

- · Quarterly forecasts of sales for one of company's products over the upcoming one-year period.
 - · Production schedules,
 - · Raw materials purchasing,
 - · Inventory policies,
 - Marketing plans,
 - Cash flows.
- How should we go about providing the quarterly sales forecasts?
 - Good judgment, intuition, and an awareness of the state of the economy may give us a rough idea, or feeling, of what is likely to happen in the future
 - Converting that feeling into a number that can be used as next year's sales forecast is challenging.

• Qualitative methods generally involve the use of expert judgment to develop forecasts when historical data are either unavailable or not applicable.

Quantitative forecasting methods can be used when:

- (1) Past information about the variable being forecast is available,
- (2) The information can be quantified
- (3) It is reasonable to assume that the pattern of the past will continue into the future.
- 1. Causal or exploratory forecasting methods (e.g. Regression):
- The variable we are forecasting has a cause-and-effect relationship with one or more other variables.
- These methods help explain how the value of one variable impacts the value of another.
- The sales volume for many products is influenced by advertising expenditures
- Supermarket scanners allow retailers to collect point-of-sale data that can then be used to aid in planning sales, coupon targeting, and other marketing and planning efforts.
- "Which products tend to be purchased together?"

Time Series analysis & Forecasting

- Time series: A sequence of past values of the variable to be forecast at successive points in time or over successive periods of time.
 - The measurements may be taken every hour, day, week, month, year, or at any other regular interval.
- 2. Time series analysis: Forecasting methods that can be applied to time series.
 - The objective of time series analysis is to uncover a pattern in the time series and then extrapolate the pattern to forecast the future.
 - First step is to construct a time series plot, which is a graphical presentation of the relationship between time and the time series variable.

Stationary time series:

- A time series whose statistical properties are independent of time.
 - 1. The process generating the data has a constant mean.
 - 2. The variability of the time series is constant over time.
- Changes in business conditions often result in a time series with a horizontal pattern that shifts to a new level at some point in time.
- A gasoline distributor signs a contract with the Vermont State Police to provide gasoline for state police cars beginning in week 13.
- With this new contract, the distributor naturally expects to see a substantial increase in weekly sales starting in week 13.

Trend Pattern:

- A time series may show gradual shifts or movements to relatively higher or lower values over a longer period of time
- Trend patterns are a result of long-term factors such as population increases/decreases, shifting demographic characteristics of the population, improving technology, changes in the competitive landscape, and/or changes in consumer preferences.

Seasonal Pattern:

- Recurring patterns over successive periods of time that usually repeat every year.
- A retailer who sells bathing suits expects low sales activity in the fall and winter months, with peak sales in the spring and summer months to occur every year.
- · Retailers who sell snow removal equipment and heavy clothing expect the opposite yearly pattern.
- Time series data can also exhibit seasonal patterns of less than one year.
- Daily traffic volume shows within-the-day "seasonal" behavior.
- Restaurant industry has sales that exhibit easily discernible seasonal patterns within a day.

Cyclical Pattern:

- An alternating sequence of points below and above the trendline that lasts for more than one year.
- Many economic time series exhibit cyclical behavior.
- Often the cyclical component of a time series is due to multiyear business cycles.
- A time series of housing costs
- Business cycles are extremely difficult or impossible to forecast. As a result, cyclical effects are often combined with long-term trend effects and referred to as trend-cycle effects.
- The underlying pattern in the time series is an important factor in selecting a forecasting method.
- A time series plot is one of the first analytic tools.

	Time Series analysis & Forecasting									
We use the me	st recent week's sales volume as the forecast for the next week (naïve forecasting i									
we use the file	SUIECE	an weeks	Sales voi		The TOTECast TO	i ule llex	I WEEK (IIdi	ve loiecastilig i		
	TABLE	8.7 Com	nputing For	ecasts and	Measures of Fore	cast Accura	cy Using the M	ost Recent Value		
		astr	le l'orecasi		Absolute Value	Squared		Absolute Value		
	Wook	Time Series	Forecast	Forecast	of Forecast Error	Forecast	Percentage	of Percentage Error		
	1	17	rorecast	LIIO	LIIO	LIIO	LITO	LITOI		
	2	21	17	4	4	16	19.05	19.05		
	3	19	21	-2	2	4	-10.53	10.53		
	4	23	19	4	4	16	17.39	17.39		
	5	18	23	-5	5	25	-27.78	27.78		
	6	16	18	-2	2	4	-12.50	12.50		
	7	20	16	4	4	16	20.00	20.00		
	8	18	20	-2	2	4	-11.11	11.11		
	9	22	18	4	4	16	18.18	18.18		
	10	20	22	-2	2	4	-10.00	10.00		
	11	15	20	-5	5	25	-33.33	33.33		
	12	22	15	_7	_7	49	31.82	31.82		
			Totals	5	41	179	1.19	211.69		

