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Abstract
Changes in the composite stock price index are a barometer of social and economic development. To improve the accuracy of
stock price index prediction, this paper introduces a new hybrid model, VMD-LSTM, that combines variational mode decom-
position (VMD) and a long short-termmemory (LSTM) network. The proposed model is based on decomposition-and-ensemble
framework. VMD is a data-processing technique through which the original complex series can be decomposed into a limited
number of subseries with relatively simple modes of fluctuations. It can effectively overcome the shortcomings of mode mixing
that sometimes exist in the empirical mode decomposition (EMD) method. LSTM is an improved version of recurrent neural
networks (RNNs) that introduces a “gate” mechanism, and can effectively filter out the critical previous information, making it
suitable for the financial time series forecasting. The capability of VMD-LSTM in stock price index forecasting is verified
comprehensively by comparing with some single models and the EMD-based and other VMD-based hybrid models. Evaluated
by level and directional prediction criteria, as well as a newly introduced statistic called the complexity-invariant distance (CID),
the VMD-LSTM model shows an outstanding performance in stock price index forecasting. The hybrid models perform
significantly better than the single models, and the forecasting accuracy of the VMD-based models is generally higher than that
of the EMD-based models.
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1 Introduction

Compared with the general market, the financial market is a
complex and changeable system accompanied by high vola-
tility and high noise. The stock price index, often featured as a
non-linear and non-stationary time series, reflects the overall
price level and changes in the financial market. According to
the index, investors can judge the macro trend of the stock
market and then adjust their investment strategies and portfo-
lios in time. Similarly, multiple social subjects, such as the
economists, entrepreneurs and government workers, consider
the stock price index as an important reference when measur-
ing and evaluating social development. Therefore, as one of

the most typical time series data, the accurate prediction of
stock price indices is gradually becoming a hot research area
[1, 2]. In recent years, artificial neural networks (ANNs) have
become an auxiliary tool for the prediction of financial time
series because of their better performance than that of tradi-
tional econometric models [3–6]. The ANN, which is com-
posed of many interconnected neurons, is an emulation of the
biological system of the human brain. Due to its data-driven
characteristics, taking advantage of the historical and current
time data to predict the future trends is a crucial application in
financial time series. For instance, Adhikari and Agrawal [7]
established a model to predict exchange rates and stock price
indices by integrating a random walk and an ANN. Kuremoto
et al. [8] combined deep belief networks and Boltzmann ma-
chines to predict time series. Niu and Wang [9] established a
random data-time effective RBF neural network and forecast-
ed crude oil prices and stock price indices. Wang and Wang
[10] applied the EMD algorithm and stochastic time neural
networks (STNN) to forecast stock price indices, including
the NYSE, DAX, FTSE and HSI. Das et al. [11] proposed a
novel hybrid SVM-TLBO model to predict the daily closing
prices of the COMDEX commodity futures index traded in the
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Multi Commodity Exchange of India Limited. This model
consists of a support vector machine (SVM) and a teaching-
learning-based optimization (TLBO) and its better perfor-
mance has been verified.

Although the above neural networks have great predictive
performance, their accuracy is still unsatisfactory when the
time series are dynamic and non-linear. With the connections
between hidden layer units established, the dependencies of
data at different points in time can be explained by recurrent
neural networks (RNNs) [12, 13]. The before–after associated
data structure makes RNNs especially suitable for the predic-
tion of time series data [14, 15], and the literatures have
witnessed their wide application in the forecasting of financial
time series [16–18]. However, the historical information kept
in an RNNwill increase as the time span increases, which will
lead to gradient disappearance or gradient explosion,
distorting the predictive results of the RNN. The long short-
term memory (LSTM) network introduces the “memory cell”
structure to replace the hidden layer units of the RNN [19].
Every memory cell consists of a special “gate” mechanism,
which makes LSTM retain crucial historical information and
filter out that which is unimportant. This structure ensures that
the previous inputs can be preserved in the LSTM internal
state and achieve internal communication. Based on the supe-
rior mechanism, LSTM is widely used in natural language
recognition [20–22], time series prediction [23–25], and espe-
cially for stock price time series forecasting [26–29], as well
as other fields [30–32]. For example, Ding and Qin [26] pro-
posed an associated deep recurrent neural network model with
multiple inputs and outputs based on LSTM (associated net)
to forecast the multiple prices, including the open lowest and
highest of a stock simultaneously.

