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ABSTRACT

In this work, we examine a network of agents operating asyn-
chronously, aiming to discover an ideal global model that suits
individual local datasets. Our assumption is that each agent inde-
pendently chooses when to participate throughout the algorithm and
the specific subset of its neighbourhood with which it will cooperate
at any given moment. When an agent chooses to take part, it un-
dergoes multiple local updates before conveying its outcomes to the
sub-sampled neighbourhood. Under this setup, we prove that the re-
sulting asynchronous diffusion strategy is stable in the mean-square
error sense and provide performance guarantees specifically for the
federated learning setting. We illustrate the findings with numerical
simulations.

Index Terms— distributed systems, diffusion learning, asyn-
chronous network, federated learning

1. INTRODUCTION AND RELATED MATERIAL

Networks of agents comprise individual agents collaborating in the
pursuit of a common goal. In the case of distributed optimization,
the agents aim to solve a global optimization problem by utilizing
local information. Typically, the available solutions involve a local
update step followed by an aggregation step among neighbours. Ex-
amples of such strategies include incremental methods [1-5], con-
sensus methods [6-9], and diffusion methods [10-14]. Commonly,
these methods assume full agent participation in every iteration and a
one-to-one ratio of aggregation steps to local update steps. Nonethe-
less, various situations like agent drop-outs do not satisfy these as-
sumptions [15, 16], where certain agents might not partake in each
iteration. Furthermore, computational and communication limita-
tions [17, 18] could necessitate an agent to perform several local up-
dates before sharing outcomes with a subset of its neighbours, as
opposed to all of them.

Therefore, this work focuses on asynchronous networks of
agents and modifies the algorithms, particularly diffusion-type
algorithms, to allow flexibility in agent participation, agent sub-
sampling, and local updates. Relevant research on asynchronous
distributed learning can be found in [19-29]. The primary relevant
prior work [26] in the context of asynchronous networks operates
under the assumption of independent step-size and combination
weights as well as a common optimal model. However, within the
scenarios we are investigating, such as federated learning [30], such
assumptions do not hold. As a result, we abandon the independence
assumption and study the stability and performance of a particu-
lar asynchronous distributed setup. Our framework encompasses
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time-varying network topologies that allow local updates. There-
fore, it appears this work would be the first to establish an explicit
mean-square deviation (MSD) expression for the federated learning
scenario, as well as similar asynchronous learning algorithms that
incorporates local updates.

In the upcoming sections, we describe the asynchronous net-
work and illustrate how the original federated learning algorithms
initially presented in [30] can be understood as a specific example
within this broader framework. Moving forward, the second section
provides evidence of the stability of the asynchronous adapt-then-
combine (ATC) diffusion algorithm in the federated learning setting.
In the subsequent third section, we conduct a comprehensive perfor-
mance analysis, culminating in the derivation of an MSD expression
for the particular case of federated learning. Lastly, in the fourth
section, we execute a series of experiments to further explore these
concepts.

2. ASYNCHRONOUS NETWORK

2.1. Problem Setup

We consider a network of K agents, similar to the federated or fully
decentralized setting, all aiming to solve the convex optimization
problem presented as follows:

1K
%n?;Jk(w), (L

where the local risk function J(-) is defined as an empirical av-
erage of the local loss function Qg (+; xk,») over the local dataset
{mk,n}gil. The communication among agents is restricted by an
underlying graph structure, where the combination matrix denoted
by A holds elements agj, representing the weight agent k assigns to
information shared by agent /. We impose certain assumptions on
the structure of the underlying graph and the nature of the risk and
loss functions.

Assumption 1 (Combination matrix). The combination matrix is
left-stochastic, namely 17 A = 1 with age > 0. O

Assumption 2 (Risk and loss functions). The empirical risks Jj(-)
are v—strongly convex. The loss functions Q(+;-) are convex and
twice differentiable, namely, for some v > 0:
Ji(w2) > Jk(wi) + V1 Je(wi) (w2 — w1) + %HW —wif?,
@)
Qr(wz;-) > Qr(wi;-) + V,,1Qk(w1; ) (we — wr). 3)

Furthermore, the loss functions have 6 —Lipschitz continuous gradi-

ents:
IV Qr(w2; Trn) — V7 Qr(wi; T,0)|| < Sflwz —wal]]. (4)

O



Assumption 3 (Bounded and smooth Hessians). The Hessians
have bounded eigenvalues:

Amin <A (V2rJe(w)) < Amax, )

and are locally Lipschitz in a small neighbourhood around w® later
defined in (13), namely, there exists k > 0 for small Aw:

V21 Tk (w® + Aw) — V21 Je(w®)|| < k|| Aw]]. (6)
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(a) Underlying network.

