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A B S T R A C T

Honey bees Apis mellifera follow the day-night cycle for their foraging activity, entering rest periods during 
darkness. Despite considerable research on sleep behaviour in bees, its underlying neurophysiological mecha
nisms are not well understood, partly due to the lack of brain imaging data that allow for analysis from a 
network- or system-level perspective.

This study aims to fill this gap by investigating whether neuronal activity during rest periods exhibits ste
reotypic patterns comparable to sleep signatures observed in vertebrates. Using two-photon calcium imaging of 
the antennal lobes (AL) in head-fixed bees, we analysed brain dynamics across motion and rest epochs during the 
nocturnal period. The recorded activity was computationally characterised, and machine learning was applied to 
determine whether a classifier could distinguish the two states after motion correction. Out-of-sample classifi
cation accuracy reached 93 %, and a feature importance analysis suggested network features to be decisive. 
Accordingly, the glomerular connectivity was found to be significantly increased in the rest-state patterns. A full 
simulation of the AL using a leaky spiking neural network revealed that such a transition in network connectivity 
could be achieved by weakly correlated input noise and a reduction of synaptic conductance of the inhibitive 
local neurons (LNs) which couple the AL network nodes. The difference in the AL response maps between awake- 
and sleep-like states generated by the simulation showed a decreased specificity of the odour code in the sleep 
state, suggesting reduced information processing during sleep. Since LNs in the bee brain are GABAergic, this 
suggests that the GABAergic system plays a central role in sleep regulation in bees as in many higher species 
including humans. Our findings support the theoretical view that sleep-related network modulation mechanisms 
are conserved throughout evolution, highlighting the bee’s potential as an invertebrate model for studying sleep 
at the level of single neurons.

Introduction

The sleep phenomenon in invertebrates is not yet well understood 
(Siegel, 2008). A promising model for its investigation is the honey bee 
Apis mellifera. An early study of bee behaviour during an entire life cycle 
showed that bees spend a large part of their time in what was termed rest 
phases (Lindauer, 1952). Bees are commonly referred to as sleeping 
when they assume a typical body position with characteristically 
hanging antennae (Kaiser, 1988). During these phases, responsiveness to 
external stimuli is reduced (Eban-Rothschild & Bloch, 2008). While 
young workers, dedicated to in-hive activity, show an irregular pattern 
of sleep phases, foragers’ sleep is strongly linked to the circadian rhythm 
(Yerushalmi et al., 2006). Sleep in bees is found to improve memory 

consolidation (Hussaini et al., 2009; Zwaka et al., 2015), while sleep 
deprivation affects memory extinction (Beyaert et al., 2012), reduces 
waggle dance precision (Klein et al., 2010), and is later compensated by 
increased sleep (Sauer et al., 2004). Furthermore, honey bee sleep can be 
influenced by neuroactive pesticides, such as neonicotinoids 
(Tackenberg et al., 2020; Tasman et al., 2020) and herbicides like 
glyphosate (Vázquez et al., 2020). However, little is known about the 
dynamic neural transition mechanisms underlying sleep.

So far, the only neurophysiological signature of sleep reported in the 
bee brain is a circadian modulation of electrophysiological responses of 
single neurons in the optic lobes of foragers (Kaiser & Steiner-Kaiser, 
1983). However, an expression of the circadian clock gene PER was 
found throughout the bee brain (Bloch et al., 2003). This suggests that 
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sleep impacts whole-brain activity in a measurable, but yet 
non-understood way. This includes the primary olfactory processing 
centers, the antennal lobes (ALs), which have so far been ignored by 
sleep studies in insects (Helfrich-Förster, 2018). In the ALs, olfactory 
receptor neurons (ORNs) from the antennae converge into 160 nodes 
called glomeruli, each receiving input from a single type of odour re
ceptor. These glomeruli are interconnected via inhibitory local neurons 
(LNs) and project into higher brain centers via projection neurons (PNs). 
Odour information is coded in spatio-temporal activity patterns in the 
PNs (Paoli et al., 2016, 2018). To gain a better understanding of the 
neuronal basis of sleep in bees, and given that the bee olfactory system 
has been shown to be functional during sleep (Zwaka et al., 2015), we 
chose to record neuronal activity patterns in the ALs, both at the 
network level and at the level of univariate time series.

In this study, we aimed to provide the first study of the neural cor
relates of sleep in the bee brain and explore its functional implications. 
By combining functional brain imaging, machine learning, and 
computational modelling, we applied an integrated approach to study 
sleep at both experimental and theoretical levels. We used extended 
recordings of two-photon calcium imaging to monitor the spontaneous 
activity in the PNs during phases of distinct motor activity to quantify 
functional changes associated with sleep.

To this end, we implemented a hybrid data-driven approach via 

machine learning and a hypothesis-driven approach. Specifically, we 
raised three hypotheses: (1) Rest phases will be associated with reduced 
information processing at the network level, significantly different from 
the active state correlates, as observed also in the human brain (Alkire 
et al., 2008; Tononi & Massimini, 2008). (2) Reduced information pro
cessing in the antennal lobe should manifest in a reduction of contrast 
and sparsening of glomerular activity at the output. (3) The reduction of 
function in the antennal lobe could be generated by a change in 
glomerular coupling via the LNs. By testing these hypotheses, we aim to 
gain new insights into the neural correlates of sleep in invertebrates and 
to understand to what extent these brains with only one million neurons 
allow the future study of sleep-related effects.

Methods

Experimental procedures

Insect preparation
Forager honey bees (Apis mellifera) from outdoor hives were captured 

in the morning (between 9 a.m. and 11 a.m.) at a feeder using small 
plastic containers. The preparation then closely followed a standard 
procedure (Paoli et al., 2017). Briefly, after immobilization by cooling 
the temperature of the containers, bees were transferred into a Plexiglass 

Fig. 1. Trace of bee motion. (a) Honey bee in the plexiglass mounting block under two perspectives, with red dental wax to fix the head and a green sponge to gently 
fix the upper body. (b) above: Frontal camera view of the mounted bee under the microscope; below: Standard deviation of the intensity of each camera pixel during 
an interval of 200 frames, revealing a period of frequent trunk movement (left) and a resting phase (right). (c) Running standard deviation (200 frames) averaged 
over the entire camera image and normalised to an initial value. This measure of body motion alternates between states of strong motion (green) and resting states 
(orange), with each state typically extending from multiple minutes to over one hour. Intervals that could not clearly be classified as one of the two states are shown 
in grey. Light blue vertical bars mark the two-photon imaging periods of 2.5 min. In addition to regular imaging sessions every 30 min, recordings were triggered by 
the detection of a change in the state of motion with respect to the previous recording session. The motion images in (b) correspond to imaging session 2 (awake) and 
session 5 (rest). (b) Detailed analysis of the transition phases of the extended sleep periods in (c).
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mount (Fig. 1a), where the head was fixed with soft dental wax (Deiberit 
502, Siladent). A small window was cut into the head cuticula, and 
glands and tracheae were gently moved aside to clean the dye injection 
site. A borosilicate glass needle was used to inject the calcium-sensitive 
dye Fura-2-dextran (ThermoFisher Scientific). The injection site (always 
in the left brain side to avoid lateralization effects (Haase et al., 2011a) 
was at the intersection of the lateral and medial antenno-protocerebral 
tracts between medial and lateral calyxes of the mushroom body 
(Paoli et al., 2016). The cuticula was then closed; the bees were fed to 
satiety with 50 % sucrose/water solution and kept in a dark, moist place 
for at least 6 h to allow for dye uptake. In the afternoon, the bees were 
prepared for microscopy by re-opening the cuticula, removing glands 
and tracheae from the imaging site (the left AL), and covering the brain 
with a transparent two-component silicon (Kwik-Sil, WPI). A small (3 - 4 
cm) transparent plastic sheet was placed on top of the bee’s head in 
order to isolate the dry antennae from the imaging window, where a 
large drop of water was added to immerse the microscope objective. To 
compensate for the evaporation of the immersion liquid during the 
night, an automated refill system was constructed, which detected the 
absence of water via the current drop between two electrodes. This 
triggered an automated syringe to refill the reservoir.

