window and d is
the order of differencing. Here, d is assigned as 2, p and
q are selected according to the auto-correlation and partial-
correlation graph of the data.

Fig.4 compares the speed prediction accuracy of the three
methods. The speed trajectory used for prediction is collected
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FIGURE 4. Speed prediction accuracy of three methods.

from a real-world driving in Beijing [42]. It can be seen
from the figure that for exponential decay rate prediction
model, the predicted speed shows an exponential attenuation
trend in the future time window, but obvious differences exist
between the real and predicted speed trajectories, especially
when there is a sharp speed change around stop, which means
this model is insufficient to capture the sophisticated dynamic
change of speed variation. The average prediction error is
3.8km/h in this scenario. For the ARIMA model, through the
fitting of moving window, the speed prediction deficiency
of the above exponential decay rate prediction model can be
solved to a certain extent and the prediction error is decreased
to 2.6km/h. However, there is still room to improve the speed
prediction accuracy. The final proposed hybrid deep learning
method achieves highest prediction accuracy benefited from

TABLE 2. Energy-saving performance of different algorithms.

the powerful data mining and processing abilities of CNN and
LSTM, which can extract and learn temporal features from
historical data. The prediction error is only 2.0km/h in this
scenario.

B. ENERGY SAVING PERFORMANCE EVALUATION
In order to verify the superiority of the proposed method
in energy-saving performance, rule-based method and tradi-
tional MPCmethod without considering the speed estimation
uncertainty are used as benchmark.

1) RULE-BASED METHOD
When the SOC of the battery is initially at a high level
(i.e. SOC>70%), the power demand of the vehicle can be
fully covered by the battery, thus the vehicle works in pure
electric mode. If the battery cannot meet the power demand,
then the engine starts. If the difference between the required
power of the vehicle and the power in the lowest fuel con-
sumption range of the engine is less than 5%, the vehicle
works in the engine drive mode. If the power demand is much
higher, the vehicle works in the hybrid acceleration mode.
At this time, the engine works in the high-efficiency zone as
much as possible, and the insufficient power is supplemented
by the power battery.When the battery SOC decreases to 50%
after a period of power consumption, engine will be switched
on to work near the upper boundary of the optimal area. The
part exceeding the demand power is used for battery charging.
When the SOC reaches 75%, it will switch to pure electric
mode, engine drive mode or hybrid acceleration mode again.

2) TRADITIONAL MPC METHOD
This method is similar to the proposed method but without
consideration of the speed error and tube effect, which means
the uncertainty compensation part in speed predictor and the
w(h) in Eq.(15) is not considered. The state, action and cost
function for this method is the same as that for the proposed
method in this paper.

The speed trajectory used in Section V.A is also used here
for energy-saving performance evaluation. Table.2 lists the
comparison results, including the simulation of three groups
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FIGURE 5. Working points distribution of the engine.

of different initial SOC. For fair comparison, the difference
of SOC at the end has been weighted and incorporated into
the final fuel consumption Fuelc.

It can be seen from Table.2 that the proposed EMS consid-
ering speed prediction uncertainty has the lowest equivalent
fuel consumption among the three methods. Compared with
rule-based method, the proposed method can achieve 11.4%,
8.5% and 12.3% energy-saving improvement under the three
defined initial SOC scenarios respectively. Compared with
traditional MPC method, the proposed method is superior

in terms of depressing the frequent start/stop of the engine
and fuel consumption. By incorporating consideration of the
speed prediction uncertainty into EMS, the stochastic varia-
tion in future power demand is fully evaluated by the tube
mechanism in tube-MPC, thus make the control policy more
careful about the future reward that could benefit from current
action.

Fig.5 shows the working points distribution of the engine.
It can be seen that for the rule-based method, there are
many points locating in the high-power region with large
fuel consumption rate. This is caused by the fact that when
the SOC decreases to 50%, the engine will start to work
with high power output not only satisfying the driving power
demand but also charge the battery. This phenomenon greatly
deteriorates the energy-saving performance under rule-based
method. Traditional MPC method works much better than
rule-based method, the points in high-power region is greatly
depressed so the fuel consumption in this scenario is much
lower. However, due to the uncertainty in speed prediction,
the traditional MPC method cannot realize adaptive cor-
rection thus there are some points deviated from the opti-
mal efficiency line. For the proposed tube-MPC method,
the robustness and energy-saving performance are greatly
enhanced by considering the uncertainty in speed prediction.
Fewer points are deviated from the optimal working area.

VI. CONCLUSION
This paper proposes a predictive EMS framework considering
uncertainty in speed estimation so that the energy-saving
performance of EMS could be further enhanced. A speed
predictor based on hybrid deep learning is proposed to extract
temporal features that could reveal speed change mechanism.
Then an online self-adaptive TPM is constructed to estimate
the speed prediction uncertainty. Tube-MPC is used to solve
the optimization control problem in a receding horizon man-
ner. Simulations results show that the speed prediction accu-
racy is 47.4% and 23.1% higher than exponential decay rate
prediction model and ARIMAmodel respectively. Compared
with traditional rule-based and MPC method, the proposed
tube-MPC method could achieve 10.7% and 3.0% energy-
saving performance improvement in average.

