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Abstract

Driven by the successful service model and growing demand, cloud computing has evolved from a moderate-sized
data center consisting of homogeneous resources to a heterogeneous hyper-scale computing ecosystem. This
evolution has made the modern cloud environment increasingly complex. Large-scale empirical studies of essential
concepts such as resource allocation, virtual machine migration, and operational cost reduction have typically been
conducted using simulations. This paper presents an agent-based cloud simulation model for resource management.
The focus is on how service placement strategies, service migration, and server consolidation affect the overall perfor-
mance of homogeneous and heterogeneous clouds, in terms of energy consumption, resource utilization, and viola-
tion of service-level agreements. The main cloud elements are modeled as autonomous agents whose properties are
encapsulated. The complex relationships between components are realized through asynchronous agent-to-agent
interactions. Operating states and statistics are displayed in real time. In the evaluation, the efficiency of the simulator
is studied empirically. The performance of various resource management algorithms is assessed using statistical meth-
ods, and the accuracy of server energy consumption models is examined. The results show that agent-based models

can accurately reflect cloud status at a fine-grained level.

Keywords Cloud, Simulator, Agent-based modeling, Resource management

Introduction

The widespread adoption of cloud services and the
advancement of cloud-enabling technologies have driven
the development of cloud computing into a heteroge-
neous hyper-scale computing ecosystem, and with it,
reducing operational costs and improving user experi-
ence have become two of the most concerning aspects
for cloud service providers. Software-based solutions
typically focus on developing and applying optimization
algorithms to address specific system objectives, such as
minimizing energy consumption, maximizing resource
utilization, and preventing violations of service-level
agreements. These objectives are often formulated as

*Correspondence:

Dapeng Dong

Dapeng.Dong@xjtlu.edu.cn; Dapeng.Dong@liverpool.ac.uk

! Department of Communications and Networking, Xi‘an Jiaotong-
Liverpool University, Suzhou, China

@ Springer Open

multi-objective optimization problems. Experiments and
evaluations in production environments can be challeng-
ing for current software-based solutions. Instead, cloud
resource management studies have primarily been con-
ducted using simulators or analytical methods.

Current simulation methods used in cloud resource
management span a range of abstraction levels, including
system dynamic modeling, agent-based modeling, and
discrete-event modeling [1]. System dynamic modeling
is considered a strategic method suitable for simulating
macro-level phenomena in social networks, economies,
and ecosystems. In contrast, discrete-event simulation
deals with detailed models where the state of the system
changes when an event occurs (i.e., next-event temporal
advance approach) or at a fixed interval (fixed-increment
temporal advance approach) [2]. Several modern cloud
simulators such as CloudSim [3] and CloudSim Plus [4],
are implementations of discrete-event models. Despite
this complexity, creating viable cloud models remains
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crucial for the success of any simulation. As abstract rep-
resentations of actual systems, these models can only
provide approximations and generate statistical insights.
Cloud modeling has become increasingly challenging due
to the growing number of elements, functions, and com-
plexity of interactions among functional components.
Additionally, for certain problems, there may be no effec-
tive analytical solution, such as systems with Poisson
arrival rates, general distributions of service times, and K
servers (K > 1), i.e., the M/G/K model [1].

In comparison, agent-based models are able to account
for the emergence of complex systems through simple
rules for interaction between agents and between agent
and environment [5, 6]. If elements of clouds such as ser-
vices, servers, and other functional components are con-
sidered as agents, an agent-based model of clouds can be
created.

This paper presents an alternative to existing cloud
models by employing agent-based modeling techniques.
Agent-based models are widely used in social sciences
to study population dynamics resulting from collective
behavior among individuals with diverse traits, enabling
the model to effectively manage a large number of het-
erogeneous elements, which is essential for simulating
complex and diverse clouds. For instance, this approach
can account for varying resource utilization patterns,
deployment methods, and configurations for each service
or server within the cloud infrastructure. Unlike other
models that rely on prior knowledge of system trends
(as required by equation-based methods) or predicting
system states for the next step (as demanded by discrete-
event simulation techniques), agent-based modeling
focuses on describing individuals without imposing such
constraints. This enables a more flexible and adaptive
representation of complex systems, allowing researchers
to examine both individual and collective behaviors in
real time. Furthermore, as agent interactions with their
environment are continuously recorded during the exe-
cution of these models, it becomes possible to perform
comprehensive analyses using statistical methods, rather
than relying on a single set of final results.

The main contributions of this study are summarized
as follows.

+ Cross-platform simulation model: A highly config-
urable agent-based simulation model for clouds was
developed. The source code can be viewed at [7].
This model allows researchers and practitioners to
experiment with different cloud management strate-
gies across various configurations of environments,
providing valuable insights into the performance and
efficiency of different approaches in a simulated envi-
ronment.
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+ Balanced-fit algorithm: A new balanced-fit algo-
rithm was developed and evaluated. The algorithm is
designed to optimize resource allocation in dynamic,
heterogeneous cloud environments by minimizing
both underprovisioning (balancing) and overprovi-
sioning (fitting).

+ Quantification and allocation strategy for SLA viola-
tions: A strategy for penalizing violations of service-
level agreements was proposed and evaluated. This
approach introduces a novel method for measuring
and redistributing penalties among services operat-
ing on servers experiencing excessive load.

o Effects of server migration and consolidation: The
study also investigated the effects of service migra-
tion and server consolidation in both homogeneous
and heterogeneous cloud environments. By analyz-
ing these scenarios, researchers can gain valuable
insights into how different configurations of servers
and workloads can impact overall system perfor-
mance, efficiency, and cost-effectiveness.

The organization of the remainder of the paper is as fol-
lows. Related work section discusses related work and
several representative developments in the field. Archi-
tecture section presents the architecture and design of
the simulator. Resource optimization algorithms section
discusses important resource optimization algorithms
and management strategies. Evaluation section presents
evaluations of the algorithms and the simulator. Discus-
sion section discusses the potentials and limitations of
the work. Finally, Conclusion section concludes this
study.

Related work

As consumer needs continue to drive innovation in
modern cloud computing, the landscape has evolved
significantly from its early days when sharing com-
pute resources using the Xen hypervisor was a primary
method [8, 9]. Today’s clouds encompass an array of het-
erogeneous hardware and software components, plat-
forms, services, and management frameworks that have
collectively contributed to their increasing complexity.
This complexity has propagated interest among research-
ers who are tackling almost every aspect of cloud com-
puting, such as service reliability [10], predicting resource
utilization based on time-series data [11, 12], and devel-
oping cost-effective scheduling algorithms [13]. As widely
acknowledged in the community, one of the most effec-
tive methods for studying clouds is through simulation.
In this section, several representative cloud simulators
that have contributed significantly to our understanding
of these complex systems are discussed.
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CloudSim [3] is an influential cloud simulator. Since its
first publication, its functionality has been enhanced to
include support for simple energy-aware virtual machine
placement as well as more advanced features such as
federated data centers with customized networking
topologies, message-passing applications, and automatic
scaling. It has been used in many studies investigating
resource allocation [14], energy efficiency [15] and opera-
tional costs algorithms [16, 17]. Many simulators have
been derived from CloudSim with extended features,
such as the CloudAnalyst, which offers a graphical user
interface, high degrees of flexibility for simulation defi-
nition, and replay mechanisms [18]. CloudSim Plus is a
re-engineered and refactored version of CloudSim, pro-
viding better code clarity and improved accuracy [4]. It
is important to note that when using CloudSim Plus, the
sampled state values may not always align well with the
current status of the simulated system. Achieving statisti-
cal soundness in results typically requires long-run sim-
ulations. In contrast, the proposed cloud model in this
work can output more accurate system states in real time.
This is particularly important for machine learning-based
resource optimization algorithms. For example, deep
reinforcement learning has been used to study cloud
resource management [19-21]. One of the fundamental
requirements is that the system states should accurately
reflect the effects after applying policies (such as a vir-
tual machine placement schema or server consolidation
interval adjustment) to the system.

