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a b s t r a c t

This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state

variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynami-

cal system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and ini-

tial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral

whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-

measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as

the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they

need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the

restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use

strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the opti-

mal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model,

it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches

may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy

dynamical system. This is, however, not the case with the approach proposed in this study. The notions of

granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented

in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with

uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of

the four wheels of a bus is regulated using the sub-optimal control introduced in this paper.

© 2018 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical models play an important role in analyzing the

behavior of dynamical phenomena. Linear dynamical systems are

referred to as the dynamical phenomena whose mathematical model

is considered as a system of linear differential equations. As a mat-

ter of fact, the linear dynamical system is a description of the main

dynamical system - or dynamical phenomenon - whose model is

approximated usually around an operating point. In control theory,

linear dynamical systems are widely used for designing a controller

as well as assessing some of dynamical system features such as sta-

bility, controllability, observability, etc. In almost all cases, the lin-

* Corresponding author. Department of Electrical Engineering, Ferdowsi University

of Mashhad, Mashhad, Iran.

E-mail addresses: me.mazandarani@tdt.edu.vn (M. Mazandarani), n-pariz@um.ac.

ir (N. Pariz).

ear dynamical systems are considered with this assumption that all

dynamical system parameters and conditions are certain. However,

for some reasons such as error in measuring and identifying system

parameters, dynamical system parameters and conditions are not

always determined precisely and certainly. As a result, the uncertain

linear dynamical system presents a more comprehensive description

of the dynamical system than the crisp system does.

Fuzzy sets have been well known as effective tools for modeling

uncertainty in many fields, including food science [1], mathematics

[2–4], and medicine [5]. Thus, the uncertainty in the linear dynam-

ical system can be taken into account as the fuzzy sets. Fuzzy lin-

ear dynamical systems are referred to as dynamical systems whose

model is considered as a system of Fuzzy Differential Equations

(FDEs). FDEs are those in which some parameters and/or boundary
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conditions are fuzzy sets. In recent years, FDEs have attracted more

attention, and their applications in medicine [6], economy [7], frac-

tional calculus [8–11], control theory [12], etc. show that they have

been rapidly growing. One of the important branches in which FDEs

can prove their advantages is optimal control theory. Nonetheless,

compared to the enormous volume of the literature carried out for

solving FDEs, little research has ever been performed in the field of

optimal control theory based on FDEs.

Najariyan and Farahi studied fuzzy optimal control of a linear

dynamical system with uncertain initial condition in Ref. [13] and

with uncertain parameters in Ref. [14]. They used the notion of

Strongly Generalized Hukuhara (SGH) differentiability in a fuzzy

dynamical system and for designing the fuzzy optimal control. How-

ever, SGH derivative suffers from some limitations namely: 1. It

does not always exist, 2. It necessitates the monotony of the uncer-

tainty. To address the second limitation caused by SGH differentia-

bility notion, they examined a class of fuzzy optimal control prob-

lems using generalized Hukuhara (gH) differentiability concept in

Ref. [12]. Although the gH differentiability notion does not neces-

sitate the monotony of the solution fuzziness, the existence of this

kind of derivative cannot be guaranteed. Moreover, the approaches

based on SGH differentiability and gH differentiability notions suf-

fer from a main shortcoming called Unnatural Behavior in Model-

ing (UBM) phenomenon [15]. UBM phenomenon stems from this

fact that, based on the fuzzy standard interval arithmetic (FSIA) the

solutions of different forms of a fuzzy differential equation with

the same structure may be different from each other. As a way of

illustration, consider the fuzzy differential equations ̇̃x(t) = x̃(t) + b̃,
̇̃x(t) − x̃(t) = b̃, and ̇̃x(t) − b̃ = x̃(t) where the initial conditions are the

same and equal to a fuzzy number, b̃ is a fuzzy number and the

derivative of x̃(t), i.e. ̇̃x(t), is SGH or gH derivative. Then, the solu-

tions obtained by solving the fuzzy differential equations may be

different from each other, and this is the very UBM phenomenon.

Moreover, there are some other drawbacks associated to the men-

tioned derivatives such as doubling property and multiplicity of

solutions which were investigated in Ref. [15]. As a result, these

limitations motivated us to examine fuzzy optimal control prob-

lem using an approach by which not only does a definition of

fuzzy derivative exist, but also the mentioned shortcomings are han-

dled.

With significant applications in clustering algorithms [16,17],

measurement uncertainty [18], etc. granular computing has

attracted more attention in recent years. Granularity can be consid-

ered as a concept which reflects detailed information. Piegat with

his co-workers applied the granular computing in the crisp and

fuzzy interval arithmetic. Piegat and Landowski [19–22] studied

crisp interval arithmetic based on the notion of Relative-Distance-

Measure (RDM) variables and introduced multidimensional RDM

interval arithmetic. With successful results achieved, they showed

how useful multidimensional RDM interval arithmetic is for the

interval computations in comparision with standard interval arith-

metic. Additionally, in the context of fuzzy mathematics, they

introduced the notion of horizontal membership functions using

the RDM variables [23,24]. With an approach called RDM fuzzy

interval arithmetic introduced, they demonstrated that the result

granule obtained by this approach is more fruitful than the result

obtained by FSIA [25–28]. Afterwards, based on RDM interval

arithmetic and the horizontal membership functions, Mazandarani

et al. [15] proposed a new definition of the differentiability of fuzzy

functions called granular differentiability (gr-differentiability). They

proved that by considering FDEs under gr-differentiability and RDM

interval arithmetic, the shortcomings, i.e. monotonic uncertainty,

multiplicity of solutions, doubling property, and UBM phenomenon

- that stem from existing definitions of fuzzy derivatives and FSIA -

are successfully handled.

In this paper, the aim is to keep the state variables of a fuzzy

linear dynamical system close to zero in an optimal manner. In

the fuzzy dynamical system, the fuzzy derivative is considered as

gr-derivative; and all the coefficients and initial conditions can be

uncertain. The criteria for assessing the optimality is taken into

account as a granular integral whose integrand is a quadratic func-

tion of the state variables and control inputs. Using the calculus of

variations, the optimal control law is presented as the state variables

feedback. Since the optimal feedback gains are obtained as fuzzy

functions, they need to be defuzzified, and this results in the sub-

optimal control law. The granular eigenvalues, controllability and

stabilizability of the fuzzy linear dynamical system are also defined

in this paper. Moreover, based on the obtained results, sub-optimal

control for regulating a Boeing 747 in longitudinal direction with

uncertain initial conditions and parameters is achieved.

2. Preliminaries

This section presents some necessary definitions, theorems, and

propositions which will be used in this paper. Throughout this paper,

the set of all real numbers is denoted by ℝ, the set of all positive real

numbers is denoted by ℝ+, and the set of all the fuzzy numbers on

ℝ by E1. The left and right end-points of 𝜇-level sets of the fuzzy set

Ã, [Ã]𝜇 , are denoted by A𝜇 and A
𝜇

, respectively. The transpose of a

matrix Y = [ yij]n×n, i, j = 1,… , n is denoted by YT .

Definition 1. [29]. The fuzzy set ũ ∶ ℝ → [0, 1] is called a fuzzy

number if it is normal, fuzzy convex, upper semi-continuous and

compactly supported fuzzy subsets of the real numbers. The fuzzy

number ũ can be represented in a parametric form by the ordered

pair of functions (u𝜇, u
𝜇), 0 ≤ 𝜇 ≤ 1, satisfying the following proper-

ties:

1. u𝜇 is a bounded non-decreasing left continuous function in (0, 1],
and it is right continuous at 𝜇 = 0,

2. u
𝜇

is a bounded non-increasing left continuous function in (0, 1],
and it is right continuous at 𝜇 = 0,

3. u𝜇 ≤ u
𝜇

.

Based on fuzzy standard interval arithmetic; addition, subtrac-

tion, and multiplication of two fuzzy numbers ũ and ṽ are charac-

terized as follows, respectively:

Addition ∶ [ũ + ṽ]𝜇 = [u𝜇 + v𝜇, u
𝜇 + v

𝜇],

Subtraction ∶ [ũ − ṽ]𝜇 = [u𝜇 − v
𝜇
, u

𝜇 − v𝜇],

Multiplication ∶ [ũ ṽ]𝜇 = [min{u𝜇v
𝜇, u𝜇v𝜇, u

𝜇
v
𝜇, u

𝜇
v𝜇},

max{u𝜇v
𝜇
, u𝜇v𝜇, u

𝜇
v
𝜇
, u

𝜇
v𝜇}];

Note 1. Let ũ, ṽ, w̃ ∈ E1. Based on fuzzy standard interval arithmetic,

it can be proved that, as a whole, (ũ + ṽ)w̃ ≠ ũw̃ + ṽw̃ and ũ − ũ ≠ 0.

Definition 2. The function f̃ ∶ [a, b] ⊆ ℝ → E1 is called a fuzzy func-

tion. Moreover, f̃ ∶ [a, b] ⊆ ℝ → En
1
= E1 × E1 × · · · × E1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

n

is called an

n-dimensional vector of fuzzy functions.