Body motion video recording
The bees’ motion during imaging was recorded via an infrared 

camera (Blackfly BFLY-PGE-12A2M, FLIR), placed 15 cm in front of the 
bee in the microscopy mount, at a frame rate of 10 Hz. An illumination 
invisible to both the bee eye and the microscope detectors was provided 
by an infrared LED (λ = 850 nm). Bees were habituated to the setup for 
at least 1 h, then a video of 30 min was recorded as a reference for the 
active-state motion (calculated from the standard deviation (STDref) of 
each camera pixel’s time series over 200 frames, averaged over area and 
recording time). In agreement with previous circadian rhythm studies 
(Kaiser & Steiner-Kaiser, 1983), bees were never found resting before 9 
pm.

Calcium imaging
The two-photon imaging platform (Ultima IV, Bruker) consisted of a 

Ti:Sa laser (Mai Tai Deep See HP, Spectra-Physics) tuned to 780 nm for 
fura-2 excitation, illuminating an epi‑fluorescence microscope with a 
water immersion objective (10 ×, NA 0.3, Olympus). Fluorescence was 
recorded via a photomultiplier (Hamamatsu) through a 525 ± 35 nm 
filter (Chroma). A field of view of 280 × 280 µm2, resolved in 128 × 128 
pixels, allowed to simultaneously image between 12–25 glomeruli. The 
image acquisition rate was approximately 10 Hz in regular scanning. A 
laser power of about 4 mW (after the objective) showed an optimal 
balance between signal-to-noise ratio and photo-damage, the latter 
manifested in the bee lifetime. For one bee, scanning via a resonant 
piezo mirror allowed acquisition at 120 Hz which produced a reduced 
signal-to-noise ratio that was partially compensated by increasing the 
laser power up to 14 mW. These powers are well below thresholds at 
which significant heating effects can be detected in brain tissue (~1.8 
◦C/100 mW) (Podgorski & Ranganathan, 2016), and identical imaging 
parameters during sleep and wakefulness should rule out any differen
tial effect of the laser. For all animals, two-photon recording sessions 
were triggered by real-time analysis of the bee’s motion state from the IR 
camera data and lasted 150 s each.

Motion-triggered image acquisition
A MATLAB (MathWorks) script analysed the IR camera data every 

150 s. Within these intervals, the pixel standard deviation (STD) was 
recomputed over every 200 frames collapsing over the entire field of 
view. Then, the temporal mean STDmean, the maximum STDmax, and the 
minimum STDmin were extracted and the ratios to the reference STDref 
were used as behavioural indicators to distinguish between active and 
resting states (details see below). The microscope was by default trig
gered every 30 min for 150 s imaging sessions. Additionally, to 

equilibrate the amount of data from the different motion states, motion 
classification was performed in real-time and whenever a shift of state 
with respect to the previous recording was detected, an additional im
aging session was initialised. The light blue vertical lines in Fig. 1c show 
an example of the timeline of these imaging sessions for one animal.

Post-hoc motion classification from video recordings
During the experiments, frontal videos were saved to allow a refined 

motion classification during post-processing and to section the calcium 
imaging data to ‘active’ and ‘resting’ conditions according to the motion 
states. The classification was based on the relative change of the image 
intensity standard deviation described above; the thresholds were 
optimised based on the fluctuations during the recording to robustly 
distinguish the two well-separated motion states (Fig. 1c). These 
thresholds were animal-dependent, not only due to behavioural differ
ences between bees but also because of differences in the visible area of 
the bee body and the imaging angle. An example of classification 
thresholds for the recording visualized in Fig. 1c is for the resting state: 
STDmean

STDref < 0.7 AND STDmax
STDref < 1 and for the active state: STDmean

STDref > 0.8 AND 
STDmin
STDref > 0.55. During a 150 s imaging session, bees could change state or 
fluctuations could compromise a clear classification; those data were 
excluded from further analyses.

To guarantee high data quality for the quantitative statistical anal
ysis, experiments were only considered if they fulfilled each of the 
following criteria: a) images must allow for distinguishing individual 
glomeruli; b) bees must have survived the whole night; c) the real-time 
classification must have triggered a number of imaging sessions in both 
motion states that allow for a reasonable statistical analysis; d) the rest 
and active states must have been different enough to allow for a reliable 
classification according to the above criteria. After careful examination 
of all these criteria, we arrived at n = 9 subjects to be included in this 
study.

Image post-processing

Brain motion correction
It is essential to apply motion correction in the absence of rigorous 

frame shift control since, during the analysis, motion might be mistak
enly considered as a calcium-induced change in fluorescence. A Hidden 
Markov Model (HMM) (Dombeck et al., 2007) was used to correct for 
within-frame artefacts due to residual transverse brain motion. The 
HMM uses a maximum likelihood method to determine the most prob
able (x,y)-displacement between consecutive frames in a time series. The 
displacement was modelled as a first-order auto-regressive process in 
two dimensions, and the pixel values were assumed to result from linear 
scaling of photon counts that obey Poisson statistics (Kaifosh et al., 
2013). To inspect the HMM motion correction performance, a calcula
tion of the phase correlation between pixels of consecutive frames 
identified the relative shift before and after motion correction (Fig. A.1).

Activity signal extraction
The fluorescence images (Fig. 2a, Fig. A.4a) were spatially smooth

ened using a 5 × 5 Gaussian kernel (Fig. A.4b). Along the time axis, data 
were partitioned into segments of 100 time points (ca. 10 s for normal 
scanning or 1 s for resonant scanning). This produced for each recorded 
bee approximately 50 - 60 segments in each activity state. Images were 
then normalised with respect to the average fluorescence during a time 
segment -ΔF/F (Fig. A.4c). Finally, they were thresholded between 0.5 
and − 0.5 (Fig. A.4d), which are the maximum calcium-induced fluo
rescence changes observed in previous experiments (Haase et al., 
2011b). The segmentation of individual glomeruli was guided by a 
regional homogeneity analysis (ReHo) that quantifies the local spatial 
autocorrelation for each pixel with its neighbours (Zang et al., 2004) 
(Fig. 2b). These ReHo maps show high values within glomeruli which 
decay at the border, allowing for easy identification and segmentation of 
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glomeruli and for comparison of the coherence within individual 
glomeruli between active and rest phases. After segmentation of all 
identifiable glomeruli, the normalised activity was averaged over each 
glomerular ROI. This provides for each glomerulus a time series of the 
calcium-induced fluorescence change, a property that was shown to 
resemble the firing rate of the PNs in a glomerulus (Moreaux & Laurent, 
2007).