In addition to discrete-event simulators that emphasize
simulation scalability and speed, fine-grained cloud mod-
els such as GreenCloud [22] and iCanCloud [23] provide
detailed analysis of energy consumption in data center IT
equipment (e.g., servers and switches) with higher accu-
racy. GreenCloud integrates the NS-2 network simula-
tor [24], allowing for an analysis of energy consumption
associated with communication patterns at packet-level,
as well as the effectiveness of low-level power manage-
ment mechanisms such as voltage scaling and frequency
scaling. iCanCloud was built on top of the OMNeT++
platform [25]. The simulator facilitates the evaluation of
various cloud architectures, storage systems, and virtual
machine configurations using trace logs of real applica-
tions. Certainly, with many details included, simulation
speed has to be sacrificed.

On the other hand, several studies have been con-
ducted in real-world environments. For instance, authors
in [26] proposed a workload-aware performance model
for serverless computing and evaluated it on Amazon
Lambda platform. A machine learning-based prediction
algorithm for workflow execution time was introduced
in [27]. The algorithm was assessed within an inter-
nal OpenStack cloud consisting of eight servers [28].
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Although using real environments may produce more
trustworthy results, integrating new algorithms into
existing systems can be technically challenging, espe-
cially when working with public clouds. There are also
studies conducted purely analytically. A general issue
with an analytical approach is that studies often concen-
trate on specific aspects, which may not fully capture the
complex interactions within a heterogeneous computing
ecosystem like modern clouds. As summarized in [29],
cloud infrastructures have evolved from providing simple
shared hardware resources (e.g., CPU time, storage space,
and network bandwidth) to more sophisticated environ-
ments that include various featured services, platforms,
and hardware components. To comprehensively study
the overall effects resulting from the interactions of inter-
leaving components within such ecosystems, an extensi-
ble and flexible cloud model is necessary. An agent-based
cloud model offers maximum flexibility for adding, modi-
fying, or removing functional/conceptual components.
As Edge and Fog computing begin to gain popularity in
the community [30-32], using an agent-based cloud-
edge/fog model can better capture the distributed nature
and geographic location of Edge/Fog devices. The follow-
ing section focuses on a high-level design of the proposed
cloud model.

Architecture

The cloud model is written in NetLogo-specific language
and runs on the NetLogo platform [33]. The model con-
sists of three main elements including Service, Server, and
Scheduler, and they are modeled as agents. Operations
of cloud elements are realized as agent interactions. For
example, the deployment of services is modeled as mov-
ing services to servers. When a service is in the vicinity
of its designated server, it will be captured by the server,
and the server changes the service’s status accordingly.
Each type of agent has a set of attributes that reflect the
characteristics and operations of its real-world counter-
part. For example, a service agent has a set of resource
requirements, a lifetime, its hosting server information,
memory access ratio, and migration status. The concep-
tual architecture of the system is shown in Fig. 1. The
detailed implementation of agents and functional com-
ponents can be found at [7].

A simulation is started from establishing an envi-
ronment that contains a set of servers and schedulers.
Servers are conceptually grouped in racks. Each rack
contains a dedicated scheduler and a set of servers. Serv-
ers are characterized by hardware models, which differ
from resource capacity and energy consumption mod-
els. Each rack may contain different servers of various
models that simulate a heterogeneous environment. All
properties of servers will be initialized when created.
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Fig. 1 The conceptual architecture of the agent-based cloud model

The corresponding scheduler of servers in the same rack
is responsible for switching on/idle/off of servers, based
on a selected server standby strategy. During a simula-
tion, servers will update their status solely based on their
current resource utilization level, as depicted in Fig. 2
(Server).

Once an environment is created, services carrying
workloads will be generated in accordance with simula-
tion plans. To reflect the dynamics of real-world cloud
environments, services are randomly placed in a sub-
mission zone with a default random moving speed when
created. This allows services to arrive at their designated

1120 J

schedulers at different times. The scheduler is responsi-
ble for managing and coordinating the placement of ser-
vices and consolidation of servers. When services arrive
at schedulers, they are scheduled to run on servers that
meet resource requirements based on a selected algo-
rithm for service placement (described in Resource opti-
mization algorithms section). Thereafter, services move
toward their designated servers with updated moving
speeds. The new moving speeds are calculated partially
based on services’ deployment methods, which account
for the delays associated with deployment initializa-
tion processes. Three deployment methods are currently
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supported: virtual machine, container, and bare-metal.
Each has a fixed delay associated with it during deploy-
ment initialization processes.

Once a service arrives at its hosting server, it will have
an “RUNNING” status that was set by the server itself.
The state transitions are illustrated through the use of
finite state machines for services, as depicted in Fig. 2
(Service). A service agent does not carry out any actual
computation, but rather draws a portion of resources
from its underlying server based on the resource utili-
zation models assigned to it. The resource usage model
for each service is characterized by tuning the « and B
parameters in beta distributions, R ~ Beta(w, ). For
example:

« Settingw = B = 1, a uniform distribution of resource
usage can be obtained;

« Setting « = 2 and B = 1, a linear distribution can be
achieved;

+ Setting @ = B = 2, a normal distribution can be gen-
erated;

+ Setting @ = 2 and B = 3, a right-tailed normal distri-
bution can be obtained.

These distributions can simulate various types of ser-
vice workloads as summarized in [29]. Furthermore, to
maximize the flexibility, resource usage models can be
adjusted for different kinds of resources on a per-service
basis. For example, a communication-intensive service
may have a normal distribution for CPU usage, a uni-
form distribution for memory usage, and a left-tailed
distribution for network usage. Note that three kinds of

reserved resources > 0 or
consumed resources = 0

Page 5 of 24

?

generate

[
simulation ends

@
T

stop
|
OFF REPAIR
manually shutdown :
switched on/off by scheduler
consumed resources = 0 and
IDLE reserved resources = 0 OVERLOAD

<

consumed resources >= threshold

consumed resources|< threshold

READY ON
consumed resources > 0
Server

resources are considered including computation power
(measured in Server-side Java Operations per Second,
ssj_ops), memory (measured in MB), and network band-
width (measured in Mbps). In future work, resource
usage models with seasonal effect will also be incorpo-
rated into the simulator to further enhance its versatility
in modeling various service workloads.

When a service completes its tasks, i.e., reaches the end
of its lifetime, it will be terminated and removed from
its hosting server. In another case, if a service experi-
ences performance degradation due to resource scarcity
occurred on its underlying hosting server, the service’s
lifetime may be extended. The extension of a service’s life-
time reflects the amount of violation of SLA. Calculation
of the lifetime extension is detailed in Penalty for perfor-
mance degradation section. An overview of the workflow
and agent interactions is depicted in Fig. 3. Additionally,
the simulator also provides several real time plots includ-
ing accumulated resource usage, average resource usage,
server status, energy consumption, number of migrating
services triggered by auto-migration and server consoli-
dation, accumulated lifetime extension (SLA violation),
and service rejection rate when the system is overloaded.
Figure 4 shows a screenshot of the user interface for the
simulator. Other types of real time plots and parameter
configuration widgets can be easily added, facilitated by
the NetLogo platform.

Resource optimization algorithms

Service migration algorithms

There are two primary scenarios for service migration in
cloud computing environments:
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+ Under-utilization. When a hosting server experi-
ences low resource usage due to falling below a speci-
fied under-utilization threshold. The practice is to
move all running services to other more active serv-
ers. This process of relocating services from the less
utilized host is referred to as server consolidation.
Server consolidation is a recurring activity that opti-
mizes resource allocation and improve overall system
efficiency.

+ Over-utilization. When a hosting server exhibits
high resource usage due to surpassing a specified
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over-utilization threshold, some or all of the run-
ning services may need to be relocated to other less
busy servers. In this situation, service migration is
referred to as auto-migration. Auto-migration is
a response mechanism that operates on an event-
triggered basis. Auto-migration aims to minimize
SLA violation.