		Tin	ne Se	ries a	nalysis 8	& Fore	casting	9
we select	a forec	asting meth	nod that v	works we	ll for the histo	rical data	a, and we h	ave reason to be
istorical p	attern w	ill continue	into the	future, ou	r forecasts wil	l ultimate	ly be shown	n to be accurate.
	TABLE	8.8 Comp	outing Fore istorical Da	ecasts and I ata as the F	Measures of Fored orecast for the N	cast Accura ext Period	cy Using the A	werage of All
	Week	Time Series Value	Forecast	Forecast Error	Absolute Value of Forecast Error	Squared Forecast Error	Percentage Error	Absolute Value of Percentage Error
	1	17						
	2	21	17.00	4.00	4.00	16.00	19.05	19.05
	3	19	19.00	0.00	0.00	0.00	0.00	0.00
	4	23	19.00	4.00	4.00	16.00	17.39	17.39
	5	18	20.00	-2.00	2.00	4.00	-11.11	11.11
	6	16	19.60	-3.60	3.60	12.96	-22.50	22.50
	7	20	19.00	1.00	1.00	1.00	5.00	5.00
	8	18	19.14	-1.14	1.14	1.31	-6.35	6.35
	9	22	19.00	3.00	3.00	9.00	13.64	13.64
	10	20	19.33	0.67	0.67	0.44	3.33	3.33
	11	15	19.40	-4.40	4.40	19.36	-29.33	29.33
	12	22	19.00	3.00	3.00	9.00	13.64	13.64

	Naïve Method	Average of All Past Values
MAE	3.73	2.44
MSE	16.27	8.10
MAPE	19.24%	12.85%

- Simple naïve method adjusts very rapidly to the change in level of demand in week 13 because it uses only the most recent observation as the forecast.
- When comparing different forecasting methods, we have to be careful not to rely too heavily on the measures of forecast accuracy.
- Good judgment and knowledge about business conditions that might affect the value of the variable to be forecast also have to be considered carefully when selecting a method.

	Time Series analysis & Forecasting
Exponential Smoo	othing: A weighted average of past time series values
	EXPONENTIAL SMOOTHING FORECAST
	$\hat{y}_{t+1} = \alpha y_t + (1-\alpha)\hat{y}_t$
	where
	y_{t+1} = forecast of the time series for period $t + 1$
	y_t = actual value of the time series in period t
	$y_t = $ forecast of the time series for period t
	$\alpha = \text{smoothing constant} (0 \le \alpha \le 1)$
The weight give	en to the actual value in period t is the smoothing constant α , and the weight given to the
forecast in peri	od t is 1-a.
Exponential sm	noothing forecast is actually a weighted average of all the previous actual values.
Only two piece	s of information are needed to forecast for period t +1:
• y_t :The actua	al value in period t
• \hat{y}_t : the forec	ast for period t.

TABLE 8.10Summary of the Exponential Smoothing Forecasts and Forecast Errors for the Gasoline Sales Time Series with Smoothing Constant $\alpha = 0.2$							
Week	Time Series	Forecast	Forecast Error	Squared Forecast			
1	17	rorecast	r orecast Error	LITOI			
2	21	17.00	4 00	16.00			
3	19	17.80	1.00	1 44			
4	23	18.04	4.96	24.60			
5	18	19.03	-1.03	1.06			
6	16	18.83	-2.83	8.01			
7	20	18.26	1.74	3.03			
8	18	18.61	-0.61	0.37			
9	22	18.49	3.51	12.32			
10	20	19.19	0.81	0.66			
11	15	19.35	-4.35	18.92			
12	22	18.48	3.52	12.39			
		Totals	10.92	98.80			

Exponential Smoothing:

- If the time series contains substantial random variability, a small value of α is preferred.
- If much of the forecast error is due to random variability, we do not want to overreact and adjust the forecasts too quickly.
- With relatively little random variability, larger values of α allow the forecasts to react more quickly to changing conditions.
- we choose the value of α that minimizes the MSE.