Considering the deficiencies of single models applied in
the prediction of complex data, hybrid models that integrate
two or more individual models have been proposed to solve
problems such as low accuracy and lagging predictions. In this
way, various preprocessing methods are introduced to reduce
the noise or further capture different patterns from the original
series, and then the processed data are input into the forecast-
ing model to obtain the final result. In addition, there are
hybrid models that implement prediction tasks by combining
features learned from different representations of the same
series [33, 34]. The proposed new approaches are gradually
becoming mainstream [35–37]. The decomposition-and-
ensemble framework is one of the most common hybrid
methods following the “divide-and-conquer” principle
[38–41]. The main principle of this framework, which is uti-
lized to predict complex time series, is to decompose the orig-
inal series data into a limited number of independent subse-
ries, which makes it easier for models to learn the features of
fluctuations in each subseries adaptively. In addition, the goal
of the ensemble is to aggregate the predictive results of these
subseries and then conclude the forecasting consequence of

the original series [42, 43]. Empirical mode decomposition
(EMD) is one of the most common approaches due to its
advantages in decomposing non-linear and non-stationary
time series [44]. For example, Awajan et al. [45] used the
EMD-HW bagging method to accurately forecast the stock
market time series of six countries. Li [46] introduced a new
hybrid model combining EMD and an RBF neural network to
predict the stock index futures and verified its superior perfor-
mance. Yang and Lin [47] proposed an integrated forecasting
model combining EMD, ARIMA and SVR, through which
the original series can be decomposed into linear and non-
linear parts and predicted, respectively. Zhang et al. [48]
established a stochastic Ising model for each IMF obtained
by EMD to forecast the stock market indices. Huang et al.
[49] combined EMD and a probabilistic neural network
(PNN) to explore the mutation characteristics of plasma elec-
trical signals. Tang et al. [50] introduced complementary en-
semble EMD (CEEMD) and the extended extreme learning
machine (EELM) as decomposition and forecasting tools, re-
spectively, to predict the crude oil prices.

However, EMD-based methods have generally been
proved to have some shortcomings, such as boundary effects,
mode overlap, sensitivity to noise and a lack of exact mathe-
matical foundations, which may negatively impact the preci-
sion of decomposition and then lead to distorted results.
Variational mode decomposition (VMD) is a novel
multiresolution technique that originated in signal processing.
Significantly different from EMD, VMD is a completely non-
recursive model that can decompose the original signal or
series data intomultiple components with a specific bandwidth
in the spectral domain. It has been proved that VMD performs
better than models of the same kind in noise robustness and
component decomposition accurately [51]. Based on its excel-
lent ability, it has been successfully applied to fault detection
[52], biomedical signal analysis [53] and time series forecast-
ing [54–56]. Particularly, the higher prediction accuracy of
VMD-based neural networks than that of EMD-based and
single neural networks has been verified in stock price [57,
58], non-ferrous metal price [59] and wind speed forecasting
[60]. Considering the excellent performance of VMD in the
decomposition of the non-linear data series and the advanta-
geous characteristic of LSTM in forecasting, in the present
work, a hybrid neural network model based on VMD and
LSTM is proposed for forecasting stock price indices from
the world financial market. In the VMD-LSTM model, the
VMD algorithm is first used to decompose the original stock
price series into different IMFs with distinct time frequencies,
and then each IMF sequence is trained by the LSTM model,
and the corresponding predicted IMF is obtained. Finally, the
ensemble forecasting result of the original stock prices is pro-
duced by aggregating all the predictive IMF components. By
comparison with other prediction methods, the proposed mod-
el can indeed improve the overall prediction results.
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In brief, the main contribution of this paper includes two
aspects. One is that we propose a hybrid VMD-LSTM model
that presents excellent applicability in forecasting stock indi-
ces with non-linear and non-stationary features. To verify the
superiority of the proposedmodel, we adopt the BPNN, ELM,
CNN, LSTM, and their EMD-based and VMD-based hybrid
models for comparison. The results indicate that the hybrid
models perform significantly better than the single models,
and among the hybrid models, the forecasting accuracy of
the VMD-based models is generally higher than that of the
EMD-based models. The other aspect is that in the perfor-
mance evaluation of forecasting, a novel statistic called the
complexity-invariant distance (CID) is adopted to evaluate
the performance of all kinds of models, through which the
differences between the predicted values of and the original
series can be more intuitively presented.

The rest of the paper is organized as follows. Section 2
introduces the VMD and LSTM methodologies and provides
the basic framework of the proposed hybrid model. Section 3
demonstrates in detail the experimental forecasting results of 4
stock price indices obtained by using the proposed model and
then compares them with the results of the other models con-
sidered. Finally, Section 4 concludes the work.

2 Methodologies

2.1 Variational mode decomposition

Variational mode decomposition (VMD), developed by
Dragomiretskiy and Zosso [61], is a novel adaptive decompo-
sition method that adopts a non-recursive signal decomposi-
tion optimization algorithm. It assumes that the center fre-
quency bandwidth of each subseries is limited. It requires
minimizing the sum of the estimated bandwidth of each sub-
series while decomposing the original series. This method
effectively improves the mode mixing, endpoint effects and
other shortcomings of EMD. The subseries or IMFs obtained
by VMD have the advantages of high accuracy, strong noise
robustness, and fast convergence. Therefore, VMD is more
suitable for addressing complex data such as financial time
series. It has been widely used to implement the decomposi-
tion of multi-frequency signals adaptively, in which the fre-
quency band can be estimated at the same time to effectively
balance the errors between different frequency bands.

