

Software Architecture in
Practice
Fourth Edition

The SEI Series in Software Engineering is a collaborative undertaking of
the Carnegie Mellon Software Engineering Institute (SEI) and Addison-

Wesley to develop and publish books on software engineering and related
topics. The common goal of the SEI and Addison-Wesley is to provide the
most current information on these topics in a form that is easily usable by
practitioners and students.

Titles in the series describe frameworks, tools, methods, and technologies
designed to help organizations, teams, and individuals improve their technical
or management capabilities. Some books describe processes and practices for
developing higher-quality software, acquiring programs for complex systems,

system architecture and product-line development. Still others, from the
SEI’s CERT Program, describe technologies and practices needed to manage
software and network security risk. These and all titles in the series address
critical problems in software engineering for which practical solutions are
available.

Visit informit.com/sei for a complete list of available publications.

The SEI Series in Software Engineering

Make sure to connect with us!
informit.com/socialconnect

http://Visitinformit.com/sei
http://informit.com/socialconnect

Software Architecture in
Practice
Fourth Edition

Len Bass
Paul Clements
Rick Kazman

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and CERT
Coordination Center are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; CURE; EPIC;
Evolutionary Process for Integrating COTS Based Systems; Framework for Software Product Line Practice; IDEAL;
Interim Profile; OAR; OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options
Analysis for Reengineering; Personal Software Process; PLTP; Product Line Technical Probe; PSP; SCAMPI;
SCAMPI Lead Appraiser; SCAMPI Lead Assessor; SCE; SEI; SEPG; Team Software Process; and TSP are service
marks of Carnegie Mellon University.

Special permission to reproduce portions of works copyright by Carnegie Mellon University, as listed on page 437, is
granted by the Software Engineering Institute.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied war-
ranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include elec-
tronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021934450

Copyright © 2022 Pearson Education, Inc.

Cover image: Zhernosek_FFMstudio.com/Shutterstock

Hand/input icon: In-Finity/Shutterstock

Figure 1.1: GraphicsRF.com/Shutterstock

Figure 15.2: Shutterstock Vector/Shutterstock

Figure 17.1: Oleksiy Mark/Shutterstock

Figure 17.2, cloud icon: luckyguy/123RF

Figures 17.2, 17.4, and 17.5 computer icons: Dacian G/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
 electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms
and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions/.

ISBN-13: 978-0-13-688609-9
ISBN-10: 0-13-688609-4

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://Zhernosek_FFMstudio.com/Shutterstock
http://GraphicsRF.com/Shutterstock
http://www.pearson.com/permissions/

v

Contents

Preface xv

Acknowledgments xvii

PART I INTRODUCTION 1

CHAPTER 1 What Is Software Architecture? 1

1.1 What Software Architecture Is and What It Isn’t 2

1.2 Architectural Structures and Views 5

1.3 What Makes a “Good” Architecture? 19

1.4 Summary 21

1.5 For Further Reading 21

1.6 Discussion Questions 22

CHAPTER 2 Why Is Software Architecture Important? 25

2.1 Inhibiting or Enabling a System’s Quality Attributes 26

2.2 Reasoning about and Managing Change 27

2.3 Predicting System Qualities 28

2.4 Communication among Stakeholders 28

2.5 Early Design Decisions 31

2.6 Constraints on Implementation 31

2.7 Influences on Organizational Structure 32

2.8 Enabling Incremental Development 33

2.9 Cost and Schedule Estimates 33

2.10 Transferable, Reusable Model 34

2.11 Architecture Allows Incorporation of Independently Developed

Elements 34

vi Contents

2.12 Restricting the Vocabulary of Design Alternatives 35

2.13 A Basis for Training 36

2.14 Summary 36

2.15 For Further Reading 37

2.16 Discussion Questions 37

PART II QUALITY ATTRIBUTES 39

CHAPTER 3 Understanding Quality Attributes 39

3.1 Functionality 40

3.2 Quality Attribute Considerations 41

3.3 Specifying Quality Attribute Requirements: Quality Attribute

Scenarios 42

3.4 Achieving Quality Attributes through Architectural Patterns and

Tactics 45

3.5 Designing with Tactics 46

3.6 Analyzing Quality Attribute Design Decisions: Tactics-Based

Questionnaires 48

3.7 Summary 49

3.8 For Further Reading 49

3.9 Discussion Questions 50

CHAPTER 4 Availability 51

4.1 Availability General Scenario 53

4.2 Tactics for Availability 55

4.3 Tactics-Based Questionnaire for Availability 62

4.4 Patterns for Availability 66

4.5 For Further Reading 68

4.6 Discussion Questions 69

CHAPTER 5 Deployability 71

5.1 Continuous Deployment 72

5.2 Deployability 75

5.3 Deployability General Scenario 76

5.4 Tactics for Deployability 78

Contents vii

5.5 Tactics-Based Questionnaire for Deployability 80

5.6 Patterns for Deployability 81

5.7 For Further Reading 87

5.8 Discussion Questions 87

CHAPTER 6 Energy Efficiency 89

6.1 Energy Efficiency General Scenario 90

6.2 Tactics for Energy Efficiency 92

6.3 Tactics-Based Questionnaire for Energy Efficiency 95

6.4 Patterns 97

6.5 For Further Reading 98

6.6 Discussion Questions 99

CHAPTER 7 Integrability 101

7.1 Evaluating the Integrability of an Architecture 102

7.2 General Scenario for Integrability 104

7.3 Integrability Tactics 105

7.4 Tactics-Based Questionnaire for Integrability 110

7.5 Patterns 112

7.6 For Further Reading 114

7.7 Discussion Questions 115

CHAPTER 8 Modifiability 117

8.1 Modifiability General Scenario 120

8.2 Tactics for Modifiability 121

8.3 Tactics-Based Questionnaire for Modifiability 125

8.4 Patterns 126

8.5 For Further Reading 130

8.6 Discussion Questions 131

CHAPTER 9 Performance 133

9.1 Performance General Scenario 134

9.2 Tactics for Performance 137

9.3 Tactics-Based Questionnaire for Performance 145

9.4 Patterns for Performance 146

viii Contents

9.5 For Further Reading 149

9.6 Discussion Questions 150

CHAPTER 10 Safety 151

10.1 Safety General Scenario 154

10.2 Tactics for Safety 156

10.3 Tactics-Based Questionnaire for Safety 160

10.4 Patterns for Safety 163

10.5 For Further Reading 165

10.6 Discussion Questions 166

CHAPTER 11 Security 169

11.1 Security General Scenario 170

11.2 Tactics for Security 172

11.3 Tactics-Based Questionnaire for Security 176

11.4 Patterns for Security 179

11.5 For Further Reading 180

11.6 Discussion Questions 180

CHAPTER 12 Testability 183

12.1 Testability General Scenario 186

12.2 Tactics for Testability 187

12.3 Tactics-Based Questionnaire for Testability 192

12.4 Patterns for Testability 192

12.5 For Further Reading 194

12.6 Discussion Questions 195

CHAPTER 13 Usability 197

13.1 Usability General Scenario 198

13.2 Tactics for Usability 200

13.3 Tactics-Based Questionnaire for Usability 202

13.4 Patterns for Usability 203

13.5 For Further Reading 205

13.6 Discussion Questions 205

Contents ix

CHAPTER 14 Working with Other Quality Attributes 207

14.1 Other Kinds of Quality Attributes 207

14.2 Using Standard Lists of Quality Attributes—Or Not 209

14.3 Dealing with “X-Ability”: Bringing a New QA into the

Fold 212

14.4 For Further Reading 215

14.5 Discussion Questions 215

PART III ARCHITECTURAL SOLUTIONS 217

CHAPTER 15 Software Interfaces 217

15.1 Interface Concepts 218

15.2 Designing an Interface 222

15.3 Documenting the Interface 228

15.4 Summary 230

15.5 For Further Reading 230

15.6 Discussion Questions 231

CHAPTER 16 Virtualization 233

16.1 Shared Resources 234

16.2 Virtual Machines 235

16.3 VM Images 238

16.4 Containers 239

16.5 Containers and VMs 241

16.6 Container Portability 242

16.7 Pods 242

16.8 Serverless Architecture 243

16.9 Summary 244

16.10 For Further Reading 245

16.11 Discussion Questions 245

CHAPTER 17 The Cloud and Distributed Computing 247

17.1 Cloud Basics 248

17.2 Failure in the Cloud 251

x Contents

17.3 Using Multiple Instances to Improve Performance and

Availability 253

17.4 Summary 261

17.5 For Further Reading 262

17.6 Discussion Questions 262

CHAPTER 18 Mobile Systems 263

18.1 Energy 264

18.2 Network Connectivity 266

18.3 Sensors and Actuators 267

18.4 Resources 268

18.5 Life Cycle 270

18.6 Summary 273

18.7 For Further Reading 274

18.8 Discussion Questions 275

PART IV SCALABLE ARCHITECTURE PRACTICES 277

CHAPTER 19 Architecturally Significant Requirements 277

19.1 Gathering ASRs from Requirements Documents 278

19.2 Gathering ASRs by Interviewing Stakeholders 279

19.3 Gathering ASRs by Understanding the Business

Goals 282

19.4 Capturing ASRs in a Utility Tree 284

19.5 Change Happens 286

19.6 Summary 286

19.7 For Further Reading 287

19.8 Discussion Questions 287

CHAPTER 20 Designing an Architecture 289

20.1 Attribute-Driven Design 289

20.2 The Steps of ADD 292

20.3 More on ADD Step 4: Choose One or More Design

Concepts 295

20.4 More on ADD Step 5: Producing Structures 298

Contents xi

20.5 More on ADD Step 6: Creating Preliminary Documentation

during the Design 301

20.6 More on ADD Step 7: Perform Analysis of the Current Design

and Review the Iteration Goal and Achievement of the Design

Purpose 304

20.7 Summary 306

20.8 For Further Reading 306

20.9 Discussion Questions 307

CHAPTER 21 Evaluating an Architecture 309

21.1 Evaluation as a Risk Reduction Activity 309

21.2 What Are the Key Evaluation Activities? 310

21.3 Who Can Perform the Evaluation? 311

21.4 Contextual Factors 312

21.5 The Architecture Tradeoff Analysis Method 313

21.6 Lightweight Architecture Evaluation 324

21.7 Summary 326

21.8 For Further Reading 327

21.9 Discussion Questions 327

CHAPTER 22 Documenting an Architecture 329

22.1 Uses and Audiences for Architecture Documentation 330

22.2 Notations 331

22.3 Views 332

22.4 Combining Views 339

22.5 Documenting Behavior 340

22.6 Beyond Views 345

22.7 Documenting the Rationale 346

22.8 Architecture Stakeholders 347

22.9 Practical Considerations 350

22.10 Summary 353

22.11 For Further Reading 353

22.12 Discussion Questions 354

xii Contents

CHAPTER 23 Managing Architecture Debt 355

23.1 Determining Whether You Have an Architecture Debt

Problem 356

23.2 Discovering Hotspots 358

23.3 Example 362

23.4 Automation 363

23.5 Summary 364

23.6 For Further Reading 364

23.7 Discussion Questions 365

PART V ARCHITECTURE AND THE ORGANIZATION 367

CHAPTER 24 The Role of Architects in Projects 367

24.1 The Architect and the Project Manager 367

24.2 Incremental Architecture and Stakeholders 369

24.3 Architecture and Agile Development 370

24.4 Architecture and Distributed Development 373

24.5 Summary 376

24.6 For Further Reading 376

24.7 Discussion Questions 377

CHAPTER 25 Architecture Competence 379

25.1 Competence of Individuals: Duties, Skills, and Knowledge of

Architects 379

25.2 Competence of a Software Architecture Organization 386

25.3 Become a Better Architect 387

25.4 Summary 388

25.5 For Further Reading 388

25.6 Discussion Questions 389

Contents xiii

PART VI CONCLUSIONS 391

CHAPTER 26 A Glimpse of the Future: Quantum Computing 391

26.1 Single Qubit 392

26.2 Quantum Teleportation 394

26.3 Quantum Computing and Encryption 394

26.4 Other Algorithms 395

26.5 Potential Applications 396

26.6 Final Thoughts 397

26.7 For Further Reading 398

References 399

About the Authors 415

Index 417

This page intentionally left blank

xv

Preface

When we set out to write the fourth edition of Software Architecture in Practice, our first
question to ourselves was: Does architecture still matter? With the rise of cloud infrastruc-
tures, microservices, frameworks, and reference architectures for every conceivable domain
and quality attribute, one might think that architectural knowledge is hardly needed anymore.
All the architect of today needs to do is select from the rich array of tools and infrastructure
alternatives out there, instantiate and configure them, and voila! An architecture.