(b) Time varying network.

Fig. 1: Illustration of an asynchronous network whose nodes and
links change with time.

We introduce the following assumptions on the agents’ mode of
operation. During an iteration ¢ of the algorithm, an agent k has
the option to engage. In the event of participation, it may sample a
subset of its neighbourhood N, from which it will aggregate their
messages. We attribute a probability g; to the participation of agent
k and we let gor be the sampling probability of agent ¢ by k. Fur-
thermore, prior to any combination step, agent k runs a total of T’
local update steps. This setup can be modeled as an asynchronous
network, where the combination matrix is time varying and random.
Accordingly, welett € 1,2, --- , T denote the local iterations while
i denotes the global iterations. The time varying and random com-
bination matrix is written as A;_1)7¢. Throughout the local itera-
tions, i.e., for t # T, the combination matrix simplifies to the iden-
tity matrix, i.e., A;_1)yp4+ = 1. Yet, once ¢ = T', a combination
step follows after the 7'th update step. As a result, the combination
matrix A;7 will be a sampled version of the original combination
matrix A. For example, in Fig. 1b top left, agent m chooses to
participate and it samples agents ¢ and k while leaving out agent 5.
Therefore:

A iT = Gtm,  Gkm,iT = Qkm;  G@5mT = 0,
AT = 1 — Gem — akm. @)
Since agent 1 is not participating, then all the weights it attributes to
its neighbours will be 0 and its self-weight will be 1, i.e.:
air =1, a2 = a7 =0. ()

As such, at t = T, the elements of the matrix will be given by:

ek, with probability grqer
1-— Z QAmk,iT, k = ¢ with probability gk
ek iT = meN,
1, k = (£ with probabiloty 1 — gy,
0, otherwise

®

To ensure the matrix remains left-stochastic, each agent modifies its
self-weight based on the neighbours it has sampled. Moreover, the
step-size is also time varying and random:

w,  with probability g

. (10
0, otherwise

ME,(i—1)T+t = {

If we consider the ATC diffusion algorithm, the asynchronous ver-
sion of it can thus be described as follows:

'l/;k,(i—l)T+t = Wk, (i—1)T+t—1
7I-lfk,(ifl)TthvaJk(wk,(ifl)Tthfl)y (11)

W, (i—1)T+t = Z Aok, (i—1)T+tPe,(i—1)T+t- (12)
LENY,

Since the combination matrix is left-stochastic, the algorithm
does not converge to the minimizer of the average of the risk func-
tions — the solution of problem (1). Instead we can show that on
average it will converge to the solution of the weighted average of
the risk functions multiplied by the participation probabilities, where
the weights are the entries of the Perron eigenvector of the mean
combination matrix. Therfore, we let p = col{ﬁk} be the Perron
eigenvector of EA;7 and define:

K
w’ 2 argminZﬁquJk(w). (13)

k=1

Federated learning. The following framework can be applied to the
federated learning paradigm. The master-slave configuration can be
viewed as a fully connected network, where every agent is a neigh-
bour of every other agent. Additionally, the sampling size matches
the number of participating agents, signifying that agents are not re-
quired to sample their neighbours. By framing the federated system
within this interpretation, we can apply the findings discovered in
this study.

In the original FedSGD algorithm [30], each agent actively par-
ticipates in every iteration, executing local update steps. Conse-
quently, all probabilities are uniformly set to 1, gx = qex = 1. As
a result the step-size remains constant iy, (;—1)74+¢ = p. Addition-
ally, the combination matrix alternates between the identity matrix
and the full combination matrix with equally weighted entries:

1171, ¢t=T
A G— - K ’ 14
(i—1)T+t {L PAT. (14)

While, the FedAvg algorithm permits agent dropouts, resulting in
non-unitary participation probabilities. The sampling probabilities
qer are set to 1. Consequently, during the global iteration 4, if L;
agents participate, the combination weights at t = T are given by:

L%, £ participating
e = 1, k = £ not participating (15)
0

,  otherwise

For t # T, the combination matrix remains identity. The step-size
operates similary as in (10). Thus in this particular setting, the com-
bination matrix remains doubly-stochastic during each iteration. As
such, the entries of the Perron eigenvector p,, of the mean combina-
tion matrix are equal to 1/K, and the optimal model w® simplifies
to the solution of the original optimization problem (1).