Correlation analysis
To investigate the coupling between individual glomeruli, a cross- 

correlation analysis was performed between the activity time series 
for each pair of glomeruli within each bee (Fig. 4a,b). To exclude 
spurious correlations due to arbitrary fluctuations, surrogate data sets 
were produced by randomly shuffling segments of each glomerular time 
series. T-tests were performed to assess the difference between the 
glomerular pair correlation and the spurious correlation between the 
pair’s surrogate time series. Glomerular pairs with non-significant cor
relations were excluded from the calculation of the overall correlation in 
the glomerular network of each bee (Fig. 4c).

Machine learning methods

Definition and analysis of features
In the spatial domain, not all of the 120 × 120 pixels per image were 

used for classification, but only those that were a priori known to provide 
the most relevant information. For this reason, feature quantification 
focused on signals originating from the glomeruli as obtained by image 
segmentation methods like the ReHo analysis described above. For the 
classification, features characterising each time series segment were 
defined under three different categories: the general distribution of ac
tivity, the signal complexity in the time domain, and network features 
(for details see Eqs. A.1-A.10). The same processing pipeline was applied 
for each bee. First, time series were partitioned into segments of 100 

time points length for each glomerulus in a bee (i.e. averaging across the 
pixels contained in a glomerulus). Then, to obtain the distribution mo
ments and complexity features, each measure was first calculated for 
each glomerulus and then averaged to obtain a mean across glomeruli. 
For the connectivity features, graph theory features were computed 
from the functional connectivity matrix obtained from 100 time- 
intervals for each glomerulus.

A statistical analysis of the features was performed, comparing them 
between active and rest states in individual bees and binning all bees. 
The Wilcoxon non-parametric rank test was used and the probabilities 
were corrected for False discovery rate (FDR).

Training and prediction
The features were Min-Max normalised but not scaled. The model 

was a Random Forest Classifier (RFC) (Pedregosa et al., 2011) that was 
trained to classify active from rest states. A standard RFC implementa
tion on default hyper-parameters was used (i.e. 100 decision-tree esti
mators, 2 minimum sample splits per decision-tree branch, 1 minimum 
sample leaf for each branch, and 0 minimum weight fraction leaf). 80 % 
of the segments were used as training data and 20 % as unseen (out-
of-sample) test data. Once the model was trained, predictions on the 
unseen data were produced and evaluated against the ground truth from 
the body motion data to produce a measure of accuracy.

Interpreting the active-rest classification model
To obtain which features were the most relevant in each classifica

tion scheme, we performed a feature importance analysis. This process is 
based on the evaluation of the relative weights of the decision trees. 
Random forests consist of an ensemble of decision trees, in which every 
node in the decision tree is a condition on a single feature, designed to 
split the data into two sets so that similar response values end up in the 
same set. The Gini impurity (Menze et al., 2009) was employed to 
compute how much each feature decreases the weighted impurity in a 

Fig. 2. Glomerular signal extraction. (a) Fluorescence signal from a single focal plane through the antennal lobe, showing glomeruli (large, grey structures) and 
somata (small, white structures). (b) Regional Homogeneity (ReHo) analysis computes the similarity of the time series of each pixel and adjacent ones. The colour 
map changes with increasing homogeneity from blue to white to red. Large coherence is found at the centres of the glomeruli and decays towards their boundaries 
into white. The somata are located in the periphery and show no strong, synchronised activity, hence they appear in blue. (c) Individual glomerulus ROI map after 
ReHo-supported image segmentation. (d) Sample time series of 1 s of the normalised fluorescence variation (-ΔF/F) for an active motion state in each glomerulus in 
(c). (e) Sample time series of the normalised fluorescence variation for a rest state in each glomerulus in (c).
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tree. It is a measure of the likelihood of incorrect classification of an 
element if it were randomly classified according to the distribution of 
class labels in the data set. This allowed for measuring how each feature 
decreases the impurity of the split (the feature with the highest decrease 
is selected for the internal node). Finally, a measure of the feature 
importance was obtained from the average decrease of the impurity by 
each feature.

Control by brain motion classification
To control whether motion artefacts contributed to the rest-active 

classification, a similar Random forest algorithm was trained to clas
sify data segments into high and low brain motion states. This was done 
by using the sum over all x- and y-displacements during each segment 
after motion correction (Fig. A.1b). Rest and active states were pooled, 
and a median split into high and low brain motion segments was per
formed. A classifier was trained and tested identically to the one re
ported above for active vs. rest states.

Simulations

In a previous work, we demonstrated that a recurrent spiking neural 
network model of the antennal lobe topology could successfully repro
duce odour response functions under the assumption of uniform syn
aptic coupling (Scarano et al., 2023). We used the powerful GPU-based 
neurocomputing tool GeNN (Knight et al., 2021) to simulate the 
antennal lobe network in the insect brain in their original complexity. 
Given the experimentally observed changes in glomerular coupling be
tween sleep and wake states, we aimed to determine the simplest 
network modification that could account for these differences. The 
recurrent spiking neural network was modelled to closely resemble the 
biological system: neurons were organized in 160 glomeruli, each with 
60 olfactory receptor neurons (ORN), 25 local neurons (LN), and 5 
projection neurons (PN). Within each glomerulus, each ORN creates an 
excitatory connection with one random LN and one random PN. Each PN 
forms an excitatory connection with one random LN. LNs form con
nections with all PNs within each glomerulus. Interglomerular 
communication is mediated by inhibitory connections from each LN to 
all other LNs and PNs (Fig. A.3).

Each neuron was modelled according to a leaky integrate and fire 
model (Rozenberg et al., 2019) and evolved according to the membrane 
potential equation: 

C
dV(t)

dt
=− gleak(V(t)− Vleak)− gadapt(T)α(t)

(
V(t)− Vadapt

)
+kIexternal+Aσ(t)

(1) 

where C is the capacitance of the neuron, gleak is the conductance of the 
leaky current, and gadapt is that of the adaptive currents. These are 
modelled according to the equation (Sterratt, 2013): 

g(T) = g0
(
Tref

)
Q

T− Tref
10

10 (2) 

where T is the temperature, Vleak is the reversal potential of the leak 
current, and Vadapt is that of the adaptive currents. Iexternal accounts for 
the activity of other neurons or external electrical stimuli. Aσ(t) is 
gaussian noise to account for the noisy nature of the neuron scaled by A.

The spike-triggered adaptation variable α(t) evolves like: 

dα(t)
dt

= 0.5
∑

tspike

δ
(
tspike − t

)
−

α
τadapt 

where spikes are represented by a Dirac delta function and τadapt is the 
adaptation time.

Any external signal, coming from an odour or from the external 
correlated input, was introduced in the model by adding it to the Iexternal 
term of the ORN. The odour receptors were considered a source of noise, 

adding an external current to the ORNs (Galán et al., 2006; Joseph et al., 
2012). In particular, the fraction of odour receptors evolved according 
to: 

dractive(t)
dt

= − kdeactivatingractive(t) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D(t)Tα

√
(3) 

Where α is a normal distribution, D(t) is computed ad hoc following 
the Q10 formalism, T is the temperature, and kdeactivating is the rate of 
deactivation of the odour channel.

Once the membrane potential of a neuron reaches Vthresh, a spike is 
fired and the voltage is decreased to Vreset.

Both the inhibitory and excitatory synapses worked according to the 
same equation, modifying the conductance of the post-synaptic neuron 
whenever a spike traversed them: 

gpostsynaptic→gpostsynaptic + gsynapse (4) 

The conductance of the synapses evolved according to an exponen
tial decay equation: 

dgsynapse(t)
dt

= −
gsynapse(t)

τsynapse
(V(t) − E) (5) 

Default-state neuronal and synaptic parameters are summarised in 
Tables A.1–A.3.