Definition 3. [30].The fuzzy function f̃ ∶ (a, b) ⊆ ℝ → E1 is said to

be Strongly Generalized Hukuhara (SGH) differentiable in the first

form at t ∈ (a, b), if there exists a fuzzy number
d̃f (t)

dt
∈ E1 such that

for h > 0 sufficiently near zero, there are f̃ (t + h)⊖ f̃ (t), f̃ (t)⊖ f̃ (t −
h) and the limits

lim
h→0

f̃ (t + h)⊖ f̃ (t)
h

= lim
h→0

f̃ (t)⊖ f̃ (t − h)
h

= d̃f (t)
dt
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Additionally, the fuzzy function f̃ is said to be SGH differentiable in

the second form at t ∈ (a, b), if there exists a fuzzy number
d̃f (t)

dt
∈ E1

such that for h > 0 sufficiently near zero, there are f̃ (t)⊖ f̃ (t + h),
f̃ (t − h)⊖ f̃ (t) and the limits

lim
h→0

f̃ (t)⊖ f̃ (t + h)
−h

= lim
h→0

f̃ (t − h)⊖ f̃ (t)
−h

= d̃f (t)
dt

where ”⊖” stands for the Hukuhara difference and means ũ ⊖ ṽ =
z̃ ⇔ ũ = ṽ + z̃.

Theorem 1. [31]. Let f̃ ∶ (a, b) ⊆ ℝ → E1 be a fuzzy function such

that [ f̃ (t)]𝜇 = [ f𝜇(t), f
𝜇
(t)]. Then,

1. If f̃ is SGH differentiable in the first form, then f𝜇(t) and f
𝜇
(t) are

differentiable functions and [ d̃f (t)
dt

]𝜇 = [
df𝜇 (t)

dt
, df

𝜇
(t)

dt
],

2. If f̃ is SGH differentiable in the second form, then f𝜇(t) and f
𝜇
(t)

are differentiable functions and [ d̃f (t)
dt

]𝜇 = [ df
𝜇
(t)

dt
,

df𝜇 (t)
dt

].

Definition 4. [32]. The fuzzy function f̃ ∶ (a, b) ⊆ ℝ → E1 is said

to be generalized Hukuhara (gH) differentiable at t ∈ (a, b), if there

exists a fuzzy number
d̃f (t)

dt
∈ E1 such that the following limit exists

lim
h→0

f̃ (t + h)⊖ghf̃ (t)
h

= d̃f (t)
dt

where ”⊖gh” stands for the generalized Hukuhara difference and

means ũ⊖ghṽ = z̃ ⇔ ũ = ṽ + z̃ or ũ − z̃ = ṽ.

Theorem 2. [32]. Let f̃ ∶ (a, b) ⊆ ℝ → E1 be a fuzzy function such

that [̃f (t)]𝜇 = [f𝜇(t), f
𝜇
(t)], and the functions f𝜇(t), f

𝜇
(t) be differen-

tiable with respect to t, uniformly in 𝜇 ∈ [0, 1]. Then, the fuzzy func-

tion f̃ is gH differentiable at t ∈ (a, b) if and only if one of the follow-

ing conditions occurs:

1.
df𝜇 (t)

dt
and

df
𝜇
(t)

dt
are increasing and decreasing functions of 𝜇,

respectively, and
df𝜇=1(t)

dt
≤ df

𝜇=1
(t)

dt
. This case is called gH differ-

entiability in the first form.

2.
df𝜇 (t)

dt
and

df
𝜇
(t)

dt
are decreasing and increasing functions of 𝜇,

respectively, and
df𝜇=1(t)

dt
≥ df

𝜇=1
(t)

dt
. This case is called gH differ-

entiability in the second form.

Moreover,

[ d̃f (t)
dt

]𝜇 = [min{df
𝜇
(t)

dt
,

df𝜇(t)
dt

},max{df
𝜇
(t)

dt
,

df𝜇(t)
dt

}].

Definition 5. [15,23]. Let ũ ∶ [a, b] ⊆ ℝ → [0, 1] be a fuzzy number.

The horizontal membership function ugr ∶ [0, 1] × [0, 1] → [a, b] is a

representation of ũ(x) as ugr(𝜇, 𝛼u) = x in which “gr” stands for the

granule of information included in x ∈ [a, b], 𝜇 ∈ [0, 1] is the mem-

bership degree of x in ũ(x), 𝛼u ∈ [0, 1] is called relative-distance-

measure (RDM) variable, and ugr(𝜇, 𝛼u) = u𝜇 + (u𝜇 − u𝜇)𝛼u.

Note 2. The horizontal membership function of ũ(x) ∈ E1 is also

denoted by (ũ) ≜ ugr(𝜇, 𝛼u). Furthermore, if the triangular fuzzy

number ũ ∈ E1 is denoted by the triple (a, b, c), a ≤ b ≤ c, then the

horizontal membership function of ũ = (a, b, c) can be characterized

as (ũ) = [a + (b − a)𝜇] + [(1 − 𝜇)(c − a)]𝛼u. For more illustration,

Fig. 1 shows the triangular fuzzy number ũ = (3, 6, 10) and its hor-

izontal membership function.

Definition 6. [15]. Two fuzzy numbers ũ and ṽ are said to be equal

if and only if (ũ) =  (̃v) for all 𝛼u = 𝛼v ∈ [0, 1].

Note 3. The 𝜇-level sets of ũ ∈ E1 which are in fact the span of the

information granule can be obtained using

−1(ugr(𝜇, 𝛼u)) = [ũ]𝜇 =

[
inf
𝛽≥𝜇min

𝛼u

ugr(𝛽, 𝛼u), sup
𝛽≥𝜇

max
𝛼u

ugr(𝛽, 𝛼u)

]
What follows presents the four basic operations defined in RDM

fuzzy interval arithmetic.

Definition 7. [15]. Let ũ and ṽ be two fuzzy numbers whose

horizontal membership functions are ugr(𝜇, 𝛼u) and vgr(𝜇, 𝛼v),
respectively, and ”⊙” denote one of the four basic operations,

i.e. addition, subtraction, multiplication, and division. Then, ũ ⊙ ṽ

is a fuzzy number m̃ such that (m̃) ≜ ugr(𝜇, 𝛼u)⊙ vgr(𝜇, 𝛼v). It

should be noted that 0 ∉ vgr(𝜇, 𝛼v) when ”⊙” denotes the division

operator.

The difference between two fuzzy numbers defined in

Definition 7 is called granular difference (gr-difference).

Definition 8. Let ũ and ṽ be two fuzzy numbers. We say

that ũ ≥ ṽ if and only if (ũ) ≥  (̃v) for all 𝛼u = 𝛼v ∈ [0, 1],
𝜇 ∈ [0, 1].

Note 4. [15]. Based on RDM fuzzy interval arithmetic, the following

relations hold for ũ, ṽ, w̃ ∈ E1:

1. ũ − ṽ = −(̃v − ũ),
2. ũ − ũ = 0,

3. ũ ÷ ũ = 1,

4. (ũ + ṽ)w̃ = ũw̃ + ṽw̃.

Definition 9. [15]. Let ũ, ṽ ∈ E1. The function Dgr ∶ E1 × E1 → ℝ+ ∪
{0}, Dgr(ũ, ṽ) = sup𝜇max𝛼u ,𝛼v

|ugr(𝜇, 𝛼u) − vgr(𝜇, 𝛼v)| is a distance

between two fuzzy numbers ũ and ṽ.

Note 5. The function Dgr is a metric on the space of fuzzy num-

bers and is called granular metric. Moreover, the metric space

(E1,Dgr) is a complete metric space - see Ref. [15] for more

details.

Definition 10. [15]. Let f̃ ∶ [a, b] ⊆ ℝ → E1 include n ∈ ℕ distinct

fuzzy numbers ũ1, ũ2,… , ũn. The horizontal membership function

of f̃ (t) at the point t ∈ [a, b] is denoted by  (̃f (t)) ≜ f gr(t, 𝜇, 𝛼f ),
and defined as f gr ∶ [a, b] × [0, 1] × [0, 1] × · · · × [0, 1]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
n

→ [c, d] ⊆ ℝ

in which 𝛼f ≜ (𝛼u1
, 𝛼u2

,… , 𝛼un
) are the RDM variables correspond-

ing to the fuzzy numbers.

Definition 11. [15]. The fuzzy function f̃ ∶ [a, b] ⊆ ℝ → E1 map-

ping t ↦ f̃ (t) is said to be continuous if the following conditions

hold:

1. ∀t0 ∈ (a, b),∀𝜖 > 0,∃𝛿 > 0 ∋ |t − t0| < 𝛿

→ Dgr

(̃
f (t), f̃ (t0)

)
< 𝜖, and

2. ∀𝜖 > 0,∃𝛿 > 0 ∋ 0 < t − a < 𝛿 → Dgr

(̃
f (t), f̃ (a)

)
< 𝜖, and

3. ∀𝜖 > 0,∃𝛿 > 0 ∋ −𝛿 < t − b < 0 → Dgr

(̃
f (t), f̃(b)

)
< 𝜖.