The following sections discuss the algorithms and strat-
egies implemented in the model in addressing both sce-
narios: server consolidation and auto-migration.
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Server consolidation
The migration of services will lead to an overall increase
in resource utilization while minimizing potential frag-
mentation within the cloud infrastructure. As a result,
server consolidation efforts may be necessary. This pro-
cess is typically performed periodically and involves
either relocating all services from a particular hosting
server or leaving them where they are. Current research
in server consolidation or service placement has focused
on designing algorithms for identifying suitable servers
to host services based on various system-level objec-
tives, such as energy minimization, resource utilization
maximization, and scheduling efficiency. Examples of
these approaches include the implementation of greedy
algorithms, statistical & prediction-based methods, and
meta-heuristics within a simulator environment. The
implemented algorithms in the simulator are diverse:
random, first-fit, balanced-fit, max-utilization, and
energy minimization (min-energy). The first two algo-
rithms are self-explanatory, while a best-fit algorithm has
been implemented in two distinct flavors: balanced-fit
and max-utilization. To facilitate understanding, the fol-
lowing notation conventions are used within this context.
Consider a list of services, denoted asaj = {ajo, aj1, ..., 4ju},
running on a server s; € s, where s is a set containing serv-
ers o, S1, .., and s,,. Each service requesting specific types
of resources at runtime denoted by an #-tuple R, (aj;). Simi-
larly, each service has provisioned resources at deployment
time represented as the configured resource tuple R.(a;;);
R,(aj;) and Ry (aj;) denote the resources that aj; is currently
occupied and previously occupied, respectively. For instance,
consider a DNS service is to be deployed in the cloud. When
deploying a new service to the cloud, users must estimate or
specify the amounts of resources based on past experience
or other factors, known as the provisioned resources. For
example, the DNS service might be provisioned with an esti-
mated configuration: R, = {CPU: 5000ssj_ops, MEM: 4GB,
NetBW: 100Mbps}. A placement algorithm will search for
available hosting servers that can accommodate the service
with the specified resources. Once deployed and running on
a server s, the service will consume actual resource usage
over time following a beta distribution per type of resource,
at each simulation tick. For instance, let’s consider two con-
secutive timestamps:

1. At time fo: The current state is represented by the
observed (or occupied) resource tuple R, (Zp) for the
DNS service running on server s;. This might be
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updated from its provisioned resources R to R, (ty) =
{CPU: 2354ssj_ops, MEM: 1.8GB, NetBW: 67Mbps}
at this point in time.

2. At time #1: The observed resource tuple for the ser-
vice R,(t1) might be updated to {CPU: 3054ssj_ops,
MEM: 2.8GB, NetBW: 97Mbps}, and the previously
occupied resources R,(tp) becomes R,(f1) at this
point in time.

It is also important to emphasize the distinctions between
R;(aj;) and R, (aj;) under the following circumstances.

1. When the total requested resources is not greater
than the physical capacity of the underlying server,
ie., Z?:O Rr(ﬂji) < RC(S]‘), then Ro(ﬂji) = Rr(aji).

2. In case where the total requested resources exceed
the physical capacity of the underlying server,
resulting in triggering of SLA violation events, then
Ro(@ji) = Rr(aji) — ¢ (32 Rr(@ji) — Re(s;)), where ¢
is a distribution factor explained in Penalty for per-
formance degradation section.

Using the same notation style, R,(s;) and R.(s;) represent
the currently used resources and the physical capacity of s;.
|R(-)| denotes the number of types of resources considered.
The main idea behind the balanced-fit algorithm is to
maintain a similar resource utilization level across different
Re(@j) +Ro(5)
Re(s)
resource utilization ratios of computing, memory, and net-
work bandwidth of s; given that if service a; is placed on s;.
Calculating ratios of computing, memory, and network
bandwidth of s; is necessary because different kinds of
resources might be measured in different units. The bal-
anced-fit algorithm favors placing service a; on server s;
with the minimum difference across all kinds of resources
to avoid situations where some kinds of resources are heav-
ily used but others are lightly used, leading to waste of
resources or resource fragmentation. For instance, if a serv-
er’s compute, memory, and networking resource utilization
averages are {80%, 50%, 10%} respectively, the algorithm
will try to place a computation-light, memory-neutral, and
communication-intensive service on the server. The max-
utilization algorithm tries to minimize the overall resource
fragment of servers with an assumption that the resource
requirements of services and resource configuration of
servers are relatively balanced across different kinds. Pseu-
docode of the balanced-fit and max-utilization algorithms
are shown in Algorithm 1.

kinds of resources. For example, calculates
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function BEST-FIT(a, s)
min-dist < |R(-)|
s < null
for s, € s do
if Re(ag;) + Ro(sg) < Re(sg) then
d « max{%} - min{
d + sum (1 — Lc(agc)(‘ggo(%))
if min-dist > d then
min-dist < d
S < Sk
end if
end if
end for
return s
end function

Re(aki)+Ro(sk) }

Re(sk) > if using the balanced-fit

> if using the max-utilization

Algorithm 1 The balanced-fit algorithm focuses on maintaining balanced resource occupancy levels across various types of resources for a given
server; meanwhile, the max-utilization approach is dedicated to minimizing the overall residual resources available on a server

An energy minimization algorithm is also implemented
in a similar manner to the algorithms shown in Algo-
rithm 1. A notable aspect is how the energy consump-
tion of servers is modeled. In the simulator, eight types of
recently manufactured servers are considered. The speci-
fications of the servers were collected from spec.org' and
details are listed in Table 6. Relationships between energy
consumption, system workload, and CPU utilization
are shown in Fig. 5. Observing that server performance
varies greatly, and the energy consumption of servers
does not align well with the system performance meas-
ured in ssj_ops, i.e., server-side Java workload in opera-
tions per second. For example, the system performance
of RS700A-E9-RS4V2 increases much faster with a rela-
tively slow increase in energy consumption. In compari-
son, the energy consumption and system performance of
the Inspur NF8480M6 and ProLiant DL110 GenlO Plus
increase at a similar pace. Different models of servers
were usually built with varying computational capacities,
as shown in Fig. 7. Although some servers have a rela-
tively higher baseline energy consumption, for example,
the UniServer R4900 G5, but their Active Average Power
increases sub-linearly with the increase of performance,
which makes them suitable candidates for minimizing
overall energy consumption. Generally, packing more
services on a server will increase the level of the serv-
er’s resource utilization, but it may not yield an optimal

! http://www.spec.org/power_ssj2008/results/

overall energy efficiency of the cloud. This apparently
presents an opportunity for optimization when clouds
consist of heterogeneous hardware.

Energy consumption plays a significant role in calcu-
lating cloud operational costs, with various models pro-
posed to estimate energy usage. For instance, researchers
have developed methods such as additive models, linear/
non-linear regression, and polynomial models (e.g., [34]).
In order to provide an unbiased evaluation, several mod-
eling techniques were used to understand server energy
consumption patterns. These include the Simple Linear
Regression, Quadratic Polynomial, Cubic Polynomial,
and Step-wise Linear Regression methods. The Step-
wise method serves as a baseline for comparison since
it closely aligns with the raw data. Among these models,
the cubic polynomial model demonstrates the best fit for
the energy consumption data but comes at an increased
computational complexity. A detailed breakdown of
model parameters and accuracy measured by R-squared
values can be found in Table 6.

Auto-migration

In the second scenario, service migration becomes nec-
essary when occupied resources approach the physical
capacity limit of a server, which is defined by an over-
utilization threshold. In such cases, some services must
be moved to other servers so that the original server can
maintain sufficient resources to prevent potential per-
formance degradation caused by resource scarcity. This
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Fig. 5 Runtime energy consumption and system performance (measured in ssj_ops) under different CPU loads. The results show that energy
consumption varies among servers, whereas system performance generally increases in a linear manner with increasing CPU loads

process is typically event-driven and involves migrat-
ing only selected services in order to keep the affected
server running smoothly. The selection of these ser-
vices should be strategic, based on system-level objec-
tives. Two strategies have been implemented in order to
optimize resource utilization and minimize disruption
caused by service migration: minimum number of migra-
tions (MNM) and least migration time (LMT). The pri-
mary goal of the MNM strategy is to reduce network
congestion resulting from migrating aggressive services
that consume a large portion of limited resources. An
aggressive service, as defined in this context, refers to the
one that consumes the most significant share of scarce
resources. However, it’s important to note that the impact
on the network also depends on the memory footprint of
potential migration candidates. Nevertheless, the simula-
tor remains open to more advanced strategies. The LMT
strategy focuses on minimizing service disruption caused
by the migration process. Technically, estimating the
delay involves considering factors such as available point-
to-point network bandwidth between source and desti-
nation servers, memory footprint of candidate services,
and memory dirtying rates [35]. After identifying poten-
tial candidate services, target server selection follows the
same algorithms employed during the server consolida-
tion process.