Considering the fact that RL based EMS is attracting
increasing attentions in recent years and has demonstrated
desirable performance in efficiency improvement, future
research may include a comprehensive comparison between
RL based EMS and our proposed method to further improve
the optimality of the uncertainty-aware predictive EMS
framework. In addition, more uncertainty factors like HEV
fuel consumption and battery SOC will be incorporated to
verify the generalizability of our proposed method in the
future.

APPENDIX
MATHEMATICAL MODEL OF HEV
The basic parameters of the investigated HEV is listed in
Table.3. Fig.6 shows the topology of the power system of
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the investigated HEV. The main components of the hybrid
system include power battery, engine, integrated starter and
generator (ISG) motor, drive motor and planetary gear. The
planetary gear is a power coupling device, which coordinates
the power among ISG motor, engine and drive motor. The
carrier of the planetary gear is connected with the engine, the
sun gear is connected with the ISG motor, and the ring gear is
connected with the drive motor. In addition, the power battery
is also connected with the drive motor and ISG motor to
provide power source. In order to simplify the representation,
the controller and other related parts are omitted. When the
system works, the controller will optimize and adjust the
power distribution between the power battery and the engine,
and integrate the power into the driving motor through the
planetary gears for power output to drive the vehicle forward.
The mathematical models of the main components are as
follows.

TABLE 3. Basic parameters of the investigated HEV.

FIGURE 6. Topology of hybrid power system of the investigated HEV.

A. POWER BATTERY MODEL
Here, the first-order RC equivalent circuit model of the bat-
tery cell will be firstly established [43]. Then the model of
battery pack will be derived according to the pack topology,
which connects the characteristic parameters between the
pack and the cell.

The first-order RC model mainly includes open circuit
voltage (OCV), ohmic internal resistance Rs and RC network,
which includes polarization resistance Rp and polarization
capacitance Cp. According to Kirchhoff’s law, the model

satisfies the following state equation: V̇p = −
Vp
τ
+

ib
Cbatt

Vt = OCV− Vp − ibRs
(17)

where Vp represents the terminal voltage of the RC network.
τ is the time constant and theoretically τ = RpCp. ib rep-
resents excitation current. Cbatt is the capacity of the power
battery. Vt represents the terminal voltage. In the actual
application, the above state equation needs to be discretized.
According to the control theory, the discretized state equa-
tion is:

Vp (k + 1) = e−
1t
τ Vp (k)+ ibRp(1− e−

1t
τ )

Vp (0) = 0
Vt (k) = OCV− Vp(k)− ibRs

(18)

where k represents the time point index and 1T represents
the sampling period.

The battery pack is connected in series of 148 battery
modules and each module is consisted of 3 cells in parallel.
So the output voltage of the battery pack should be 148 times
of the single cell. The ohmic resistance and polarization
resistance of the pack should be multiplied by 148/3≈49.3
and the polarization capacitance of the pack should be divided
by 49.3 on the basis of the cell calibration value.

B. ENGINE MODEL
Fig.7 shows the two main characteristics of the engine,
including the external characteristic curve and fuel consump-
tion curve. For the external curve, it reflects themapping from
engine speed neng to engine maximum torque Teng−max and
can be expressed by:

Teng−max = fe(neng) (19)

The maximum torque can only be achieved when the throt-
tle opening achieves 100%. In this paper, we assume that the
engine output torque Teng is proportional to throttle opening
γ and can be modeled by:

Teng = γTeng−max (20)

The instantaneous oil consumption ċ can be interpolated
from the consumptionmap based on engine torque and engine
speed, as shown in Fig.7(b). The mathematical model can be
described by:

ċ = 0(neng,Teng) (21)

C. DRIVE MOTOR MODEL
The drive motor model includes external characteristic map
and efficiency map. For the external characteristic map,
under a certain speed nmotor , the torque of the motor Tmotor
shall be controlled within the maximum driving torque
Tmotor−max and the maximum generation torque Tmotor−min,
which means:

fmg (nmotor ) = Tmotor−min
Tmotor−max = fmd (nmotor )
Tmotor−min ≤ Tmotor ≤ Tmotor−max (22)
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FIGURE 7. Characteristics of the engine.

For the efficiency map of the drive motor, like the oil
consumption map of the engine, the efficiency of the motor
ηmotor is also the function of speed nmotor and torque Tmotor ,
which can be expressed by:

ηmotor = 0(nmotor ,Tmotor ) (23)

D. IGS MODEL
The ISG motor also has the limitation of maximum torque,
which can be described by following equation:

−T ISG−max ≤ TISG ≤ TISG−max = fid (nISG) (24)

where TISG and nISG represent the output torque and speed of
ISG motor, respectively.

In addition, because the ISG motor in this paper is mainly
used to start the engine and adjust the speed of the engine in
the acceleration mode, its working range is relatively narrow.
According to the engineering experience, the efficiency of the
ISG motor ηISG is set to the fixed value of 90%.