Definition 12. [15]. The fuzzy function f̃ ∶ [a, b] ⊆ ℝ → E1 is said

to be granular differentiable (gr-differentiable) at t ∈ [a, b] if there

exists a fuzzy number
d̃f (t)

dt
∈ E1 such that the following limit

exists:

lim
h→0

f̃ (t + h) − f̃ (t)
h

= d̃f (t)
dt

(1)
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Fig. 1. The triangular fuzzy number ũ = (3, 6, 10) (a), and its horizontal membership function (b).

The limit is taken in the metric space (E1,Dgr).

Theorem 3. [15]. The fuzzy function f̃ ∶ [a, b] ⊆ ℝ → E1 is granu-

lar differentiable at the point t ∈ [a, b] if and only if its horizontal

membership function is differentiable with respect to t at that point.

Moreover,  ( d̃f (t)
dt

)
= 𝜕f gr (t,𝜇,𝛼f )

𝜕t
.

Definition 13. [15]. Let f̃ ∶ [a, b] ⊆ ℝ → E1 mapping t ↦ f̃ (t) be a

continuous fuzzy function whose horizontal membership function,

i.e. f gr(t, 𝜇, 𝛼f ), is integrable on t ∈ [a, b]. Let ∫ b

a
f̃ (t)dt denote the

integral of f̃ on [a, b]. Then, the fuzzy function f̃ is said to be gran-

ular integrable (gr-integrable) on [a, b] if there exists a fuzzy number

m̃ = ∫ b

a
f̃ (t)dt such that (m̃) = ∫ b

a
 (̃f (t))dt.

Proposition 1. [15]. Suppose the fuzzy function F̃ ∶ [a, b] ⊆ ℝ → E1

mapping t ↦ F̃(t) is gr-differentiable, and f̃ (t) = dF̃(t)
dt

is continuous

on [a, b]. Then, ∫ b

a
f̃ (t)dt = F̃(b) − F̃(a).

Proposition 2. Let the fuzzy functions f̃ ∶ [a, b] ⊆ ℝ → E1 map-

ping t ↦ f̃ (t) and g̃ ∶ [a, b] ⊆ ℝ → E1 mapping t ↦ g̃(t) satisfy

the conditions mentioned in Definition 13. Then, the relation

∫ b

a

(̃
f (t) + g̃(t)

)
dt = ∫ b

a
f̃ (t)dt + ∫ b

a
g̃(t)dt holds.

3. Sub-optimal control of fuzzy dynamical linear systems

This section aims at finding a fuzzy optimal control so as to regu-

late a fuzzy dynamical linear system in an optimal way. For this pur-

pose, the optimal control of fuzzy dynamical linear systems problem

is introduced at first, then using the calculus of variations the prob-

lem is solved.

Consider the following fuzzy linear dynamical system:⎧⎪⎨⎪⎩
̇̃

X(t) = ÃX̃(t) + B̃Ũ(t)
X̃(t0) = X̃0

t ∈ [t0, tf ]
(2)

where X̃(t) ≜ [̃x1(t), x̃2(t),… , x̃n(t)]T , X̃ ∶ [t0, tf ] ⊆ ℝ+⋃{0} → En
1

, is

the states vector of the system, Ũ(t) ≜ [ũ1(t), ũ2(t),… , ũm(t)]T , Ũ ∶
[t0, tf ] ⊆ ℝ+⋃{0} → Em

1
is the vector of control functions, and

̇̃
X(t) ≜ [ ̇̃x1(t), ̇̃x2(t),… , ̇̃xn(t)]T in which the derivatives are in the

sense of gr-derivative. The matrices Ã = [̃aij]n×n, i, j = 1,… , n, and

B̃ = [b̃ik]n×m, i = 1,… , n, k = 1,… ,m, are fuzzy matrices meaning

ãij, b̃ik ∈ E1. The initial condition is known and equal to the vector

of fuzzy numbers X̃0 ∈ En
1

, and the final condition, i.e. X̃(tf ) ∈ En
1
, is

free. In the fuzzy optimal control problem considered here, the fuzzy

control functions are meant to be found such that the states of uncer-

tain system (2) are maintained close to the origin and the following

performance measure
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J̃(Ũ) = 1

2
X̃T(tf )PX̃(tf ) +

1

2 ∫
tf

t0

(
X̃T(t)QX̃(t) + ŨT(t)RŨ(t)

)
dt (3)

is minimized. In the performance measure (3), the integral operator

is in the sense of the granular integral defined in Definition 13; P,Q

are positive semi-definite symmetric matrices, and the matrix R is a

positive definite symmetric matrix. It should be noted that J̃ assigns

to each Ũ a unique fuzzy number. Some definitions and a proposition

are needed to be introduced before we proceed to solve the fuzzy

optimal control problem.

Definition 14. The fuzzy eigenvalues of the fuzzy matrix Ã =
[̃aij]n×n, i, j = 1,… , n, denoted by 𝜆i are the roots of the fuzzy char-

acteristic polynomial det
(
𝜆iIn×n − Ã

)
, where det(•) means determi-

nant, and In×n is the n × n identity matrix.

As we know, the poles of the open-loop linear dynamical sys-

tem Ẋ(t) = AX(t) + BU(t) just depends on the eigenvalues of matrix

A. However, as a whole, based on each of the concepts of SGH dif-

ferentiability and gH differentiability the sets of eigenvalues corre-

sponding to the following open-loop fuzzy dynamical systems:

⎧⎪⎨⎪⎩
̇̃

X(t) = AX̃(t) + BŨ(t)
X̃(t0) = X̃0

t ∈ [t0, tf ]
(4)

⎧⎪⎨⎪⎩
̇̃

X(t) − AX̃(t) = BŨ(t)
X̃(t0) = X̃0

t ∈ [t0, tf ]
(5)

may be not only different from each other, but also be different

from the set of eigenvalues of the matrix A. This is while, based on

Definition 14, the sets of eigenvalues of fuzzy dynamical systems

(4) and (5) are always the same, and they are equal to the set of

eigenvalues of the matrix A. For more illustration, see Example 1. In

the following the concepts of granular controllability and stabiliz-

ability of fuzzy dynamical system (2) are presented. These concepts

are similar to those introduced for the crisp dynamical system in

Ref. [33].

Definition 15. A fuzzy linear dynamical system is said to be gran-

ular controllable if there exists a fuzzy control input Ũ(t) which can

transfer the system states from any fuzzy initial condition X̃(t0) to

any fuzzy final condition X̃(tf ) on the finite time interval [t0, tf ].

Proposition 3. Consider fuzzy dynamical system (2) and let

Agr(𝜇, 𝛼A) and Bgr(𝜇, 𝛼B) be the horizontal membership functions of

the matrices Ã and B̃, respectively. Then, fuzzy dynamical system (2)

is granular controllable if and only if the granular matrix

[Bgr(𝜇, 𝛼B) Agr(𝜇, 𝛼A)Bgr(𝜇, 𝛼B) (Agr(𝜇, 𝛼A))2Bgr(𝜇, 𝛼B)…

(Agr(𝜇, 𝛼A))n−1Bgr(𝜇, 𝛼B)] (6)

has full row rank ∀𝜇, 𝛼A, 𝛼B ∈ [0, 1].

Proof. Based on Definition 6 and Theorem 3, fuzzy dynamical sys-

tem (2) can be equivalently rewritten in the granular form as follows

𝜕Xgr(t, 𝜇, 𝛼X)
𝜕t

= Agr(𝜇, 𝛼A)Xgr(t, 𝜇, 𝛼X) + Bgr(𝜇, 𝛼B)Ugr(t, 𝜇, 𝛼U) (7)

with the initial condition Xgr(t0, 𝜇, 𝛼X) = X
gr

0
(𝜇, 𝛼X0

). Let 𝛼X =
𝛼Xc

, 𝛼A = 𝛼Ac
, 𝛼B = 𝛼Bc

, 𝛼U = 𝛼Uc
and 𝜇 = 𝜇c where 𝛼Xc

, 𝛼Ac
, 𝛼Bc

, 𝛼Uc

and 𝜇c are constant values belonging to [0, 1]. Thus, dynamical sys-

tem (7) can be considered as

Ẋ
gr

𝜇c,𝛼Xc
(t) = A

gr
𝜇c,𝛼Ac

X
gr
𝜇c ,𝛼Xc

(t) + B
gr
𝜇c,𝛼Bc

U
gr
𝜇c,𝛼Uc

(t) (8)

where A
gr
𝜇c ,𝛼Ac

and B
gr
𝜇c,𝛼Bc

are crisp constant matrices. It is well-

known that the crisp dynamical system (8) is controllable if and only

if the matrix

[Bgr
𝜇c,𝛼Bc

A
gr
𝜇c,𝛼Ac

B
gr
𝜇c,𝛼Bc

(Agr
𝜇c,𝛼Ac

)2B
gr
𝜇c ,𝛼Bc

… (Agr
𝜇c,𝛼Ac

)n−1B
gr
𝜇c ,𝛼Bc

]

has full row rank. Therefore, it can be concluded that, granular

dynamical system (7) is controllable if and only if the granular matrix

(6) has full row rank ∀𝜇, 𝛼A, 𝛼B ∈ [0, 1]. As a result, since dynamical

system (7), based on horizontal membership functions, is a repre-

sentation of fuzzy dynamical system (2) in the granular form, then

correspondingly the fuzzy dynamical system is granular controllable

if and only if dynamical system (7) is controllable. □

Definition 16. Fuzzy dynamical system (2) is said to be granular sta-

bilizable if and only if granular dynamical system (7) is stabilizable

∀𝜇, 𝛼A, 𝛼B, 𝛼X , 𝛼U ∈ [0, 1].