We were (and are) pretty sure this is not true. Admittedly, we are somewhat biased. So we
spoke to some of our colleagues—working architects in the healthcare and automotive domains,
in social media and aviation, in defense and finance and e-commerce—none of whom can afford
to let dogmatic bias rule them. What we heard confirmed our belief—that architecture is just as
relevant today as it was more than 20 years ago, when we wrote the first edition.

Let’s examine a few of the reasons that we heard. First, the rate of new requirements has
been accelerating for many years, and it continues to accelerate even now. Architects today are
faced with a nonstop and ever-increasing stream of feature requests and bugs to fix, driven by
customer and business needs and by competitive pressures. If architects aren’t paying attention
to the modularity of their system (and, no, microservices are not a panacea here), that system
will quickly become an anchor—hard to understand, change, debug, and modify, and weigh-
ing down the business.

Second, while the level of abstraction in systems is increasing—we can and do regularly
use many sophisticated services, blissfully unaware of how they are implemented—the com-
plexity of the systems we are being asked to create is increasing at least as quickly. This is an
arms race, and the architects aren’t winning! Architecture has always been about taming com-
plexity, and that just isn’t going to go away anytime soon.

Speaking of raising the level of abstraction, model-based systems engineering (MBSE)
has emerged as a potent force in the engineering field over the last decade or so. MBSE is
the formalized application of modeling to support (among other things) system design. The
International Council on Systems Engineering (INCOSE) ranks MBSE as one of a select set of
“transformational enablers” that underlie the entire discipline of systems engineering. A model
is a graphical, mathematical, or physical representation of a concept or a construct that can be
reasoned about. INCOSE is trying to move the engineering field from a document-based men-
tality to a model-based mentality, where structural models, behavioral models, performance
models, and more are all used consistently to build systems better, faster, and cheaper. MBSE
per se is beyond the scope of this book, but we can’t help but notice that what is being modeled
is architecture. And who builds the models? Architects.

xvi Preface

Third, the meteoric growth (and unprecedented levels of employee turnover) that char-
acterizes the world of information systems means that no one understands everything in any
real-world system. Just being smart and working hard aren’t good enough.

Fourth, despite having tools that automate much of what we used to do ourselves—think
about all of the orchestration, deployment, and management functions baked into Kubernetes,
for example—we still need to understand the quality attribute properties of these systems that
we depend upon, and we need to understand the emergent quality attribute properties when we
combine systems together. Most quality attributes—performance, security, availability, safety,
and so on—are susceptible to “weakest link” problems, and those weakest links may only
emerge and bite us when we compose systems. Without a guiding hand to ward off disaster,
the composition is very likely to fail. That guiding hand belongs to an architect, regardless of
their title.

Given these considerations, we felt safe and secure that there was indeed a need for this
book.

But was there a need for a fourth edition? Again (and this should be abundantly obvious),
we concluded an emphatic “yes”! Much has changed in the computing landscape since the
last edition was published. Some quality attributes that were not previously considered have
risen to importance in the daily lives of many architects. As software continues to pervade
all aspects of our society, safety considerations have become paramount for many systems;
think about all of the ways that software controls the cars that we now drive. Likewise, energy
efficiency is a quality that few architects considered a decade ago, but now must pay attention
to, from massive data centers with unquenchable needs for energy to the small (even tiny)
 battery-operated mobile and IoT devices that surround us. Also, given that we are, more than
ever, building systems by leveraging preexisting components, the quality attribute of integra-
bility is consuming ever-increasing amounts of our attention.

Finally, we are building different kinds of systems, and building them in different ways
than a decade ago. Systems these days are often built on top of virtualized resources that
reside in a cloud, and they need to provide and depend on explicit interfaces. Also, they are
increasingly mobile, with all of the opportunities and challenges that mobility brings. So, in
this edition we have added chapters on virtualization, interfaces, mobility, and the cloud.

As you can see, we convinced ourselves. We hope that we have convinced you as well,
and that you will find this fourth edition a useful addition to your (physical or electronic)
bookshelf.

Register your copy of Software Architecture in Practice, Fourth Edition, on the InformIT
site for convenient access to updates and/or corrections as they become available. To start
the registration process, go to informit.com/register and log in or create an account. Enter the
product ISBN (9780136886099) and click Submit. Look on the Registered Products tab for
an Access Bonus Content link next to this product, and follow that link to access any avail-
able bonus materials. If you would like to be notified of exclusive offers on new editions and
updates, please check the box to receive email from us.

http://informit.com/register

xvii

Acknowledgments

We are profoundly grateful to all the people with whom we collaborated to produce this book.
First and foremost, we extend our gratitude to the co-authors of individual chapters. Their

knowledge and insights in these areas were invaluable. Our thanks go to Cesare Pautasso of
the Faculty of Informatics, University of Lugano; Yazid Hamdi of Siemens Mobile Systems;
Greg Hartman of Google; Humberto Cervantes of Universidad Autonoma Metropolitana—
Iztapalapa; and Yuanfang Cai of Drexel University. Thanks to Eduardo Miranda of Carnegie
Mellon University’s Institute for Software Research, who wrote the sidebar on the Value of
Information technique.

Good reviewers are essential to good work, and we are fortunate to have had John Hudak,
Mario Benitez, Grace Lewis, Robert Nord, Dan Justice, and Krishna Guru lend their time and
talents toward improving the material in this book. Thanks to James Ivers and Ipek Ozkaya for
overseeing this book from the perspective of the SEI Series in Software Engineering.

Over the years, we have benefited from our discussions and writings with colleagues and
we would like to explicitly acknowledge them. In particular, in addition to those already men-
tioned, our thanks go to David Garlan, Reed Little, Paulo Merson, Judith Stafford, Mark Klein,
James Scott, Carlos Paradis, Phil Bianco, Jungwoo Ryoo, and Phil Laplante. Special thanks go
to John Klein, who contributed one way or another to many of the chapters in this book.

In addition, we are grateful to everyone at Pearson for all their work and attention to
detail in the countless steps involved in turning our words into the finished product that you
are now reading. Thanks especially to Haze Humbert, who oversaw the whole process.

Finally, thanks to the many, many researchers, teachers, writers, and practitioners who
have, over the years, worked to turn software architecture from a good idea into an engineer-
ing discipline. This book is for you.

This page intentionally left blank

1

1
What Is Software

Architecture?

We are called to be architects of the future, not its victims.
—R. Buckminster Fuller

Writing (on our part) and reading (on your part) a book about software architecture, which
distills the experience of many people, presupposes that

1. having a reasonable software architecture is important to the successful development of
a software system and

2. there is a sufficient body of knowledge about software architecture to fill up a book.

There was a time when both of these assumptions needed justification. Early editions of
this book tried to convince readers that both of these assumptions are true and, once you were
convinced, supply you with basic knowledge so that you could apply the practice of architec-
ture yourself. Today, there seems to be little controversy about either aim, and so this book is
more about the supplying than the convincing.

The basic principle of software architecture is every software system is constructed to satisfy
an organization’s business goals, and that the architecture of a system is a bridge between
those (often abstract) business goals and the final (concrete) resulting system. While the path
from abstract goals to concrete systems can be complex, the good news is that software archi-
tectures can be designed, analyzed, and documented using known techniques that will support
the achievement of these business goals. The complexity can be tamed, made tractable.

These, then, are the topics for this book: the design, analysis, and documentation of archi-
tectures. We will also examine the influences, principally in the form of business goals that
lead to quality attribute requirements, that inform these activities.

In this chapter, we will focus on architecture strictly from a software engineering point
of view. That is, we will explore the value that a software architecture brings to a development
project. Later chapters will take business and organizational perspectives.

PART I Introduction

2 Part I Introduction | Chapter 1 What Is Software Architecture?

1.1 What Software Architecture Is and What It Isn’t

There are many definitions of software architecture, easily discoverable with a web search, but
the one we like is this:

The software architecture of a system is the set of structures needed to reason about
the system. These structures comprise software elements, relations among them, and
properties of both.

This definition stands in contrast to other definitions that talk about the system’s “early”
or “major” or “important” decisions. While it is true that many architectural decisions are
made early, not all are—especially in Agile and spiral-development projects. It’s also true
that many decisions that are made early are not what we would consider architectural. Also,
it’s hard to look at a decision and tell whether it’s “major.” Sometimes only time will tell. And
since deciding on an architecture is one of the architect’s most important obligations, we need
to know which decisions an architecture comprises.

Structures, by contrast, are fairly easy to identify in software, and they form a powerful
tool for system design and analysis.

So, there we are: Architecture is about reasoning-enabling structures.
Let’s look at some of the implications of our definition.

Architecture Is a Set of Software Structures

This is the first and most obvious implication of our definition. A structure is simply a set
of elements held together by a relation. Software systems are composed of many structures,
and no single structure can lay claim to being the architecture. Structures can be grouped
into categories, and the categories themselves provide useful ways to think about the architec-
ture. Architectural structures can be organized into three useful categories, which will play an
important role in the design, documentation, and analysis of architectures:

1. Component-and-connector structures
2. Module structures
3. Allocation structures

We’ll delve more into these types of structures in the next section.
Although software comprises an endless supply of structures, not all of them are archi-

tectural. For example, the set of lines of source code that contain the letter “z,” ordered by
increasing length from shortest to longest, is a software structure. But it’s not a very interesting
one, nor is it architectural. A structure is architectural if it supports reasoning about the system
and the system’s properties. The reasoning should be about an attribute of the system that is
important to some stakeholder(s). These include properties such as the functionality achieved
by the system, the system’s ability to keep operating usefully in the face of faults or attempts
to take it down, the ease or difficulty of making specific changes to the system, the system’s

1.1 What Software Architecture Is and What It Isn’t 3

responsiveness to user requests, and many others. We will spend a great deal of time in this
book exploring the relationship between architecture and quality attributes like these.

Thus the set of architectural structures is neither fixed nor limited. What is architectural
depends on what is useful to reason about in your context for your system.

Architecture Is an Abstraction

Since architecture consists of structures, and structures consist of elements1 and relations, it fol-
lows that an architecture comprises software elements and how those elements relate to each
other. This means that architecture specifically and intentionally omits certain information
about elements that is not useful for reasoning about the system. Thus an architecture is fore-
most an abstraction of a system that selects certain details and suppresses others. In all modern
systems, elements interact with each other by means of interfaces that partition details about an
element into public and private parts. Architecture is concerned with the public side of this divi-
sion; private details of elements—details having to do solely with internal implementation—are
not architectural. This abstraction is essential to taming the complexity of an architecture: We
simply cannot, and do not want to, deal with all of the complexity all of the time. We want—and
need—the understanding of a system’s architecture to be many orders of magnitude easier than
understanding every detail about that system. You can’t keep every detail of a system of even
modest size in your head; the point of architecture is to make it so you don’t have to.

 Architecture versus Design

Architecture is design, but not all design is architecture. That is, many design decisions are left
unbound by the architecture—it is, after all, an abstraction—and depend on the discretion and
good judgment of downstream designers and even implementers.

Every Software System Has a Software Architecture

Every system has an architecture, because every system has elements and relations. However,
it does not follow that the architecture is known to anyone. Perhaps all of the people who
designed the system are long gone, the documentation has vanished (or was never produced),
the source code has been lost (or was never delivered), and all we have at hand is the exe-
cuting binary code. This reveals the difference between the architecture of a system and the
representation of that architecture. Given that an architecture can exist independently of its
description or specification, this raises the importance of architecture documentation, which
is described in Chapter 22.

1. In this book, we use the term “element” when we mean either a module or a component, and don’t want to distin-
guish between the two.

4 Part I Introduction | Chapter 1 What Is Software Architecture?

Not All Architectures Are Good Architectures

Our definition is indifferent as to whether the architecture for a system is a good one or a bad
one. An architecture may either support or hinder achieving the important requirements for
a system. Assuming that we do not accept trial and error as the best way to choose an archi-
tecture for a system—that is, picking an architecture at random, building the system from it,
and then hacking away and hoping for the best—this raises the importance of architecture
design, which is treated in Chapter 20 and architecture evaluation, which will be dealt with in
Chapter 21.