The reduction in inhibitory (both LN to PN and LN to LN) synapses’ 
strength has been performed by reducing synapses’ conductance by 
integer factors, called Synaptic Conductance Reduction (SCR) factors. 
For the network analysis, simulations were run with 10 different 
coupling strengths, corresponding parameters can be found in Table A.4.

The weakly correlated input has been generated to mimic the 
spontaneous activity, which is also observed in other studies (Galán 
et al., 2006; Haase et al., 2011b).

To do so, Poisson processes have been generated as input to indi
vidual ORNs, via the Modified Next Reaction Method (MNRM) 
(Marchetti et al., 2017). For that, spike events are added to the baseline 
membrane potential: 

V(t) = V0 + Vμ (7) 

with Vμ=1.8 × 10–2 mV at random time points: 

t = t0 +
dt
l

ln
1
l⋅r

(8) 

with l = 0.5, r ∼ norm(0,1), t0 being the previous spike event, and dt =
0.2 ms as the simulation time-step.

To control the correlation between ORNs, a template Poisson process 
was generated by the same method. Correlations between the individual 
ORN were then introduced by randomly removing events in the indi
vidual ORN’s Poisson processes and adding events from the template 
process with a fixed probability c = 0.7. The Poisson processes were then 
convoluted with an exponential kernel [1/τ exp(t /τ)] with τ = 2 ms and 
Kernel width σ = 5 dt so that they resemble typical electrophysiological 
traces. The complete computational model was run on an HPC cluster to 
fully utilize GeNN’s parallelization, simulating 60 s of neuronal activity, 
and collecting the membrane voltage evolution and spike history for all 
the neurons.

From the collected data, the same features computed in the experi
mental settings were extracted.

Code and data are available from https://github.com/Neurophy 
sicsTrento/genn-network-model.

Results

Bee body motion analysis

A frontal camera continuously filmed the motion of the bees’ 
abdomen while it was head-fixed to the microscopy mount (Fig. 1a). A 
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running standard deviation (STD) analysis of the images of the bees’ 
freely moving abdomen showed epochs of strongly varying signals 
(Fig. 1b) and epochs where bees where nearly motionless (Fig. 1c). 
Averaging the STD over each frame, which produces a time series rep
resenting the bee motion over an entire night, indicated two well- 
separated states of high and low motion activity, with sudden transi
tions and without extended intermediate levels (Fig. 1c). The transitions 
between the two states were relatively rapid, but not immediate. An 
analysis of the state transitions (Fig. 1d) revealed a characteristic tran
sition time to the sleep state of approximately 50 s, while the transition 
back to the awake state is slightly faster, at around 45 s. A real-time 
thresholding algorithm triggered two-photon brain imaging sessions 
(Fig. 1c, blue vertical lines) whenever such a motion state change was 
detected. These 2.5 min imaging sessions did not alter the bees’ motion 
state since the imaging wavelength of 780 nm is outside of the visible 
spectrum of the bees’ photoreceptors.

Descriptive analysis of neuronal activity time series

The fluorescence signal of a calcium-sensitive dye was recorded in all 
PNs within an imaging plane passing through the antennal lobe 
(Fig. 2a). A regional homogeneity analysis (Fig. 2b) allowed the iden
tification of individual glomeruli and the generation of glomerular 
masks via image segmentation (Fig. 2c). The normalised fluorescence 
change, averaged over the area of each glomerulus, produced time series 
(Fig. 2d,e) that were considered as a proxy measure for the firing rate of 

its PNs (Moreaux & Laurent, 2007).
These time series show oscillatory features in numerous glomeruli 

that represent phases of spontaneous activity. A visual inspection did not 
immediately reveal clear differences in amplitudes, frequencies, or 
regularities between recordings from periods of active motion (Fig. 2d) 
and periods of rest (Fig. 2e). However, as our subsequent machine 
learning analysis demonstrates, these differences do exist and can be 
quantitatively distinguished based on extracted features.

Machine learning analysis

In the machine learning analysis, the target variable to be predicted 
was whether a sample of neural activity was recorded during an active 
or rest state. The predicting variables were sets of pre-determined fea
tures describing the fluorescence time series. To train a Random forest 
classifier (RFC), we selected features that focus on three different kinds 
of properties. First, the overall distribution of neuronal activity, char
acterised by its moments: the Standard deviation (STD), the Skewness, 
and the Kurtosis. Second, the complexity of the time series, quantified by 
its Entropy, the Hurst exponent, and the Detrended fluctuation analysis 
(DFA). Third, network properties of the glomerular network, quanti
fying its Betweenness, the Degree, the Efficiency, and the Modularity 
(see Methods for details).

A qualitative, univariate analysis of the distributions of these fea
tures across all subjects and time series (Fig. 3d) reveals different out
comes. Some features, such as Kurtosis and Modularity, exhibit highly 

Fig. 3. Machine learning classification and feature distributions. (a) Receiver-operating characteristic (ROC) curve for the active and rest state classification of the 
pooled glomerular response data of n = 9 subjects for different sensitivity and specificity thresholds; (b) Classification results: Cross-validation accuracy, Jaccard 
index, Area under the ROC curve (ROC-AUC). (c) Feature importance analysis comprising moments (Standard deviation (STD), Skewness, Kurtosis), complexity 
(Entropy, Hurst exponent, Detrended fluctuation analysis (DFA)) and graph theory variables (Betweenness, Degree, Efficiency, Modularity) averaged across glomeruli 
for all temporal segments and all bees during the active motion phase; (d) Distribution of features across all data samples in the active state (orange) and the resting 
state (blue). The results of the statistical comparisons are given in Table A.5.
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overlapping distributions in the active and resting states. Others, like the 
STD and Skewness, display similar distribution shapes but with differing 
amplitudes. However, the majority of features show noticeable changes 
in distribution shape: distributions that are monomodal in the active 
state are bimodal in the sleep state, e.g. for the Entropy, the Hurst ex
ponents, the DFA. Furthermore, for bimodal distributions, the relative 
contributions to each mode change considerably, as seen in the network 
properties Betweenness and Degree. Wilcoxon statistical tests confirmed 
significant differences between states in all features, except Efficiency 
and Modularity. Most features showed significant differences also when 
analysed for each individual bee, although there are exceptions, espe
cially after false-discovery-rate correction (Table A.5).

In addition to analysing the feature distributions within each state, 
we also examined the distribution of feature differences between states 
for each glomerulus, for features that are properties of individual 
glomeruli (Fig. A.2). This allows us to identify whether changes are 
global, limited to subsets of glomeruli, or if they manifest in opposite 
directions for different subsets. Notably, the STD shows minimal 
changes between states across all glomeruli. A case in which most 
glomeruli exhibit consistent changes in a single direction is the Entropy. 
For other features, such as Kurtosis, the Hurst exponent, and DFA, the 
difference distributions are bimodal, with changes occurring in opposite 
directions across different glomeruli subsets. The RFC results show high 

distinguishability with an average Cross-validation accuracy of 0.920 ±
0.043; a Jaccard score of 0.932, measuring the intersection between the 
sets of predicted and true state labels; and an Area under the receiver 
operating curve (ROC-AUC) of 0.931 (Fig. 3a,b).

