
EEM.NSM Lab Coursework

Introduction

Outline

 Communicate with a specified host via SNMP

 Purpose: learn how to use SNMP to perform simple

network management tasks

 Part One

– Retrieve the TCP Connection Table from a specified host’s MIB

– Reproduce the table on the screen in a readable, aligned format

 Part Two

– Retrieve the values of a pair of counters from a specified host’s

MIB

– Calculate the counters’ Uniformly-Weighted Moving Average

values

 Write a brief report describing your work and results

Guidelines

 Get familiar with programming in Java

 Use of AdventNetSnmp package

AdventNetSnmp.jar

 Two sample Java programs are provided

– Send GET or GETNEXT requests

– SnmpGet.java

– SnmpGetNext.java

http://info.ee.surrey.ac.uk/CCSR/Internal/Networks/NSM-coursework/AdventNetSnmp.jar
http://info.ee.surrey.ac.uk/CCSR/Internal/Networks/NSM-coursework/SourceCode/SnmpGet.java
http://info.ee.surrey.ac.uk/CCSR/Internal/Networks/NSM-coursework/SourceCode/SnmpGetNext.java

Basic Knowledge

 How does SNMP work when retrieving information?

– Connect => Request => Receive => Process => Disconnect

– The remote host must have an SNMP agent running on it

Your computer

(manager)
Remote host

MIB
SNMP request

SNMP response

Basic Knowledge (cont’d)

 How does a MIB store its information?

– Tree-like hierarchical structure

– Object IDentifier (OID)

– Each MIB entry is identified by:

 A dot, each indicating a tree level in the MIB

 A number, indicating its position at the current tree level

 A real example in RFC-1213 MIB

.1 (iso) --- Level 1

.1 (std) --- Level 2

.2 (member-body)

.3 (org)

.1 --- Level 3

…

.6 (dod) ---- the 6th entry at level 3, hence OID is .1.3.6

1. Establishing Connection

 Establish (open) an SNMP session with a host

– Host is specified with the variable “remoteHost”

SnmpAPI api = new SnmpAPI(); // Create a new SNMP API

api.start();

api.setDebug(false);

// Create a new SNMP session in the API

SnmpSession session = new SnmpSession(api);

try {session.open(); } // Open the SNMP session

catch (SnmpException e) {

System.err.println("Error opening socket: "+e);

} // In case the session cannot be opened

session.setPeername(remoteHost); // Specify the remote host

2. Send an SNMP Request

 Each SNMP request is encapsulated in a PDU (Protocol

Data Unit)

 Two things need to be set before a PDU is sent

– Command type (Get? GetNext? or others?)

– OIDs: one or more OIDs are bound to a PDU

SnmpPDU pdu = new SnmpPDU(); // Create a new PDU

pdu.setCommand(api.GETNEXT_REQ_MSG); // Set its command

for (int i=1; i < args.length; i++)

{

SnmpOID oid=new SnmpOID(OID); // Create an OID

pdu.addNull(oid); // Bind the OID to the PDU

}

try {pdu = session.syncSend(pdu);} // Send the PDU

catch (SnmpException e) {System.err.println("Error sending

SNMP request: "+e);} // In case the PDU cannot be sent

3. SNMP Response

 What will the remote host send back to us?

 Requested OID appended with row identifier

– Used to identify a unique SNMP response

– i.e., variable bindings

 We will come back later, after we finish explaining the

TCP connection table.

TCP Connection Table

 Every host has a table, whose entries contains all TCP

connections it has made with other hosts.

 Five columns

– Connection state (go to here for details)

– Local address

– Local port

– Remote address

– Remote port

 An example
ConnState LocAddr LocPort RemoteAddr RemotePort

3 132.168.23.34 23 145.21.56.153 78

2 124.112.45.78 80 134.244.21.45 90

2 132.254.1.2 21 131.24.45.160 65

NOTE: the five columns’ OIDs are listed on the guideline webpage.

http://tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en&translate=Translate&objectInput=1.3.6.1.2.1.6.13.1.1

TCP Connection Table

 How should we traverse the table efficiently?

 First of all: use GetNext request

 How many OIDs should we bind to the PDU?

 Option 1: bind one OID at a time

– Inefficient: will go row by row, then column by column

 Option 2: bind all five OIDs altogether

– Efficient: row by row, then done!

ConnState LocAddr LocPort RemoteAddr RemotePort

3 132.168.23.34 23 145.21.56.153 78

2 124.112.45.78 80 134.244.21.45 90

2 132.254.1.2 21 131.24.45.160 65

Option 1 - bind one OID at a time

Conn.

State

ConnLocal.

Address

Local

Port

ConnRemote.

Address

Remote

Port

3 23 145.21.56.153 78132.168.23.34

5 89134.244.21.4554124.112.45.78

122.34.56.2117 134 131.23.56.232 65

Option 2: bind all five OIDs together

Conn.

State

ConnLocal.

Address

Local

Port

ConnRemote.