Suppose the original signal f(t), it can be decomposed into
K intrinsic mode functions (IMFs), uK, and that each mode uk
needs to be close to a center frequency ωk. The bandwidth of a
mode can be estimated by the following steps. First, for each
mode uk, the Hilbert transform is adopted to calculate the
correlation analysis signal and then to obtain a unilateral fre-
quency spectrum. Second, for each mode uk, the frequency
spectrum of the mode is transferred to the baseband by mixing

with an exponential tuned to the respective estimated center
pulsation. Finally, the H1 Gaussian smoothness of the
demodulated signal is adopted to estimate the bandwidth.
The constraints of the variational problem can be formulated
as follows:

min ωk ;ukð Þ ∑
K

k¼1
∂t δt þ j

πt

� �
*uk tð Þ

� �
e− jωk t

���� ����2
2

( )
s:t: ∑

K

k¼1
uk ¼ f tð Þ

8>>><>>>: ð1Þ

In the above formula, {uk} = {u1, u2, …uK} and
{ωk} = {ω1, ω2,…ωK} represent the sets of the kth sub-mode
and its corresponding central frequency, respectively. ∂t de-
notes the differential processing of t, ‖·‖ indicates the norm
processing, δt is the Dirac function, and * is the convolution
symbol. K denotes the total number of IMFs; an IMF with a
high-order k denotes a low-frequency component.

To solve the optimization problem of constrained varia-
tional decomposition, an augmented Lagrangian function L
is introduced:

L ukf g; ωkf g;λð Þ ¼ α ∑
K

k¼1
∂t δt þ j

πt

� �
*uk tð Þ

� �
e− jωk t

���� ����2
2

þ f tð Þ− ∑
K

k¼1
uk tð Þ

���� ����2
2

þ λ tð Þ; f tð Þ− ∑
K

k¼1
uk tð Þ

� �
ð2Þ

where α is the penalty parameter and λ(t) is the Lagrangian
multiplier. To obtain the saddle point of the above formula,
which is also the solution to the original constraint conditions,
VMD adopts the alternating direction method of multipliers
(ADMM) [62]. The calculation process of this method can be
found in Fig. 1.

2.2 Long short-term memory network

The long short-term memory (LSTM) network [19] is an ex-
tension of the recurrent neural network (RNN) [12–15]. The
structure of the RNN is similar to a multi-layer perception
network, and many internal connections are established be-
tween nodes in the hidden layer so that information can be
transmitted forward or backward conveniently. In the RNN,
the state of the history node can be regarded as the input, and
the final output can be considered as the feedback of the input
layer and the historical state of all hidden layers. However, its
performance in the experiment is somewhat worse than ex-
pected, which is mainly due to the following two reasons. On
the one hand, it is difficult for an RNN to determine the best
window length for historical data observation, and thus, the
fluctuation characteristics of the data may be insufficiently
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extracted. On the other hand, the gradient of an RNN may
show an exponential increase or decay when using the method
of gradient descent to address long-term data, which will lead
to gradient explosion or disappearance. The reason for this
phenomenon is that the long connection structure of an
RNN keeps much non-critical information without filtering.
Hence, the traditional RNN is not an ideal model for process-
ing long-term data.

LSTM creatively introduces the “gate” mechanism to im-
prove the RNN; it replaces the hidden layer nodes of the RNN
with special memory cells (blocks) that implement the filter-
ing and processing of historical states and information. The
basic structure of the memory cell can be seen in the upper
right plot of Fig. 2. Each memory cell contains three gates:
input gate it, forget gate ft, and output gate ot. The input gate
determines how much of the latest information will be added
to the cell at the current time point. The forget gate determines
how much information should be discarded from the previous

cell state and how much should be kept, which prevents the
internal cell values from growing without boundaries. The
output gate is designed to filter the new state and output the
filtered information. The long-term connection structure and
selective information storage mechanism between the input
layer and the output layer ensure that errors will be transmitted
in the network as a constant; thus, the problems of gradient
disappearance and explosion can be effectively resolved. The
basic steps of LSTM are as follows:

First, the input gate it falters and extracts new information
from the input xt at the current state (time t) and creates a
candidate value ect for updating the state.

it ¼ σ Wi � ht−1; xt½ � þ bið Þ ð3Þ

ect ¼ tanh Wc � ht−1; xt½ � þ bcð Þ ð4Þ

Next, the forget gate ft filters and keeps the historical infor-
mation that can indicate long-term trends and discards the
non-critical information.

f t ¼ σ W f � ht−1; xt½ � þ bf
	 
 ð5Þ

By removing part of the information from the old cell and
adding the filtered candidate value, the old cell state ct − 1 is
updated to the new cell state ct.

ct ¼ f t*ct−1 þ it*ect ð6Þ

Here, * indicates the dot multiplication between matrices.
Finally, the output gate ot filters the updated state ct, and the

final output is calculated based on the updated state and the
output gate state.

ot ¼ σ Wo � ht−1; xt½ � þ boð Þ ð7Þ

ht ¼ ot*tanh ctð Þ ð8Þ

Here, ht is the hidden layer state, namely, the activation of
the memory cell. Wc, Wf, and Wo represent the appropriate
weight matrices, bi, bc, bf, and bodenote the corresponding
bias vectors. σ(·) and tanh(·) are the sigmoid function and
hyperbolic tangent function, respectively.