Architecture Includes Behavior

The behavior of each element is part of the architecture insofar as that behavior can help you
reason about the system. The behavior of elements embodies how they interact with each other
and with the environment. This is clearly part of our definition of architecture and will have an
effect on the properties exhibited by the system, such as its runtime performance.

Some aspects of behavior are below the architect’s level of concern. Nevertheless, to the
extent that an element’s behavior influences the acceptability of the system as a whole, this
behavior must be considered part of the system’s architectural design, and should be docu-
mented as such.

System and Enterprise Architectures

Two disciplines related to software architecture are system architecture and enterprise

architecture. Both of these disciplines have broader concerns than software and affect

software architecture through the establishment of constraints within which a software

system, and its architect, must live.

System Architecture

A system’s architecture is a representation of a system in which there is a mapping

of functionality onto hardware and software components, a mapping of the software

architecture onto the hardware architecture, and a concern for the human interaction

with these components. That is, system architecture is concerned with the totality of

hardware, software, and humans.

A system architecture will influence, for example, the functionality that is assigned

to different processors and the types of networks that connect those processors.

The software architecture will determine how this functionality is structured and how

the software programs residing on the various processors interact.

A description of the software architecture, as it is mapped to hardware and network-

ing components, allows reasoning about qualities such as performance and reliability.

A description of the system architecture will allow reasoning about additional qualities

such as power consumption, weight, and physical dimensions.

When designing a particular system, there is frequently negotiation between the

system architect and the software architect over the distribution of functionality and,

consequently, the constraints placed on the software architecture.

1.2 Architectural Structures and Views 5

Enterprise Architecture

Enterprise architecture is a description of the structure and behavior of an organiza-

tion’s processes, information flow, personnel, and organizational subunits. An enterprise

architecture need not include computerized information systems—clearly, organizations

had architectures that fit the preceding definition prior to the advent of computers—but

these days enterprise architectures for all but the smallest businesses are unthinkable

without information system support. Thus a modern enterprise architecture is con-

cerned with how software systems support the enterprise’s business processes and

goals. Typically included in this set of concerns is a process for deciding which systems

with which functionality the enterprise should support.

An enterprise architecture will specify, for example, the data model that various sys-

tems use to interact. It will also specify rules for how the enterprise’s systems interact

with external systems.

Software is only one concern of enterprise architecture. How the software is used

by humans to perform business processes and the standards that determine the

computational environment are two other common concerns addressed by enterprise

architecture.

Sometimes the software infrastructure that supports communication among systems

and with the external world is considered a portion of the enterprise architecture; at

other times, this infrastructure is considered one of the systems within an enterprise.

(In either case, the architecture of that infrastructure is a software architecture!) These

two views will result in different management structures and spheres of influence for the

individuals concerned with the infrastructure.

Are These Disciplines in Scope for This Book? Yes! (Well, No.)

The system and the enterprise provide environments for, and constraints on, the

software architecture. The software architecture must live within the system and

the enterprise, and increasingly is the focus for achieving the organization’s business

goals. Enterprise and system architectures share a great deal with software architec-

tures. All can be designed, evaluated, and documented; all answer to requirements; all

are intended to satisfy stakeholders; all consist of structures, which in turn consist of

elements and relationships; all have a repertoire of patterns at their respective archi-

tects’ disposal; and the list goes on. So to the extent that these architectures share

commonalities with software architecture, they are in the scope of this book. But like all

technical disciplines, each has its own specialized vocabulary and techniques, and we

won’t cover those. Copious other sources exist that do.

 1.2 Architectural Structures and Views

Because architectural structures are at the heart of our definition and treatment of software
architecture, this section will explore these concepts in more depth. These concepts are dealt
with in much greater depth in Chapter 22, where we discuss architecture documentation.

Architectural structures have counterparts in nature. For example, the neurologist, the
orthopedist, the hematologist, and the dermatologist all have different views of the various

6 Part I Introduction | Chapter 1 What Is Software Architecture?

structures of a human body, as illustrated in Figure 1.1. Ophthalmologists, cardiologists, and
podiatrists concentrate on specific subsystems. Kinesiologists and psychiatrists are concerned
with different aspects of the entire arrangement’s behavior. Although these views are pictured
differently and have very different properties, all are inherently related and interconnected:
Together they describe the architecture of the human body.

FIGURE 1.1 Physiological structures

Architectural structures also have counterparts in human endeavors. For example, elec-
tricians, plumbers, heating and air conditioning specialists, roofers, and framers are each con-
cerned with different structures in a building. You can readily see the qualities that are the
focus of each of these structures.

So it is with software.

1.2 Architectural Structures and Views 7

Three Kinds of Structures

Architectural structures can be divided into three major categories, depending on the broad
nature of the elements they show and the kinds of reasoning they support:

1. Component-and-connector (C&C) structures focus on the way the elements interact
with each other at runtime to carry out the system’s functions. They describe how the
system is structured as a set of elements that have runtime behavior (components) and
interactions (connectors). Components are the principal units of computation and could
be services, peers, clients, servers, filters, or many other types of runtime element.
Connectors are the communication vehicles among components, such as call-return,
process synchronization operators, pipes, or others. C&C structures help answer ques-
tions such as the following:

 ■ What are the major executing components and how do they interact at runtime?
 ■ What are the major shared data stores?
 ■ Which parts of the system are replicated?
 ■ How does data progress through the system?
 ■ Which parts of the system can run in parallel?
 ■ Can the system’s structure change as it executes and, if so, how?

By extension, these structures are crucially important for asking questions about the
system’s runtime properties, such as performance, security, availability, and more.

C&C structures are the most common ones that we see, but two other categories of
structures are important and should not be overlooked.

Figure 1.2 shows a sketch of a C&C structure of a system using an informal notation
that is explained in the figure’s key. The system contains a shared repository that is
accessed by servers and an administrative component. A set of client tellers can interact
with the account servers and communicate among themselves using a publish-subscribe
connector.

2. Module structures partition systems into implementation units, which in this book we
call modules. Module structures show how a system is structured as a set of code or data
units that have to be constructed or procured. Modules are assigned specific computa-
tional responsibilities and are the basis of work assignments for programming teams. In
any module structure, the elements are modules of some kind (perhaps classes, packages,
layers, or merely divisions of functionality, all of which are units of implementation).
Modules represent a static way of considering the system. Modules are assigned areas of
functional responsibility; there is less emphasis in these structures on how the resulting
software manifests itself at runtime. Module implementations include packages, classes,
and layers. Relations among modules in a module structure include uses, generalization
(or “is-a”), and “is part of.” Figures 1.3 and 1.4 show examples of module elements and
relations, respectively, using the Unified Modeling Language (UML) notation.

8 Part I Introduction | Chapter 1 What Is Software Architecture?

Client

Client Teller 1

Account
Server—Main

Account
Database

Account
Server—Backup

Server

Database

Database
application

Interface

Publish-subscribe

Client-server
request/reply
w/automatic
failover

Database
access

Key

Administrative

FIGURE 1.2 A component-and-connector structure

1.2 Architectural Structures and Views 9

System.IO.Log
CommonDialog Abstract class

(italics)

Class with provided
interface

IAnimatable
UIElement

«interface»
IAnimatable

Interface not
shown as
lollipop

Package

Class

SaveFileDialog

FileName
Filter

ShowDialog()
OnFileOk(…)

Class showing
attribute and
operation
compartments

SaveFileDialog

FIGURE 1.3 Module elements in UML

Depends-on
relation«use»

Is-part-of
relation

com.sun.ebank.web

Dispatcher

Dispatcher Context
Listener

Account «interface»
Observer

Checking
Account

Savings
Account

Admin
AccountView

BeanManager

com.sun.ebank.web.taglib

Two forms of
is-a relation (class
inheritance and
interface realization)

FIGURE 1.4 Module relations in UML

10 Part I Introduction | Chapter 1 What Is Software Architecture?

Module structures allow us to answer questions such as the following:

 ■ What is the primary functional responsibility assigned to each module?
 ■ What other software elements is a module allowed to use?
 ■ What other software does it actually use and depend on?
 ■ What modules are related to other modules by generalization or specialization (i.e.,

inheritance) relationships?

Module structures convey this information directly, but they can also be used to
answer questions about the impact on the system when the responsibilities assigned
to each module change. Thus module structures are the primary tools for reasoning
about a system’s modifiability.

3. Allocation structures establish the mapping from software structures to the system’s
nonsoftware structures, such as its organization, or its development, test, and execution
environments. Allocation structures answer questions such as the following:

 ■ Which processor(s) does each software element execute on?
 ■ In which directories or files is each element stored during development, testing, and

system building?
 ■ What is the assignment of each software element to development teams?

Some Useful Module Structures

Useful module structures include:

 ■ Decomposition structure. The units are modules that are related to each other by the
“is-a-submodule-of” relation, showing how modules are decomposed into smaller mod-
ules recursively until the modules are small enough to be easily understood. Modules in
this structure represent a common starting point for design, as the architect enumerates
what the units of software will have to do and assigns each item to a module for subse-
quent (more detailed) design and eventual implementation. Modules often have products
(such as interface specifications, code, and test plans) associated with them. The decom-
position structure determines, to a large degree, the system’s modifiability. That is, do
changes fall within the purview of a few (preferably small) modules? This structure is
often used as the basis for the development project’s organization, including the structure
of the documentation, and the project’s integration and test plans. Figure 1.5 shows an
example of a decomposition structure.

 ■ Uses structure. In this important but often overlooked structure, the units are also mod-
ules, and perhaps classes. The units are related by the uses relation, a specialized form
of dependency. One unit of software uses another if the correctness of the first requires
the presence of a correctly functioning version (as opposed to a stub) of the second. The
uses structure is used to engineer systems that can be extended to add functionality,
or from which useful functional subsets can be extracted. The ability to easily create a
subset of a system allows for incremental development. This structure is also the basis

1.2 Architectural Structures and Views 11

for measuring social debt—the amount of communication that actually is, as opposed
to merely should be, taking place among teams—as it defines which teams should be
talking to each other. Figure 1.6 shows a uses structure and highlights the modules that
must be present in an increment if the module admin.client is present.

 ■ Layer structure. The modules in this structure are called layers. A layer is an abstract
“virtual machine” that provides a cohesive set of services through a managed interface.
Layers are allowed to use other layers in a managed fashion; in strictly layered systems,
a layer is only allowed to use a single other layer. This structure imbues a system with
portability—that is, the ability to change the underlying virtual machine. Figure 1.7
shows a layer structure of the UNIX System V operating system.

ATIA-M

Windows apps

Common code
for thick clients

TDDT
Windows app

UTMC
Windows app

ATIA server-
side web
modules

ATIA server-
side Java
modules

Notation: UML

FIGURE 1.5 A decomposition structure

12 Part I Introduction | Chapter 1 What Is Software Architecture?

Static
web
artifacts

Notation: UML

estore.webapp

web::shared

estore.core

web::accessControl
admin.core

dao
util

web::estore admin.client
«use»

«use»

«use»

«use»

«use»

«use»

«use»
«use»

«use»
«use»«use»

«use»

«use»

«use»

FIGURE 1.6 Uses structure

User programs

System call interface

File subsystem

Buffering
mechanism

Block I/O
device drivers

Hardware control

Character
device drivers

Process control subsystem
(IPC, scheduler, memory mgmt)

Libraries

Key
User-level
layer

Kernel-level
layer

Allowed
to use

FIGURE 1.7 Layer structure

1.2 Architectural Structures and Views 13

 ■ Class (or generalization) structure. The modules in this structure are called classes, and
they are related through an “inherits-from” or “is-an-instance-of” relation. This view
supports reasoning about collections of similar behavior or capability and parameterized
differences. The class structure allows one to reason about reuse and the incremental
addition of functionality. If any documentation exists for a project that has followed
an object-oriented analysis and design process, it is typically this structure. Figure 1.8
shows a generalization structure taken from an architectural expert tool.

java.util.Observable

ScenarioVO

FunctionVO

ScenarioRespVO

FunctionRespVO RelationshipVO

ParameterVO

QuestionToUserVO

ResponsibilityVO

Notation: UML

Fact

id : int
type : String

FIGURE 1.8 Generalization structure

 ■ Data model. The data model describes the static information structure in terms of data
entities and their relationships. For example, in a banking system, entities will typically
include Account, Customer, and Loan. Account has several attributes, such as account
number, type (savings or checking), status, and current balance. A relationship may
dictate that one customer can have one or more accounts, and one account is associated
with one or more customers. Figure 1.9 shows an example of a data model.