Penalty for performance degradation

When a hosting server cannot provide sufficient resources
for its services, their performance may degrade. In such
cases, all services hosted by that server will experience penal-
ties in terms of extended lifetimes. If Z?:o Ry (aji) > Rc(s)),
the resource allocation vector aj receives penalties P;, which
are calculated based on three factors:

1. The total unsatisfied resources required by the ser-
vices, > i—o Rr(aji) — Re(s));

A distribution factor ¢ that is applied across all ser-
vices running on the same server;

A local factor specific to each individual service.

Denoting each simulation tick, representing the amounts
of real-time elapsed, 7, in minutes, the total amount of

o Rr (@) —Rc(sj) . i
LioRr@D=R) g3 o services
R.(sj)
e ()

are very likely requesting different amounts of resources,
either less or more, than their previously occupied, the
distribution of penalty is therefore calculated based on
the relative difference between currently requested
resources and previously occupied resources. Let
8(aji) = Ry(aji) — Ry(aji), and s(ay) = {8(ajo), 8(@j1), - 8 (@jn))»
furthermore, let &'(aj) denotes a scaled &(aj), ie.,
8'(ay) = {8'(ajo), 8'(@j1), ..., 8'(@jn)}, where &8'(aj) = a+
abs(min{d(aj)}) + 6(a;;), and « is a positive number. The

penalty is quantified as T -
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num of rack = 12; server per rack = 8; simulation unit time = 5 (min)
service generation speed = 300; service lifetime = [300, 300]

service cpu, memory, and network bandwidth runtime usage distribution: beta(2, 4)

memory dirtying rate: beta(2, 4); server models = [1 - 8]

server cpu, memoryt, and network bandwidth under-/over-utilization threshold = {20, 90}

consolidation interval = 12; heterogeneity: {data center, rack}

Note that the total number of servers can be determined jointly by the parameters “number of rack” and “servers per rack”. Services are submitted at various points
throughout the simulation, which can be partially adjusted using the parameter “service generation speed”. The server code corresponds to the models of servers

listed in Table 2

distribution factor for penalty allocation is expressed as
C@i) = -t
7t Yico & (@)
because the ratio cannot be zero or a negative value. This
ensures that the total amount of penalty can fairly be dis-
tributed across all services running on s;. It’s important to
note that some services might need fewer resources than
their previously occupied, but regardless, those services
will still receive penalties as resource scarcity occurs at
the physical server level. This impact is captured by the
distribution factor above, emphasizing that all services
will be affected, albeit with varying degrees of influence
due to the constraints imposed on the shared resources.
Moreover, a local factor is essential. When a service
encounters resource scarcity, its impact can vary depend-
ing on the proportion of resources requested compared
to the provisioned resources of the service. For instance,
if a service requests substantial amounts of resources rel-
ative to both its previously occupied and provisioned
resources, the effect will be relatively stronger; con-
versely, if the service requests fewer resources than its
previously occupied, the impact shall be weaker. The
local factor captures this variability. It is expressed as

1+ a(ﬂ’f? )- Note that §(aj;) can also be a negative value.
Rz(ﬂjt) U

The scaling process is necessary

Finally, the extended lifetime for each service is presented
in Eq. 1.

pis = T8 (aji) - (g Re(@ji) — Re(ajp)) - (Re(aji) + 8(a;))
" Re(s)) - Relaji) - Y1 ' (aj) @)

Recall that R(-) represents an n-tuple, and the calcula-
tion is performed separately for each type of resources. In
the simulation, the impact of resource scarcity accumu-
lates across different types of resources. The formula can
also be applied to other scenarios where quantifying SLA
violations might be necessary.

Evaluation

The evaluation and analysis center around assess-
ing the performance of algorithms and strategies
employed within the simulator, with specific emphasis

on energy efficiency, the effectiveness of penalty allo-
cation, service migration, and server consolidation, as
well as the accuracy of the servers’ energy consump-
tion model.

The global parameters for the configurations of the
experiments are outlined in Table 1. These parameters
govern various aspects of service deployment and man-
agement within a cloud environment. One of the key
parameters is the “service generation speed’, which deter-
mines how many services will be submitted to the cloud
at any given time, ensuring that a specified number of
services remain active in the service submission zone.
Each new service has a uniformly drawn lifetime from
the range specified by the “service lifetime” parameter.
For consistency across experiments, all services were
configured with the same length of lifetime, i.e., “service
lifetime” [300, 300]. The resource usages of each service,
such as compute, memory, and network bandwidth, are
drawn from beta distributions. The “server utilization
threshold” parameter specifies the under- and over-
utilization thresholds for server consolidation and auto-
migration, respectively. These thresholds help maintain
optimal server performance while managing resource
allocation in a cloud environment with dynamic service
demands. Throughout Energy efficiency — Resource uti-
lization sections, the Step-wise Linear Regression model
was employed for calculating energy consumption. In
order to study the behaviors of heterogeneous clouds,
all server models were utilized in the relevant experi-
ments. Specifications of the servers are listed in Table 2.
The servers were mixed either within a rack or across
the entire data center, as specified by the parameter
“heterogeneity”.

To ensure reproducibility and facilitate further inves-
tigation, random seeds were used. Each experiment
was repeated 100 times with different random seeds.
All experiments were conducted using NetLogo v6.3 on
a Windows 10 Enterprise LTSC (64-bit) Dell OptiPlex
5090 workstation featuring an Intel Hexa-Core i5-1150
@2.70GHz processor.
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Code Manufacturer and Model Processor (GHz) Memory Release Date
1 HP ProLiant DL110 Gen10 Plus Intel Xeon Gold 6314U @2.30GHz 64 GB Aug-2021
2 Lenovo ThinkSystem SR655 AMD EPYC 7763 @2.45GHz 128 GB Jun-2021
3 Fujitsu PRIMERGY RX2530M6 Intel Xeon Platinum 8380 @2.30GHz 256 GB May-2021
4 New H3C Tech. UniServer R4900 G5 Intel Xeon Platinum 8380 @2.30GHz 256 GB May-2021
5 Inspur Corp. NF8480M6 Intel Xeon Platinum 8380HL @2.90GHz 384 GB Nov-2020
6 DellEMC PowerEdge R6515 AMD EPYC 7702P @2.00GHz 64 GB Jul-2020
7 LSDtech L224S-D/F/V-1 Intel Xeon Gold 6136 @3.00GHz 196 GB Jul-2020
8 ASUSTeK Inc. RS700A-E9-RS4V2 AMD EPYC 7742 @2.25GHz 256 GB Feb-2020
Note that specifications of the servers were collected from spec.org, published in 2020 and 2021
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Fig. 6 A comparison of energy consumption and SLA violation between homogeneous and heterogeneous environments with auto-migration
and server consolidation features disabled is presented. In heterogeneous clouds, the level of heterogeneity was set to rack level. SE indicates
the staged evaluation strategy, as explained in Energy efficiency section. Energy usage is measured in units of kWh, while SLA violations are
calculated according to the equation discussed in Penalty for performance degradation section

Energy efficiency

Energy consumption is a significant concern in cloud man-
agement. While higher resource utilization may not always
lead to lower overall energy usage, Fig. 6 illustrates how
different placement strategies impacted the performance
of the cloud with respect to energy consumption and SLA
violations. It becomes evident that when clouds contain
heterogeneous hardware, there are more opportunities
for optimization. However, it is crucial not to discuss algo-
rithm effectiveness in isolation as their associated SLA vio-
lations can vary significantly from case to case.