To exclude the possibility that motion artefacts - although corrected 
via image registration - are leaking into the brain activity information 
and could be potentially confounded with sleep vs. awake, another RFC 
was trained to distinguish between epochs of high vs. low residual brain 
motion after the registration. Time segments from both body motion 
states were reordered into two new sets by conducting a median split on 
the extent of frame displacement detected during a second image 
registration (Fig. A.1c). Parameters and features were chosen identically 
to the brain activity classification. This classifier failed to distinguish 
between low and high brain motion states, achieving only near-chance 
AUC (Fig. A.1d). The fact that the motion state could not be distin
guished from the time series using this probing procedure suggests the 
time series contain little information about this variable.

Network analysis

The features analysis suggested substantial differences between 
global topological features of resting vs. active networks; in particular, 
the network degree (Fig. 3c) stands out regarding its importance in 

Fig. 4. Measured correlations between the activity of individual glomeruli. Correlation matrices for the glomerular activity in n = 9 different bees, for the active state 
(a) with an orange background and the resting state (b) with a blue background. Pairwise correlations between glomeruli were tested against surrogate data and 
correlations that did not significantly deviate from chance are marked in grey. For significant correlations, Pearson’s r is plotted as a colour code from strong anti- 
correlations in blue to strong correlations in red. The averaged Pearson’s r across the matrix is shown above each matrix. (c) Subject-averaged correlation coefficients, 
with error bars showing the standard deviation. A t-test confirms a significant difference in the Pearson correlation between active and resting state (t(16) = − 2.9, p 
= 0.0096).
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random forest classification. To further quantify AL network properties, 
we studied these using standard approaches developed in network sci
ence. We computed pairwise correlations among the single glomerular 
nodes and confronted them with surrogate data sets to quantify differ
ences from spurious correlations. Significant correlations and anti- 
correlations were observed in most of the glomeruli (Fig. 4). In the 
active phases, these correlations were relatively small and anti- 
correlations were present (Fig. 4a), leading to an average Pearson cor
relation coefficient across all bees of r = 0.115 ± 0.032. In the resting 
epochs, these correlations increased significantly (t(16) = − 2.9, p =
0.0096) and anti-correlations disappeared almost completely (Fig. 4b), 
leading to an average Pearson’s r = 0.265 ± 0.040. These data suggest 
greater neural synchrony during the sleep state. The influence of re
sidual motion artefacts is negligible, given that the ML classifier was 
unable to distinguish states based on residual motion (Fig. A.1d).

Simulations

A computational simulation of the olfactory system was performed to 
investigate if a spiking neural network (SNN) with variable inhibitory 
synapse strength could reproduce the observed glomerular coupling 
patterns. The SNN was modelled as a recurrent spiking neural network 
following the approach by Scarano et al. (2023) (Fig. A.3). Additionally, 
a weakly correlated input noise was injected into all receptors to 

generate weakly time-correlated spontaneous activity, as observed in 
previous studies (Galán et al., 2006).

The hypothesis tested was that changes in glomerular coupling could 
be the basis for the experimentally observed change in the correlations 
between the glomerular outputs, the projection neurons (PNs). We 
tested this by varying the inhibitory synapse strength in a network of 
160 glomerular nodes densely connected by local neurons (LNs) (see 
methods).

We defined a Synaptic Conductance Reduction (SCR) factor (arbi
trary range 1:100) that controls coupling strength between network 
nodes. Reducing the LN-LN and the LN-PN inhibitory coupling strength 
by this SCR produced a monotonic increase in glomerular correlations 
(Fig. 5a). Averaging these correlations over all glomerulus pairs shows a 
sigmoid-shaped growth function of the Pearson’s correlation coefficient 
(Fig. 5b). These correlations saturate at a Pearson’s r = 0.37, reaching its 
half value at SCR = 11.7. This suggests that also the experimentally 
observed effect might be caused by such a reduction in inhibitive 
coupling. A comparison of the average measured and simulated corre
lations suggests a synaptic strength of SCR ≈ 8 for the active state and 
SCR ≈ 15 for the resting state, which indicates a relative reduction in 
synaptic coupling strength by a factor of 7 (Fig. 5b).

Next, to test how such changes of inhibitory coupling would influ
ence odour processing in the antennal lobe network, we simulated the 
input of typical odour signals (Scarano et al., 2023) into the olfactory 

Fig. 5. Simulations with varying inhibitory synapse strength: Change in cross-glomerular correlations. a) Correlation matrices for the projection neuron (PN) activity 
in 25 randomly selected glomeruli for simulations with decreasing synaptic conductance (synaptic conductance reduction (SCR) factors 1 to 100, corresponding 
conductances in Table A.4). (b) Dependence of the glomerular correlations on the synaptic conductance: Pearson’s r averaged over all PN as a function of the SCR. A 
fitted sigmoid power function gives a saturation level r = 0.37 and a half value point SCR = 11.5. Dashed horizontal lines and shadowed areas show the experi
mentally measured correlations and their standard errors, respectively, in the resting state (blue) and in the active state (orange). The vertical lines determine the 
simulated SCR corresponding to the measured correlations in both states.
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receptor neurons (ORNs). Odors are simulated by a concentration and 
set of affinities with a unique Gaussian distribution over all ORNs. This 
determines the fraction of open channels in each ORN and thus the 
corresponding change in membrane potential generating the input to 
each glomerulus. The awake-like network state (SCR = 8) produces 
odour response maps very similar to experimental observations (Paoli 
et al., 2018), confirming that the simulations closely reproduce the AL 
functionality. The comparison of the ORN and PN response maps shows 
the typical characteristics of odour processing in the antennal lobe, 
namely an increase of contrast and the sparsening of the glomerular 
code, i.e. stronger ORN responses are amplified more than weak re
sponses to improve the discriminability of odours (Fig 6a). Although the 
rest-like state PN response maps show that odour processing is still 
functional, consistent with previous studies (Zwaka et al., 2015), the 
contrast between highly activated PNs and base level is strongly 
reduced. The normalised synaptic firing rate falls from 300 % in the 
strongest awake responses (Fig. 6a) to 120 % in the strongest 
resting-state responses (Fig 6b). A Wilcoxon signed-rank test confirms 
the highly significant difference between normalised PN firing rates 
between states (Z = − 11.0, p < 5⋅10–28).

Discussion

These results represent the first study of long-term activity dynamics 
in the honey bee brain recorded over entire nights, with analyses of both 
time-domain and network properties of the measured neuronal activity.

Corroborating prior observations, the video recordings of the bees’ 
body motion show - rather than a continuous variation of motion in
tensity - switching between two well-distinguished states of low and 
high motor activity of varying duration from minutes up to hours. The 7 
min average duration of the resting states is of the same order as the 
previously reported 13 min inside the hive (Eban-Rothschild & Bloch, 
2008).

Advancing beyond prior behavioural and neural studies, the scope of 
the current investigation was to determine the network-level neural 
organisation underlying these states of sleep and wakefulness, in brain 
systems not directly involved in motor control.

Exploratory data analysis of a sub-network of the antennal lobe 
shows consistent spontaneous activity across most of its nodes in the 

form of oscillations with varying frequencies on the order of tenths of 
Hz. Spontaneous activity with these frequencies has been previously 
reported, where an increase after odour stimuli was connected to 
memory formation (Galán et al., 2006).

Among the distribution of selected features describing the active and 
resting state of the glomerular time series, a common property of the 
glomerular network stands out: the node degree, i.e. the number of 
edges connected to each node, shows the strongest deviation between 
the distributions in the active and in the resting phases.