14 Part I Introduction | Chapter 1 What Is Software Architecture?

A B

PurchaseOrder OrderItem CatalogItem
PK poId INTEGER

FK3,I1 clientId INTEGER
FK1 shippingInfoId INTEGER
FK2 billingInfoId INTEGER
FK4 creditCardId INTEGER
 totalPrice NUMERIC(10,2)

PK,FK1 poId INTEGER
PK,FK2 itemId INTEGER

 qty NUMERIC(10,2)
 unit CHAR(10)
 price NUMERIC(10,2)

PK itemId INTEGER

 name VARCHAR(80)
 description TEXT(400)
 listPrice NUMERIC(10,2)
 status INTEGER

Legend
For each A, there are 0 or more Bs;
each B is related to exactly one A;
A’s PK is needed as part of B’s PK

Entity

PK = Primary key
FK# = Foreign key
I# = Index

Column name
(bold means
required column)

Data type

FIGURE 1.9 Data model

Some Useful C&C Structures

C&C structures show a runtime view of the system. In these structures, the modules just
described have all been compiled into executable forms. Thus all C&C structures are orthog-
onal to the module-based structures and deal with the dynamic aspects of a running system.
For example, one code unit (module) could be compiled into a single service that is repli-
cated thousands of times in an execution environment. Or 1,000 modules can be compiled and
linked together to produce a single runtime executable (component).

The relation in all C&C structures is attachment, showing how the components and the
connectors are hooked together. (The connectors themselves can be familiar constructs such
as “invokes.”) Useful C&C structures include:

 ■ Service structure. The units here are services that interoperate through a service coordi-
nation mechanism, such as messages. The service structure is an important structure to
help engineer a system composed of components that may have been developed inde-
pendently of each other.

 ■ Concurrency structure. This C&C structure allows the architect to determine opportuni-
ties for parallelism and the locations where resource contention may occur. The units are
components, and the connectors are their communication mechanisms. The components
are arranged into “logical threads.” A logical thread is a sequence of computations that
could be allocated to a separate physical thread later in the design process. The concur-
rency structure is used early in the design process to identify and manage issues associ-
ated with concurrent execution.

1.2 Architectural Structures and Views 15

Some Useful Allocation Structures

Allocation structures define how the elements from C&C or module structures map onto things
that are not software—typically hardware (possibly virtualized), teams, and file systems.
Useful allocation structures include:

 ■ Deployment structure. The deployment structure shows how software is assigned to
hardware processing and communication elements. The elements are software elements
(usually a process from a C&C structure), hardware entities (processors), and commu-
nication pathways. Relations are “allocated-to,” showing on which physical units the
software elements reside, and “migrates-to,” if the allocation is dynamic. This structure
can be used to reason about performance, data integrity, security, and availability. It is of
particular interest in distributed systems and is the key structure involved in the achieve-
ment of the quality attribute of deployability (see Chapter 5). Figure 1.10 shows a simple
deployment structure in UML.

1

*

1

1

«internet»

«intranet»

«deploy»

«deploy»

«intranet»

Notation:
UML

«artifact»
EnterpriseWebApp.ear

«artifact»
app-client.jar

«Win desktop»
Admin user

PC

Internet
user PC

«Linux server»
Database server

«Win server»
Application server

«execution
environment»
:WebSphere

FIGURE 1.10 Deployment structure

 ■ Implementation structure. This structure shows how software elements (usually mod-
ules) are mapped to the file structures in the system’s development, integration, test, or
configuration control environments. This is critical for the management of development
activities and build processes.

 ■ Work assignment structure. This structure assigns responsibility for implementing and
integrating the modules to the teams that will carry out these tasks. Having a work
assignment structure be part of the architecture makes it clear that the decision about
who does the work has architectural as well as management implications. The architect
will know the expertise required on each team. Amazon’s decision to devote a single

16 Part I Introduction | Chapter 1 What Is Software Architecture?

team to each of its microservices, for example, is a statement about its work assignment
structure. On large development projects, it is useful to identify units of functional com-
monality and assign those to a single team, rather than having them be implemented by
everyone who needs them. This structure will also determine the major communication
pathways among the teams: regular web conferences, wikis, email lists, and so forth.

Table 1.1 summarizes these structures. It lists the meaning of the elements and relations
in each structure and tells what each might be used for.

Relating Structures to Each Other

Each of these structures provides a different perspective and design handle on a system, and
each is valid and useful in its own right. Although the structures give different system perspec-
tives, they are not independent. Elements of one structure will be related to elements of other
structures, and we need to reason about these relations. For example, a module in a decom-
position structure may be manifested as one, part of one, or several components in one of the
C&C structures, reflecting its runtime alter-ego. In general, mappings between structures are
many to many.

Figure 1.11 shows a simple example of how two structures might relate to each other. The
image on the left shows a module decomposition view of a tiny client-server system. In this
system, two modules must be implemented: the client software and the server software. The
image on the right shows a C&C view of the same system. At runtime, ten clients are running
and accessing the server. Thus this little system has two modules and eleven components (and
ten connectors).

Client

Server

Module

System

Decomposition View

Key:

Client-Server View

Key: Component

Request-Reply

C7

C8 C2

C3

C1

C4C6

C9
C10

C5

S1

FIGURE 1.11 Two views of a client-server system

1.2 Architectural Structures and Views 17

T
A

B
L

E
 1

.1

U
s
e

fu
l
A

rc
h

it
e

c
tu

ra
l
S

tr
u

c
tu

re
s

S
o

ft
w

a
re

S

tr
u

c
tu

re
E

le
m

e
n

t
T
y

p
e

s
R

e
la

ti
o

n
s

U
s

e
fu

l
fo

r
Q

u
a

li
ty

 C
o

n
c

e
rn

s

A
ff

e
c

te
d

M
o

d
u

le

s
tr

u
c

tu
re

s
D

e
c
o

m
p

o
s
it
io

n
M

o
d

u
le

Is
 a

 s
u

b
m

o
d

u
le

 o
f

R
e

s
o
u
rc

e
 a

llo
c
a
ti
o

n
 a

n
d
 p

ro
je

c
t

s
tr

u
c
tu

ri
n
g
 a

n
d
 p

la
n
n
in

g
;

e
n
c
a

p
s
u
la

ti
o
n

M
o

d
if
ia

b
ili

ty

U
s
e

s
M

o
d

u
le

U
s
e

s
 (

i.
e
.,
 r

e
q

u
ir
e

s
 t
h

e

c
o
rr

e
c
t
p
re

s
e
n

c
e
 o

f)
D

e
s
ig

n
in

g
 s

u
b
s
e
ts

 a
n
d

e
x
te

n
s
io

n
s

“S
u
b
s
e
ta

b
ili

ty
,”

e
x
te

n
s
ib

ili
ty

L
a
y
e
rs

L
a
y
e
r

A
llo

w
e

d
 t
o
 u

s
e
 t
h
e
 s

e
rv

ic
e

s

o
f;
 p

ro
v
id

e
s
 a

b
s
tr

a
c
ti
o

n
 t
o

In
c
re

m
e
n
ta

l
d
e
v
e
lo

p
m

e
n
t;

im
p
le

m
e
n
ti
n
g
 s

y
s
te

m
s
 o

n
 t
o

p
 o

f
“v

ir
tu

a
l
m

a
c
h
in

e
s
”

P
o
rt

a
b
ili

ty
,

m
o

d
if
ia

b
ili

ty

C
la

s
s

C
la

s
s
,
o

b
je

c
t

Is
 a

n
 i
n
s
ta

n
c
e
 o

f;
 i
s
 a

g

e
n

e
ra

liz
a
ti
o

n
 o

f
In

 o
b
je

c
t-

o
ri

e
n
te

d
 s

y
s
te

m
s
,

fa
c
to

ri
n
g
 o

u
t
c
o

m
m

o
n
a
lit

y
;

p
la

n
n
in

g
 e

x
te

n
s
io

n
s
 o

f
fu

n
c
ti
o
n
a
lit

y

M
o

d
if
ia

b
ili

ty
,

e
x
te

n
s
ib

ili
ty

D
a
ta

 m
o

d
e
l

D
a
ta

 e
n
ti
ty

{o
n
e
,
m

a
n
y
}-

to
-{

o
n
e
,
m

a
n
y
};

g
e
n
e
ra

liz
e

s
;
s
p
e

c
ia

liz
e

s
E

n
g

in
e

e
ri

n
g
 g

lo
b

a
l
d

a
ta

s
tr

u
c
tu

re
s
 f
o
r

c
o

n
s
is

te
n

c
y
 a

n
d

p

e
rf

o
rm

a
n

c
e

M
o

d
if
ia

b
ili

ty
,

p
e
rf

o
rm

a
n

c
e

C
&

C

s
tr

u
c

tu
re

s
S

e
rv

ic
e

S
e
rv

ic
e
,
s
e
rv

ic
e

re
g
is

tr
y

A
tt

a
c
h
m

e
n
t
(v

ia

m
e

s
s
a
g

e
-p

a
s
s
in

g
)

S
c
h
e
d
u
lin

g
 a

n
a
ly

s
is

;
p

e
rf

o
rm

a
n

c
e
 a

n
a

ly
s
is

;
ro

b
u

s
tn

e
s
s
 a

n
a

ly
s
is

In
te

ro
p

e
ra

b
ili

ty
,

a
v
a
ila

b
ili

ty
,

m
o

d
if
ia

b
ili

ty

C
o

n
c
u
rr

e
n

c
y

P
ro

c
e

s
s
e

s
,

th
re

a
d

s
A

tt
a
c
h
m

e
n
t
(v

ia

c
o

m
m

u
n
ic

a
ti
o

n
 a

n
d

s
y
n

c
h
ro

n
iz

a
ti
o

n

m
e

c
h
a
n
is

m
s)

Id
e

n
ti
fy

in
g
 l
o

c
a
ti
o

n
s
 w

h
e
re

re

s
o

u
rc

e
 c

o
n
te

n
ti
o

n
 e

x
is

ts
,

o
p

p
o
rt

u
n
it
ie

s
 f
o
r

p
a
ra

lle
lis

m

P
e
rf

o
rm

a
n

c
e

A
ll

o
c

a
ti

o
n

s

tr
u

c
tu

re
s

D
e

p
lo

y
m

e
n
t

C
o

m
p

o
n

e
n
ts

,
h
a
rd

w
a
re

e
le

m
e
n
ts

A
llo

c
a
te

d
 t
o
;
m

ig
ra

te
s
 t
o

M
a

p
p

in
g
 s

o
ft

w
a
re

 e
le

m
e
n
ts

 t
o

s
y
s
te

m
 e

le
m

e
n
ts

P
e
rf

o
rm

a
n

c
e
,

s
e

c
u
ri

ty
,
e

n
e
rg

y,

a
v
a
ila

b
ili

ty
,

d
e

p
lo

y
a
b
ili

ty

Im
p

le
m

e
n

ta
ti
o

n
M

o
d

u
le

s
,
fi
le

s
tr

u
c
tu

re
S

to
re

d
 i
n

C
o

n
fi
g

u
ra

ti
o

n
 c

o
n
tr

o
l,

in
te

g
ra

ti
o

n
,
te

s
t
a
c
ti
v
it
ie

s
D

e
v
e
lo

p
m

e
n
t

e
ff

ic
ie

n
c
y

W
o
rk

 a
s
s
ig

n
m

e
n
t

M
o

d
u
le

s
,

o
rg

a
n

iz
a
ti
o

n
a
l

u
n
it
s

A
s
s
ig

n
e

d
 t
o

P
ro

je
c
t
m

a
n
a
g

e
m

e
n
t,
 b

e
s
t

u
s
e
 o

f
e
x
p

e
rt

is
e
 a

n
d
 a

v
a
ila

b
le

re

s
o
u
rc

e
s
,
m

a
n
a
g

e
m

e
n
t
o
f

c
o

m
m

o
n
a
lit

y

D
e
v
e
lo

p
m

e
n
t

e
ff

ic
ie

n
c
y

18 Part I Introduction | Chapter 1 What Is Software Architecture?

Whereas the correspondence between the elements in the decomposition structure and
the client-server structure is obvious, these two views are used for very different things. For
example, the view on the right could be used for performance analysis, bottleneck prediction,
and network traffic management, which would be extremely difficult or impossible to do with
the view on the left. (In Chapter 9, we’ll learn about the map-reduce pattern, in which copies
of simple, identical functionality are distributed across hundreds or thousands of processing
nodes—one module for the whole system, but one component per node.)

