
Project Work 1 
 

Implement a Generative Adversarial Network (GAN) from scratch. This GAN is based on the 
Siamese neural network. Therefore, you will have two generators and two discriminators. One 
of the generators takes the thermal (grayscale) image as input and the other generator takes 
the RGB (colored) image as input.  
 
Design of the network:  
 
During training, the contrastive loss is used in the latent embedding subspace to optimize the 
network parameters, so that latent features of input images from different spectral domains of 
the same identity are close to each other while the features of different identities are pushed 
further apart.    
 
Generator: Used recent U-Net densely connected encoder-decoder structure (followed by 
ResNet-18 for both encoder and decoder). 
 
To design the generator, contrastive loss along with adversarial loss is used. In addition to 
contrastive loss and adversarial loss, perceptual loss and L2 reconstruction loss are used to 
guide the generator toward the optimal solutions. The perceptual loss is measured via a pre-
trained VGG-16 network.  
 
Discriminator: The discriminator is patch-based (like the PatchGAN classifier). The 
discriminators are trained to simulate along with the respective generators.  
 
Details to implement:  
 
Follow the architecture of ResNet-18 to implement both the encoder and decoder sections of 
the U-Net.  
 
In the encoder, each block is designed by applying two 3x3 convolutions, each followed by 
ReLU.  
 
For down-sampling, it uses a 2x2 max pooling operation with stride 2. 
 
We double the number of feature channels at each down-sampling step.  
 
Similarly, each step in the decoder section, upscale the feature map by applying 2x2 transpose 
convolution, up-sampling the dimension of the feature map.  
 
Each feature map is concatenated with the corresponding feature map from the encoder, 
followed by two 3x3 convolutions with a ReLU activation function. 
 

 

https://en.wikipedia.org/wiki/Siamese_neural_network


Training:  
 
Both of the frameworks have to be implemented in PyTorch. Train the network with a batch 
size of 16 and learning rate 2 ∗ 10−4 . Adam optimizer with a first-order momentum of 0.999.  
 
Leaky ReLU is used as an activation function with a slope of 0.35 for the discriminator.  
 
To find the optimal hyper-parameters for our learning algorithms, we have used a random 
strategy.  
 
For the network convergence, we consider 𝜆3 = 1 and  𝜆4 = 0.3 and  𝜆5 = 0.3 . Also, 𝜆1 =
10−6 and  𝜆2 = 2 ∗ 10−3.  
 
 
 
 
 
 
 
 
 
 