Server status (on, idle, or off) and specifications (e.g.,
energy consumption patterns and resource capacity) are
key factors in optimization efforts. The algorithms imple-
mented within the simulator can be further categorized
into three-staged evaluations, denoted as {1, 2, 3}SE. In
the 1-staged evaluation (1SE), no consideration is given
to server status when placing services; in the 2-staged
evaluation (2SE), priority is given to placing services on
servers that are either on or idle; finally, in the 3-staged
evaluation (3SE), services are placed according to the
order of {on} — {idle} — {off}.
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Fig. 7 Runtime energy consumption and system performance (ssj_ops) at various levels of CPU load

Table 3 Statistical mean differences observed between the staged evaluations of each algorithm, conducted independently within

both homogeneous and heterogeneous cloud environments

Test Methods Levene Shapiro ANOVA Kruskal Environment

random (rnd) p>0.999 (W=0.992, p=0.326) p>0.999 p>0.999 Homogeneous, {1, 2, 3}SE
p=0.961 (W=0.986, p=0.041) p=0.997 p=0.976 Heterogeneous, {1, 2, 3}SE

first-fit (ff) p=0.996 (W=0.988, p=0.013) p=0.999 p>0.999 Homogeneous, {1, 2, 3}SE
p=0.976 (W=0.955, p=4.9e-8) p=0.989 p=0.996 Heterogeneous, {1, 2, 3}SE

balanced-fit (bf) p=0.937 (W=0.980, p=6.6e-3) p=0.864 p=0.851 Homogeneous, {1, 2, 3}SE
p=0.804 (W=0.976, p=1.8e-3) p=0.829 p=0.872 Heterogeneous, {1, 2, 3}SE

max-utilization (mu) p=0.985 (W=0.987, p=6.9e-3) p=0.889 p=0.924 Homogeneous, {1, 2, 3}SE
p=0.767 (W=0.993, p=0.204) p=0.611 p=0.794 Heterogeneous, {1, 2, 3}SE

min-energy (me) p=0.893 (W=0.978, p=1.4e-4) p>0.863 p=0.794 Homogeneous, {1, 2, 3}SE
p=0.986 (W=0.977, p=1.1e-4) p=0.995 p=0.996 Heterogeneous, {1, 2, 3}SE

The performance difference between the algorithms were tested using either ANOVA (parametric) or Kruskal-Wallis (non-parametric) methods, depending on
whether the Levene’s test for homogeneity of variance and Shapiro-Wilk method for normality residuals passed (p > 0.05 indicates no violation). If both tests pass,
ANOVA results are more trustworthy; otherwise, Kruskal-Wallis results prevail. In all cases, p-values were above the significance threshold (0.05) from both ANOVA and
Kruskal-Wallis tests, accepting the null hypothesis and suggesting no significant differences between evaluation stages for each algorithm in both homogeneous and

heterogeneous cloud environments

When using both the random and balanced-fit algo-
rithms with the 1SE approach, there is a higher prob-
ability of placing services on servers that are currently in
an {off} status. Due to the baseline electricity consump-
tion associated with turning on such servers (as shown
in Fig. 7), the two algorithms resulted in significantly
increased energy consumption over time, as demon-
strated in Fig. 6. Despite these outliers, mean differences
for each individual algorithm configured with the set
of {1, 2, 3}SE were found to be statistically insignificant
when evaluated independently in both homogeneous and
heterogeneous cloud environments, as shown in Table 3.

However, there was a slight difference observed in energy
consumption across algorithms assessed within homoge-
neous clouds, but statistically insignificant, as suggested
by Kruskal tests {*2SE: p=0.129, *3SE: p=0.221}, where
the * indicates all the algorithms configured with 2SE or
3SE, respectively. It is important to note that consider-
ing the energy consumption and SLA violations shown
in Fig. 6, it becomes evident that the balanced-fit, max-
utilization, and min-energy algorithms outperform other
strategies such as random and first-fit approaches in
homogeneous cloud environments. In contrast, when
operating within heterogeneous cloud environments, the
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Table 4 A pairwise comparison was conducted to evaluate the impact of implementing various features, including automatic
migration (AM) and server consolidation (Co), on the statistical mean difference between algorithms for energy consumption and
number of service migrations. The analysis considered both homogeneous and heterogeneous cloud environments

Algo. AM , Co (Energy) AM*, Co (#Migration) AMT, Co™ (#Migration)
He-2SE He-3SE Ho-{2,3}SE He-2SE He-3SE Ho-2SE Ho-3SE He-2SE He-3SE

ff - bf 0.247 0.303 -1.69 1.83 1.81 -1.57 -1.58 0.77 0.72
mu - bf 4017 4.146 -1.53 0.51 0.50 -1.39 -1.37 -1.66 -145
me - bf -2.621 -2.565 -0.85 0.50 049 -0.38 -0.39 -0.92 -0.80
rnd -bf 0.989 1.061 -0.67 2.02 2.01 -0.39 -0.37 0.25 0.23
mu - ff 3.769 3.843 0.16 -1.32 -1.31 0.18 0.21 -243 -2.17
me - ff -2.868 -2.868 0.84 -1.33 -1.32 1.19 1.19 -1.69 -1.52
rnd - ff 0.741 0.757 1.02 0.19 0.20 1.18 1.21 -0.52 -049
me - mu -6.638 -6.711 0.68 -0.016 -0.01 1.01 0.98 0.74 0.65
md - mu -3.028 -3.086 0.86 1.51 1.51 1.00 1.00 191 1.68
rnd - me 3.609 3.626 0.18 1.52 152 -0.01 0.02 117 1.03

The differences between algorithms were calculated using Tukey Honest Significance Differences method, considering both homogeneous (Ho) and heterogeneous
(He) cloud environments. The mean differences between 2SE and 3SE with/without auto-migration (AM+/~) and server consolidation (Cot/ ™) features were analyzed
separately for each environment type. Since the mean differences in homogeneous clouds are identical when comparing 2SE with AM™ to 3SE with AM™, these values

have been merged into a single column under “Ho-{2, 3}SE”

balanced-fit and possibly the min-energy algorithms are
more suitable options for service placement.

The results in Fig. 6 show that less electricity was
consumed when running algorithms in heterogeneous
clouds compared with homogeneous ones, which is visu-
ally observable. Additionally, it becomes more evident,
{*2SE: Kruskal(p <« 0.001), *3SE: Kruskal(p <« 0.001)},
how the algorithms behave differently from each other
in these environments. In particular, multiple pairwise-
comparison tests were conducted and the results are
shown in Column AM™, Co™ (Energy) of Table 4. The
min-energy algorithm saved an average of 2.621 electric-
ity units with 2SE and 2.565 units with 3SE compared to
the balanced-fit algorithm, which resulted in a significant
number of SLA violations on average: 475.20 for 2SE and
479.36 for 3SE. It seems that when only auto-migration
was enabled, the min-energy migrated services more fre-
quently compared to the balanced-fit algorithm, which
might indicate an unbalanced use of resources. Overall,
the balanced-fit algorithm appeared to be the most stable
one among all algorithms considered in this study.

In this section, two sets of comparisons were con-
ducted to provide insights into the performance of indi-
vidual algorithms in staged evaluations and their overall
effectiveness across different environments. The first
set of comparisons focused on comparing the stability
of each algorithm configured with various staged evalu-
ations. The results showed that both 2SE and 3SE are
generally stable across all algorithms, indicating a con-
sistent performance throughout the evaluation process.
Based on these findings, the second set of comparisons
aimed to identify stable algorithms in terms of energy

consumption and SLA violation for homogeneous and
heterogeneous environments. This analysis helps to pin-
point favorable algorithm configurations that can effec-
tively balance between energy efficiency and service level
agreement compliance. Moreover, it is possible to fur-
ther optimize the performance of these stable algorithms
by implementing dynamic switching mechanisms that
adjust their behavior based on specific SLA thresholds.
Such adaptive strategies can help maintain a delicate bal-
ance between energy consumption and SLA violation in
various cloud environments.