Address

Remote

Port

3 23 145.21.56.153 78132.168.23.34

5 89134.244.21.4554124.112.45.78

122.34.56.2117 134 131.23.56.232 65

PDU Packet

PDU
Type

Request
ID

Error
Status

Error
Index

N
am

e
2

V
al

u
e

2

N
am

e
1

N
am

e
3

N
am

e
6

N
am

e
5

N
am

e
4

N
am

e
8

V
al

u
e

1

V
al

u
e

3

V
al

u
e

5

V
al

u
e

4

V
al

u
e

6

V
al

u
e

8

V
al

u
e

7

N
am

e
7

Variable Bindings

3. SNMP Response (cont’d)

 The SNMP response contains requested OIDs appended

with row identifiers.

 Consider a request PDU with the first two columns’ OIDs

is sent to retrieve the first row of the TCP connection table

 Request:
OID: OID1

OID: OID2

 Response (variable bindings):
OID: OID1.132.168.23.34.23.145.21.56.153.78

Value: 3

OID: OID2.132.168.23.34.23.145.21.56.153.78

Value: 132.168.23.34

 Coloured parts: row identifier (identify the first row in the

TCP connection table)

4. Process the SNMP Response

 Print out the variable bindings

– Result will look like the previous slide

System.out.println(pdu.printVarBinds());

 There are more Java methods that can process an SNMP

response

– Required to finish part one of the coursework: reproduce the TCP

connection table in a readable, aligned format

– You have to investigate them by yourself

5. Disconnect the SNMP Session

 Do not forget to terminate the SNMP session at the end of

your program

session.close();

api.close();

Requirements: Part One

 Objective: reproduce the TCP connection table of a

specified host

– List of hosts can be found on the guideline webpage

 All columns must be aligned (in any way you like)

 ALL rows of the table must be displayed, not one more,

not one less.

 Follow the efficient OID-binding technique we explained

earlier.

 You should not reproduce the table by manipulating

results from printVarBinds() i.e., the sample program.

 Open only one SNMP session

Requirements: Part Two

 Objective: calculate Uniformly-Weighted Moving Average
(UWMA) of a pair of specified counters in a specified
host’s MIB

– Details of the counters can be found on the guideline webpage

 Parameters

– OIDs whose values are calculated

– Polling period (should be > 6 seconds)

– Moving average’s window size

 Your program should display:

– Parameter values

– Clearly show how the UWMA results are calculated (sample values
it used etc., you do not need to show the arithmetic operations)

– UWMA results of each window

 The program should keep running until manually
terminated

Possible Poll Implementations

 Using threads (recommended for C users) – minimal example

public class Example {

public static void main(String args[]) throws InterruptedException {

int count = 0;

while (count < 10){

System.out.println("Hello World " + count);

count++;

Thread.sleep(1000);

}}}

 Using timers

 Using AdventNet SnmpPoller

General Requirements

 ALL parameters MUST NOT be hard-coded, and should

be passed as command-line arguments.

– Part one: remote host, OIDs in the table

– Part two: remote host, OIDs, polling period, window size

– You can find how to pass arguments in the guideline webpage.

 Provide the best flexibility you can offer in your program.

– A few examples

 In part one, what if we only want to see four columns of the table?

 In part two, what data structure do you use to store the UWMA

samples?

Report Structure

 Introduction (half page)

 A brief summary of relevant key points of SNMP (short

notes are suitable)

 An outline of your program design, in the form of pseudo-

code or a flowchart; together with brief notes on any key

features of the software; and on any issues encountered

during your work together with their resolution

 Relevant screenshots of your program’s output

 Concluding comments (half page)

 The report should be brief, of the order of 6-8 pages

 It is not necessary to include a copy of your final software

Marking Criteria

 Software:

 Functions implemented correctly

 Quality of output display (correct output of TCP connection table;

correct display of UWMA parameters and calculation of UWMA)

 Code clarity and appropriate commenting

 Your ability to discuss your design and implementation of your

code

 Report:

 Quality of SNMP discussion

 Quality of software description

 Results / screenshots

 Quality of English

Appendix

 For the first part, the following five OIDs will be used:

.1.3.6.1.2.1.6.13.1.1

.1.3.6.1.2.1.6.13.1.2

.1.3.6.1.2.1.6.13.1.3

.1.3.6.1.2.1.6.13.1.4

.1.3.6.1.2.1.6.13.1.5

 For the second part, the following three OIDs will be used:

.1.3.6.1.2.1.6.10 and .1.3.6.1.2.1.6.11 (tcpInSegs and tcpOutSegs)

.1.3.6.1.2.1.2.2.1.10 and .1.3.6.1.2.1.2.2.1.16 (ifInOctets and ifOutOctets)

.1.3.6.1.2.1.4.9 and .1.3.6.1.2.1.4.10 (ipInDelivers and ipOutRequests)

Appendix

 Hostname : feps-teach01

 Set Snmp Community: teachinglabs

 Add AdventNetSnmp.jar

AdventNetSnmp.jar

Right click your Java project Build Path ->select external

archives -> select the AdventNetSnmp.jar ->OK

http://info.ee.surrey.ac.uk/CCSR/Internal/Networks/NSM-coursework/AdventNetSnmp.jar