Hereafter, we suppose fuzzy dynamical system (2) is granular sta-

bilizable. What follows shows that how the mentioned optimal fuzzy

control problem is converted to a problem which is similar to the

well-known crisp linear quadratic regulator problem; and also how

the system states and fuzzy control functions are determined. For the

sake of simplicity, suppose

𝜙
(

X̃(t)
) ≜ 1

2
X̃T (t)PX̃(t)

L̃
(

X̃(t), Ũ(t)
) ≜ 1

2

(
X̃T (t)QX̃(t) + ŨT (t)RŨ(t)

)
Since 𝜙 is gr-differentiable, then based on Proposition 1 the follow-

ing relation can be written

𝜙
(

X̃(tf )
)
= ∫

tf

t0

⎡⎢⎢⎣
d𝜙
(

X̃(t)
)

dt

⎤⎥⎥⎦ dt + 𝜙
(

X̃(t0)
)

which helps us to rewrite the performance measure as

J̃(Ũ) = 𝜙
(

X̃(t0)
)
+ ∫

tf

t0

⎡⎢⎢⎣L̃
(

X̃(t), Ũ(t)
)
+

d𝜙
(

X̃(t)
)

dt

⎤⎥⎥⎦ dt (9)

Since 𝜙
(

X̃(t0)
)

is a vector of known fuzzy numbers, then it does

not affect minimizing J̃(Ũ), and therefore it can be neglected. Using

Note 4, and the fuzzy Lagrange multipliers vector defined as Λ̃ ∶
[t0, tf ] → En

1
the performance measure is formed as

J̃(Ũ) = ∫
tf

t0

⎡⎢⎢⎣L̃
(

X̃(t), Ũ(t)
)
+

d𝜙
(

X̃(t)
)

dt

+ Λ̃
T
(t)
(

Ã X̃(t) + B̃ Ũ(t) − ̇̃
X(t)
)]

dt (10)

Now, suppose X̃∗(t) and Ũ∗(t) are optimal fuzzy states vector and

control functions vector, respectively, and Λ̃∗(t) corresponds to X̃∗(t),
Ũ∗(t). Consider the deformations X̃(t) = X̃∗(t) + 𝛿X̃(t), Ũ(t) = Ũ∗(t) +
𝛿Ũ(t), Λ̃(t) = Λ̃∗(t) + 𝛿Λ̃(t), and

̇̃
X(t) = ̇̃

X
∗
(t) + 𝛿 ̇̃X(t) obtained using

the small variations 𝛿X̃(t), 𝛿Ũ(t), 𝛿Λ̃(t), and 𝛿 ̇̃X(t). Due to the fact

that, X̃∗(t) and Ũ∗(t) satisfy system (2) and minimize the performance

measure, then the increment of J̃(Ũ∗) defined as ▵ J̃ ≜ J̃(Ũ) − J̃(Ũ∗)
must be non-negative, i.e.▵ J̃ ≜ J̃(Ũ) − J̃(Ũ∗) ≥ 0. Using Proposition 2,

▵ J̃ can be written as:
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▵ J̃ = ∫
tf

t0

⎡⎢⎢⎣L̃
(

X̃(t), Ũ(t)
)
− L̃
(

X̃∗(t), Ũ∗(t)
)
+

d𝜙
(

X̃(t)
)

dt

−
d𝜙
(

X̃∗(t)
)

dt
+ Λ̃

T
(t)
(

Ã X̃(t) + B̃ Ũ(t) − ̇̃
X(t)
)

− Λ̃∗T(t)
(

Ã X̃∗(t) + B̃ Ũ∗(t) − ̇̃
X
∗(t)
)]

dt

and according to Definitions 6 and 8, we have (▵ J̃) =
 (̃J(Ũ) − J̃(Ũ∗)

)
meaning

(▵ J̃) = 
⎛⎜⎜⎝∫

tf

t0

⎡⎢⎢⎣L̃
(

X̃(t), Ũ(t)
)
− L̃
(

X̃∗(t), Ũ∗(t)
)
+

d𝜙
(

X̃(t)
)

dt

−
d𝜙
(

X̃∗(t)
)

dt
+ Λ̃

T
(t)
(

Ã X̃(t) + B̃ Ũ(t) − ̇̃
X(t)
)

− Λ̃∗T(t)
(

Ã X̃∗(t) + B̃ Ũ∗(t) − ̇̃
X
∗(t)
)]

dt
)

Based on Theorem 3 and Definition 13, the following relation is

obtained:

(▵ J̃) = ∫
tf

t0

[
Lgr
(

Xgr,Ugr , 𝜇, 𝛼L

)
− Lgr

(
X∗gr,U∗gr, 𝜇, 𝛼L∗

)
+
𝜕𝜙gr
(

Xgr, 𝜇, 𝛼𝜙
)

𝜕t
−
𝜕𝜙gr
(

X∗gr, 𝜇, 𝛼𝜙∗
)

𝜕t

+ ΛgrT

(
Agr(𝜇, 𝛼A)Xgr + Bgr(𝜇, 𝛼B)Ugr − 𝜕Xgr

𝜕t

)
− Λ∗grT

(
Agr(𝜇, 𝛼A)X∗gr + Bgr(𝜇, 𝛼B)U∗gr − 𝜕X∗gr

𝜕t

)]
dt

(11)

where Xgr ≜ X∗gr + 𝛿Xgr,

X∗gr ≜ X∗gr(t, 𝜇, 𝛼X∗ ), 𝛿Xgr ≜ 𝛿Xgr(t, 𝜇, 𝛼𝛿X),

Ugr ≜ U∗gr + 𝛿Ugr,U∗gr ≜ U∗gr(t, 𝜇, 𝛼U∗ ),

𝛿Ugr ≜ 𝛿Ugr(t, 𝜇, 𝛼𝛿U),Λgr ≜ Λ∗gr + 𝛿Λgr,

Λ∗gr ≜ Λ∗gr(t, 𝜇, 𝛼Λ∗ ), 𝛿Λgr ≜ 𝛿Λgr(t, 𝜇, 𝛼𝛿Λ).

Relation (11) is similar to that could be obtained if the dynamical

system was a crisp one. The difference between (11) and its corre-

sponded relation for a crisp linear dynamical system is that in (11)

we deal with multivariable functions X∗gr(t, 𝜇, 𝛼X∗ ), U∗gr(t, 𝜇, 𝛼U∗)
and Λ∗gr(t, 𝜇, 𝛼Λ∗ ), etc. instead X∗(t), U∗(t), and Λ∗(t), etc. Then, for

minimizing, the first variations of (▵ J̃) with respect to X∗gr ,
𝜕X∗gr

𝜕t
,

U∗gr , and Λ∗gr must be zero. Suppose,

g(Xgr, Ẋ
gr
,Ugr ,Λgr) = Lgr

(
Xgr ,Ugr, 𝜇, 𝛼L

)
+
𝜕𝜙gr
(

Xgr, 𝜇, 𝛼𝜙
)

𝜕t

+ ΛgrT
(

Agr(𝜇, 𝛼A)Xgr + Bgr(𝜇, 𝛼B)Ugr − Ẋ
gr
)

where

Ẋ
gr ≜ Ẋ

∗gr + 𝛿Ẋ
gr
, Ẋ

∗gr ≜ 𝜕X∗gr

𝜕t
, 𝛿Ẋ

gr ≜ 𝜕(𝛿Xgr)
𝜕t

Thus, relation (11) can be rewritten as

(▵ J̃) = ∫
tf

t0

[
g(X∗gr + 𝛿Xgr , Ẋ

∗gr + 𝛿Ẋ
gr
,U∗gr + 𝛿Ugr,Λ∗gr + 𝛿Λgr)

− g(X∗gr, Ẋ∗gr,U∗gr ,Λ∗gr)
]

dt (12)

Expanding the integrand of (12) in a Taylor series about X∗gr , Ẋ
∗gr

,

U∗gr , and Λ∗gr; and considering the terms in the expansion which are

linear in 𝛿Xgr , 𝛿Ẋ
gr

, 𝛿Ugr , and 𝛿Λgr result in

𝛿(▵ J̃) =
[
𝜕g

𝜕Ẋ
gr (X∗gr, Ẋ∗gr,U∗gr ,Λ∗gr)

]T |||||t=tf

𝛿Xgr||t=tf

+ ∫
tf

t0

{[[
𝜕g

𝜕Xgr
(X∗gr, Ẋ∗gr,U∗gr ,Λ∗gr)

]T

− d

dt

[
𝜕g

𝜕Ẋ
gr (X∗gr, Ẋ∗gr,U∗gr ,Λ∗gr)