Examining the differences in features between states at the level of 
individual glomeruli, we found that there are often subsets of glomeruli 
in which changes occur in opposite directions. This suggests that the 
olfactory network is not merely attenuated during sleep, but that 
alternative processing mechanisms come into play. That said, one 
feature for which changes almost exclusively go in one direction is the 
Entropy, which is higher in the rest state in the vast majority of 
glomeruli. This indicates a higher complexity of the AL output signal 
during sleep, which again points to sleep-specific neuronal processing. 
The machine learning analysis proved a clear distinguishability between 
the multi-glomerular activity states. In fruit flies, a similar approach 
applied to multichannel electrophysiological recordings was performed 
focusing on a spectral analysis of the spontaneous activity in the 
different channels as features, showing clear distinguishability between 
sleep and awake state patterns and even sleep sub-state discrimination 
(Jagannathan et al., 2024). The multichannel analysis also covered 
network properties, which we explicitly operationalised as features.

We found that the network degree strongly contributed to the clas
sification accuracy. The subsequent correlation analysis of the projec
tion neuron response maps showed a highly significant increase in 
average glomerular cross-correlation and a slight reduction of its vari
ability during the transition into the resting state. Our analyses suggest 
this is not caused by motion artefacts. Apart from the fact that even the 
ML classifier was not able to discriminate states based on residual mo
tion, if motion artefacts were a significant factor, they would induce 
synchronous shifts of all glomeruli, leading to increased correlation 
during wakefulness.

Similar glomerular cross-correlation levels have been measured in 
experiments where spontaneous activity was evaluated before and after 
odour stimulation (Galán et al., 2006). Galán et al. found that the change 

Fig. 6. Simulated odour response patterns in the awake- and the sleep-like states. a) Spike density function (SDF) in the 3 different neuron types: Olfactory receptor 
neurons (ORNs), Local neurons (LNs), and projection neurons (PNs) for all 160 glomeruli in response to a 3 s odour stimulus simulated in an awake-like state with a 
synaptic conductance reduction factor SCR = 8. b) SDF response patterns to the same odour stimulus in a sleep-like state with SCR = 15. Wilcoxon test of the 
normalised PN response amplitudes between states confirms a highly significant reduction of contrast (Z = − 11.0, p < 5⋅10–28).
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in spontaneous activity synchronisation following odour stimuli 
matched the reverberations of Hebbian learning theory.

One could hypothesize that the synchronisation changes during sleep 
observed in our experiments might therefore also be involved in learning 
and memory consolidation, as these effects have been observed in bees 
during sleep. One study found that extinction learning was influenced by 
sleep deprivation, but associative learning was not (Hussaini et al., 
2009). Another study also showed the influence of sleep on associative 
odour learning, as memory could be enhanced by context odour pre
sentation during sleep (Zwaka et al., 2015). Also, navigation memory 
was found to be consolidated during sleep (Beyaert et al., 2012). The 
above-mentioned increased complexity in the sleep state could be 
another indication of memory consolidation processes during sleep.

We then evaluated a possible model of these synchronisation changes 
by simulating the antennal lobe at a realistic size via a recurrent spiking 
neural network (Scarano et al., 2023). In order to reproduce the 
experimentally observed spontaneous activity, weakly correlated 
Gaussian noise was fed into the olfactory neurons. The role of such a 
noise input in the reproduction of important neuronal mechanisms was 
previously shown in a simulation of learning and memory formation in 
insects via a neural network model which, besides antennal lobes, 
included mushroom bodies and lateral horns (Arena et al., 2012). Also 
there, Gaussian noise, which was used to simulate ORN input during 
sleep, gave rise to pattern formation in the MBs, as would be expected 
during overnight memory consolidation.

In our antennal lobe model, the transition between awake and sleep- 
like states required only a single parameter to be changed: the inhibitory 
synaptic conductance that couples LNs to LNs and LNs to PNs. A 
decrease on the order of 10 caused a change in connectivity as observed 
experimentally. This is consistent with the human sleep theory of syn
aptic homeostasis, which suggests that synaptic strength is downscaled 
to a baseline level that is energetically favourable and beneficial for 
learning and memory (Tononi & Massimini, 2008).

Our simulations also revealed the differences in odour processing 
between sleep and awake network states. In the awake state, the model 
demonstrates a clear increase of contrast in the activation patterns but 
also the characteristic differential gain control, which more strongly 
amplifies highly activated ORNs compared to weakly activated ones 
(Root et al., 2008). This leads to a sparsening of the odour code, a 
mechanism that improves odour distinguishability. This reduction in 
odour processing might then indeed lead to a reduced specific sensitivity 
to certain odours, which however should be overcome by stronger 
stimulation; both are characteristics that define sleep (Helfrich-Förster, 
2018). The general sensitivity to specific odours during sleep, which our 
model confirms, was shown by the above-mentioned memory consoli
dation experiments (Zwaka et al., 2015).

In Drosophila, it was previously reported that rest phases demonstrate 
sleep-like characteristics, including reduced responsiveness to sensory 
stimuli (Hendricks et al., 2000). Calcium imaging experiments in the 
mushroom bodies (MBs) showed reduced baseline activity during sleep 
phases (Bushey et al., 2015). Our results from the antennal lobes, which 
are upstream of the mushroom bodies, do not show a general reduction 
of the activity but rather a change in information integration: the input 
signal is forwarded without the contrast enhancement that is observed in 
the awake state. This suggests that the observed reduction in the 
response patterns in the higher brain centers is produced by a decreased 
integration of the peripheral responses, rather than reduced respon
siveness of receptors or primary neurons.

Our simulations suggest that reduced inhibitory coupling causes the 
observed network property changes, possibly via changes in the 
neurotransmitter concentration. For the honey bee, this neurotrans
mitter is likely GABA, which is dominant in the antennal lobe (Schäfer & 
Bicker, 1986). In contrast to Drosophila (Huang et al., 2010), excitatory 
LNs have not been found in bees.

The involvement of GABA modulation in sleep has been observed in 
numerous studies in a variety of species from Drosophila (Agosto et al., 

2008) to humans (Gottesmann, 2002). In Drosophila a reduction of GABA 
release reduces total sleep (Agosto et al. 2008) as does a knock-down of 
GABA receptors in Drosophila circadian pacemaker neurons (Chung 
et al., 2009).

In humans, however, the opposite effect has also been reported: 
while an increased cortical GABA concentration was found initially 
during Non-rapid eye movement (NREM) sleep, it decreased progres
sively after 1 h of recovery sleep and was significantly lower during 
Rapid eye movement (REM) sleep (Vanini et al., 2012). A distinction 
between different sleep types could not be made based on our limited 
behavioural data. However, the bimodal distributions that we observed 
in several features of our time series suggest that further sub-states 
might be present. Also in Drosophila, a distinction between wake-like 
sleep phases and less active deep sleep stages was made by calcium 
imaging of neuronal activity (Tainton-Heap et al., 2021).

This supports the idea that the neuroregulatory mechanisms 
responsible for sleep-like states are, at least to some degree, conserved 
throughout evolution (Parisky et al., 2008).

The reduced information processing in the sleep state shown in our 
simulations is consistent with a reduced transmission ratio between the 
peripheral sensory organs and the central brain observed in humans 
(Coenen & Drinkenburg, 2002).