2.3 VMD-LSTM

In view of the advantages of VMD and LSTM, we construct a
hybrid model named VMD-LSTM by combining the two

Fig. 1 The structure of the VMD algorithm
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techniques. The flow chart in Fig. 2 depicts its implementation
process, in which the VMD-LSTM operation is carried out as
follows:

Step 1: The VMD technique is utilized to decompose the
original stock price time series ( ), = 1, 2,⋯ , into K
mutually independent subseries, denoted by IMF1, IMF2, ⋯
IMFK, which represent the different local oscillations of
prices ranging from high frequency to low frequency, that is,
the initial series is reconstructed in terms of the IMFs as:

x tð Þ ¼ ∑
K

k¼1
IMFk tð Þ

The execution of the VMD technique can be based on the
algorithm flow of VMD shown in Fig. 1. Each IMF series then
becomes the new forecasting sample of the LSTM model.

Step 2: Each component IMF obtained by VMD is split
into training and test datasets at a fixed ratio, and the input
and output sets are split according to the step size. In this
work, the first 80% of timepoints of each component series
are used as the training set, and the remaining 20% are used as
the test set. The two sets are completely separated so that the
generalization capability is ensured. The LSTM network is
employed to train and build the forecasting model based on
the training dataset, in which parameters including the learn-
ing rate, batch size, number of iterations and number of hidden
layer units that are critical to ensure the predictive accuracy of
the model are required to be pre-set. The step size is set to 4,
meaning that in both the training set and test set, the prediction
value can be obtained based on the input of the previous 4th-
order datapoints. According to the established model, the

forecasting result of each IMF subseries for the stock prices
is obtained.

Step 3: The final predictive result of the original stock price
time series is obtained by summarizing the separate predicted

outputs fk(t), k = 1, 2, …, K of each IMF, that is, ∑K
k¼1 f k tð Þ.

The prediction errors of each IMF with different dimensions
result in different effects for the final predictive result; among
them, the low-frequency IMFs usually consist of large values
that represent the macro trend of the series. From the perspec-
tive of level forecasting accuracy, the prediction errors of the
low-frequency IMFs will lead to a more significant impact on
the final predictive result than will the high-frequency IMFs
mainly composed of relatively small values.

Step 4: Multiple performance measures, i.e., the MAE,
RMSE, MAPE, and stat, and a novel complexity-invariant
distance (CID) from information theory are introduced to
evaluate the prediction capacity of VMD-LSTM from differ-
ent perspectives. In addition, other models, including the
VMD-ELM, VMD-CNN, VMD-BPNN and EMD-based hy-
brid models, as well as single models, are considered for
comparison.

3 Experimental results and comparative
analysis

3.1 Data description and pre-processing

In this work, four representative stock price indices from the
world financial market are selected for the case study: the

Fig. 2 Flow chart of the VMD-LSTM model
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daily closing prices of the Hong Kong Hang Seng Index
(HSI), S&P500 Index (SPX), London FTSE Index (FTSE)
and Nasdaq Index (IXIC). The time period is from 04
January, 2010, to 04 December, 2019, excluding public holi-
days. To conduct the experiments, the first 80% of the samples
from 2010 to 2017 are used to train the model, and the remain-
ing 20% are used for testing to examine the effectiveness of
the proposed model through the performance evaluation mea-
sures. Table 1 provides a detailed breakdown of the four se-
lected stock price indices. To reduce the impact of noise and
facilitate optimization of the solving process, each subseries
IMF obtained by VMD is normalized to the range of [0, 1] by
the following maximum and minimum standardized method:

x tð Þ0 ¼ x tð Þ−min x tð Þ
max x tð Þ−min x tð Þ ð9Þ

and then, to obtain the real predicted value and compare it
with the actual set intuitively, the normalized output x(t)’
can be reverted to x(t) as follows:

x tð Þ ¼ x tð Þ0 max x tð Þ−min x tð Þð Þ þminx tð Þ ð10Þ

3.2 Performance evaluation criteria

Usually multiple performance measures are employed to as-
sess the prediction quality of a developed model. In this work,
the commonly used mean absolute error (MAE), root mean
square error (RMSE) and mean absolute percentage error
(MAPE) are adopted to evaluate the accuracy of level fore-
casting. They are respectively calculated as follows:

MAE ¼ 1

N
∑
N

t¼1
xt−bxt��� ��� ð11Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

t¼1
xt−bxt
 �2

s
ð12Þ

MAPE ¼ 1

N
∑
N

t¼1

xt−bxt
xt

�����
����� ð13Þ

where xt denotes the actual value, bxt denotes the predictive
value, and N is the number of sample points of the predictive
results; the same applies hereinafter. The MAE is used to
measure the average absolute error between the predicted val-
ue and the actual value, the RMSE is used to measure the
deviation between the predicted value and the actual value,
which is more sensitive to outliers, and the MAPE is used to
measure the average relative errors between the predicted val-
ue and the actual value. Generally, the smaller the MAE,
RMSE, and MAPE values are, the smaller the difference be-
tween the predicted value and the actual value, that is, the
higher the prediction accuracy of the model. The value of
the MAPE is the standard if the value of the error class eval-
uation index is different and difficult to define based on the
document [63].

Considering the importance of correctly predicting the di-
rection in stock price index predictions from an economic
point of view, the directional statistic Dstat, which provides
the correctness of predicted direction of the time series in
terms of the percentage, is employed to measure this capabil-
ity, which can be calculated as follows:

Dstat ¼ 1

N
∑
N

t¼1
dt ð14Þ

dt ¼ 1; if bxt−bxt−1
 �
xt−xt−1ð Þ≥0; t > 1

0; otherwise

(
ð15Þ

Dstat is the probability of changing in the same direction
between the predicted sets and actual sets. A higher Dstat cor-
responds to a better performance of the model.

In addition, a fresh evaluation statistic called the
complexity-invariant distance (CID), which was proposed
by Batista [64] and originally used to measure the complexity
difference between two time series by using information the-
ory, is introduced in this work. The CID is adopted to calculate

Table. 1 The datasets of the four selected stock price indices

Index Dataset Total number Training set Training number Test set Test number

HSI 2010/01/04 ~ 2019/12/04 2443 2010/01/04 ~ 2017/12/06 1954 2017/12/07 ~ 2019/12/04 489

SPX 2010/01/04 ~ 2019/12/04 2498 2010/01/04 ~ 2017/12/07 1998 2017/12/08 ~ 2019/12/04 500

FTSE 2010/01/04 ~ 2019/12/04 2509 2010/01/04 ~ 2017/12/08 2007 2017/12/09 ~ 2019/12/04 502

IXIC 2010/01/04 ~ 2019/12/04 2498 2010/01/04 ~ 2017/12/07 1998 2017/12/08 ~ 2019/12/04 500
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the total absolute error between the predicted value and the
actual value, in which the original error is adjusted using the
information differences of the complexity between the pre-
dicted and actual values. For two time series X = (x1, x2…
xN, ) and Y = (y1, y2…yN, ) of length N, the statistic CID(x, y)
can be calculated as follows:

CID X ; Yð Þ ¼ ED X ; Yð Þ � CF X ; Yð Þ ð16Þ

ED X ; Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

t¼1
xt−ytð Þ2

s
ð17Þ

CF X ; Yð Þ ¼ max CE Xð Þ;CE Yð Þf g
min CE Xð Þ;CE Yð Þf g ð18Þ

CE Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

t¼1
xtþ1−xtð Þ2

s
ð19Þ

Similar to the common indicators, a smaller CID means
less difference between the two time series. It can effectively
overcome the subjective similarities directly observed by the
human eye.

3.3 Empirical experiments and results

In this section, four experiments involving four stock price
indices are conducted. In each experiment, to validate the
superior predictive performance of the proposed VMD-
LSTMmodel in financial time series forecasting, eleven other
models are employed for comparison, including the single
models BPNN [58], ELM [55], CNN [33],and LSTM [19],
and the hybrid models EMD-BPNN [4], EMD-ELM [35],
EMD-CNN [36], EMD-LSTM [42], VMD-BPNN [58],
VMD-ELM [55], and VMD-CNN [52]. In this comparison,
the parameters in each model are determined based on the
results of repeated experiments. For all utilized forecasting
models, the number of input units is set to 4, and that of the
output is set to 1. Considering that these models have different
mechanisms when implementing the prediction, the hidden
layer architectures and other parameters are determined sepa-
rately. In LSTM, the number of hidden units is set to 50, the
number of epochs is 400 and the batch size is 64. In the ELM,
it is necessary only to set the number of hidden units to 10. In
the one-dimensional convolutional layer of the CNN, the
number of filters is set to 10, the kernel size is 1, the pool size
in the max-pooling layer is set to 1, the number of epochs is
400 and the batch size is 64. In the BPNN, the number of