2.2. Stability Analysis

We begin by establishing the stability of the algorithm in the mean-
square error sense. This involves starting with the formulation
of the error recursion and then proceeding to define the gradi-
ent noise. Consequently, we define the error as 'LE;MZ-_UTH =
w’ — Wy, (;—1)r+¢ and the gradient noise as:

A —
Sk,(i—1)T+t — vaJk(wk,(ifl)Tthfl)
— Vot Je (Wi, (i—1)741—1)- (16)

Then, by envoking the mean-value theorem [31], we can express the
gradient as:

vaJk('wk,(ifl)T+t71) =—- Hk,(ifl)T+t71i6k,(i—1)T+t71
— VwT']k(’LUD)7 (17)

where we define the following terms:

- A
Hk,(ifl)Tth = (I - /Lk,(ifl)T+tHk,(i71)T+t71)7 (18)
1
A ~
Hy (i-yr+i-1 = / V21 Jk(w® — Ty, (i—1yr44-1)dT. (19)
0

Accordingly, the expression of the error recursion could be formu-
lated as:

Wi, (i—1)T+t = Z Qg (i—1) T+t (HZ,(ifl)T+t1EZ,(i71)T+t71
LEN,
+ e, (i—-1)T+t (32,(i71)T+t - VwTJl(wo)) )
(20)
Initially, we demonstrate that the stochastic gradient is an unbi-

ased estimate of the true gradient and that the gradient noise has a
finite second-order moment.

Lemma 1 (First and second-order moments of gradient noise).
The gradient noise defined in (16) has zero-mean and bounded
second-order moment, namely:

2 2~ 2 2
Ellsk,i—yrell” < BE|wg,i—nyryi—1ll” + o5, @2n

where 32 and o2 are some constants.

Proof. Proof omitted due to space limitations. O

Following arguments similar to [31], it can be demonstrated that
the algorithm achieves exponential convergence to a region around
the true model.

Theorem 1 (Mean-square stability). Under assumptions 1, 2, 3,
and for small enough step-size:
2Amin

< —— " 22
HS Nt B2 @)

the individual errors converge exponentially fast:

2
. ~ [os
lim sup E[[ @y i-nrael” < 77500 = Ow), (23)

1—00

where E mgxl — 20qQk Amin + ;qu ()\,me + 53) € [0,1) is the
convergence rate.

Proof. Proof omitted due to space limitations. O

As is evident from the theorem’s statement, the rate and region
of convergence are determined by the least active agent. To put it dif-
ferently, the agent with the lowest participation probability g slows
down the overall algorithm. Moreover, given this agent’s infrequent
participation, it negatively impacts the overall network performance.
Consequently, the strength of the network is contingent on its most
fragile component.

In order to conduct the performance analysis, it is necessary to
examine the fourth-order stability of the algorithm. Thus, by assum-
ing that the gradient noise has bounded fourth-order moment, we can
further expand upon the previous result in a manner similar to [31].

Theorem 2 (Fourth-order stability). If the gradient noise has a
bounded fourth-order moment:

Ellsk,i—1yriell* < BeE|@x,i—vyre—1 ] + 05, (24)

and for small enough step-size, then:

lir_nsupIE||1Ek,(i,1)T+t||4 <O(u?). (25)
1—> 00
Proof. Proof omitted due to space limitations. O

2.3. Performance Analysis

We are now ready to proceed with the performance analysis, wherein
we will present an expression for the MSD for the federated setting.
However, before delving into this, we lay out the following assump-
tion concerning the noise process.

Assumption 4 (Noise process). Define the covariance of the gradi-
ent noise:

A
Rk,(i71)T+t(w) = ESk,(iﬂ)Tﬂ(w)sz,(i—l)m—t(w)- (26)

Then, for some positive constants ks and os, the covariance statis-
fies the following Lipschitz condition:

ldiag{ R, (i—1)r+¢(w®) — Ry, i—1yr+e (W (i—1)74¢—~1) |
< Ksllcol{ Wy, (i—1)r4e—1 }1°°, (27)

and the following limit exists:

R 2 lim Ry i1y (w°). (28)

i— 00
O
Using the aforementioned assumption and the smoothness as-

sumption of the Hessians, we can derive an expression for the MSD.
We introduce the matrix G;:

G 2E {A(Ti—1)T+t (I = My (i—1yridiag{ V1 Jr(w®)})

®bA(Tz‘—1)T+t (I - Mk,(ifl)Tthdiag{vi,T Jk (wo)})} )
(29)

where the operator ®;, represents the block Kronecker product and:

A nrp 2 Apyr ©1, (30)
M1yt

1>

diag{ g, i—1)74t}- (31)



For t # T, the matrix simplifies to:

Gy = diag {Gr }, (32)
G &)= 19V Jo(w®) (I — pg Vo Ji(w®)), £#k
* I — qupVor Ji(w®), t=k
(33)

At t = T, the matrix Gr captures the interdependencies among
neighbours and the impact of neighbour sampling probabilities gey.
Due to the complexity of the expression of Gr, we omit its inclusion.