Autoregressive models:

• The independent variables are previous values of the time series

$$\hat{y}_t = b_0 + b_1 y_{t-1} + b_2 y_{t-2} + b_3 y_{t-3}$$

Seasonality without trend:

• We can model a time series with a seasonal pattern by treating the season as a dummy variable.

$$Qtr1_{t} = \begin{cases} 1 \text{ if period } t \text{ is quarter } 1 \\ 0 \text{ otherwise} \end{cases}$$
$$Qtr2_{t} = \begin{cases} 1 \text{ if period } t \text{ is quarter } 2 \\ 0 \text{ otherwise} \end{cases}$$
$$Qtr3_{t} = \begin{cases} 1 \text{ if period } t \text{ is quarter } 3 \\ 0 \text{ otherwise} \end{cases}$$

The fourth quarter will be denoted by setting all three dummy variables to 0.

$$\hat{y}_t = b_0 + b_1 \mathrm{Qtr} \mathbf{1}_t + b_2 \mathrm{Qtr} \mathbf{2}_t + b_3 \mathrm{Qtr} \mathbf{3}_t$$

	Time Se	ries ana	lysis 8	k Fore	castin	g
TABL	E 8.11 Umb	rella Sales Tim	e Series wi	th Dummy '	Variables	
Perio	od Year	Quarter	Qtr1	Qtr2	Qtr3	Sales
1	1	1	1	0	0	125
2		2	0	1	0	153
3		3	0	0	1	106
4		4	0	0	0	88
5	2	1	1	0	0	118
6		2	0	1	0	161
7		3	0	0	1	133
8		4	0	0	0	102
9	3	1	1	0	0	138
10		2	0	1	0	144
11		3	0	0	1	113
12		4	0	0	0	80
13	4	1	1	0	0	109
14		2	0	1	0	137
15		3	0	0	1	125
16		4	0	0	0	109
17	5	1	1	0	0	130
18		2	0	1	0	165
19		3	0	0	1	128
20		4	0	0	0	96

	Time Series analysis & Forecasting
	$\hat{y}_t = 95.0 + 29.0 \text{Qtr} 1_t + 57.0 \text{Qtr} 2_t + 26.0 \text{Qtr} 3_t$
	We can use equation (8.11) to forecast sales of every quarter for the next year:
	Quarter1: Sales = $95.0 + 29.0(1) + 57.0(0) + 26.0(0) = 124$ Quarter2: Sales = $95.0 + 29.0(0) + 57.0(1) + 26.0(0) = 152$ Quarter3: Sales = $95.0 + 29.0(0) + 57.0(0) + 26.0(1) = 121$ Quarter4: Sales = $95.0 + 29.0(0) + 57.0(0) + 26.0(0) = 95$
	Seasonality with Trend: $\hat{y}_t = b_0 + b_1 Qtr1_t + b_2 Qtr2_t + b_3 Qtr3_t + b_4 t$
	$\hat{y}_t = $ forecast of sales in period t
	$Qtr1_t = 1$ if time period t corresponds to the first quarter of the year; 0 otherwise
	$Qtr2_t = 1$ if time period t corresponds to the second quarter of the year; 0 otherwise
	$Qtr3_t = 1$ if time period t corresponds to the third quarter of the year; 0 otherwise $t = time period (quarter)$
	The smartphone time series: $\hat{y}_t = 6.07 - 1.36 \text{Qtr} 1_t - 2.03 \text{Qtr} 2_t - 0.304 \text{Qtr} 3_t + 0.146t$
29	

TABLE 8.12 Smartphone Sales Time Series with Dummy Variables and Time Period								
Period	Year	Quarter	Qtr1	Qtr2	Qtr3	Sales (1,000s)		
1	1	1	1	0	0	4.8		
2		2	0	1	0	4.1		
3		3	0	0	1	6.0		
4		4	0	0	0	6.5		
5	2	1	1	0	0	5.8		
6		2	0	1	0	5.2		
7		3	0	0	1	6.8		
8		4	0	0	0	7.4		
9	3	1	1	0	0	6.0		
10		2	0	1	0	5.6		
11		3	0	0	1	7.5		
12		4	0	0	0	7.8		
13	4	1	1	0	0	6.3		
14		2	0	1	0	5.9		
15		3	0	0	1	8.0		
16		4	0	0	0	8.4		

Regression analysis as a Causal forecasting method:

- Advertising expenditures when sales are to be forecast.
- The mortgage rate when new housing construction is to be forecast.
- Grade point average when starting salaries for recent college graduates are to be forecast.
- The price of a product when the demand for the product is to be forecast.
- The value of the Dow Jones Industrial Average when the value of an individual stock is to be forecast.
- Daily high temperature when electricity usage is to be forecast.