Individual projects sometimes consider one structure to be dominant and cast other struc-
tures, when possible, in terms of the dominant structure. Often, the dominant structure is the
module decomposition structure, and for good reason: It tends to spawn the project structure,
since it mirrors the team structure of development. In other projects, the dominant structure might
be a C&C structure that shows how the system’s functionality and/or critical quality attributes
are achieved at runtime.

Fewer Is Better

Not all systems warrant consideration of many architectural structures. The larger the system,
the more dramatic the difference between these structures tends to be; but for small systems,
we can often get by with fewer structures. For example, instead of working with each of sev-
eral C&C structures, usually a single one will do. If there is only one process, then the process
structure collapses to a single node and need not be explicitly represented in the design. If
no distribution will occur (that is, if the system is implemented on a single processor), then
the deployment structure is trivial and need not be considered further. In general, you should
design and document a structure only if doing so brings a positive return on the investment,
usually in terms of decreased development or maintenance costs.

Which Structures to Choose?

We have briefly described a number of useful architectural structures, and many more are
certainly possible. Which ones should an architect choose to work on? Which ones should the
architect choose to document? Surely not all of them. A good answer is that you should think
about how the various structures available to you provide insight and leverage into the system’s
most important quality attributes, and then choose the ones that will play the best role in deliv-
ering those attributes.

Architectural Patterns

In some cases, architectural elements are composed in ways that solve particular problems.
These compositions have been found to be useful over time and over many different domains,
so they have been documented and disseminated. These compositions of architectural ele-
ments, which provide packaged strategies for solving some of the problems facing a system,
are called patterns. Architectural patterns are discussed in detail in Part II of this book.

1.3 What Makes a “Good” Architecture? 19

1.3 What Makes a “Good” Architecture?

There is no such thing as an inherently good or bad architecture. Architectures are either
more or less fit for some purpose. A three-tier layered service-oriented architecture may be
just the ticket for a large enterprise’s web-based B2B system but completely wrong for an
avionics application. An architecture carefully crafted to achieve high modifiability does not
make sense for a throw-away prototype (and vice versa!). One of the messages of this book is
that architectures can, in fact, be evaluated—one of the great benefits of paying attention to
them—but such evaluation only makes sense in the context of specific stated goals.

Nevertheless, some rules of thumb should be followed when designing most architec-
tures. Failure to apply any of these guidelines does not automatically mean that the archi-
tecture will be fatally flawed, but it should at least serve as a warning sign that should be
investigated. These rules can be applied proactively for greenfield development, to help build
the system “right.” Or they can be applied as analysis heuristics, to understand the potential
problem areas in existing systems and to guide the direction of its evolution.

We divide our observations into two clusters: process recommendations and product (or
structural) recommendations. Our process recommendations are as follows:

1. A software (or system) architecture should be the product of a single architect or a small
group of architects with an identified technical leader. This approach is important to
give the architecture its conceptual integrity and technical consistency. This recom-
mendation holds for agile and open source projects as well as “traditional” ones. There
should be a strong connection between the architects and the development team, to avoid
“ivory tower,” impractical designs.

2. The architect (or architecture team) should, on an ongoing basis, base the architecture on
a prioritized list of well-specified quality attribute requirements. These will inform the
tradeoffs that always occur. Functionality matters less.

3. The architecture should be documented using views. (A view is simply a representa-
tion of one or more architectural structures.) The views should address the concerns of
the most important stakeholders in support of the project timeline. This might mean
minimal documentation at first, with the documentation then being elaborated later.
Concerns usually are related to construction, analysis, and maintenance of the system,
as well as education of new stakeholders.

4. The architecture should be evaluated for its ability to deliver the system’s important
quality attributes. This should occur early in the life cycle, when it returns the most
benefit, and repeated as appropriate, to ensure that changes to the architecture (or the
environment for which it is intended) have not rendered the design obsolete.

5. The architecture should lend itself to incremental implementation, to avoid having to
integrate everything at once (which almost never works) as well as to discover problems
early. One way to do this is via the creation of a “skeletal” system in which the commu-
nication paths are exercised but which at first has minimal functionality. This skeletal
system can be used to “grow” the system incrementally, refactoring as necessary.

20 Part I Introduction | Chapter 1 What Is Software Architecture?

Our structural rules of thumb are as follows:

1. The architecture should feature well-defined modules whose functional responsibili-
ties are assigned on the principles of information hiding and separation of concerns.
The information-hiding modules should encapsulate things likely to change, thereby
insulating the software from the effects of those changes. Each module should have a
well- defined interface that encapsulates or “hides” the changeable aspects from other
software that uses its facilities. These interfaces should allow their respective develop-
ment teams to work largely independently of each other.

2. Unless your requirements are unprecedented—possible, but unlikely—your quality
attributes should be achieved by using well-known architectural patterns and tactics
(described in Chapters 4 through 13) specific to each attribute.

3. The architecture should never depend on a particular version of a commercial product or
tool. If it must, it should be structured so that changing to a different version is straight-
forward and inexpensive.

4. Modules that produce data should be separate from modules that consume data. This
tends to increase modifiability because changes are frequently confined to either the
production or the consumption side of data. If new data is added, both sides will have to
change, but the separation allows for a staged (incremental) upgrade.

5. Don’t expect a one-to-one correspondence between modules and components. For exam-
ple, in systems with concurrency, multiple instances of a component may be running in
parallel, where each component is built from the same module. For systems with multiple
threads of concurrency, each thread may use services from several components, each of
which was built from a different module.

6. Every process should be written so that its assignment to a specific processor can be
easily changed, perhaps even at runtime. This is a driving force in the increasing trends
toward virtualization and cloud deployment, as we will discuss in Chapters 16 and 17.

7. The architecture should feature a small number of simple component interaction patterns.
That is, the system should do the same things in the same way throughout. This practice
will aid in understandability, reduce development time, increase reliability, and enhance
modifiability.

8. The architecture should contain a specific (and small) set of resource contention areas,
whose resolution is clearly specified and maintained. For example, if network utilization
is an area of concern, the architect should produce (and enforce) for each development
team guidelines that will result in acceptable levels of network traffic. If performance is
a concern, the architect should produce (and enforce) time budgets.

1.5 For Further Reading 21

1.4 Summary

The software architecture of a system is the set of structures needed to reason about the sys-
tem. These structures comprise software elements, relations among them, and properties of
both.

There are three categories of structures:

 ■ Module structures show the system as a set of code or data units that have to be con-
structed or procured.

 ■ Component-and-connector structures show the system as a set of elements that have
runtime behavior (components) and interactions (connectors).

 ■ Allocation structures show how elements from module and C&C structures relate to
nonsoftware structures (such as CPUs, file systems, networks, and development teams).

Structures represent the primary engineering leverage points of an architecture. Each
structure brings with it the power to manipulate one or more quality attributes. Collectively,
structures represent a powerful approach for creating the architecture (and, later, for analyzing
it and explaining it to its stakeholders). And, as we will see in Chapter 22, the structures that
the architect has chosen as engineering leverage points are also the primary candidates to
choose as the basis for architecture documentation.

Every system has a software architecture, but this architecture may or may not be docu-
mented and disseminated.

There is no such thing as an inherently good or bad architecture. Architectures are either
more or less fit for some purpose.

1.5 For Further Reading

If you’re keenly interested in software architecture as a field of study, you might be interested
in reading some of the pioneering work. Most of it does not mention “software architecture”
at all, as this phrase evolved only in the mid-1990s, so you’ll have to read between the lines.

Edsger Dijkstra’s 1968 paper on the T.H.E. operating system introduced the concept
of layers [Dijkstra 68]. The early work of David Parnas laid many conceptual foundations,
including information hiding [Parnas 72], program families [Parnas 76], the structures inher-
ent in software systems [Parnas 74], and the uses structure to build subsets and supersets of
systems [Parnas 79]. All of Parnas’s papers can be found in the more easily accessible collec-
tion of his important papers [Hoffman 00]. Modern distributed systems owe their existence to
the concept of cooperating sequential processes that (among others) Sir C. A. R. (Tony) Hoare
was instrumental in conceptualizing and defining [Hoare 85].

In 1972, Dijkstra and Hoare, along with Ole-Johan Dahl, argued that programs should be
decomposed into independent components with small and simple interfaces. They called their

22 Part I Introduction | Chapter 1 What Is Software Architecture?

approach structured programming, but arguably this was the debut of software architecture
[Dijkstra 72].

Mary Shaw and David Garlan, together and separately, produced a major body of work
that helped create the field of study we call software architecture. They established some of
its fundamental principles and, among other things, catalogued a seminal family of architec-
tural styles (a concept similar to patterns), several of which appear in this chapter as architectural
structures. Start with [Garlan 95].

Software architectural patterns have been extensively catalogued in the series Pattern-
Oriented Software Architecture [Buschmann 96 and others]. We also deal with architectural
patterns throughout Part II of this book.

Early papers on architectural views as used in industrial development projects are [Soni 95]
and [Kruchten 95]. The former grew into a book [Hofmeister 00] that presents a comprehen-
sive picture of using views in development and analysis.

A number of books have focused on practical implementation issues associated with archi-
tectures, such as George Fairbanks’ Just Enough Software Architecture [Fairbanks 10], Woods
and Rozanski’s Software Systems Architecture [Woods 11], and Martin’s Clean Architecture:
A Craftsman’s Guide to Software Structure and Design [Martin 17].

1.6 Discussion Questions

1. Is there a different definition of software architecture that you are familiar with? If
so, compare and contrast it with the definition given in this chapter. Many definitions
include considerations like “rationale” (stating the reasons why the architecture is what
it is) or how the architecture will evolve over time. Do you agree or disagree that these
considerations should be part of the definition of software architecture?

2. Discuss how an architecture serves as a basis for analysis. What about decision making?
What kinds of decision making does an architecture empower?

3. What is architecture’s role in project risk reduction?

4. Find a commonly accepted definition of system architecture and discuss what it has in
common with software architecture. Do the same for enterprise architecture.

5. Find a published example of a software architecture. Which structures are shown? Given
its purpose, which structures should have been shown? What analysis does the architec-
ture support? Critique it: What questions do you have that the representation does not
answer?

6. Sailing ships have architectures, which means they have “structures” that lend them-
selves to reasoning about the ship’s performance and other quality attributes. Look
up the technical definitions for barque, brig, cutter, frigate, ketch, schooner, and
sloop. Propose a useful set of “structures” for distinguishing and reasoning about ship
architectures.

1.6 Discussion Questions 23

7. Aircraft have architectures that can be characterized by how they resolve some major
design questions, such as engine location, wing location, landing gear layout, and more.
For many decades, most jet aircraft designed for passenger transport have the following
characteristics:

 ■ Engines housed in nacelles slung underneath the wing (as opposed to engines built into
the wings, or engines mounted on the rear of the fuselage)

 ■ Wings that join the fuselage at the bottom (as opposed to the top or middle)

First, do an online search to find an example and a counter-example of this type
of design from each of the following manufacturers: Boeing, Embraer, Tupolev, and
Bombardier. Next, do some online research and answer the following question: What
qualities important to aircraft does this design provide?

This page intentionally left blank

25

2
Why Is Software Architecture

Important?

Ah, to build, to build!
That is the noblest art of all the arts.

—Henry Wadsworth Longfellow

If architecture is the answer, what was the question?
This chapter focuses on why architecture matters from a technical perspective. We will

examine a baker’s dozen of the most important reasons. You can use these reasons to moti-
vate the creation of a new architecture, or the analysis and evolution of an existing system’s
architecture.

