
EEM.NSM Lab Coursework

Introduction

Outline

 Communicate with a specified host via SNMP

 Purpose: learn how to use SNMP to perform simple

network management tasks

 Part One

– Retrieve the TCP Connection Table from a specified host’s MIB

– Reproduce the table on the screen in a readable, aligned format

 Part Two

– Retrieve the values of a pair of counters from a specified host’s

MIB

– Calculate the counters’ Uniformly-Weighted Moving Average

values

 Write a brief report describing your work and results

Guidelines

 Get familiar with programming in Java

 Use of AdventNetSnmp package

AdventNetSnmp.jar

 Two sample Java programs are provided

– Send GET or GETNEXT requests

– SnmpGet.java

– SnmpGetNext.java

http://info.ee.surrey.ac.uk/CCSR/Internal/Networks/NSM-coursework/AdventNetSnmp.jar
http://info.ee.surrey.ac.uk/CCSR/Internal/Networks/NSM-coursework/SourceCode/SnmpGet.java
http://info.ee.surrey.ac.uk/CCSR/Internal/Networks/NSM-coursework/SourceCode/SnmpGetNext.java

Basic Knowledge

 How does SNMP work when retrieving information?

– Connect => Request => Receive => Process => Disconnect

– The remote host must have an SNMP agent running on it

Your computer

(manager)
Remote host

MIB
SNMP request

SNMP response

Basic Knowledge (cont’d)

 How does a MIB store its information?

– Tree-like hierarchical structure

– Object IDentifier (OID)

– Each MIB entry is identified by:

 A dot, each indicating a tree level in the MIB

 A number, indicating its position at the current tree level

 A real example in RFC-1213 MIB

.1 (iso) --- Level 1

.1 (std) --- Level 2

.2 (member-body)

.3 (org)

.1 --- Level 3

…

.6 (dod) ---- the 6th entry at level 3, hence OID is .1.3.6

1. Establishing Connection

 Establish (open) an SNMP session with a host

– Host is specified with the variable “remoteHost”

SnmpAPI api = new SnmpAPI(); // Create a new SNMP API

api.start();

api.setDebug(false);

// Create a new SNMP session in the API

SnmpSession session = new SnmpSession(api);

try {session.open(); } // Open the SNMP session

catch (SnmpException e) {

System.err.println("Error opening socket: "+e);

} // In case the session cannot be opened

session.setPeername(remoteHost); // Specify the remote host

2. Send an SNMP Request

 Each SNMP request is encapsulated in a PDU (Protocol

Data Unit)

 Two things need to be set before a PDU is sent

– Command type (Get? GetNext? or others?)

– OIDs: one or more OIDs are bound to a PDU

SnmpPDU pdu = new SnmpPDU(); // Create a new PDU

pdu.setCommand(api.GETNEXT_REQ_MSG); // Set its command

for (int i=1; i < args.length; i++)

{

SnmpOID oid=new SnmpOID(OID); // Create an OID

pdu.addNull(oid); // Bind the OID to the PDU

}

try {pdu = session.syncSend(pdu);} // Send the PDU

catch (SnmpException e) {System.err.println("Error sending

SNMP request: "+e);} // In case the PDU cannot be sent

3. SNMP Response

 What will the remote host send back to us?

 Requested OID appended with row identifier

– Used to identify a unique SNMP response

– i.e., variable bindings

 We will come back later, after we finish explaining the

TCP connection table.

TCP Connection Table

 Every host has a table, whose entries contains all TCP

connections it has made with other hosts.

 Five columns

– Connection state (go to here for details)

– Local address

– Local port

– Remote address

– Remote port

 An example
ConnState LocAddr LocPort RemoteAddr RemotePort

3 132.168.23.34 23 145.21.56.153 78

2 124.112.45.78 80 134.244.21.45 90

2 132.254.1.2 21 131.24.45.160 65

NOTE: the five columns’ OIDs are listed on the guideline webpage.

http://tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en&translate=Translate&objectInput=1.3.6.1.2.1.6.13.1.1

TCP Connection Table

 How should we traverse the table efficiently?

 First of all: use GetNext request

 How many OIDs should we bind to the PDU?

 Option 1: bind one OID at a time

– Inefficient: will go row by row, then column by column

 Option 2: bind all five OIDs altogether

– Efficient: row by row, then done!

ConnState LocAddr LocPort RemoteAddr RemotePort

3 132.168.23.34 23 145.21.56.153 78

2 124.112.45.78 80 134.244.21.45 90

2 132.254.1.2 21 131.24.45.160 65

Option 1 - bind one OID at a time

Conn.

State

ConnLocal.

Address

Local

Port

ConnRemote.

Address

Remote

Port

3 23 145.21.56.153 78132.168.23.34

5 89134.244.21.4554124.112.45.78

122.34.56.2117 134 131.23.56.232 65

Option 2: bind all five OIDs together

Conn.

State

ConnLocal.

Address

Local

Port

ConnRemote.