Although real time auto-scaling can improve overall
resource utilization, it frequently leads to service level
agreement violation, which may negatively impact ser-
vice performance. To address this issue proactively,
some services should be migrated from overcrowded
servers to less busy ones. Figure 8 shows the probability
density functions of energy consumption & SLA vio-
lations, and the cumulative distribution functions of
service migrations collected from simulations of both
homogeneous and heterogeneous cloud environments
that revealed interesting insights into energy consump-
tion, SLA violations, and the effectiveness of different
algorithms for managing resources. In a homogeneous
environment, two specific algorithms - balanced-fit
and min-energy - resulted in lower energy consumption
levels while maintaining better control over SLA vio-
lations. The majority of these violations were concen-
trated within the range of 3 to 5 units, indicating that
these algorithms were able to effectively minimizing
energy consumption and control SLA violations. When
comparing the number of service migrations between
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Fig. 8 The energy consumption, SLA violation, and number of service migrations obtained from homogeneous and heterogeneous clouds

with auto-migration enabled

Table 5 Statistical mean differences in energy consumption and the number of service migrations obtained through simulations of

different cloud configurations

Configuration

balanced-fit (energy diff in unit)

min-energy (energy diff in unit)

2SE 3SE 2SE 3SE
(Ho,MA ,Co )-(HoMATCo ) (-8.418,-7.395) (-8.448, -7.424) (-8.189,-7.196) (-8.193,-7.200)
(HeMA ,Co ) - (HeMAT.Co ) (-0.909, 0.286) (-0.969,0.211) (-11.187,-9.727) (-11.192,-9.735)
(Ho,MA*,Co ) - (Ho,MA* Co™) (5.367,6.549) (5.374,6.556) (5450, 6.587) (5450, 6.587)
(He MAT.Co ) - (He,MAT Co™) (0.586, 1.776) (0.590, 1.782) (5.730,7.214) (5.693,7.168)
Note that 95% confidence interval was used
Ho homogeneous, He heterogeneous, AM*/ = with/without auto-migration, Co™/~ with/without server consolidation

different algorithms in the experiments, it was found
that there was only a marginal difference between
them (1-2), as shown in Table 4. The primary distinc-
tion lies in the level of SLA violations compared to the
results shown in Fig. 6. This difference translates into
trading off from higher energy consumption levels,

as demonstrated in the first row of Table 5. It is also
important to note that both the balanced-fit and min-
energy algorithms consumed less energy when utilizing
a server consolidation mechanism. For example, the
mean differences in energy consumption between the
configurations [(Ho,MA™,Co") - (Ho,MA%*,Co")] and
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Fig. 9 Energy consumption, SLA violation, and number of service migrations obtained from experiments involving both homogeneous
and heterogeneous cloud environments with auto-migration and server consolidation features activated

[(He, MAT,Co") - (He,MA™,Co™)] fall in the range (95%
CI = 5.367, 6.549) and (95% CI = 0.586, 1.776), respec-
tively. These results demonstrate the effectiveness of
server consolidation in reducing energy consumption.
Overall, while all algorithms in this study showed some
ability to manage resource allocation and reduce energy
consumption, the balanced-fit approach emerged as
particularly effective strategies for maintaining good
performance in cloud computing environments.

Effectiveness of service migration

In contrast to other algorithms, the balanced-fit approach
demonstrated superior performance in terms of energy
consumption and SLA violation (near zero) within het-
erogeneous environments. However, this algorithm
resulted in a slightly higher number of service migrations
compared with others operating under similar condi-
tions, with the largest mean difference of 2.02, as shown
in Table 4. When cross-compared to the results obtained
from Fig. 6 (heterogeneous environments), it becomes
evident that energy efficiency was slightly improved

overall (second row of Table 5). With a 90% probability,
the number of service migrations under this algorithm
falls within a range between 0 and 10. Overall, the bal-
anced-fit approach emerged as the most stable and effi-
cient algorithm in both homogeneous and heterogeneous
environments with the specific configurations mentioned
in Table 1.

To enhance energy efficiency and resource utilization
even further, a server consolidation feature was incor-
porated into the experiments. It’s important to note that
auto-migration and server consolidation are two separate
processes. Auto-migrations occur when services experi-
encing resource scarcity, while server consolidation runs
periodically (12 ticks for the following experiments), sim-
ulating a consolidation process triggered on a per hour
basis in real-world scenarios. As shown in Fig. 9, server
consolidation can significantly reduce energy consump-
tion compared to the results displayed in Fig. 8 (same set
of services, but without server consolidation). The differ-
ences were further analyzed using an independent ¢-test
with a 95% confidence interval, as presented in Table 5.
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In these experiments, both the balanced-fit and the min-
energy algorithms demonstrated strong performance.
However, it’s worth noting that while the min-energy
algorithm had a lower average energy consumption, its
variance of SLA violation was much wider (unstable). On
the other hand, the balanced-fit algorithm maintained
a more stable and efficient performance with a smaller
variance concentrated around 2-3 units and number of
migrations under 10 at 90% of the time.

Resource utilization
Comparing resource utilization between multiple
instances of simulation becomes complex due to vari-
ous random factors involved in each case, such as dif-
ferences in service submission times, arrival speeds, and
per-service configurations; server heterogeneity enabled/
disabled based on configuration settings; varying pat-
terns of resource utilization over time; and the impacts
of resource scarcity on service lifetimes. At different
timestamps, the number of services, their distribution
across servers, and overall resource utilization may vary
significantly from one simulation run to another. To draw
meaningful conclusions about resource utilization in
these experiments, this work focused on calculating such
values for only active servers, those with running ser-
vices, and then bin-packing the results based on the num-
ber of active servers. Statistics were collected from 100
independent runs of the experiments to provide a com-
prehensive understanding of resource utilization in both
homogeneous and heterogeneous cloud environments.
From Fig. 10, it becomes evident that all algorithms
exhibit similar performance in homogeneous cloud envi-
ronments. In contrast, as illustrated by Fig. 11, the first-fit
and balanced-fit algorithms demonstrate superiority over
other approaches when considering server utilization in
heterogeneous clouds. It is worth noting that the random
algorithm appears to use fewer servers than its coun-
terparts due to the influence of the 3-staged evaluation
process. This is because, during the initial stages, active
servers are given priority and thus tend to be placed on a
smaller number of servers.

Effectiveness of the penalty allocation

In order to evaluate the proposed SLA quantification and
allocation scheme, a controlled experimental environ-
ment was established. For this experiment, ten services
were configured with memory-intensive workloads and
deployed on a single server (with model code 1 and 64GB
of memory). The provisioned memory resources for each
service were uniformly drawn from the set {8192MB,
12288MB, 16384MB}. The runtime memory usage of
each service was still drawn from the beta distribution
with parameters {¢ = 2, B = 4}. The requirements for
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computing and networking resources were intentionally
kept at minimum to ensure that no SLA violations would
be triggered by resource constraints of these kinds. All
services had a fixed lifetime of 500 units. Other param-
eters remained consistent with those shown in Table 1.

Figure 12 illustrates the memory usage of both the
server and the individual services during runtime. The
line in black represents the aggregate memory usage of
all ten services, which is equivalent to the memory usage
of the server itself. It can be seen that the server’s mem-
ory capacity was not exceeded by any of the service’s
memory requests. However, if a service were to request
more memory than what the server could provide, an
SLA violation would occur and be indicated by the red
dashed line in the graph. Although the services had been
configured with a fixed lifetime of 500 units, the timeline
on the x-axis has reached around 660 due to three pos-
sible reasons:

1. The ten services were submitted at different times,
which caused the overall duration of the experiment
to be extended;

2. Because of the SLA violations, the lifetime of each
service was automatically extended accordingly in
order to maintain compliance with the specified SLA;

3. Constrained by the limited physical resources, some
services may not be able to deploy immediately. They
may have to wait for sufficient resources to become
available on the server.

In relation to the unfulfilled memory resource requests
above the server’s physical capacity (the upper part of
Fig. 12, where the y-axis is greater than 64GB), Fig. 13
illustrates the penalties calculated for all services running
on the server. It becomes evident that the total amount
of SLA violations corresponds proportionally to the
amounts of unfulfilled memory resources, as shown in
Fig. 12.