hidden units is set to 10, the number of epochs is 400, the goal
is 0.001 and the learning rate is 0.001. For the hybrid models,
EMD can adaptively decompose the original series data with-
out any pre-set parameters, while in VMD, themoderate band-
width constraint is set to 2000 by default, the noise-tolerance
is set to 0, and the tolerance of the convergence criterion is set
to 1e-7. In the implementation of the VMD-LSTMmodel, the
raw stock price series is first decomposed into several modes
of the IMFs by executing the VMD algorithm, which enables
diminishing the non-stationary and non-linear features of the
stock price data, making it easy to carry out predictions. For
comparison, the number of decomposed components K by
VMD is set to be the same as that obtained by the EMD
technique, as performed by many scholars [57, 59, 60], which
determines the number of components by continuously sifting
until there is no extremal point in the newly obtained kth
component, named the residue [44]. Figure 3 presents differ-
ent decomposed subseries of the HSI as an example by EMD
and VMD, where the IMFs are sorted from high frequency to
low frequency, with the IMFs in the upper order representing
the high-frequency components, which also means that it is
relatively difficult to build a training model for it and make
accurate predictions, but this part is a critical component that
measures the fluctuations of the prediction, especially in
predicting the direction of fluctuations accurately. Each mode
subseries represents a kind of oscillatory factor embedded in
the price time series. Compared with EMD, the amplitudes of
components decomposed by VMD are more fixed within a
smaller range, especially when there are fewer obvious abnor-
mal values or outliers in the relatively high-frequency compo-
nents. In addition, the high-frequency components of EMD
are concentrated in the first few, which easily leads to mode
mixing. However, each component obtained by VMD has a
relatively independent frequency distribution; thus, each can
be predicted accurately. The daily closing prices of HSI, SPX,
FTSE and IXIC are decomposed into 9, 9, 9 and 8 modes,
respectively, through the VMD algorithm.

Afterwards, the normalized subseries IMFs are trained and
predicted by the LSTM model. The number of input samples
is set to 4 and the number of outputs is set to 1, that is, the 4th
order historical data are used to predict the data of the next
period. Figure 4 shows the comparisons between the predicted
and actual values of the IMFs for HSI through the LSTM
neural network as an example. It is shown visually that
LSTM can make accurate predictions of the IMFs under dif-
ferent fluctuation modes. This performance is especially no-
table in the high-frequencymode decomposed by VMD, but it
is slightly inferior in EMD. The final predictive results of HSI
can be computed by summing the predicted value of all IMFs
linearly.

Figure 5 demonstrates the VMD-LSTM forecasting results
of the four selected stock indices in the test set in comparison
with those of the other models. To facilitate observation, only

A hybrid stock price index forecasting model based on variational mode decomposition and LSTM network



the prediction curves of the hybrid models are shown. The
predicted value of the VMD-LSTM model is generally the
closest to the actual value, implying the best prediction accu-
racy in this comparison. A better performance for predicting
large fluctuations of stock prices is further seen in the inset
plot, where a certain volatile part of the datasets is magnified.
Since the price series of stock indices fluctuate widely, to
discriminate the performances of the different models, the
predicted errors and their corresponding boxplots are

displayed in Fig. 6. It can be found that the forecasting errors
of VMD-LSTM are evenly distributed around zero and have a
relatively smaller fluctuation range than that of the other five
models, which also confirms the better predictive performance
and adaptability of VMD-LSTM to different datasets.

Tables 2,3,4 and 5 quantitatively display a detailed com-
parison of the MAE, MAPE, RMSE, Dstat and CID criteria
among different single models (BPNN, ELM, CNN, and
LSTM) and their hybrid forms (EMD-ANNs and VMD-
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ANNs) for the four selected stock price indices. In addition,
Figs. 7 and 8 display the Dstat and CID values, respectively,
where the averages are indicated by the blue dotted lines. The
following can be concluded from these tables and figures:

(1) For the four stock indices, the predictive accuracy of the
hybrid models based on “decomposition-and-ensemble” is on

the whole significantly higher than that of the single models
according to the various performance evaluation criteria. The
level forecasting measures (MAE, MAPE and RMSE) for the
hybrid models are obviously smaller than those for the single
models, except for the EMD-BPNNmodel, which exhibits the
worst predictive performance compared with the other models
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in the SPX and IXIC price forecasting (see Table 3 and
Table 5). However, the directional forecasting measure Dstat

values for the BPNN, ELM, CNN and LSTM are all smaller
than those for the hybrid models, which can also be clearly
seen in Fig. 7, suggesting that the EMD-based and VMD-
based models greatly enhance the predictive ability compared
to the single models. This could be explained by the fact that
EMD and VMD can help to efficiently determine the inner
patterns of stock price fluctuations, which have complex non-
linear and non-stationary features. In terms of the CID, its
values for HSI and FTSE further indicate the better forecasting
ability of the hybrid models, while for SPX and IXIC, its
values for the hybrid models EMD-BPNN (1180.604 for
SPX, 2782.508 for IXIC) and VMD-BPNN (949.961 for
SPX, 2868.013 for IXIC) are larger than those of the single
models (see Tables 3 and 5).