]T
]
𝛿Xgr

+
[
𝜕g

𝜕Ugr
(X∗gr, Ẋ∗gr,U∗gr,Λ∗gr)

]T

𝛿Ugr

+
[

𝜕g

𝜕Λgr (X
∗gr, Ẋ∗gr,U∗gr,Λ∗gr)

]T

𝛿Λgr

}
dt

which is the first variation of (▵ J̃). Then, by 𝛿(▵ J̃) = 0 the fol-

lowing results can be gained

𝜕X∗gr(t, 𝜇, 𝛼X∗ )
𝜕t

= Agr(𝜇, 𝛼A)X∗gr(t, 𝜇, 𝛼X∗ ) + Bgr(𝜇, 𝛼B)U∗gr(t, 𝜇, 𝛼U∗ )
(13)

𝜕Λ∗gr(t, 𝜇, 𝛼Λ)
𝜕t

= −QX∗gr(t, 𝜇, 𝛼X∗ ) − AgrT(𝜇, 𝛼A)Λ∗gr(t, 𝜇, 𝛼Λ∗) (14)

U∗gr(t, 𝜇, 𝛼U) = −R−1BgrT (𝜇, 𝛼B)Λ∗gr(t, 𝜇, 𝛼Λ∗ ) (15)

Λ∗gr(tf , 𝜇, 𝛼Λ∗ ) = PX∗gr(tf , 𝜇, 𝛼X∗ ) (16)

Now, assume the relation between X∗gr(t, 𝜇, 𝛼X∗ ) and Λ∗gr(t, 𝜇, 𝛼Λ∗)
is as

Λ∗gr(t, 𝜇, 𝛼Λ∗) = Sgr(t, 𝜇, 𝛼S)X∗gr(t, 𝜇, 𝛼X∗ ) (17)

in which Sgr(t, 𝜇, 𝛼S) is an unknown matrix function such that

Sgr(tf , 𝜇, 𝛼S) = P. If such a matrix function can be found, then the

assumption is valid. By taking derivative from both side of (17) with

respect to t, and using relations (13) and (15) we have

𝜕Λ∗gr(t, 𝜇, 𝛼Λ∗ )
𝜕t

= 𝜕Sgr(t, 𝜇, 𝛼S)
𝜕t

X∗gr(t, 𝜇, 𝛼X∗ ) + Sgr(t, 𝜇, 𝛼S)
𝜕X∗gr(t, 𝜇, 𝛼X∗ )

𝜕t

= 𝜕Sgr(t, 𝜇, 𝛼S)
𝜕t

X∗gr(t, 𝜇, 𝛼X∗ ) + Sgr(t, 𝜇, 𝛼S)

×
(

Agr(𝜇, 𝛼A)X∗gr(t, 𝜇, 𝛼X∗ ) − Bgr(𝜇, 𝛼B)R−1BgrT (𝜇, 𝛼B)Sgr

(t, 𝜇, 𝛼S)X∗gr(t, 𝜇, 𝛼X∗ )
)

Then, by the aid of relations (14) and (17), we have

− 𝜕Sgr(t, 𝜇, 𝛼S)
𝜕t

X∗gr(t, 𝜇, 𝛼X∗ )

=
(

AgrT(𝜇, 𝛼A)Sgr(t, 𝜇, 𝛼S) + Sgr(t, 𝜇, 𝛼S)Agr(𝜇, 𝛼A)

− Sgr(t, 𝜇, 𝛼S)Bgr(𝜇, 𝛼B)R−1BgrT(𝜇, 𝛼B)Sgr(t, 𝜇, 𝛼S) + Q
)

× X∗gr(t, 𝜇, 𝛼X∗ )

Due to the fact that the relation above must hold for all the system

states trajectories on [t0, tf ], therefore the following relation hold
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− 𝜕Sgr(t, 𝜇, 𝛼S)
𝜕t

= AgrT (𝜇, 𝛼A)Sgr(t, 𝜇, 𝛼S) + Sgr(t, 𝜇, 𝛼S)Agr(𝜇, 𝛼A)

− Sgr(t, 𝜇, 𝛼S)Bgr(𝜇, 𝛼B)R−1BgrT (𝜇, 𝛼B)Sgr(t, 𝜇, 𝛼S) + Q (18)

whose boundary condition is Sgr(tf , 𝜇, 𝛼S) = P. Moreover, it is easy

to see that Sgr(t, 𝜇, 𝛼S) is a symmetric matrix function and can be

obtained by solving granular matrix differential equation (18). Sup-

pose (18) was solved and the matrix function Sgr(t, 𝜇, 𝛼S) is at dis-

posal. Then, by defining the granular feedback gain K(t, 𝜇, 𝛼k) =
[kgr

ri
(t, 𝜇, 𝛼kri

)]m×n, r = 1,… ,m, i = 1,… , n as

K(t, 𝜇, 𝛼k) = R−1BgrT (𝜇, 𝛼B)Sgr(t, 𝜇, 𝛼S) (19)

the granular optimal control functions vector is as follows

U∗gr(t, 𝜇, 𝛼U) = −K(t, 𝜇, 𝛼k)X∗gr(t, 𝜇, 𝛼X∗ ) (20)

Eventually, relations (13) and (18) to (20) - using Theorem 3, Defini-

tions 4 and 6 - can be written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

̇̃
X
∗(t) = Ã X̃∗(t) + B̃ Ũ∗(t)

Ũ∗(t) = −K̃(t)X̃∗(t)
K̃(t) = R−1B̃T S̃(t)
− ̇̃

S(t) = ÃT S̃(t) + S̃(t)Ã − S̃(t)B̃R−1B̃T S̃(t) + Q

X̃∗(t0) = X̃∗
0

S̃(tf ) = P

t ∈ [t0, tf ]

Based on the aforementioned, a theorem corresponding to the opti-

mal control of fuzzy dynamical linear systems can be derived as fol-

lows.

Theorem 4. Consider the fuzzy dynamical linear system (2) and

suppose it is stabilizable. The fuzzy optimal control functions vec-

tor which satisfies dynamical system (2) and minimizes performance

measure (3) is as Ũ∗(t) = −K̃(t)X̃∗(t) where the optimal fuzzy feed-

back gain K̃(t) is obtained as⎧⎪⎪⎨⎪⎪⎩
K̃(t) = R−1B̃T S̃(t)
− ̇̃

S(t) = ÃT S̃(t) + S̃(t)Ã − S̃(t)B̃R−1B̃T S̃(t) + Q

S̃(tf ) = P

t ∈ [t0, tf ]

(21)

The optimal fuzzy feedback gain K̃(t) = [̃kri(t)] for each t ∈ [t0, tf ]
is a fuzzy matrix. Then, for applying it to the dynamical system we

need to defuzzify K̃(t). The defuzzified feedback gain is denoted by

Kc(t) = [kri(t)]. It is noteworthy to pinpoint that, defuzzifying the

optimal fuzzy feedback gain results in the crisp sub-optimal feed-

back gain Kc(t) = [kri(t)] which turns out the sub-optimal control

law Ũ(t) = −Kc(t)X̃(t). As a result, according to Note 4, the sub-

optimal controlled fuzzy dynamical system with the control law

Ũ(t) = −Kc(t)X̃(t) can be considered as a closed loop system and

expressed as
̇̃

X(t) =
(

Ã − B̃Kc(t)
)

X̃(t). Fig. 2 shows the block diagram

of the sub-optimal controlled fuzzy closed loop dynamical system.

Proposition 4. Applying the optimal control law Ũ∗(t) = −K̃(t)X̃∗(t)
for controlling the fuzzy dynamical system (2) results in the optimal

cost J̃(Ũ∗) = 1

2
X̃T

0
S̃(t0)X̃0. □

Proof. The proof is straightforward and hence omitted.

3.1. Restrictions associated to SGH and gH differentiability

Investigating fuzzy optimal control problem under SGH and gH

differentiability imposes some restrictions which are expressed in

this section.

Fig. 2. The block diagram of sub-optimal control of fuzzy dynamical system (2).

Fig. 3. The closed loop form of the sub-optimal controlled fuzzy dynamical system.

3.1.1. Multiplicity of the solutions for the fuzzy optimal control problem

According to the UBM phenomenon [15], as a whole, the solution

of the following fuzzy dynamical systems{
̇̃

X(t) = Ã X̃(t) + B̃ Ũ(t)
X̃(t0) = X̃0

{
̇̃

X(t) − Ã X̃(t) = B̃ Ũ(t)
X̃(t0) = X̃0

(22)

{
̇̃

X(t) − B̃ Ũ(t) = Ã X̃(t)
X̃(t0) = X̃0

{
̇̃

X(t) − Ã X̃(t) − B̃ Ũ(t) = 0

X̃(t0) = X̃0

(23)

are not the same, based on each of the concepts of SGH differentia-

bility and gH differentiability. Therefore, as a whole, there is no same

optimal control for fuzzy dynamical systems (22) and (23). In other

words, there are multiple optimal controls for a single uncertain

dynamical phenomenon. Nevertheless, based on the gr-derivative

and RDM fuzzy interval arithmetic approach, the fuzzy dynamical

systems (22) and (23) have the same optimal control which can be

characterized according to Theorem 4.