To further explore the intricate of the distribution of
penalties, an arbitrary instance was selected from Fig. 13,
highlighted in blue. Additional details can be found
in Fig. 14. At the time of execution, ten services were
concurrently running on the server, with their initially
provisioned memory resources shown in Fig. 14 [left,
"provisioned’]. Certainly, the total amounts of provisioned
memory (for services, 112GB) significantly exceed the
physical capacity of the server (64GB), causing some ser-
vices to be delayed upon deployment. However, during
runtime, services may require much less resources than
their provisioned amount, depending on their workloads
and resource utilization patterns. The unused resources
can thus be utilized for deploying new services, i.e.,
over-commitment. However, at the previous execution
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Fig. 10 Resource utilization of active servers was examined in experiments involving homogeneous clouds with a 3-staged evaluation
process. For these experiments, auto-migration and server consolidation were disabled to better understand resource allocation patterns
without the influence of these features. In the experiments, services represent predominantly memory-intensive tasks

step (as shown in Fig. 14 [left, 'previously occupied]),
the total amount of memory occupied by the services
was 55.8GB, which is well below the server’s physi-
cal capacity of 64GB. Consequently, no SLA violation
events occurred during that time. When the execution
advanced to the current step, the total requested memory

resources increased to 84.76GB, surpassing the server’s
physical capacity limit. As a result, all services received
penalties based on their share of unfulfilled memory
resource requests (as shown in Fig. 14 [right]). Although
service-0 (ap) had requested less resources than its previ-
ously occupied state, it still faced some penalty due to the
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Fig. 11 Resource utilization of active servers was examined in experiments involving heterogeneous clouds with a 3-staged evaluation
process. For these experiments, auto-migration and server consolidation were disabled to better understand resource allocation patterns
without the influence of these features. In the experiments, services represent predominantly memory-intensive tasks

server’s overall performance degradation. On the other
hand, services with higher memory requirements, such
as service-3, 6, and 8, received more significant penalties
since they needed larger amounts of memory to complete
their tasks, but could not be fully satisfied due to the

server’s limited resources. These services experienced a
greater impact from the SLA violation events.

To better explain the concept, a concrete example with
detailed calculation process is outlined below. As men-
tioned in Penalty for performance degradation section,
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Fig. 12 During runtime, each service made memory resource requests to the system. Ten services were deployed on a single server (with model
code 1) that was equipped with 64GB of physical memory. In cases where memory requests exceeded the available physical capacity, SLA violations
would occur and be indicated by the red dashed line in the graph. Note that 1GB = 1024MB
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Table 6 Server Side Java workload models and the model accuracy

Code Method Model Accuracy

1 Simple Linear Power = 6.076e-05 * SSJ + 7.237e+01 R’ =0933
Quadratic Power = 1.642e-11* SSJ2 + 6.182e-06 * SSJ + 9.959%+01 R?=0.992
Cubic Power = 3.90e-18 * SSJ3-3.01e-12 * SSJ2 + 3.08e-5 * SSJ + 9.45e+1 R? =0.995
Stepwise Linear {(2.7e-5,94e+1), (3.9e-5,9.2e+1), (4.0e-5, 8.0e+1), (3.6e-5,9.3e+1), (3.9e-5, 9.0e+1),
CPU% 0 - 100 (5.2e-5,6.8e+1), (6.6e-5,39e+1), (1.1e-4, -59e+1), (1.4e-4, -1.5e+2), (6.8e-5, 7.2e+1)}

2 Simple Linear Power = 2.313e-05 * SSJ + 7.066e+01 R?=0.950
Quadratic Power = 3.178e-13 * SSJ? 4 2.118e-05 * SSJ + 7.245e+01 R? =0.950
Cubic Power = 1.76e-18 * SSJ3 - 1.58e-11 * SSJ? + 5.88e-5 * SSJ + 5.80e+1 R?=0.994
Stepwise Linear {(74e-5,53e+1), (1.8e-5,8.7e+1), (1.8e-5, 8.7e+1), (1.6e-5,9.0e+1) (1.6e-5,9.0e+1),
CPU% 0 - 100 (1.7e-5,8.9e+1), (1.6e-5,9.0e+1), (2.0e-5, 7.2e+1), (3.7e-5,-9.3e+0), (5.4e-5,-1.0e+2)}

3 Simple Linear Power = 5.361e-05 * SSJ + 1.252e+02 R? = 0967
Quadratic Power = 3.803e-12 * SSJ? + 2.481e-05 * SSJ + 1.580e+02 R?=0.988
Cubic Power = 1.24e-18 * SSJ3 - 1.03e-11 * SSJ2 + 6.56e-5 * SSJ + 1.39%e+2 R?=0.998
Stepwise Linear {(8.3e-5, 1.3e+2), (3.6e-5, 1.7e+2), (3.5e-5, 1.7e+2), (3.5e-5, 1.7e+2), (3.7e-5, 1.6e+2),
CPU% 0 - 100 (4.5e-5,1.3e+2), (5.8e-5,7.2e+1), (8.5e-5,-6.9e+1), (7.2e-5, 1.1e+1), (1.1e-4, -2.3e+2)}

4 Simple Linear Power = 5.369e-05 * SSJ + 1.067e+02 R’ =0.935
Quadratic Power = 4.869e-12 * SSJ2 + 1.405e-05 * SSJ + 1.550e+02 R?=0975
Cubic Power = 1.58e-18 * SSJ3 - 1.45e-11 * SSJ2 + 7.40e-5 * SSJ + 1.24e+42 R? =0.995
Stepwise Linear {(7.9e-5, 1.2e+2), (3.9e-5, 1.5e+2), (3.3e-5, 1.6e+2), (3.1e-5, 1.7e+2), (2.8e-5, 1.8e+2),
CPU% 0 - 100 (4.3e-5,1.2e+2), (4.9e-5,84e+1), (7.1e-5,-4.0e+1), (1.5e-4, -5.3e+2), (84e-5,-7.7e+1)}

5 Simple Linear Power = 7.339e-05 * SSJ + 8.569e+01 R? =0.967
Quadratic Power = 3.526e-12 * SSJ? + 3.258e-05 * SSJ + 1.565e+02 R? =0.991
Cubic Power = 4.75e-19 * SSJ3 - 471e-12 * SSJ? + 6.89e-5 * SSJ + 1.3e+2 R’ =0.995
Stepwise Linear {(1.2e-4, 1.0e+2), (3.9e-5, 1.9e+2), (4.0e-5, 1.9e+2), (4.6e-5, 1.7e+2), (5.9e-5, 1.1e+2),
CPU% 0 - 100 (6.6e-5,7.1+1), (8.5e-5,-6.4e+1), (1.3e-4,-4.2e+2), (1.0e-4,-1.9e+2), (1.0e-4, -1.6e+2)}

6 Simple Linear Power = 2.335e-05 * SSJ + 9.456e+01 R? =0.905
Quadratic Power =-2.637e-12 * SSJ? + 3.951e-05 * SSJ + 7.969e+01 R’ =0938
Cubic Power = 1.64e-18 * SSJ3 - 1.77e-11 % SSJ2 + 7.4805 * SSJ + 6.61e+1 R?=0974
Stepwise Linear {(1.7e-4,55e+1), (2.6e-5, 1.1e+2), (1.8e-5, 1.2e+2), 1.8e-5, 1.2e+2), (1.3e-5, 1.3e+2),
CPU% 0 - 100 (19e-5,1.1e+2), (2.1e-5, 1.0e+2), (2.1e-5, 1.0e+2), (1.8e-5, 1.2e+2), (2.2e-5, 9.8e+1)}

7 Simple Linear Power = 1.285e-04 * SSJ + 1.310e+02 R’ =0.991
Quadratic Power = 1.344e-11* SSJ2 + 9.763e-05 * SSJ + 1.416e+02 R?=0.995
Cubic Power = 4.37e-18 * SSJ3 - 1.61e-12* SSJ2 + 1.11e-4 * SSJ + 1.40e+2 R? =0.995
Stepwise Linear {(2.0e-4, 1.3e+2), (7.7e-5, 1.6e+2),(9.1e-5, 1.5e+2), (1.1e-4, 1.4e+2), (1.1e-4, 1 4e+2),
CPU% 0 - 100 (13e-4,1.2e+2), (1.6e-4,8.2e+1), (19e-4, 2.8e+1), (1.4e-4, 1 2e+2), (1.1e-4, 1.8e+2)}

8 Simple Linear Power = 2.409e-05 * SSJ + 1.490e+02 R? =0.967
Quadratic Power = -5613e-13 * SSJ2 + 3.067e-05 * SSJ + 1.374e+02 R?2=0973
Cubic Power =3.0e-19 * SSJ3 - 5.83e-12 * SSJ? + 5.42e-5 * SSJ + 1.20e+2 R’ =0.989