Address

Remote

Port

3 23 145.21.56.153 78132.168.23.34

5 89134.244.21.4554124.112.45.78

122.34.56.2117 134 131.23.56.232 65

PDU Packet

PDU
Type

Request
ID

Error
Status

Error
Index

N
am

e
2

V
al

u
e

2

N
am

e
1

N
am

e
3

N
am

e
6

N
am

e
5

N
am

e
4

N
am

e
8

V
al

u
e

1

V
al

u
e

3

V
al

u
e

5

V
al

u
e

4

V
al

u
e

6

V
al

u
e

8

V
al

u
e

7

N
am

e
7

Variable Bindings

3. SNMP Response (cont’d)

 The SNMP response contains requested OIDs appended

with row identifiers.

 Consider a request PDU with the first two columns’ OIDs

is sent to retrieve the first row of the TCP connection table

 Request:
OID: OID1

OID: OID2

 Response (variable bindings):
OID: OID1.132.168.23.34.23.145.21.56.153.78

Value: 3

OID: OID2.132.168.23.34.23.145.21.56.153.78

Value: 132.168.23.34

 Coloured parts: row identifier (identify the first row in the

TCP connection table)

4. Process the SNMP Response

 Print out the variable bindings

– Result will look like the previous slide

System.out.println(pdu.printVarBinds());

 There are more Java methods that can process an SNMP

response

– Required to finish part one of the coursework: reproduce the TCP

connection table in a readable, aligned format

– You have to investigate them by yourself

5. Disconnect the SNMP Session

 Do not forget to terminate the SNMP session at the end of

your program

session.close();

api.close();

Requirements: Part One

 Objective: reproduce the TCP connection table of a

specified host

– List of hosts can be found on the guideline webpage

 All columns must be aligned (in any way you like)

 ALL rows of the table must be displayed, not one more,

not one less.

 Follow the efficient OID-binding technique we explained

earlier.

 You should not reproduce the table by manipulating

results from printVarBinds() i.e., the sample program.

 Open only one SNMP session

Requirements: Part Two

 Objective: calculate Uniformly-Weighted Moving Average
(UWMA) of a pair of specified counters in a specified
host’s MIB

– Details of the counters can be found on the guideline webpage

 Parameters

– OIDs whose values are calculated

– Polling period (should be > 6 seconds)

– Moving average’s window size

 Your program should display:

– Parameter values

– Clearly show how the UWMA results are calculated (sample values
it used etc., you do not need to show the arithmetic operations)

– UWMA results of each window

 The program should keep running until manually
terminated

Possible Poll Implementations

 Using threads (recommended for C users) – minimal example

public class Example {

public static void main(String args[]) throws InterruptedException {

int count = 0;

while (count < 10){

System.out.println("Hello World " + count);

count++;

Thread.sleep(1000);

}}}

 Using timers

 Using AdventNet SnmpPoller

General Requirements

 ALL parameters MUST NOT be hard-coded, and should

be passed as command-line arguments.

– Part one: remote host, OIDs in the table

– Part two: remote host, OIDs, polling period, window size

– You can find how to pass arguments in the guideline webpage.

 Provide the best flexibility you can offer in your program.

– A few examples

 In part one, what if we only want to see four columns of the table?

 In part two, what data structure do you use to store the UWMA

samples?

Report Structure

 Introduction (half page)

 A brief summary of relevant key points of SNMP (short

notes are suitable)

 An outline of your program design, in the form of pseudo-

code or a flowchart; together with brief notes on any key

features of the software; and on any issues encountered

during your work together with their resolution

 Relevant screenshots of your program’s output

 Concluding comments (half page)

 The report should be brief, of the order of 6-8 pages

 It is not necessary to include a copy of your final software

Marking Criteria

 Software:

 Functions implemented correctly

 Quality of output display (correct output of TCP connection table;

correct display of UWMA parameters and calculation of UWMA)

 Code clarity and appropriate commenting

 Your ability to discuss your design and implementation of your

code

 Report:

 Quality of SNMP discussion

 Quality of software description

 Results / screenshots

 Quality of English

Appendix

 For the first part, the following five OIDs will be used:

.1.3.6.1.2.1.6.13.1.1

.1.3.6.1.2.1.6.13.1.2

.1.3.6.1.2.1.6.13.1.3

.1.3.6.1.2.1.6.13.1.4

.1.3.6.1.2.1.6.13.1.5

 For the second part, the following three OIDs will be used:

.1.3.6.1.2.1.6.10 and .1.3.6.1.2.1.6.11 (tcpInSegs and tcpOutSegs)

.1.3.6.1.2.1.2.2.1.10 and .1.3.6.1.2.1.2.2.1.16 (ifInOctets and ifOutOctets)

.1.3.6.1.2.1.4.9 and .1.3.6.1.2.1.4.10 (ipInDelivers and ipOutRequests)

Appendix

 Hostname : feps-teach01

 Set Snmp Community: teachinglabs

 Add AdventNetSnmp.jar

AdventNetSnmp.jar

Right click your Java project Build Path ->select external

archives -> select the AdventNetSnmp.jar ->OK

http://info.ee.surrey.ac.uk/CCSR/Internal/Networks/NSM-coursework/AdventNetSnmp.jar