We next introduce the matrix C; which captures the dependency
between the step-size and combination weights:

Cy £E {(A(z‘71)T+t ®b Agi—1)T+t)
X (M—1yr+e Qb M(i—l)T+t)} . (34)

For similar reasons, we refrain from explicitly formulating the ma-
trix expression at ¢ = T'. Nonetheless, for ¢t # T, we have:

Ct = diag {Czk} s (35)
2
a ) qeqep”, LF#k
Cou. = 36
o {Qkﬂ27 L=k 30)

Subsequently, we can formulate an expression for the MSD.

Theorem 3 (Steady-state MSD). Ir holds that:
MSD = %szvec(I) +O(p' ), (37)

where the block vectorization operator bvec stacks the columns of
the blocks of the matrix, and:

Qo 2 %min{l,as}, (38)
T —1
2 2 (1_ (ng? —1) ) C bvec(diag{Rx}), (39)
A T PN NT
c2 <I+ (96! ) ) Cr+Gry (G7) ¢ o)
=1
Proof. Proof omitted due to space limitations. O

3. EXPERIMENTAL RESULTS

We consider a linear regression problem of the form:

K
1
min —
w K
k=1

N

1

~ 2 lldi(n) = ywl|*. @D
n=1

We generate for each agent a data set {di(n), uk,,} consisting of
N = 10° samples. These samples include five dimensional fea-
ture vectors uy,, drawn from a normal distribution N'(0, R,,) and
an independent Guassian noise vi(n) ~ N(0,07 ;). A random
generative model w* is sampled from N'(0, R.,) and the labels are
determined by di(n) = uj ,w* + vi(n). For a linear regression
problem, the optimal model w’ can be calculated using R, and Tuv,
which represent the sample covariance and cross-covariance:

w® = w* + Ry Tuo. (42)

MSD (dB)

00 05 10 15 20 25 3.0
iteration x10°

Fig. 2: MSD curve for the asynchronous ATC diffusion algorithm.

The network comprises of K = 20 agents. We consider three differ-
ent cases of the asynchronous network. Case 1 is the most general
case where agent subsampling and local updates occur. The par-
ticipation probabilities are set to g = 0.5. Neighbour sampling
probabilities gy, are randomly assigned. Finally, the parameter 7’
is chosen as 100. Case 2 only considers agent subsampling and no
local updates. Thus, 7" = 1 and the probabilities are kept as in case
1. Finally, case 3 assumes full agent participation with no subsam-
pling of neighbourhoods (g = ger = 1), while allows local updates
(T = 100). This case coincides with the FedSGD algorithm.

Running the algorithm using a step-size . = 0.0001, we calcu-
late the resultant MSD throughout the algorithm’s progression. Af-
terward, we average the MSD across 5 experiments and illustrate the
average curve allongside the theoretical MSD expression found in
Theorem 3. Investigating Fig. 2, we observe that as time passes the
approximated MSD approaches the theoretical value, even for the
general decentralized case. Moreover, in the context of the given
setup, whether local updates are used, as in case 1, or not, as in case
2, an identical behaviour is exhibited. Nonetheless, the primary fac-
tor affecting speedup becomes the agents’ participation, particularly
evident in case 3, where all agents participate. Consequently, the
adoption of local updates has no discernible impact on the conver-
gence rate of the algorithm. Furthermore, the three algorithms ob-
serve comparible theoretical MSD due to the small employed step-
size.

4. CONCLUSION

In summary, this study focuses on asynchronous networks, where the
primary goal is to solve a learning problem framed as an optimiza-
tion task. Our investigation revolves around the premise that each
agent autonomously decides when to participate in the algorithm and
with which subset of its neighbourhood it will collaborate. Addition-
ally, agents perform local updates before sharing their results. In this
framework, we observe that in the federated setting the algorithm re-
mains stable by continuously converging to an O(u) neighbourhood
of the optimal model w°, just like the synchronous version of the
algorithm. However, the rate and region of convergence are now in-
fluenced by the frequency of the nonparticipation of agents as well
as the degree of connectedness of the network. Furthermore, these
effects are aggregated in an actual expression of the MSD.
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