E. ENERGY FLOW MODEL
The hybrid drive system studied in this paper has three work-
ing modes, namely pure electric mode, engine drive mode
and hybrid mode. The hybrid mode can be further divided
into acceleration mode and regenerative mode according to
the discharging/charging state of power battery, as shown in
Fig.8. In this subsection, the energy flow models under three
modes are given.

FIGURE 8. Different working modes of the investigated hybrid system.

As shown in Fig.8(a), in the pure electric mode, the vehicle
uses the power battery as the sole power source to drive the
vehicle. The ring gear connected to the drive motor will also
rotate. The carrier connected to the engine will stay still while
the ISG motor rotates in the opposite direction but without
power consumption or power generation. The power of the
motor satisfies the following equation:

Pbattηmech_p = Pmotor_in (25)

where Pbatt is the battery power and can be calculated by
Pbatt = Vt ib. ηmech_p is the mechanical transmission effi-
ciency of the planetary gear, which is taken as 94% here.
Pmotor_in indicates the input power of the motor.
In the process of power transmission from motor input to

motor output, there is power loss due to motor efficiency,
which meets the following equation:

Pmotor_inηmotor = Pmotor_out = Tmotornmotor (26)

Pmotor_out indicates the output power of the motor.
In addition, according to the mechanical connection

topology, the drive motor is connected with the wheel
through the main reducer, so the following speed conversion
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equation is met:

ua = 0.377
rnmotor
i0

(27)

where ua is the vehicle speed. R is the radius of vehicle wheel.
i0 represents the transmission ratio of the main reducer, which
is 6.14 here. The speed conversion equation determined by
the mechanical connection topology is not only applicable to
the pure electric mode, but also applicable to the engine drive
mode and hybrid mode.

According to the power balance equation of the vehicle,
the required power of the vehicle Pveh can be expressed as:

Pveh =
(
mgf +

CDAu2a
21.15

+ mgsinα + m
dua
dt

)
ua

= Pmotor_outηmech (28)

where m is the mass of the vehicle. g is the gravitational
acceleration. f is rolling resistance coefficient. CD is the
aerodynamic drag coefficient. A is the frontal area. α rep-
resents the road incline, which is taken as 0 for simplicity
here. ηmech refers to themechanical efficiency from the output
end of the motor to the wheel end after passing through the
transmission parts such as the main reducer, which is taken
as 96% according to engineering experience.

As shown in Fig.8(b), in the engine drive mode, the engine
speed is coordinated by the ISG motor to drive the vehicle
efficiently. According to the number of teeth of planetary
gear and its connection relationshipwith various components,
following kinetic equation can be obtained:{

nmotor = 1.36neng − 0.36nISG
Teng = 0.73Tmotor + 0.27TISG

(29)

In this mode, the following power balance relationship is
satisfied:

Tmotornmotorηmech_p = Pveh (30)

Pveh still meets the power balance relationship of Eq.(28).
Considering that the power of ISG motor is provided by
power battery, therefore:

TISGnISG = Pbatt (31)

As shown in Fig.8(c) and Fig.8(d), in the hybrid mode, the
engine and drive motor work together to propel the vehicle,
and the power balance meets the following relationship:

Pbatt = Pisg + Pmotor_in (32)

In addition, Eq.(26)∼Eq.(31) are still valid in this mode.
In essence, the hybrid mode is the superposition of pure
electric mode and engine drive mode. Therefore, integrating
the speed transmission relationship and power balance rela-
tionship under pure electric mode and engine drive mode will
result in the energy flow equation under hybrid mode.

The hybrid mode can be further divided into accelera-
tion mode and regenerative mode, which mainly depends
on the state of the battery. If the battery SOC is high, the

engine and power battery jointly drive the vehicle forward,
which is called acceleration mode. If SOC is low, in order
to maintain the battery energy, the engine will output power
higher than the driving demand and excess power will be
used to charge the battery. This is called regenerative mode.
Although there are some differences in energy flow direction
between above two modes, there is no difference in dynamic
equation due to the same mechanical connection topology.
The difference between the twomodes lies in the sign ofPbatt ,
which is positive under acceleration mode and negative under
regenerative mode.

F. OPTIMIZATION TARGET
HEV energy management should reduce fuel consumption as
much as possible. In addition, to protect the power battery, the
change of SOC should not be too drastic. Therefore, the cost
function is defined as follows:

minu′(h)
∑h+n

t=h

[
χ ċ+ ϕ (SOC (t)− SOCsust)2 + ρ

]
Ts

(33)

where SOCsust represents the balanced SOC value, which is
set as 60% here. χ and ϕ are positive weight coefficients.
TS represents the sampling period. In addition, a penalty
factor ρ is introduced into the cost function, which equals
to 1 when engine starts or stops. This is to avoid frequent
state switching of the engine. In particular, when the engine
speed/torque or motor speed/torque exceeds the limit map
during the state transition, an additional huge penalty (105 in
this paper) will be introduced into the cost function to ensure
that the engine and motor work within the allowable range.
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