1. An architecture can either inhibit or enable a system’s driving quality attributes.
2. The decisions made in an architecture allow you to reason about and manage change as

the system evolves.
3. The analysis of an architecture enables early prediction of a system’s qualities.
4. A documented architecture enhances communication among stakeholders.
5. The architecture is a carrier of the earliest, and hence most-fundamental, hardest-to-

change design decisions.
6. An architecture defines a set of constraints on subsequent implementation.
7. The architecture dictates the structure of an organization, or vice versa.
8. An architecture can provide the basis for incremental development.
9. An architecture is the key artifact that allows the architect and the project manager to

reason about cost and schedule.
10. An architecture can be created as a transferable, reusable model that forms the heart of a

product line.
11. Architecture-based development focuses attention on the assembly of components, rather

than simply on their creation.
12. By restricting design alternatives, architecture channels the creativity of developers,

reducing design and system complexity.
13. An architecture can be the foundation for training of a new team member.

26 Part I Introduction | Chapter 2 Why Is Software Architecture Important?

Even if you already believe us that architecture is important and don’t need that point
hammered home 13 more times, think of these 13 points (which form the outline for this chap-
ter) as 13 useful ways to use architecture in a project, or to justify the resources devoted to
architecture.

2.1 Inhibiting or Enabling a System’s Quality Attributes

A system’s ability to meet its desired (or required) quality attributes is substantially deter-
mined by its architecture. If you remember nothing else from this book, remember that.

This relationship is so important that we’ve devoted all of Part II of this book to expound-
ing that message in detail. Until then, keep these examples in mind as a starting point:

 ■ If your system requires high performance, then you need to pay attention to managing
the time-based behavior of elements, their use of shared resources, and the frequency
and volume of their interelement communication.

 ■ If modifiability is important, then you need to pay attention to assigning responsibilities
to elements and limiting the interactions (coupling) of those elements so that the major-
ity of changes to the system will affect a small number of those elements. Ideally, each
change will affect just a single element.

 ■ If your system must be highly secure, then you need to manage and protect interelement
communication and control which elements are allowed to access which information.
You may also need to introduce specialized elements (such as an authorization mechanism)
into the architecture to set up a strong “perimeter” to guard against intrusion.

 ■ If you want your system to be safe and secure, you need to design in safeguards and
recovery mechanisms.

 ■ If you believe that scalability of performance will be important to the success of your
system, then you need to localize the use of resources to facilitate the introduction of
higher-capacity replacements, and you must avoid hard-coding in resource assumptions
or limits.

 ■ If your projects need the ability to deliver incremental subsets of the system, then you
must manage intercomponent usage.

 ■ If you want the elements from your system to be reusable in other systems, then you need
to restrict interelement coupling so that when you extract an element, it does not come
out with too many attachments to its current environment to be useful.

The strategies for these and other quality attributes are supremely architectural. But an
architecture alone cannot guarantee the functionality or quality required of a system. Poor
downstream design or implementation decisions can always undermine an adequate architec-
tural design. As we like to say (mostly in jest): What the architecture giveth, the implementa-
tion may taketh away. Decisions at all stages of the life cycle—from architectural design to
coding and implementation and testing—affect system quality. Therefore, quality is not com-
pletely a function of an architectural design. But that’s where it starts.

2.2 Reasoning about and Managing Change 27

 2.2 Reasoning about and Managing Change

This is a corollary to the previous point.
Modifiability—the ease with which changes can be made to a system— is a quality attri-

bute (and hence covered by the arguments in the previous section), but it is such an important
quality that we have awarded it its own spot in the List of Thirteen. The software development
community is coming to grips with the fact that roughly 80 percent of a typical software sys-
tem’s total cost occurs after initial deployment. Most systems that people work on are in this
phase. Many programmers and software designers never get to work on new development—
they work under the constraints of the existing architecture and the existing body of code.
Virtually all software systems change over their lifetimes, to accommodate new features, to
adapt to new environments, to fix bugs, and so forth. But the reality is that these changes are
often fraught with difficulty.

Every architecture, no matter what it is, partitions possible changes into three categories:
local, nonlocal, and architectural.

 ■ A local change can be accomplished by modifying a single element—for example, add-
ing a new business rule to a pricing logic module.

 ■ A nonlocal change requires multiple element modifications but leaves the underlying
architectural approach intact—for example, adding a new business rule to a pricing logic
module, then adding new fields to the database that this new business rule requires, and
then revealing the results of applying the rule in the user interface.

 ■ An architectural change affects the fundamental ways in which the elements interact
with each other and will probably require changes all over the system—for example,
changing a system from single-threaded to multi-threaded.

Obviously, local changes are the most desirable, so an effective architecture is one in
which the most common changes are local, and hence easy to make. Nonlocal changes are not
as desirable but do have the virtue that they can usually be staged—that is, rolled out—in an
orderly manner over time. For example, you might first make changes to add a new pricing
rule, then make the changes to actually deploy the new rule.

Deciding when changes are essential, determining which change paths have the least risk,
assessing the consequences of proposed changes, and arbitrating sequences and priorities for
requested changes all require broad insight into the relationships, performance, and behaviors
of system software elements. These tasks are all part of the job description for an architect.
Reasoning about the architecture and analyzing the architecture can provide the insights nec-
essary to make decisions about anticipated changes. If you do not take this step, and if you do
not pay attention to maintaining the conceptual integrity of your architecture, then you will
almost certainly accumulate architecture debt. We deal with this subject in Chapter 23.

28 Part I Introduction | Chapter 2 Why Is Software Architecture Important?

 2.3 Predicting System Qualities

This point follows from the previous two: Architecture not only imbues systems with qualities,
but does so in a predictable way.

This may seem obvious, but it need not be the case. Then designing an architecture would
consist of making a series of pretty much random design decisions, building the system, test-
ing for quality attributes, and hoping for the best. Oops—not fast enough or hopelessly vulner-
able to attacks? Start hacking.

Fortunately, it is possible to make quality predictions about a system based solely on an
evaluation of its architecture. If we know that certain kinds of architectural decisions lead to
certain quality attributes in a system, then we can make those decisions and rightly expect
to be rewarded with the associated quality attributes. After the fact, when we examine an
architecture, we can determine whether those decisions have been made and confidently pre-
dict that the architecture will exhibit the associated qualities.

This point and the previous point, taken together, mean that architecture largely deter-
mines system qualities and—even better!—we know how it does so, and we know how to
make it do so.

Even if you don’t perform the quantitative analytic modeling sometimes necessary to
ensure that an architecture will deliver its prescribed benefits, this principle of evaluating
decisions based on their quality attribute implications is invaluable for at least spotting poten-
tial trouble early.

 2.4 Communication among Stakeholders

One point made in Chapter 1 is that an architecture is an abstraction, and that is useful because
it represents a simplified model of the whole system that (unlike the infinite details of the
whole system) you can keep in your head. So can others on your team. Architecture represents
a common abstraction of a system that most, if not all, of the system’s stakeholders can use as a
basis for creating mutual understanding, negotiating, forming consensus, and communicating
with each other. The architecture—or at least parts of it—are sufficiently abstract that most
nontechnical people can understand it to the extent they need to, particularly with some coach-
ing from the architect, and yet that abstraction can be refined into sufficiently rich technical
specifications to guide implementation, integration, testing, and deployment.

Each stakeholder of a software system—customer, user, project manager, coder, tester,
and so on—is concerned with different characteristics of the system that are affected by its
architecture. For example:

 ■ the user is concerned that the system is fast, reliable, and available when needed;
 ■ the customer (who pays for the system) is concerned that the architecture can be imple-

mented on schedule and according to budget;

2.4 Communication among Stakeholders 29

 ■ the manager is worried that (in addition to cost and schedule concerns) the architecture
will allow teams to work largely independently, interacting in disciplined and controlled
ways; and

 ■ the architect is worried about strategies to achieve all of those goals.

Architecture provides a common language in which different concerns can be expressed,
negotiated, and resolved at a level that is intellectually manageable even for large, complex
systems. Without such a language, it is difficult to understand large systems sufficiently to
make the early decisions that influence both quality and usefulness. Architectural analysis, as
we will see in Chapter 21, both depends on this level of communication and enhances it.

Chapter 22, on architecture documentation, covers stakeholders and their concerns in
greater depth.

“What Happens When I Push This Button?”: Architecture as a Vehicle for

Stakeholder Communication

The project review droned on and on. The government-sponsored development was

behind schedule and over budget, and it was large enough that these lapses were

attracting the U.S. Congress’s attention. And now the government was making up for

past neglect by holding a marathon come-one-come-all review session. The contractor

had recently undergone a buyout, which hadn’t helped matters. It was the afternoon

of the second day, and the agenda called for presentation of the software architecture.

The young architect—an apprentice to the chief architect for the system—was bravely

explaining how the software architecture for the massive system would enable it to meet

its very demanding real-time, distributed, high-reliability requirements. He had a solid

presentation and a solid architecture to present. It was sound and sensible. But the

audience—about 30 government representatives who had varying roles in the manage-

ment and oversight of this sticky project—was tired. Some of them were even thinking

that perhaps they should have gone into real estate instead of enduring another one of

these marathon let’s-finally-get-it-right-this-time reviews.

The slide showed, in semiformal box-and-line notation, what the major software

elements were in a runtime view of the system. The names were all acronyms, sug-

gesting no semantic meaning without explanation, which the young architect gave. The

lines showed data flow, message passing, and process synchronization. The elements

were internally redundant, as the architect was explaining. “In the event of a failure,” he

began, using a laser pointer to denote one of the lines, “a restart mechanism triggers

along this path when. . . .”

“What happens when the mode select button is pushed?” interrupted one of the

audience members. He was a government attendee representing the user community

for this system.

“Beg your pardon?” asked the architect.

“The mode select button,” he said. “What happens when you push it?”

“Um, that triggers an event in the device driver, up here,” began the architect,

laser-pointing. “It then reads the register and interprets the event code. If it’s mode

select, well, then, it signals the blackboard, which in turn signals the objects that have

subscribed to that event. . . .”

30 Part I Introduction | Chapter 2 Why Is Software Architecture Important?

“No, I mean what does the system do,” interrupted the questioner. “Does it reset the

displays? And what happens if this occurs during a system reconfiguration?”

The architect looked a little surprised and flicked off the laser pointer. This was not an

architectural question, but since he was an architect and therefore fluent in the require-

ments, he knew the answer. “If the command line is in setup mode, the displays will

reset,” he said. “Otherwise, an error message will be put on the control console, but the

signal will be ignored.” He put the laser pointer back on. “Now, the restart mechanism

that I was talking about. . . .”

“Well, I was just wondering,” said the users’ delegate. “Because I see from your chart

that the display console is sending signal traffic to the target location module.”

“What should happen?” asked another member of the audience, addressing the first

questioner. “Do you really want the user to get mode data during its reconfiguring?”

And for the next 45 minutes, the architect watched as the audience consumed his time

slot by debating what the correct behavior of the system was supposed to be in various

esoteric states—an absolutely essential conversation that should have happened when

the requirements were being formulated but, for whatever reason, had not.

The debate was not architectural, but the architecture (and the graphical rendition of

it) had sparked debate. It is natural to think of architecture as the basis for communica-

tion among some of the stakeholders besides the architects and developers: Managers,

for example, use the architecture to create teams and allocate resources among them.

But users? The architecture is invisible to users, after all; why should they latch on to it

as a tool for system understanding?

The fact is that they do. In this case, the questioner had sat through two days of view-

graphs all about function, operation, user interface, and testing. But it was the first slide on

architecture that—even though he was tired and wanted to go home—made him realize

he didn’t understand something. Attendance at many architecture reviews has convinced

me that seeing the system in a new way prods the mind and brings new questions to the

surface. For users, architecture often serves as that new way, and the questions that a

user poses will be behavioral in nature. In a memorable architecture evaluation exercise

a few years ago, the user representatives were much more interested in what the system

was going to do than in how it was going to do it, and naturally so. Up until that point,

their only contact with the vendor had been through its marketers. The architect was the

first legitimate expert on the system to whom they had access, and they didn’t hesitate to

seize the moment.

Of course, careful and thorough requirements specifications would ameliorate this,

but for a variety of reasons, they are not always created or available. In their absence, a

specification of the architecture often serves to trigger questions and improve clarity. It

is probably more prudent to recognize this possibility than to resist it.

Sometimes such an exercise will reveal unreasonable requirements, whose utility

can then be revisited. A review of this type that emphasizes synergy between require-

ments and architecture would have let the young architect in our story off the hook by

giving him a place in the overall review session to address that kind of information. And

the user representative wouldn’t have felt like a fish out of water, asking his question at

a clearly inappropriate moment.