3.1.2. Disability in the use of fuzzy lagrange multipliers

According to Note 1, since, as a whole, Ã X̃(t) + B̃ Ũ(t) − ̇̃
X(t) ≠ 0,

then by applying each of the concepts of SGH differentiability and gH

differentiability, one cannot use the advantage of the fuzzy Lagrange

multipliers as it was used in relation (10).

3.1.3. Incompatibility with the closed loop form of the controlled

system

Based on Note 1, the sub-optimal controlled fuzzy dynamical

system with the control law Ũ(t) = −Kc(t)X̃(t), as a whole, cannot

be represented in the closed loop form as
̇̃

X(t) =
(

Ã − B̃Kc(t)
)

X̃(t),

Fig. 4. The RLC circuit considered in Example 1.
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where the fuzzy derivative is considered as SGH or gH derivative. In

other words, since (ũ + ṽ)w̃ ≠ ũw̃ + ṽw̃, Fig. 2 is not equivalent with

Fig. 3.

3.1.4. Technical difficulties in the process of solving fuzzy optimal

control problem

Another more restriction associated SGH or gH differentiability

concepts correspond to determine the 𝜇-level sets of fuzzy dynam-

ical systems (22) and (23). As a matter of fact, based on the men-

tioned concepts, in order to obtain the solution of a fuzzy dynamical

system or analyzing its behavior, determining the left and right end-

points of the 𝜇-level sets of the fuzzy dynamical system is necessary.

However, in the cases that fuzzy dynamical system includes terms in

which the multiplication of two fuzzy numbers occurs, specifying the

𝜇-level sets is not always an easy task and may be restricted to some

particular cases, see e.g. Ref. [34]. For more illustration, consider the

following fuzzy dynamical system[
̇̃x1(t)
̇̃x2(t)

]
=

[
ã11 ã12

ã21 ã22

][
x̃1(t)
x̃2(t)

]
+

[
b̃11

b̃21

]
ũ(t) (24)

and suppose x̃1, x̃2 are SGH differentiable functions in the second

form. Then, the left and right end-points of the 𝜇-level sets of fuzzy

dynamical system (24) are characterized as:

⎡⎢⎢⎢⎢⎢⎢⎣

ẋ
𝜇
1
(t)

ẋ
𝜇

1 (t)

ẋ
𝜇
2
(t)

ẋ
𝜇

2 (t)

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

max{a
𝜇
11

x
𝜇
1
(t), a

𝜇
11

x
𝜇
1
(t), a

𝜇
11

x
𝜇
1
(t), a

𝜇
11

x
𝜇
1
(t)} + max{a

𝜇
12

x
𝜇
2
(t), a

𝜇
12

x
𝜇
2
(t), a

𝜇
12

x
𝜇
2
(t), a

𝜇
12

x
𝜇
2
(t)}

min{a
𝜇
11

x
𝜇
1
(t), a

𝜇
11

x
𝜇
1
(t), a

𝜇
11

x
𝜇
1
(t), a

𝜇
11

x
𝜇
1
(t)} + min{a

𝜇
12

x
𝜇
2
(t), a

𝜇
12

x
𝜇
2
(t), a

𝜇
12

x
𝜇
2
(t), a

𝜇
12

x
𝜇
2
(t)}

max{a
𝜇
21

x
𝜇
1
(t), a

𝜇
21

x
𝜇
1
(t), a

𝜇
21

x
𝜇
1
(t), a

𝜇
21

x
𝜇
1
(t)} + max{a

𝜇
22

x
𝜇
2
(t), a

𝜇
22

x
𝜇
2
(t), a

𝜇
22

x
𝜇
2
(t), a

𝜇
22

x
𝜇
2
(t)}

min{a
𝜇
21

x
𝜇
1
(t), a

𝜇
21

x
𝜇
1
(t), a

𝜇
21

x
𝜇
1
(t), a

𝜇
21

x
𝜇
1
(t)} + min{a

𝜇
22

x
𝜇
2
(t), a

𝜇
22

x
𝜇
2
(t), a

𝜇
22

x
𝜇
2
(t), a

𝜇
22

x
𝜇
2
(t)}

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

max{b
𝜇
11

u𝜇(t), b
𝜇
11

u
𝜇(t), b

𝜇

11
u𝜇(t), b

𝜇

11
u
𝜇(t)}

min{b
𝜇
11

u𝜇(t), b
𝜇
11

u
𝜇(t), b

𝜇

11u𝜇(t), b
𝜇

11u
𝜇(t)}

max{b
𝜇
21

u𝜇(t), b
𝜇
21

u
𝜇(t), b

𝜇

21u𝜇(t), b
𝜇

21u
𝜇(t)}

min{b
𝜇
21

u𝜇(t), b
𝜇
21

u
𝜇(t), b

𝜇

21u𝜇(t), b
𝜇

21u
𝜇(t)}

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(25)

Due to the fact that, x̃1(t), x̃2(t), and specially ũ(t), as a whole, are

unknown functions, then the values of the minimum and maximum

in the right hand side of relation (25) are not known and cannot be

determined in explicit terms, as a whole. Therefore, the process for

determining the optimal control has to deal with relation (25) which

leads to technical difficulties.

4. Examples

Example 1. Consider the RLC circuit shown in Fig. 4 where vc(t), iL(t)
and vs(t) are the voltage of capacitor, the current flowing through the

inductor and the source voltage, respectively. The values of resistor,

inductor and capacitor are, respectively, R in ohm, L in Henry and C

in Farad. The mathematical model of the RLC circuit can be expressed

as:[
ẋ1(t)
ẋ2(t)

]
=
⎡⎢⎢⎣
−2

RC

1

C
−1

L
0

⎤⎥⎥⎦
[

x1(t)
x2(t)

]
+
⎡⎢⎢⎣

1

RC
1

L

⎤⎥⎥⎦ u(t) (26)

or equivalently as

⎡⎢⎢⎣
ẋ1(t)

ẋ2(t)

⎤⎥⎥⎦ −
⎡⎢⎢⎣
−2

RC

1

C
−1

L
0

⎤⎥⎥⎦
[

x1(t)
x2(t)

]
=
⎡⎢⎢⎣

1

RC
1

L

⎤⎥⎥⎦ u(t) (27)

where [x1(t) x2(t)]T ≜ [vc(t) iL(t)]T , u(t) ≜ vs(t). With R = 0.5, L =
1 and C = 0.1 considered, the eigenvalues - i.e. poles - of the sys-

tem are 𝜆1 = −39.74 and 𝜆2 = −0.25. Therefore, the system is invari-

ably stable. Now, suppose the initial conditions are fuzzy numbers,

i.e. uncertain. With gr-derivative concept and RDM fuzzy interval

arithmetic considered, according to Definition 14, the eigenvalues

of dynamical systems (26) and (27) with fuzzy initial conditions

x̃1(0), x̃2(0) ∈ E1, are 𝜆1 = −39.74 and 𝜆2 = −0.25. Thus, based on

the proposed approach, the fuzzy dynamical systems (26) and (27)

are stable. However, using the notion of SGH or gH differentiability

in the first form and fuzzy standard interval arithmetic, dynamical

systems (26) and (27) with fuzzy initial conditions are equivalent to

the following dynamical systems, respectively:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẋ
𝜇
1
(t)

ẋ
𝜇

1
(t)

ẋ
𝜇
2
(t)

ẋ
𝜇

2
(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
−2

RC

1

C
0

−2

RC
0 0

1

C

0
−1

L
0 0

−1

L
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x
𝜇
1
(t)

x
𝜇
1
(t)

x
𝜇
2
(t)

x
𝜇
2
(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

RC
1

RC
1

L
1

L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
u(t) (28)

and

⎡⎢⎢⎢⎢⎢⎢⎣

ẋ
𝜇
1
(t)

ẋ
𝜇

1 (t)

ẋ
𝜇
2
(t)

ẋ
𝜇

2 (t)

⎤⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎣

−2

RC
0 0

1

C

0
−2

RC

1

C
0

−1

L
0 0 0

0
−1

L
0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

x
𝜇
1
(t)

x
𝜇
1
(t)

x
𝜇
2
(t)

x
𝜇
2
(t)

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

RC
1

RC
1

L
1

L

⎤⎥⎥⎥⎥⎥⎥⎥⎦
u(t) (29)

The eigenvalues of dynamical system (28) are 𝜆1 = −39.74, 𝜆2 =
−0.25, 𝜆3 = −0.24, 𝜆4 = 40.24; and those of system (29) are 𝜆1 =
−39.74, 𝜆2 = −0.25, 𝜆3 = −40.24 and 𝜆4 = 0.24. As is seen, dynam-

ical systems (28) and (29) not only are unstable, but also their

eigenvalues sets are different from the eigenvalues set of RLC

circuit.