Stepwise Linear
CPU% 0-100

{(7.7e-5,1.1e+2), (2.6e-5, 1.7e+2), (1.4e-5, 1.9e+2), (2.2e-5, 1.7e+2), (2.0e-5, 1.7e+2),
(14e-5,2.1e+2), (2.8e-5, 1.1e+2), (24e-5, 1.5e+2), (2.3e-5, 1.5e+2), (2.7e-5, 1.2e+2)}

The energy consumption information for servers was collected from http://www.spec.org, published in 2020 and 2021. To verify the accuracy of the models, one can
refer to the Actual Load, ssj_ops (server-side Java operations per second), and Average Active Power (W) fields in the data, which are available at http://www.spec.org/
power_ssj2008/results/. The code index corresponds to the server specifications listed in Table 2

penalties are expressed as an increase in a service’s life-
time. The total amount of penalty is quantified as

T oRr (@) —R:(s) . .
v . L= @) "RAS) i) e the server was configured with

65536MB (64GB) memory and it was the sole server

involved in the experiment, hence R.(sp) = 65536. More-
over, denoting services deployed on server sy as
{aoo,a01, - - ,a09}, the total requested memory in the
current step Z?zoRr(ao,-) = 86795MB (referring to


http://www.spec.org
http://www.spec.org/power_ssj2008/results/
http://www.spec.org/power_ssj2008/results/
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Fig. 15 Energy consumption models of the servers

Fig. 14 [left, ‘currently requested’]). By default, one simu-
lation unit represents five minutes in real time, i.e., T =
300 seconds, therefore, the total penalties for this time
frame are approximately equal to 97.31598 seconds.

The second component o/f Eq. (1) is the distribution
factor ¢, expressed as Z,fs (aﬁz —, where §'(aj;) = a+

i=o 8'(@ji)

abs(min{é(aj)}) + 6(a;;) and &(a;i) = Ry(aji) — Ry(aj).
Taking service ag as an example, §(apo) = Ry(a00)—
Ry(ano) = 692 — 4760 = —4068. This is also the smallest
value among all other services deployed on sg, i.e.,
min{S(zin)}?ZO = —4068. In practice, a small non-zero
value « is used to avoid a ratio of zero. In the present
implementation of the model, o« =10. This gives
8" (apo) = 10, 8’ (ao1) = 3805, and so on. The distribution
factors for the services are shown in Fig. 14 [right].
Applying the distribution factor (¢(ao3) = 19.469%) to
service-3 (ag), its lifetime was extended by a total of
approximately 18.946 seconds (97.31598 x 0.19469).
This expansion has a noticeable impact on the perfor-
mance and resource utilization of service-3. In contrast
to this significant penalty, service-0 (ao) experienced an
almost negligible increase in its lifetime, 97.31598 x
0.00014 ~ 0.0136 seconds. This small expansion has an
extremely brief impact on service-0’s performance. It
is worth further clarifying the differences between

R;(aj;) and Ry(aj) in this example. Since the total
requested resources exceed the physical capacity of the
server, Ro(aji) = Ry(a;i)— (3 i Rr(@ji) — Rc(sj)) Taking
service-3 as an example, R,(ao3) = R,(ao3) — {(ags) *
(2o R (a0i) — Re(s0)) =15406 — 0.19469 * (86795 — 65536)
A 11267 MB. In this case, 15406 MB system memory
was requested by service-3 to complete its tasks. How-
ever, due to resource scarcity, only 11267 MB of system
memory could be assigned to the service.

Furthermore, a local factor, as explained in Penalty
for performance degradation section, was applied to
each individual service, expressed as (1 + ;C(Z;l_)) ). Taking
service-0 (ag) and service-3 (a3) as examples, the local
factors for the two services are ~0.5034 and ~1.5837
(where the provisioned memory for ap and a3 are
R (ap) = 8192MB and R.(a3) = 16384MB, as shown in
Fig. 14 [left, 'provisioned’]), i.e., the total impact on ser-
vice-0 has further reduced to 0.5034 *x 0.0136 ~ 0.0068
seconds and the total impact on service-3 has further
increased to1.5837 x 18.946 = 30.0048 seconds, respectively.

Accuracy of energy consumption models

In the simulator, four power consumption models were
developed to predict energy usage in the clouds: Step-wise
Linear Regression, Simple Linear Regression, Quadratic
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Fig. 16 The energy consumption was estimated using Step-wise Linear Regression (SWLR), Simple Linear Regression (SLR), Quadratic Polynomial
(QP), and Cubic Polynomial (CP) models for ProLiant DL110 Gen10 Plus server in homogeneous clouds. The algorithms were configured with 3SE

Polynomial, and Cubic Polynomial models. The accuracy
of these models was evaluated using multiple R-squared
statistics, as shown in Table 6 and Fig. 15. Figure 16 pre-
sents a summary of the statistics for energy consump-
tion collected from homogeneous clouds. The Step-wise
Linear Regression model was based on individual data
points, serving as a baseline for comparison. It is worth
noting that the Simple Linear Regression models consist-
ently underestimate energy usage when compared to the
average baseline values, which are {rnd: 23.63, ff: 27.92,
bf: 22.32, mu: 26.20, me: 21.92}. In contrast, other models
produced very similar results, with the differences being
statistically insignificant, {rnd: p=0.327, bf: p=0.433, mu:
p=0.115, me: p=0.772}, and marginal for the first-fit algo-
rithm, {ff: p=0.0481}, suggested by ANOVA tests. These
findings indicate that while Simple Linear Regression
consistently underestimates energy usage, other energy
consumption models provide similar predictions with
insignificant differences. This suggests that more com-
plex models may not always lead to better predictions and
highlights the importance of the quality and quantity of
the data associated with energy consumption patterns of
servers in building accurate baseline models.

The effectiveness of these models is heavily dependent on
the quality as well as quantity of energy consumption data.
It's important to note that these models are only approxi-
mations of actual server energy consumption patterns. The
comparisons provided here serve as a reference point for
further analysis and evaluation. When using different com-
binations of servers and energy consumption models, it will
be necessary to collect basic statistics in order to establish a
baseline for more thorough evaluations.

Discussion

Based on the experimental results, it is evident that the
stability of the algorithms is significantly influenced
by environmental heterogeneity. In other words, the

variance in energy consumption and SLA violation
observed in heterogeneous environments was found to
be much higher than those obtained from homogene-
ous environments (as shown in Figs. 8 and 9). However,
clouds configured with server consolidation features
provide better opportunities for energy consumption
reduction. Among the implemented algorithms, the bal-
anced-fit algorithm demonstrated statistical robustness
and efficiency in service placement for both homogene-
ous and heterogeneous cloud environments. It should be
noted that the efficiency evaluations of the algorithms
were based on specific configurations within the experi-
ments, such as service resource utilization models, initial
resource requirements of services, and server specifica-
tions. It is possible that system performance may vary for
different cloud profiles. As a result, environment profil-
ing plays an essential role in optimizing and managing
cloud resources. One potential approach to address this
issue involves incorporating digital twins of clouds as
an abstraction layer on top of the underlying infrastruc-
ture. This would enable better environmental profiling,
decision-making, and event prediction within cloud sys-
tems. The development of such a simulation model also
presents opportunities for exploring decentralized and
potentially self-organizing cloud architectures through
experimentation and analysis.

Conclusion

In this work, an agent-based cloud simulator has been
developed, offering significant flexibility in terms of
parameter tuning and configurability. The simulator
can be easily extended by adding new characteristics to
agents or implementing other types of cloud elements
through the creation of new breeds of agents. It is port-
able as it is written in a platform-neutral language, which
can be executed on most mainstream operating systems
facilitated by the NetLogo platform. In the evaluation,
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statistical methods were employed to assess the perfor-
mance of the built-in resource management algorithms.
Real time plots were also utilized to visualize the runtime
status of clouds. The concept of SLA violation has been
redefined as service lifetime extension, which is calcu-
lated based on the relative resource requirements of ser-
vices and their adjacency within the cloud environment.
Future versions of this simulator will introduce new
features such as a 3D model to study heat dissipation in
clouds and a network module for customized network
topology design.
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