Armand's Pizza Parlors, a chain of Italian restaurants doing business.

- The most successful locations have been near college campuses.
- It seems that quarterly sales for these restaurants (y) are related positively to the size of the student population (x).
- Management wants to forecast sales for a new restaurant that it is considering opening near a college campus.
- Because no historical data are available on sales for a new restaurant, Armand's cannot use time series data to develop the forecast.

32

TABLE 8.13	Student Population and Quarte 10 Armand's Pizza Parlors	rly Sales Data for
Restaurant	Student Population (1,000s)	Quarterly Sales (\$1,000s)
1	2	58
2	6	105
3	8	88
4	8	118
5	12	117
6	16	137
7	20	157
8	20	169
9	22	149
10	26	202

- What preliminary conclusions can we draw from Figure 8.16?
- · Sales appear to be higher at locations near campuses with larger student populations.
- The relationship between the two variables can be approximated by a straight line.

$$\hat{y}_i = b_0 + b_1 x_i \tag{8.}$$

where

 \hat{y}_i = estimated value of the dependent variable (quarterly sales) for the *i*th observation

 b_0 = intercept of the estimated regression equation

- b_1 = slope of the estimated regression equation
- x_i = value of the independent variable (student population) for the *i* th observation

 $\hat{y}_i = 60 + 5x_i$

Note: The values of the independent variable range from 2,000 to 26,000; thus, the y-intercept is an

extrapolation of the regression line and must be interpreted with caution.

FIGUR	RE 8.18 Ex	cel Simple	e Linear Re	gression (Output fo	r Armand's	Pizza Par	lors	
	Α	В	С	D	E	F	G	Н	I
1 SI	IMMARY OUTF	TIT							
2									
3	Regression Stat	istics							
4 Mu	ltiple R	0.950122955							
5 R S	quare	0.90273363							
6 Adj	usted R Square	0.890575334							
7 Star	ndard Error	13.82931669							
8 Obs	servations	10							
9									
10 AN	OVA								
11		df	SS	MS	F	Significance F			
12 Reg	gression	1	14200	14200	74.24836601	2.54887E-05			
13 Res	idual	8	1530	191.25					
14 Tot	al	9	15730						
15		Carloniante	Standard France	A Chart	Davalua	Laura 050	Unnan 050/	I	U
10 17 Inte	raant	Coefficients	0.22602481	6 502225522	P-value	20 72472550	0pper 95%	20.04207068	00 05602022
17 Inte	ant Dopulation (1 000s)	5	9.22005481	0.303333332 8.616740156	0.000187444 2.54887E-05	3 661005062	6 338004038	29.04507968	90.93692032 6.047014620

Combining causal variables with Trend and Seasonality effects:

- We had a time series of several years of quarterly sales data and advertising expenditures for a single Armand's restaurant.
- If we suspected that sales were related to advertising expenditures and that sales showed trend and seasonal effects, we could incorporate each into a single model by combining the approaches.
- If we believe that the effect of advertising is not immediate, we might also try to find a relationship between sales in period t and advertising in period t 1.
- Multiple regression analysis also can be applied in these situations if additional data for other independent variables are available.
- Armand's Pizza Parlors believes that the number of competitors near the college campus is related to quarterly sales.
- Multiple regression analysis could be used to develop an equation relating quarterly sales to the size of the student population and the number of competitors.

Time Series analysis & Forecasting

Considerations for using Regression in forecasting:

- Although regression analysis allows for the estimation of complex forecasting models, we must be cautious about using such models and guard against the potential for overfitting to sample data.
- Simple techniques usually outperform more complex procedures for short-term forecasting.
- Using a more sophisticated and expensive procedure will not guarantee better forecasts
- Quantitative forecasting models outperform qualitative forecasts made by "experts."
- There is good reason to use quantitative forecasting methods whenever data are available.

Determining the best forecasting model:

- · For a given forecasting study, how does one choose an appropriate model?
- For time series modeling, a visual inspection can indicate whether seasonality appears to be a factor and whether a linear or nonlinear trend seems to exist.
- For causal model, scatter charts can indicate whether strong linear or nonlinear relationships exist.
- When working with large data sets, it is recommended to divide your data into training and validation sets.
- With five years of monthly data, you could use the first three years as a training set for estimation.
- Based on the errors produced by the different models for the validation set, you could ultimately pick the model that minimizes MAE, MSE, or MAPE.
- Note: If the behavior of the time series has changed recently, a forecasting model based on the older portion of the time series will not perform well.