(2) The predictive accuracy of each single model can be
improved effectively by combining with decomposition
methods, and the VMD-based models usually outperform
the EMD-based models. Taking the HSI (shown in Table 2)
for discussion, the level forecasting indices (MAE,MAPE and
RMSE) for the LSTM model have values of 33.184, 0.00867
and 43.690, respectively, while the indices for the EMD-
LSTM model decrease to 16.466, 0.0043 and 21.635, respec-
tively, with a reduction of almost 50% for each measure. The
indices for the VMD-LSTM model decrease to 12.365,
0.00324 and 15.744, respectively, with a further reduction of
24.9%, 24.6% and 27.2%. The directional forecasting mea-
sure Dstat of LSTM is 50.104 (%), which means that making
either correct or wrong predictions in a direction is almost
meaningless, but that of EMD-LSTM and VMD-LSTM

Table 4 Predictive performance evaluation of different models for
FTSE

Model MAE MAPE (%) RMSE Dstat (%) CID

VMD-LSTM 17.187 0.236 22.485 76.008 801.733

VMD-ELM 16.651 0.229 21.716 75.807 750.774

VMD-CNN 18.559 0.255 23.973 75.395 871.849

VMD-BPNN 19.307 0.265 24.515 76.210 864.928

EMD-LSTM 21.054 0.289 27.869 76.411 770.592

EMD-ELM 24.337 0.334 31.042 73.992 907.133

EMD-CNN 23.506 0.322 30.440 74.411 884.966

EMD-BPNN 25.685 0.353 32.489 76.411 910.515

LSTM 45.592 0.624 58.784 50.605 1334.329

ELM 42.704 0.587 55.603 49.194 1265.068

CNN 44.081 0.607 58.946 51.613 1481.541

BPNN 42.590 0.586 56.620 51.210 1352.156

Table 5 Predictive performance evaluation of different models for
IXIC

Model MAE MAPE (%) RMSE Dstat (%) CID

VMD-LSTM 32.055 0.427 42.324 85.020 1417.136

VMD-ELM 42.982 0.560 53.674 82.794 1782.457

VMD-CNN 45.884 0.614 59.216 82.389 2231.005

VMD-BPNN 67.243 0.891 82.880 84.211 2868.013

EMD-LSTM 33.368 0.444 44.205 76.316 1370.362

EMD-ELM 34.924 0.467 48.949 72.672 1635.740

EMD-CNN 43.404 0.579 59.654 71.053 2018.640

EMD-BPNN 94.335 1.221 112.427 74.494 2782.508

LSTM 56.627 0.752 77.565 57.315 1975.553

ELM 83.522 1.094 103.792 47.773 2503.118

CNN 71.605 0.957 95.438 48.178 3132.509

BPNN 68.310 0.908 91.649 48.785 2073.950

Table 2 Predictive performance evaluation of different models for HSI

Model MAE MAPE (%) RMSE Dstat (%) CID

VMD-LSTM 12.365 0.324 15.744 79.089 522.188

VMD-ELM 12.223 0.321 15.325 79.089 494.341

VMD-CNN 15.877 0.417 20.058 77.226 688.134

VMD-BPNN 15.480 0.408 19.480 78.675 694.284

EMD-LSTM 16.466 0.430 21.635 77.296 564.699

EMD-ELM 17.280 0.453 21.933 74.741 625.243

EMD-CNN 24.465 0.644 29.665 76.847 802.815

EMD-BPNN 21.311 0.563 26.676 77.019 739.014

LSTM 33.184 0.867 43.690 50.104 982.237

ELM 33.830 0.895 44.355 49.897 1090.735

CNN 39.133 1.016 50.826 50.311 1392.752

BPNN 36.100 0.938 48.018 48.654 1115.632

Table 3 Predictive performance evaluation of different models for SPX

Model MAE MAPE (%) RMSE Dstat (%) CID

VMD-LSTM 7.096 0.256 9.674 85.425 309.564

VMD-ELM 13.035 0.461 18.284 85.830 605.386

VMD-CNN 17.658 0.635 22.386 81.579 790.017

VMD-BPNN 21.091 0.748 28.151 83.198 949.961

EMD-LSTM 13.195 0.475 16.592 77.530 516.622

EMD-ELM 10.298 0.370 13.950 75.506 471.086

EMD-CNN 13.722 0.494 19.389 67.814 778.138

EMD-BPNN 36.011 1.252 44.263 73.684 1180.604

LSTM 18.730 0.676 26.129 52.024 646.525

ELM 19.984 0.717 27.407 51.822 642.958

CNN 21.165 0.764 29.194 50.000 849.893

BPNN 25.492 0.915 35.726 49.798 843.668
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reaches 77.296 (%) and 79.089 (%), respectively, representing
increases of 27.19 (%) and 28.69 (%). This means that the
predictive accuracy has been significantly improved from
LSTM to EMD-LSTM and further to VMD-LSTM. In addi-
tion, the CIDs of LSTM, EMD-LSTM and VMD-LSTM are
982.237, 564.599 and 522.188, respectively, which further
validate the fact that the VMD-LSTMmodel has a better fore-
casting performance than that of EMD-LSTM for the HSI
stock index. Likewise, the performances of the VMD-ELM,
VMD-CNN and VMD-BPNNmodels are superior to those of
the EMD-ELM, EMD-CNN and EMD-BPNN models, re-
spectively. The same results are also obtained for the SPX,
FTSE and IXIC data (except for EMD-BPNN < BPNN <
VMD-BPNN and CNN<VMD-CNN< EMD-CNN for SPX
and IXIC according to the level forecasting indices). In addi-
tion, among the four single models, the LSTM model per-
forms best for the HSI, SPX and IXIC indices. However, after
combining with EMD and VMD, the performance of the
ELM-based forecasting models is better than that of the
LSTM-based forecasting models in some experiments
(VMD-LSTM < VMD-ELM for HSI and FTSE and EMD-