—PCC

2.6 Constraints on Implementation 31

2.5 Early Design Decisions

Software architecture is a manifestation of the earliest design decisions about a system, and
these early bindings carry enormous weight with respect to the system’s remaining devel-
opment, its deployment, and its maintenance life. It is also the earliest point at which these
important design decisions affecting the system can be scrutinized.

Any design, in any discipline, can be viewed as a sequence of decisions. When painting a
picture, an artist decides on the material for the canvas and the media for recording—oil paint,
watercolor, crayon—even before the picture is begun. Once the picture is begun, other deci-
sions are immediately made: Where is the first line, what is its thickness, what is its shape? All
of these early design decisions have a strong influence on the final appearance of the picture,
and each decision constrains the many decisions that follow. Each decision, in isolation, might
appear innocent enough, but the early ones in particular have disproportionate weight simply
because they influence and constrain so much of what follows.

So it is with architecture design. An architecture design can also be viewed as a set
of decisions. Changing these early decisions will cause a ripple effect, in terms of the addi-
tional decisions that must now be changed. Yes, sometimes the architecture must be refactored
or redesigned, but this is not a task we undertake lightly—because the “ripple” might turn into
an avalanche.

What are these early design decisions embodied by software architecture? Consider:

 ■ Will the system run on one processor or be distributed across multiple processors?
 ■ Will the software be layered? If so, how many layers will there be? What will each

one do?
 ■ Will components communicate synchronously or asynchronously? Will they interact by

transferring control or data, or both?
 ■ Will the information that flows through the system be encrypted?
 ■ Which operating system will we use?
 ■ Which communication protocol will we choose?

Imagine the nightmare of having to change any of these or a myriad of other related
decisions. Decisions like these begin to flesh out some of the structures of the architecture and
their interactions.

 2.6 Constraints on Implementation

If you want your implementation to conform to an architecture, then it must conform to the
design decisions prescribed by the architecture. It must have the set of elements prescribed by
the architecture, these elements must interact with each other in the fashion prescribed by the
architecture, and each element must fulfill its responsibility to the other elements as prescribed
by the architecture. Each of these prescriptions is a constraint on the implementer.

32 Part I Introduction | Chapter 2 Why Is Software Architecture Important?

Element builders must be fluent in the specifications of their individual elements, but
they may not be aware of the architectural tradeoffs—the architecture (or architect) simply
constrains them in such a way as to meet the tradeoffs. A classic example is when an archi-
tect assigns performance budgets to the pieces of software involved in some larger piece of
functionality. If each software unit stays within its budget, the overall transaction will meet its
performance requirement. Implementers of each of the constituent pieces may not know the
overall budget, but only their own.

Conversely, the architects need not be experts in all aspects of algorithm design or the
intricacies of the programming language—although they should certainly know enough not to
design something that is difficult to build. Architects, however, are the people responsible for
establishing, analyzing, and enforcing the architectural decisions and tradeoffs.

 2.7 Influences on Organizational Structure

Not only does architecture prescribe the structure of the system being developed, but that
structure becomes engraved in the structure of the development project (and sometimes the
structure of the entire organization). The normal method for dividing up the labor in a large
project is to assign different groups different portions of the system to construct. This so-called
work-breakdown structure of a system is manifested in the architecture in the work assignment
structure described in Chapter 1. Because the architecture includes the broadest decompo-
sition of the system, it is typically used as the basis for the work-breakdown structure. The
work-breakdown structure in turn dictates units of planning, scheduling, and budget; inter-
team communication channels; configuration control and file-system organization; integration
and test plans and procedures; and even project minutiae such as how the project intranet is
organized and who sits with whom at the company picnic. Teams communicate with each
other in terms of the interface specifications for their elements. The maintenance activity,
when launched, will also reflect the software structure, with teams formed to maintain spe-
cific elements from the architecture—the database, the business rules, the user interface, the
device drivers, and so forth.

A side effect of establishing the work-breakdown structure is to freeze some aspects of
the software architecture. A group that is responsible for one of the subsystems may resist
having its responsibilities distributed across other groups. If these responsibilities have been
formalized in a contractual relationship, changing responsibilities could become expensive or
even litigious.

Thus, once the architecture has been agreed upon, it becomes very costly—for manage-
rial and business reasons—to significantly modify it. This is one argument (among many) for
analyzing the software architecture for a large system before settling on a specific choice.

2.9 Cost and Schedule Estimates 33

 2.8 Enabling Incremental Development

Once an architecture has been defined, it can serve as the basis for incremental development.
The first increment can be a skeletal system in which at least some of the infrastructure—how
the elements initialize, communicate, share data, access resources, report errors, log activity,
and so forth—is present, but much of the system’s application functionality is not.

Building the infrastructure and building the application functionality can go hand in
hand. Design and build a little infrastructure to support a little end-to-end functionality; repeat
until done.

Many systems are built as skeletal systems that can be extended using plug-ins, packages,
or extensions. Examples include the R language, Visual Studio Code, and most web browsers.
The extensions, when added, provide additional functionality over and above what is present
in the skeleton. This approach aids the development process by ensuring that the system is exe-
cutable early in the product’s life cycle. The fidelity of the system increases as extensions are
added, or early versions are replaced by more complete versions of these parts of the software.
In some cases, the parts may be low-fidelity versions or prototypes of the final functionality;
in other cases, they may be surrogates that consume and produce data at the appropriate rates
but do little else. Among other things, this allows potential performance (and other) problems
to be identified early in the product’s life cycle.

This practice gained attention in the early 2000s through the ideas of Alistair Cockburn
and his notion of a “walking skeleton.” More recently, it has been adopted by those employing
MVP (minimum viable product) as a strategy for risk reduction.

The benefits of incremental development include a reduction of the potential risk in the
project. If the architecture is for a family of related systems, the infrastructure can be reused
across the family, lowering the per-system cost of each.

 2.9 Cost and Schedule Estimates

Cost and schedule estimates are an important tool for the project manager. They help the proj-
ect manager acquire the necessary resources as well as monitor progress on the project. One
of the duties of an architect is to help the project manager create cost and schedule estimates
early in the project’s life cycle. While top-down estimates are useful for setting goals and
apportioning budgets, cost estimations based on a bottom-up understanding of the system’s
pieces are typically more accurate than those based purely on top-down system knowledge.

As we have said, the organizational and work-breakdown structure of a project is almost
always based on its architecture. Each team or individual responsible for a work item will be
able to make more accurate estimates for their piece than a project manager can, and will feel
more ownership in making those estimates come true. But the best cost and schedule esti-
mates will typically emerge from a consensus between the top-down estimates (created by the

34 Part I Introduction | Chapter 2 Why Is Software Architecture Important?

architect and the project manager) and the bottom-up estimates (created by the developers).
The discussion and negotiation that result from this process create a far more accurate esti-
mate than the use of either approach by itself.

It helps if the requirements for a system have been reviewed and validated. The more
up-front knowledge you have about the scope, the more accurate the cost and schedule esti-
mates will be.

Chapter 24 delves into the use of architecture in project management.

2.10 Transferable, Reusable Model

The earlier in the life cycle reuse is applied, the greater the benefit that can be achieved from
this practice. While code reuse offers a benefit, reuse of architectures provides opportunities
for tremendous leverage for systems with similar requirements. When architectural decisions
can be reused across multiple systems, all of the early-decision consequences we described in
earlier sections are also transferred to those systems.

A product line or family is a set of systems that are all built using the same set of shared
assets—software components, requirements documents, test cases, and so forth. Chief among
these assets is the architecture that was designed to handle the needs of the entire family.
Product-line architects choose an architecture (or a family of closely related architectures) that
will serve all envisioned members of the product line. The architecture defines what is fixed
for all members of the product line and what is variable.

Product lines represent a powerful approach to multi-system development that has shown
order-of-magnitude payoffs in time to market, cost, productivity, and product quality. The
power of architecture lies at the heart of this paradigm. Similar to other capital investments,
architectures for product lines become a developing organization’s shared asset.

2.11 Architecture Allows Incorporation of Independently
Developed Elements

Whereas earlier software paradigms focused on programming as the prime activity, with prog-
ress measured in lines of code, architecture-based development often focuses on composing
or assembling elements that are likely to have been developed separately, even independently,
from each other. This composition is possible because the architecture defines the elements
that can be incorporated into the system. The architecture constrains possible replacements
(or additions) according to how they interact with their environment, how they receive and
relinquish control, which data they consume and produce, how they access data, and which
protocols they use for communication and resource sharing. We elaborate on these ideas in
Chapter 15.

2.12 Restricting the Vocabulary of Design Alternatives 35

Commercial off-the-shelf components, open source software, publicly available apps, and
networked services are all examples of independently developed elements. The complexity
and ubiquity of integrating many independently developed elements into your system have
spawned an entire industry of software tools, such as Apache Ant, Apache Maven, MSBuild,
and Jenkins.

For software, the payoffs can take the following forms:

 ■ Decreased time to market (It should be easier to use someone else’s ready solution than
to build your own.)

 ■ Increased reliability (Widely used software should have its bugs ironed out already.)
 ■ Lower cost (The software supplier can amortize development cost across its customer

base.)
 ■ Flexibility (If the element you want to buy is not terribly special-purpose, it’s likely to be

available from several sources, which in turn increases your buying leverage.)

An open system is one that defines a set of standards for software elements—how they
behave, how they interact with other elements, how they share data, and so forth. The goal of
an open system is to enable, and even encourage, many different suppliers to be able to pro-
duce elements. This can avoid “vendor lock-in,” a situation in which a single vendor is the only
one who can provide an element and charges a premium price for doing so. Open systems are
enabled by an architecture that defines the elements and their interactions.

 2.12 Restricting the Vocabulary of Design Alternatives

As useful architectural solutions are collected, it becomes clear that although software ele-
ments can be combined in more or less infinite ways, there is something to be gained by
voluntarily restricting ourselves to a relatively small number of choices of elements and their
interactions. By doing so, we minimize the design complexity of the system we are building.

A software engineer is not an artiste where creativity and freedom are paramount. Instead,
engineering is about discipline, and discipline comes, in part, by restricting the vocabulary
of alternatives to proven solutions. Examples of these proven design solutions include tactics
and patterns, which will be discussed extensively in Part II. Reusing off-the-shelf elements is
another approach to restricting your design vocabulary.

Restricting your design vocabulary to proven solutions can yield the following benefits:

 ■ Enhanced reuse
 ■ More regular and simpler designs that are more easily understood and communicated,

and bring more reliably predictable outcomes
 ■ Easier analysis with greater confidence
 ■ Shorter selection time
 ■ Greater interoperability

36 Part I Introduction | Chapter 2 Why Is Software Architecture Important?

Unprecedented designs are risky. Proven designs are, well, proven. This is not to say that
software design can never be innovative or offer new and exciting solutions. It can. But these
solutions should not be invented for the sake of novelty; rather, they should be sought when
existing solutions are insufficient to solve the problem at hand.

Properties of software follow from the choice of architectural tactics or patterns. Tactics
and patterns that are more desirable for a particular problem should improve the resulting
design solution, perhaps by making it easier to arbitrate conflicting design constraints, by
increasing insights into poorly understood design contexts, and by helping surface inconsisten-
cies in requirements. We will discuss architectural tactics and patterns in Part II.

 2.13 A Basis for Training

The architecture, including a description of how the elements interact with each other to carry
out the required behavior, can serve as the first introduction to the system for new project
members. This reinforces our point that one important use of software architecture is to sup-
port and encourage communication among the various stakeholders. The architecture serves
as a common reference point for all of these people.

Module views are excellent means of showing someone the structure of a project: who does
what, which teams are assigned to which parts of the system, and so forth. Component-and-
connector views are excellent choices for explaining how the system is expected to work
and accomplish its job. Allocation views show a new project member where their assigned part
fits into the project’s development or deployment environment.

 2.14 Summary

Software architecture is important for a wide variety of technical and nontechnical reasons.
Our List of Thirteen includes the following benefits:

1. An architecture will inhibit or enable a system’s driving quality attributes.
2. The decisions made in an architecture allow you to reason about and manage change as

the system evolves.
3. The analysis of an architecture enables early prediction of a system’s qualities.
4. A documented architecture enhances communication among stakeholders.
5. The architecture is a carrier of the earliest, and hence most-fundamental, hardest-to-

change design decisions.
6. An architecture defines a set of constraints on subsequent implementation.
7. The architecture dictates the structure of an organization, or vice versa.
8. An architecture can provide the basis for incremental development.