Example 2. Consider the RLC circuit shown in Fig. 4. Suppose,

the values of the inductor and capacitor are uncertain. Then, we

have:

⎡⎢⎢⎣
̇̃x1(t)

̇̃x2(t)

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣
− 2

RC̃

1

C̃

−1

L̃
0

⎤⎥⎥⎥⎦
[

x̃1(t)
x̃2(t)

]
+
⎡⎢⎢⎢⎣

1

RC̃
1

L̃

⎤⎥⎥⎥⎦ ũ(t) (30)

Let R = 1 and the uncertain values of the inductor and capacitor be

respectively as L̃ = C̃ = 2̃, where 2̃ = (1, 2, 3) is the triangular fuzzy

number. Moreover, the initial conditions may be uncertain.
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Based on Proposition 3, the fuzzy dynamical system (30) is not

controllable. The granular dynamical system corresponding to (30)

is as

⎡⎢⎢⎢⎣
𝜕x

gr

1
(t, 𝜇, 𝛼x1

)
𝜕t

𝜕x
gr

2
(t, 𝜇, 𝛼x2

)
𝜕t

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
− 2

2gr(𝜇, 𝛼2)
1

2gr(𝜇, 𝛼2)
− 1

2gr(𝜇, 𝛼2)
0

⎤⎥⎥⎥⎦
[

x
gr

1
(t, 𝜇, 𝛼x1

)
x

gr

2
(t, 𝜇, 𝛼x2

)

]

+

⎡⎢⎢⎢⎣
1

2gr(𝜇, 𝛼2)
1

2gr(𝜇, 𝛼2)

⎤⎥⎥⎥⎦ ugr(t, 𝜇, 𝛼u) (31)

where 2gr(𝜇, 𝛼2) ≜ (2̃). Using the state-coordinate change (i.e. sim-

ilarity transformation) Zgr = TXgr where

T =

⎡⎢⎢⎢⎣
−
√

2

2

√
2

2√
2

2

√
2

2

⎤⎥⎥⎥⎦
the following granular dynamical system is obtained which is in fact

controllability normal form.

⎡⎢⎢⎢⎣
𝜕z

gr

1
(t, 𝜇, 𝛼z1

)
𝜕t

𝜕z
gr

2
(t, 𝜇, 𝛼z2

)
𝜕t

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
− 1

2gr(𝜇, 𝛼2)
0

2

2gr(𝜇, 𝛼2)
− 1

2gr(𝜇, 𝛼2)

⎤⎥⎥⎥⎦
[

z
gr

1
(t, 𝜇, 𝛼z1

)
z

gr

2
(t, 𝜇, 𝛼z2

)

]

+
⎡⎢⎢⎢⎣

0√
2

2gr(𝜇, 𝛼2)

⎤⎥⎥⎥⎦ ugr(t, 𝜇, 𝛼u) (32)

As is seen, the eigenvalue of the uncontrollable part is
−1

2gr(𝜇,𝛼2)
which

means the uncontrollable mode is stable. Then, the granular dynam-

ical system (32) or equivalently (31) is stabilizable. Thus, based on

Definition 16, the fuzzy dynamical system (30) - where R = 1, L̃ =
C̃ = 2̃ - are also stabilizable.

Example 3. Consider the following fuzzy dynamical

system of motion for the Boeing 747 in longitudinal

direction adopted from Refs. [15,35].

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

̇̃u(t)

̇̃a(t)

̇̃q(t)

̇̃𝜃(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X̃u X̃w 0
−g cos(𝜃0)

ũ0

Z̃u

1 − Z̃ẇ

Z̃w

1 − Z̃ẇ

ũ0 + Z̃q

ũ0(1 − Z̃ẇ)
−g sin(𝜃0)
ũ0(1 − Z̃ẇ)

ũ0

(
M̃u + M̃ẇZ̃u

1 − Z̃ẇ

)
ũ0

(
M̃w + M̃ẇZ̃w

1 − Z̃ẇ

)
M̃q +

(ũ0 + Z̃q)M̃ẇ

1 − Z̃ẇ

−M̃ẇg sin(𝜃0)
1 − Z̃ẇ

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ũ(t)

ã(t)

q̃(t)

𝜃(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X𝛿e

ũ0

X𝛿T

ũ0
Z𝛿e

ũ0(1 − Z̃ẇ)

Z𝛿T

ũ0(1 − Z̃ẇ)

M𝛿e
+

M̃ẇZ𝛿e

1 − Z̃ẇ

M𝛿T
+

M̃ẇZ𝛿T

1 − Z̃ẇ

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
𝛿e(t)
𝛿T (t)

]
(33)

Table 1

Variables and parameters of the uncertain linear model of the

Boeing 747 in longitudinal direction.

g = 32.174 X̃u = −5.936

ũ0
X𝛿T

= 0

X̃w = 13.048

ũ0
Z̃u = −64.568

ũ0
𝜃0 = 0

Z̃w = −169.064

ũ0
Z̃ẇ = −2673.4

ũ2
0

M𝛿e
= −0.5769

Z̃q = −2148.7

ũ0
M̃w = −0.532

ũ0
Z𝛿T

= −7.854

M̃u = 0 M̃ẇ = −15.68

ũ2
0

X𝛿e
= 0

M̃q = −122.668

ũ0
Z𝛿e

= −9.817 M𝛿T
= −0.634

Fig. 5. The model of a quarter of a bus suspension system.

where ũ(t), ã(t), q̃(t), and 𝜃(t) are the linear velocity in the direc-

tion of X-axis in ( ft

s
), angle of attack in (rad), pitch rate in ( rad

s
),

and pitch angle in (rad), respectively. The aircraft is in powered

approach at Mach number about M = 0.25 and standard see level

conditions. Expressing the Mach number as about M = 0.25 means

that it is uncertain and is not precisely known. It is well known

that the speed of sound depends on temperature and it increases

as the ambient temperature increases. Then, the actual speed of the

aircraft traveling at Mach number M = 0.25 will depend on the tem-

perature of the fluid through which it is passing. Therefore, consider-

ing such an uncertainty is reasonable. In this paper, the Mach number

is considered as M̃ = (0.23, 0.25, 0.29) and the initial conditions
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Fig. 6. The sub-optimal feedback gain kc11(t) (green curve), and fuzzy optimal feedback gain k̃11(t) corresponding to Example 2. The blue and red curves show the left and right

end-points of the support of k̃11(t). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The sub-optimal feedback gain kc12(t) (green curve), and fuzzy optimal feedback gain k̃12(t) corresponding to Example 2. The blue and red curves show the left and right

end-points of the support of k̃12(t). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. The sub-optimal feedback gain kc13(t) (green curve), and fuzzy optimal feedback gain k̃13(t) corresponding to Example 2. The blue and red curves show the left and right

end-points of the support of k̃13(t). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. The sub-optimal feedback gain kc14(t) (green curve), and fuzzy optimal feedback gain k̃14(t) corresponding to Example 2. The blue and red curves show the left and right

end-points of the support of k̃14(t). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. The sub-optimal feedback gain kc21(t) (green curve), and fuzzy optimal feedback gain k̃21(t) corresponding to Example 2. The blue and red curves show the left and right

end-points of the support of k̃21(t). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. The sub-optimal feedback gain kc22(t) (green curve), and fuzzy optimal feedback gain k̃22(t) corresponding to Example 2. The blue and red curves show the left and right

end-points of the support of k̃22(t). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. The sub-optimal feedback gain kc23(t) (green curve), and fuzzy optimal feedback gain k̃23(t) corresponding to Example 2. The blue and red curves show the left and right

end-points of the support of k̃23(t). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. The sub-optimal feedback gain kc24(t) (green curve), and fuzzy optimal feedback gain k̃24(t) corresponding to Example 2. The blue and red curves show the left and right

end-points of the support of k̃24(t). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. The 𝜇-level sets of the linear velocity, ũ(t). The blue and red curves show the left and right end-points of the 𝜇-level sets. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. The 𝜇-level sets of the angle of attack, ã(t). The blue and red curves show the left and right end-points of the 𝜇-level sets. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

Fig. 16. The 𝜇-level sets of the pitch rate, q̃(t). The blue and red curves show the left and right end-points of the 𝜇-level sets. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

Fig. 17. The 𝜇-level sets of the pitch angle, 𝜃(t). The blue and red curves show the left and right end-points of the 𝜇-level sets. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. The membership functions of the sub-optimal performance index corresponding to Example 2.

Fig. 19. The membership function of the difference between the optimal and sub-optimal performance indices corresponding to Example 2.

Fig. 20. The possible motions of controlled Boeing 747 in the presence of uncertainty for some degrees of possibility.

Please cite this article in press as: Mazandarani M, Pariz N. Sub-optimal control of fuzzy linear dynamical systems under granular

differentiability concept, ISA Transactions (2018), https://doi.org/10.1016/j.isatra.2018.02.001

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com



15M. Mazandarani and N. Pariz / ISA Transactions xxx (2018) 1–17

Table 2

The parameters of a quarter of the bus suspension system.

m1 = 2500(Kg)
m2 = 3200(Kg)
k̃1 is about 80000( N

m
) = (72000, 80000, 85333)( N

m
)

k̃2 is about 500000( N

m
) = (450000, 500000, 533333)( N

m
)

b̃1 is about 350( Ns

m
) = (315, 350, 385)( Ns

m
)

b̃2 is about 15020( Ns

m
) = (13768, 15020, 16522)( Ns

m
)

of the aircraft are as ũ(0) = 14

ũ0
, ã(0) = −14

ũ0
, q̃(0) = (0.3, 0.4, 0.6), and

𝜃(0) = (0.01, 0.01, 0.01) where ũ0 = 1116M̃. The coefficients have

been determined in Table 1. Moreover, the deviation of elevator and

thrust, i.e. 𝛿e(t) and 𝛿T (t) are the control inputs.