LSTM < EMD-ELM for SPX according to the level forecast-
ing indices), but the superiority is not as significant as that of
the LSTM-based models over the ELM-based models.
Among these models, the VMD-ELM and VMD-LSTM
models obtain comparable performances. For the HSI and

FTSE datasets, the predictive performance measured by the
VMD-ELM is optimal according to the level forecasting indi-
ces and the CID, being slightly better than that of VMD-
LSTM. However, VMD-LSTM performs significantly better
than the VMD-ELM for the SPX and IXIC datasets. The re-
sults indicate that VMD-LSTM has an excellent and stable
performance that cannot be matched by the other models. In
addition, the EMD-CNN (except for HSI) and VMD-CNN
models perform worse than other hybrid models of the same
class in directional forecasting.

(3) The predictive accuracy of the proposed VMD-LSTM
model applied to different datasets is generally better than that
of the other compared models, especially in SPX and IXIC
forecasting, where VMD-LSTM holds the relatively smallest
forecasting errors (the performance evaluation measures are
marked in bold in the tables). In terms of the results for HSI,
VMD-LSTM performs slightly worse than the VMD-ELM,
but the differences in the performance evaluation indices
MAE, MAPE, and RMSE between the two models are con-
trolled within a small range, and the Dstat values of the two
models both reach the same level of 79.089%, which is the
highest level among all results. The same results are also
shown for the FTSE. This effectively verifies the excellent
prediction capability of the proposed VMD-LSTM model.

(4) In terms of the newly introduced CID evaluation index,
its variation tendencies for different models are not totally
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consistent with the level and directional criteria, but it can
effectively reflect the forecasting performance. The tables
and Fig. 8 depict the CIDs for different models of the four
stock price indices. It is shown that on the whole, a smaller
CID value responds better to the forecasting results. Taking
HSI as an example, the variation tendency of the CID is al-
most the same as that of the MAE, MAPE and RMSE level
forecasting errors, except for the VMD-BPNN (CID =
694.284).

4 Conclusion

In this paper, a hybrid neural network VMD-LSTM model is
developed to improve the accuracy in predicting stock price
indices, which often exhibit complex properties such as non-
linearity, nonstationarity and uncertainty. The VMD algo-
rithm is used to decompose the original time series into a
limited number of subseries, and LSTM is used to construct
a training and predicting model for each subseries. The final
predictive result is obtained by an aggregation of all the pre-
dicted subseries. Compared with the EMD technique, VMD
has the advantages of decomposing data series with high ac-
curacy, strong noise robustness, and fast convergence. Four
stock price indices (HSI, SPX, FTSE, and IXIC) from the
world financial market are studied as cases. After a compre-
hensive comparative analysis with four single models, i.e., the
BPNN, ELM, CNN, and LSTM, and seven hybrid models,
i.e., the EMD-BPNN, EMD-ELM, EMD-CNN, EMD-LSTM,
VMD-BPNN, VMD-EL,M and VMD-CNN, the experimen-
tal results show first that the differences between the actual
values and predicted values decrease significantly after com-
bining a single model with EMD and VMD, which implies
that the hybrid models outperform the single models. Then,
the VMD-ANN models are shown to exhibit better prediction
ability than that of the popular EMD-ANN models (for exam-
ple, VMD-LSTM > EMD-LSTM > LSTM), which suggests
that the VMD algorithm is a promising tool for financial time
series forecasting. In addition, the performance of LSTM is
superior to that of the ELM, CNN and BPNN models for all
datasets, and VMD-LSTM has a better prediction capability
than that of the VMD-ELM, VMD-CNN, and VMD-BPNN
for the SPX and IXIC data series. In this work, the level
forecasting measures (MAE, RMSE, MAPE) and directional
forecasting index Dstat as well as a new complexity-invariant
distance (CID) from information theory are used to evaluate
the predictive accuracies. The experimental results indicate
the effectiveness of the CID in assessing the stock price fore-
casting effect. We hope that our proposed model can contrib-
ute to the research on neural networks and the predictions of
time series data in other fields.
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