The alignment of our findings with previous studies suggests that this 
new method of directly observing network activity modulation during 
sleep at the single-neuron level offers valuable potential for future 
research. This approach may provide more detailed mechanistic insights 
into the underlying processes. Beyond monitoring single-glomerular 
activity, exploring the role of neuronal connectivity within networks 
could be particularly useful for understanding how sleep architecture is 
formed. This includes identifying sleep states at the network level and 
understanding the transitions between them, as well as how circadian 
and homeostatic sleep regulation mechanisms affect network states. 
Achieving this will require more detailed observations of sleep behav
iour in bees. So far, we have only assessed whole-body motion, but 
focusing on antennal movement could provide further insights into 
potential sleep sub-states, as suggested by previous studies on body and 
antenna posture in honeybees (Sauer et al., 2003) and posture and 
neuronal response patterns in Drosophila (Jagannathan et al., 2024).

Combining learning experiments with imaging of sleep-dependent 
neuronal alterations could deepen our understanding of the connec
tion between sleep and long-term memory formation. While this rela
tionship is well-established by behavioural studies in humans (Walker, 
2009) and other species (Vorster & Born, 2015), the neural mechanisms 
are largely unknown. Comparing findings from this animal model with 
human sleep studies could offer new evolutionary insights into the 
function and significance of sleep (Keene & Duboue, 2018; Rößler & 
Klein, 2024). This research may also provide translational results, 
potentially contributing to new approaches for diagnosing and treating 
sleep disorders (Toth & Bhargava, 2013).

Conclusion

To summarise, this is the first long-term brain imaging study in 
honey bees during sleep and wakefulness. It reveals different neuronal 
dynamics in the antennal lobes at the network level. Active and resting 
states are clearly distinguishable, both in terms of body movement and 
neuronal activity, with resting states showing increased network syn
chrony and complexity. Simulations suggest that reduced inhibitory 
coupling, likely due to GABAergic modulation, underlies these changes. 
These findings provide novel insights into sleep-related changes in 
network properties of the invertebrate brain, revealing the neural basis 
for reduced sensory information processing during rest. Our findings 
suggest a conserved role of inhibitory modulation in sleep regulation, 
drawing parallels to synaptic homeostasis models in vertebrates. These 
results highlight the utility of honey bees as a model system for studying 
fundamental sleep mechanisms at the neuronal network level and open 
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the door for understanding sleep-related processes, such as their rela
tionship to memory formation.
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Appendix

Fig. A.1. Motion correction. 
The between-frame motion before and after the motion correction via an HMM algorithm. Above: Displacements in each time segment along the x- and y-axis for 
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three example bees (a) before, (b) after motion correction. (c) Machine-learning analysis for the residual brain motion classification: ROC curves. (d) Feature 
importance analysis for the classification.

Fig. A.2. Feature difference distribution. 
Features used for machine learning classification analysed for individual glomeruli: normalised count of glomeruli for the occurring difference values: awake - resting 
state. Shown are mean ± std after averaging histograms of individual bees.

Fig. A.3. AL model structure. 
Structure of the antennal lobe in the computational simulation framework, shown for 3 glomeruli. Excitatory connections are made from ORNs to PNs and LNs, and 
from PNs to LNs of the same glomerulus. Inhibitory dense connections are found from LNs to PNs and LNs between different glomeruli [from (Scarano et al., 2023)].

Fig. A.4. Image post-processing steps. 
(a) Example of raw data in a single time window, (b) after application of a smoothing kernel, (c) after mean normalisation, (d) after thresholding.
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Eqs. (A.1)–(A.10): Feature formulas 

● Betweenness: The Node betweenness centrality CB is the fraction of all shortest paths in the network that contain a given node v. Nodes with high 
values of betweenness centrality participate in a large number of paths. 

CB(v) =
∑

s∕=v

∑

t∕=v

σst(v)
σst

(A.1) 

where σst is the number of shortest paths from vertex s to vertex t, and 
σst(v) is the number of shortest paths from s to t that go through vertex v. 
The feature is then given by the averaged CB across nodes. 

● Degree: The Node degree CD is the number of edges connected to the node v. 

CD(v) =
∑

s∕=v
α(ρs, ρv) (A.2) 

where α is a scaling factor multiplied by the number of edges adjacent to 
node v. 

● Efficiency CE is the average of inverse shortest path length, and is inversely related to the characteristic path length. 

CE(v) =
1

n(n − 1)
∑

s∕=v

1
δsv

(A.3) 

where δ is the characteristic path length. 

● Modularity CM is a statistic that quantifies the degree to which the network may be subdivided into clearly delineated groups. 

CM(v) =
1

2m
∑

s∕=v

[

αsv −
kskv

2m

]
αsαv + 1

2
(A.4) 

where 2m is the number of half edges, α is the expected number of edges, 
and k is the number of nodes. 

● Entropy: The sample entropy E measures the complexity of a time series, based on approximate entropy. 

E(X) = −
∑N

i=1
P(xi)logP(xi) (A.5) 

where P is the discrete probability of each time point. 

● Hurst exponent H is a measure of the long-term memory of a time series. It can be used to determine whether the time series is more, less, or 
equally likely to increase if it has increased in previous steps. 

E

[
R(n)

S(n)

]

= CnH for n→∞ (A.6) 

where E is the expected value, n is the time span of the observation, S is 
the series sum, R is the range, and C is a constant. 

● Detrended fluctuation analysis (DFA) F is similar to the Hurst exponent but can be applied to non-stationary processes (whose mean and/or 
variance change over time). 

F(n) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

n=1
[y(k) − yn(k)]2

√
√
√
√ (A.7) 
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where N is the length of the time series, and yn is the piecewise sequence 
of straight-line fits of the local trends using least squares regression. 

● Standard deviation (STD) σ is the second moment of a distribution, measuring the variation or dispersion of a set of time-series values. 

σ2 =
1
N

∑N

i=1

[xi − μ
σ

]2
(A.8) 

where µ is the mean of the distribution and N is the total number of 
samples. 

● Skewness μ3 is the third moment, measuring its asymmetry of the distribution of time-series values. 

μ3 =
1
N

∑N

i=1

[xi − μ
σ

]3
(A.9) 

where µ is the mean of the distribution, N the total number of samples, 
and σ the standard deviation. 

● Kurtosis μ4 is the fourth moment, measuring how much the tails of a distribution differ from the tails of a normal distribution of time-series 
values. 

μ4 =
1
N

∑N

i=1

[xi − μ
σ

]4
(A.10) 

where µ is the mean of the distribution, N the total number of samples, 
and σ the standard deviation.

Table A.1 
Parameters for the neurons (ORN, LN, PN have identical properties, except for the ORN noise input).

Parameter Value Parameter Value Parameter Value

C 1 mF gleak0 0.01 S kdeactivating 0.0025
Vreset –70 mV gadapt0 0.00015 S Tref 36 ◦C
Vthresh –40 mV rscale 10 T 30 ◦C
Vleak –60 mV τadapt 1000 ms Q10 1.1
Vadapt –70 mV D 3⋅10− 5 Aσ 1.4/

̅̅̅̅̅
dt

√

Table A.2 
Parameters for the excitatory synapses.

ORN to PN ORN to LN PN to LN

Parameter Value Parameter Value Parameter Value

g 0.008 S g 0.008 S g 0.001 S
E 0 mV E 0 mV E 0 mV
τ 10 ms τ 10 ms τ 0 ms

Table A.3 
Parameters for the inhibitory synapses.

LN to PN LN to LN

Parameter Value Parameter Value

g 5.5⋅10− 5 S g 2.0⋅10− 5 S
E –80 mV E –80 mV
τ 20 ms τ 20 ms
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Table A.4 
Absolute synaptic conductances corresponding to the synaptic conductance reduction factors.