The aim is to find the optimal control law for the system (33) to

minimize the performance measure (3) with the weighting matri-

ces P = 17I4×4,Q = 70I4×4, and R = 140I2×2. It should be noted that,

based on Proposition 3, the granular controllability of fuzzy dynam-

ical system (33) can be verified. Then, according to Theorem 4 for

obtaining the fuzzy optimal control law, the fuzzy feedback gains

must be determined. The fuzzy feedback gains depend on solving

fuzzy matrix differential equation (21) whose the final condition is

S̃(tf ) = 17I4×4. In order to obtain the solution of fuzzy matrix differ-

ential equation (21), the granular matrix differential equation corre-

sponding to (21), i.e.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−𝜕Sgr(t,𝜇,𝛼S)

𝜕t
=

AgrT
(𝜇, 𝛼A)Sgr(t, 𝜇, 𝛼S) + Sgr(t, 𝜇, 𝛼S)Agr(𝜇, 𝛼A)

−Sgr(t, 𝜇, 𝛼S)Bgr(𝜇, 𝛼B)R−1BgrT (𝜇, 𝛼B)Sgr(t, 𝜇, 𝛼S)
+70I4×4

Sgr(tf , 𝜇, 𝛼S) = 17I4×4

t ∈ [0, 50]

(34)

has been solved, and S̃(t)= −1(Sgr(t, 𝜇, 𝛼S)) has been obtained.

Then, using K̃(t) = R−1BT S̃(t), the optimal fuzzy feedback gain

K̃(t) = [̃kri(t)]m×n, r = 1, 2, i = 1,… , 4 can be determined.

Figs. 6–13 show the left and right end-points of the 𝜇-level sets

of the optimal fuzzy feedback gains k̃ri(t) for 𝜇 = 0. Additionally, by

the aid of the center of gravity method, the optimal fuzzy feedback

gains have been defuzzified and shown by green curves in the figures.

The membership functions of the fuzzy feedback gains at t = 25 with

their defuzzified values have been also depicted in the center of the

figures.

Figs. 14–17 also show the left and right end-points of the 𝜇-

level sets of the fuzzy trajectories ũ, 𝛼, q̃, and 𝜃 which have been

obtained by applying the sub-optimal control law Ũ(t) = −Kc(t)X̃(t).
It should be noted that, the value of each of the system states in

any time is a fuzzy number. Additionally, using these figures one

can predict the possible trajectories that the system states dur-

ing the time pass. Furthermore, the values and features of each

of the states in any time can be expressed as a linguistic vari-

able. As an illustration, on the basis of Fig. 14 one can express that

the linear velocity has an undershoot at t = 6.55 which is about

”−0.025”.

The sub-optimal performance index obtained by applying the

sub-optimal control law Ũ(t) = −Kc(t)X̃(t) has been shown in Fig. 18.

Based on the figure, it can be interpreted that the performance index

is approximately ”13.34”. If the performance is not satisfactory, then

the weighting matrices can be changed. Moreover, by determin-

ing the optimal performance index using Proposition 4, the differ-

ence between the sub-optimal performance index and the optimal

performance index, i.e. ▵ J̃ = J
(
−Kc(t)X̃(t)

)
− 1

2
X̃T

0
S̃(t0)X̃0 has been

obtained and shown in Fig. 19. Simply put, Fig. 19 shows that the sub-

optimal performance index is about ”0.04” far from the optimal value

of the performance index. Furthermore, based on the Fig. 17, the pos-

sible motions of controlled Boeing 747 in the presence of uncertainty

has been illustrated in Fig. 20 for some degrees of possibility.

Example 4. Consider the suspension system of one of the four

wheels of a bus shown in Fig. 5. In the suspension system m1, m2,

K1, K2, b1, and b2 are a quarter of the bus body mass, the suspension

mass, spring stiffness constant of suspension system, spring stiffness

constant of wheel and tire, damping constant of suspension system,

damping constant of wheel and tire, respectively. The control force

and road displacement were denoted by u and w. The quarter of

the bus body displacement is determined by x1, and x2 shows non-

sprung mass displacement. The values of the bus suspension system

parameters have been determined in Table 2.

With spring stiffness and damping constants considered as uncer-

tain parameters, the fuzzy state space model of the suspension sys-

tem is expressed as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

̇̃x1(t)

̇̃x2(t)

̇̃y1(t)

̇̃y2(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

− b̃1b̃2

m1m2

0
b̃2

1
m1 + b̃2

1
m2 + b̃1b̃2m1 − k̃1m1m2

m2
1
m2

− b̃1

m1

b̃2

m2

0 − b̃1m2 + (b̃1 + b̃2)m1

m1m2

1

k̃2

m2

0 − k̃1m2 + (̃k1 + k̃2)m1

m1m2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃1(t)

x̃2(t)

ỹ1(t)

ỹ2(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1

m1

b̃1b̃2

m1m2

0 − b̃2

m2

1

m1

+ 1

m2

− k̃2

m2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
ũ(t)
w̃(t)

]
(35)

where x̃2 = dx̃1(t)
dt

, ỹ1 = x̃1 − x̃2 and ỹ2 = dỹ1(t)
dt

. The aim is to find the

sub-optimal control law for the system (35) so as to keep the quar-

ter of bus body displacement near zero in the presence of road dis-

placement as an uncontrolled input to the system. The performance

measure considered in this case is as:

J̃(Ũ) = 1

2

[
10000x̃2

1
(3) + 5000x̃2

2
(3)
]

+ 1

2 ∫
3

0

(
10000x̃2

1
(t) + 5000x̃2

2
(t) + 0.00002ũ2(t)

)
dt (36)

Similar to the previous example, we first obtain the fuzzy opti-

mal control law by solving fuzzy matrix differential equations shown

in (21). Then the fuzzy feedback gains are defuzzified and used

for control of the system. The sub-optimal control law obtained

using the defuzzified feedback gains has been shown in Fig. 21.

The possible quarter of bus body displacements and its derivative

have been illustrated in Figs. 22 and 23. The initial condition is as(
x1(0), x2(0), y1(0), y2(0)

)
= (0, 0, 0, 0). The road displacement has

been considered as a pulse whose amplitude is about 0.1 m, i.e.

(0.08, 0.1, 0.12), for 0.1 ≤ t ≤ 0.2. It should be noted that for obtain-

ing the optimal control law, the matrix B × [1 0]T is used instead B.

The reason comes from this fact that only the control force u can be

modified.
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Fig. 21. The 𝜇-level sets of the sub-optimal control, ũ(t). The blue and red curves show the left and right end-points of the 𝜇-level sets. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 22. The 𝜇-level sets of the quarter of bus body displacement, x̃1(t). The blue and red curves show the left and right end-points of the 𝜇-level sets. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 23. The 𝜇-level sets of the speed of quarter of bus body displacement, x̃2(t). The blue and red curves show the left and right end-points of the 𝜇-level sets. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5. Conclusions

In this paper, the uncertain linear dynamical system was con-

sidered to be regulated in an optimal manner. The uncertainties

were expressed as the fuzzy numbers, and the fuzzy derivative was

regarded as gr-derivative. Thanks to gr-derivative and RDM fuzzy

interval arithmetic the fuzzy optimal control problem was converted

to an equivalent optimal control problem dealing with multivari-

able functions. The optimal control law was obtained in the form

of state variables fuzzy feedback. Although the optimal control with

fuzzy feedback gains satisfied the conditions and minimized the cri-

teria, the fuzzy feedback gains needed to be defuzzified in practice.

As a result, the sub-optimal control law was obtained. The concepts

of granular controllability and granular stabilizability of the uncer-

tain dynamical system were also given. Using Example 1 we showed

that the advantage of the concept of granular eigenvalues defined

based on RDM fuzzy interval arithmetic in comparison with other

approaches which are on the basis of FSIA. It was demonstrated

that the approaches - SGH differentiability and gH differentiability

- based on FSIA in dealing with the fuzzy optimal control problem

suffer from some drawbacks outlined below:

1. Disability in the use of fuzzy Lagrange multipliers.

2. Multiplicity of the solutions for the fuzzy optimal control prob-

lem.

3. Incompatibility with the closed loop form of the controlled sys-

tem.

4. Technical difficulties in the process of solving fuzzy optimal con-

trol problem.

The superiorities of the proposed approach arise from this key point

that the proposed approach does not have the mentioned shortcom-

ings. It is noteworthy to pinpoint that, robust control methods seek

to bound the uncertainty rather than express it in the form of a dis-

tribution. Simply put, given a bound on the uncertainty, the control

can deliver results that meet the crisp control system requirements

in all cases. Then, a combination of the obtained results in this paper

and robust control methods would be considered as a future work.
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