Synaptic conductance reduction factor (SCR)

LN to LN LN to PN LN to LN LN to PN

SCR g [nS] g [nS] SCR g [nS] g [nS]

1 2.0 × 10–5 5.5 × 10–5 10 2.0 × 10–6 5.5 × 10–6

2 1.0 × 10–5 2.75 × 10–5 15 1.3 × 10–6 3.6 × 10–6

4 0.5 × 10–5 1.38 × 10–5 20 1.0 × 10–6 2.75 × 10–6

6 0.33 × 10–5 0.92 × 10–5 50 4.0 × 10–7 1.1 × 10–6

8 0.25 × 10–6 0.69 × 10–5 100 2.0 × 10–7 5.5 × 10–7

Table A.5 
Feature distribution differences between sleep and awake.

Bee ID n_trial Z stat. p_value p_FDR Z stat. p_value p_FDR Z stat. p_value p_FDR
Feature: STD Skewness Kurtosis

all 668 − 2.51 1.2E-02 1.7E-02 − 7.13 9.8E-13 6.5E-12 − 3.80 1.4E-04 2.6E-04
bee01 62 − 5.98 2.2E-09 6.6E-09 − 4.74 2.2E-06 4.6E-06 − 3.53 4.2E-04 7.4E-04
bee02 121 − 6.91 4.9E-12 3.0E-11 − 2.77 5.5E-03 8.2E-03 − 0.67 5.0E-01 5.5E-01
bee03 48 − 2.43 1.5E-02 2.0E-02 − 5.91 3.5E-09 9.5E-09 − 2.47 1.3E-02 1.8E-02
bee04 132 − 4.98 6.4E-07 1.4E-06 − 7.20 6.2E-13 4.4E-12 − 6.61 3.8E-11 1.8E-10
bee05 60 − 1.10 2.7E-01 3.1E-01 − 3.40 6.7E-04 1.1E-03 − 0.93 3.5E-01 4.0E-01
bee06 108 − 3.07 2.2E-03 3.3E-03 − 6.01 1.8E-09 5.9E-09 − 1.70 8.8E-02 1.1E-01
bee07 51 − 5.91 3.3E-09 9.3E-09 − 1.74 8.1E-02 1.0E-01 − 3.46 5.4E-04 9.3E-04
bee08 36 − 3.96 7.5E-05 1.4E-04 − 0.28 7.8E-01 7.9E-01 − 0.27 7.9E-01 8.0E-01
bee09 50 − 5.52 3.5E-08 8.5E-08 − 2.56 1.0E-02 1.5E-02 − 5.82 6.0E-09 1.6E-08

Feature: Entropy Hurst DFA

all 668 − 5.18 2.2E-07 5.2E-07 − 2.93 3.3E-03 5.0E-03 − 3.52 4.3E-04 7.4E-04
bee01 62 − 0.29 7.7E-01 7.9E-01 − 5.63 1.8E-08 4.7E-08 − 4.76 1.9E-06 4.1E-06
bee02 121 − 8.13 4.4E-16 4.4E-15 − 9.29 1.5E-20 3.5E-19 − 9.24 2.5E-20 4.9E-19
bee03 48 − 1.38 1.7E-01 2.0E-01 − 1.49 1.4E-01 1.6E-01 − 0.77 4.4E-01 4.9E-01
bee04 132 − 4.63 3.6E-06 7.5E-06 − 6.39 1.6E-10 7.1E-10 − 3.18 1.5E-03 2.3E-03
bee05 60 − 1.52 1.3E-01 1.6E-01 − 4.28 1.9E-05 3.5E-05 − 3.17 1.5E-03 2.4E-03
bee06 108 − 6.95 3.7E-12 2.3E-11 − 8.98 2.8E-19 3.7E-18 − 4.84 1.3E-06 2.8E-06
bee07 51 − 3.07 2.1E-03 3.2E-03 − 2.58 9.9E-03 1.4E-02 − 0.99 3.2E-01 3.6E-01
bee08 36 − 1.27 2.0E-01 2.4E-01 − 4.56 5.2E-06 1.1E-05 − 5.11 3.3E-07 7.6E-07
bee09 50 − 5.78 7.6E-09 2.0E-08 − 6.07 1.3E-09 5.1E-09 − 5.97 2.4E-09 6.9E-09

Feature: Betweenness Degree Efficiency

all 668 − 3.44 5.9E-04 1.0E-03 − 2.66 7.9E-03 1.2E-02 − 2.03 4.3E-02 5.5E-02
bee01 62 − 0.54 5.9E-01 6.3E-01 − 1.12 2.6E-01 3.0E-01 − 0.57 5.7E-01 6.1E-01
bee02 121 − 8.47 2.4E-17 2.5E-16 − 7.61 2.7E-14 2.2E-13 − 7.97 1.6E-15 1.5E-14
bee03 48 − 1.65 1.0E-01 1.2E-01 − 0.87 3.9E-01 4.3E-01 − 1.60 1.1E-01 1.3E-01
bee04 132 − 2.78 5.4E-03 8.1E-03 − 4.21 2.6E-05 4.8E-05 − 4.33 1.5E-05 3.0E-05
bee05 60 − 6.00 2.0E-09 6.4E-09 − 5.99 2.1E-09 6.5E-09 − 5.71 1.2E-08 3.0E-08
bee06 108 − 5.95 2.6E-09 7.5E-09 − 8.97 2.9E-19 3.7E-18 − 9.01 2.1E-19 3.3E-18
bee07 51 − 0.30 7.6E-01 7.8E-01 − 3.28 1.0E-03 1.7E-03 − 2.29 2.2E-02 2.9E-02
bee08 36 − 3.34 8.4E-04 1.4E-03 − 2.45 1.4E-02 1.9E-02 − 2.54 1.1E-02 1.5E-02
bee09 50 − 6.06 1.4E-09 5.1E-09 − 6.06 1.3E-09 5.1E-09 − 6.06 1.4E-09 5.1E-09

Feature: Modularity

all 668 − 0.40 6.9E-01 7.3E-01 ​ ​ ​ ​ ​ ​
bee01 62 − 1.35 1.8E-01 2.1E-01 ​ ​ ​ ​ ​ ​
bee02 121 − 0.39 7.0E-01 7.3E-01 ​ ​ ​ ​ ​ ​
bee03 48 − 0.68 5.0E-01 5.5E-01 ​ ​ ​ ​ ​ ​
bee04 132 − 0.05 9.6E-01 9.6E-01 ​ ​ ​ ​ ​ ​
bee05 60 − 4.37 1.3E-05 2.5E-05 ​ ​ ​ ​ ​ ​
bee06 108 − 5.54 3.1E-08 7.8E-08 ​ ​ ​ ​ ​ ​
bee07 51 − 0.75 4.5E-01 5.0E-01 ​ ​ ​ ​ ​ ​
bee08 36 − 3.49 4.9E-04 8.4E-04 ​ ​ ​ ​ ​ ​
bee09 50 − 4.99 6.2E-07 1.4E-06 ​ ​ ​ ​ ​ ​
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Context odor presentation during sleep enhances memory in honeybees. Current 
Biology, 25(21), 2869–2874. https://doi.org/10.1016/j.cub.2015.09.069

S. Moguilner et al.                                                                                                                                                                                                                              Neural Networks 189 (2025) 107575 

16 