2.16 Discussion Questions 37

9. An architecture is the key artifact that allows the architect and the project manager to
reason about cost and schedule.

10. An architecture can be created as a transferable, reusable model that forms the heart of a
product line.

11. Architecture-based development focuses attention on the assembly of components, rather
than simply on their creation.

12. By restricting design alternatives, architecture productively channels the creativity of
developers, reducing design and system complexity.

13. An architecture can be the foundation for training of a new team member.

 2.15 For Further Reading

The Software Architect Elevator: Redefining the Architect’s Role in the Digital Enterprise
by Gregor Hohpe describes the unique ability of architects to interact with people at all levels
inside and outside an organization, and facilitate stakeholder communication [Hohpe 20].

The granddaddy of papers about architecture and organization is by [Conway 68]. Conway’s
law states that “organizations which design systems . . . are constrained to produce designs
which are copies of the communication structures of these organizations.”

Cockburn’s notion of the walking skeleton is described in Agile Software Development:
The Cooperative Game [Cockburn 06].

A good example of an open systems architecture standard is AUTOSAR, developed for
the automotive industry (autosar.org).

For a comprehensive treatment on building software product lines, see [Clements 16].
Feature-based product line engineering is a modern, automation-centered approach to build-
ing product lines that expands the scope from software to systems engineering. A good sum-
mary may be found at [INCOSE 19].

2.16 Discussion Questions

1. If you remember nothing else from this book, remember . . . what? Extra credit for not
peeking.

2. For each of the 13 reasons why architecture is important articulated in this chapter, take
the contrarian position: Propose a set of circumstances under which architecture is not
necessary to achieve the result indicated. Justify your position. (Try to come up with
different circumstances for each of the 13 reasons.)

3. This chapter argues that architecture brings a number of tangible benefits. How would
you measure the benefits, on a particular project, of each of the 13 points?

http://autosar.org

38 Part I Introduction | Chapter 2 Why Is Software Architecture Important?

4. Suppose you want to introduce architecture-centric practices to your organization. Your
management is open to the idea but wants to know the ROI for doing so. How would you
respond?

5. Prioritize the list of 13 reasons in this chapter according to some criteria that are mean-
ingful to you. Justify your answer. Or, if you could choose only two or three of the rea-
sons to promote the use of architecture in a project, which would you choose and why?

39

3
 Understanding Quality

Attributes

Quality is never an accident; it is always the result of high intention,
sincere effort, intelligent direction and skillful execution.

—William A. Foster

Many factors determine the qualities that must be provided for in a system’s architecture.
These qualities go beyond functionality, which is the basic statement of the system’s capabil-
ities, services, and behavior. Although functionality and other qualities are closely related, as
you will see, functionality often takes the front seat in the development scheme. This prefer-
ence is shortsighted, however. Systems are frequently redesigned not because they are func-
tionally deficient—the replacements are often functionally identical—but because they are
difficult to maintain, port, or scale; or they are too slow; or they have been compromised
by hackers. In Chapter 2, we said that architecture was the first place in software creation
in which the achievement of quality requirements could be addressed. It is the mapping of a
system’s functionality onto software structures that determines the architecture’s support for
qualities. In Chapters 4–14, we discuss how various qualities are supported by architectural
design decisions. In Chapter 20, we show how to integrate all of your drivers, including quality
attribute decisions, into a coherent design.

We have been using the term “quality attribute” loosely, but now it is time to define it
more carefully. A quality attribute (QA) is a measurable or testable property of a system that
is used to indicate how well the system satisfies the needs of its stakeholders beyond the basic
function of the system. You can think of a quality attribute as measuring the “utility” of a
product along some dimension of interest to a stakeholder.

In this chapter our focus is on understanding the following:

 ■ How to express the qualities we want our architecture to exhibit
 ■ How to achieve the qualities through architectural means
 ■ How to determine the design decisions we might make with respect to the qualities

This chapter provides the context for the discussions of individual quality attributes in
Chapters 4–14.

PART II Quality Attributes

40 Part II Quality Attributes | Chapter 3 Understanding Quality Attributes

3.1 Functionality

Functionality is the ability of the system to do the work for which it was intended. Of all of the
requirements, functionality has the strangest relationship to architecture.

First of all, functionality does not determine architecture. That is, given a set of required
functionality, there is no end to the architectures you could create to satisfy that functionality.
At the very least, you could divide up the functionality in any number of ways and assign the
sub-pieces to different architectural elements.

In fact, if functionality were the only thing that mattered, you wouldn’t have to divide
the system into pieces at all: A single monolithic blob with no internal structure would do just
fine. Instead, we design our systems as structured sets of cooperating architectural elements—
modules, layers, classes, services, databases, apps, threads, peers, tiers, and on and on—to
make them understandable and to support a variety of other purposes. Those “other purposes”
are the other quality attributes that we’ll examine in the remaining sections of this chapter, and
in the subsequent quality attribute chapters in Part II.

Although functionality is independent of any particular structure, it is achieved by assign-
ing responsibilities to architectural elements. This process results in one of the most basic
architectural structures—module decomposition.

Although responsibilities can be allocated arbitrarily to any module, software architecture
constrains this allocation when other quality attributes are important. For example, systems are
frequently (or perhaps always) divided so that several people can cooperatively build them. The
architect’s interest in functionality is how it interacts with and constrains other qualities.

Functional Requirements

After more than 30 years of writing about and discussing the distinction between func-

tional requirements and quality requirements, the definition of functional requirements

still eludes me. Quality attribute requirements are well defined: Performance has to

do with the system’s timing behavior, modifiability has to do with the system’s ability to

support changes in its behavior or other qualities after initial deployment, availability has

to do with the system’s ability to survive failures, and so forth.

Function, however, is a much more slippery concept. An international standard (ISO

25010) defines functional suitability as “the capability of the software product to provide

functions which meet stated and implied needs when the software is used under spec-

ified conditions.” That is, functionality is the ability to provide functions. One interpre-

tation of this definition is that functionality describes what the system does and quality

describes how well the system does its function. That is, qualities are attributes of the

system and function is the purpose of the system.

This distinction breaks down, however, when you consider the nature of some of

the ”function.” If the function of the software is to control engine behavior, how can the

function be correctly implemented without considering timing behavior? Is the ability

to control access by requiring a user name/password combination not a function, even

though it is not the purpose of any system?

3.2 Quality Attribute Considerations 41

I much prefer using the word “responsibility” to describe computations that a system

must perform. Questions such as “What are the timing constraints on that set of respon-

sibilities?”, “What modifications are anticipated with respect to that set of responsibili-

ties?”, and “What class of users is allowed to execute that set of responsibilities?” make

sense and are actionable.

The achievement of qualities induces responsibility; think of the user name/password

example just mentioned. Further, one can identify responsibilities as being associated

with a particular set of requirements.

So does this mean that the term “functional requirement” shouldn’t be used? People

have an understanding of the term, but when precision is desired, we should talk about

sets of specific responsibilities instead.

Paul Clements has long ranted against the careless use of the term “nonfunctional,”

and now it’s my turn to rant against the careless use of the term “functional”—which is

probably equally ineffectually.

—LB

3.2 Quality Attribute Considerations

Just as a system’s functions do not stand on their own without due consideration of quality
attributes, neither do quality attributes stand on their own; they pertain to the functions of the
system. If a functional requirement is “When the user presses the green button, the Options
dialog appears,” a performance QA annotation might describe how quickly the dialog will
appear; an availability QA annotation might describe how often this function is allowed to
fail, and how quickly it will be repaired; a usability QA annotation might describe how easy it
is to learn this function.

Quality attributes as a distinct topic have been studied by the software community at
least since the 1970s. A variety of taxonomies and definitions have been published (we discuss
some of these in Chapter 14), many of which have their own research and practitioner commu-
nities. However, there are three problems with most discussions of system quality attributes:

1. The definitions provided for an attribute are not testable. It is meaningless to say that a
system will be “modifiable.” Every system will be modifiable with respect to one set of
changes and not modifiable with respect to another. The other quality attributes are sim-
ilar in this regard: A system may be robust with respect to some faults and brittle with
respect to others, and so forth.

2. Discussion often focuses on which quality a particular issue belongs to. Is a denial-
of-service attack on a system an aspect of availability, an aspect of performance, an
aspect of security, or an aspect of usability? All four attribute communities would claim
“ownership” of the denial-of-service attack. All are, to some extent, correct. But this
debate over categorization doesn’t help us, as architects, understand and create architec-
tural solutions to actually manage the attributes of concern.

42 Part II Quality Attributes | Chapter 3 Understanding Quality Attributes

3. Each attribute community has developed its own vocabulary. The performance commu-
nity has “events” arriving at a system, the security community has “attacks” arriving at
a system, the availability community has “faults” arriving, and the usability community
has “user input.” All of these may actually refer to the same occurrence, but they are
described using different terms.

A solution to the first two problems (untestable definitions and overlapping issues) is to use
quality attribute scenarios as a means of characterizing quality attributes (see Section 3.3). A
solution to the third problem is to illustrate the concepts that are fundamental to that attribute
community in a common form, which we do in Chapters 4–14.

We will focus on two categories of quality attributes. The first category includes those
attributes that describe some property of the system at runtime, such as availability, perfor-
mance, or usability. The second category includes those that describe some property of the
development of the system, such as modifiability, testability, or deployability.

Quality attributes can never be achieved in isolation. The achievement of any one will
have an effect—sometimes positive and sometimes negative—on the achievement of others. For
example, almost every quality attribute negatively affects performance. Take portability: The
main technique for achieving portable software is to isolate system dependencies, which intro-
duces overhead into the system’s execution, typically as process or procedure boundaries, which
then hurts performance. Determining a design that may satisfy quality attribute requirements is
partially a matter of making the appropriate tradeoffs; we discuss design in Chapter 21.

In the next three sections, we focus on how quality attributes can be specified, what archi-
tectural decisions will enable the achievement of particular quality attributes, and what ques-
tions about quality attributes will enable the architect to make the correct design decisions.

3.3 Specifying Quality Attribute Requirements: Quality Attribute
Scenarios

We use a common form to specify all QA requirements as scenarios. This addresses the vocab-
ulary problems we identified previously. The common form is testable and unambiguous; it is
not sensitive to whims of categorization. Thus it provides regularity in how we treat all quality
attributes.

Quality attribute scenarios have six parts:

 ■ Stimulus. We use the term “stimulus” to describe an event arriving at the system or the
project. The stimulus can be an event to the performance community, a user operation
to the usability community, or an attack to the security community, and so forth. We
use the same term to describe a motivating action for developmental qualities. Thus a
stimulus for modifiability is a request for a modification; a stimulus for testability is the
completion of a unit of development.

 ■ Stimulus source. A stimulus must have a source—it must come from somewhere.
Some entity (a human, a computer system, or any other actor) must have generated the

3.3 Specifying Quality Attribute Requirements: Quality Attribute Scenarios 43

stimulus. The source of the stimulus may affect how it is treated by the system. A request
from a trusted user will not undergo the same scrutiny as a request by an untrusted user.

 ■ Response. The response is the activity that occurs as the result of the arrival of the stim-
ulus. The response is something the architect undertakes to satisfy. It consists of the
responsibilities that the system (for runtime qualities) or the developers (for development-
time qualities) should perform in response to the stimulus. For example, in a performance
scenario, an event arrives (the stimulus) and the system should process that event and
generate a response. In a modifiability scenario, a request for a modification arrives (the
stimulus) and the developers should implement the modification—without side effects—
and then test and deploy the modification.

 ■ Response measure. When the response occurs, it should be measurable in some fash-
ion so that the scenario can be tested—that is, so that we can determine if the architect
achieved it. For performance, this could be a measure of latency or throughput; for
modifiability, it could be the labor or wall clock time required to make, test, and deploy
the modification.

These four characteristics of a scenario are the heart of our quality attribute specifi-
cations. But two more characteristics are important, yet often overlooked: environment and
artifact.

 ■ Environment. The environment is the set of circumstances in which the scenario takes
place. Often this refers to a runtime state: The system may be in an overload condition or
in normal operation, or some other relevant state. For many systems, “normal” opera-
tion can refer to one of a number of modes. For these kinds of systems, the environment
should specify in which mode the system is executing. But the environment can also
refer to states in which the system is not running at all: when it is in development, or
testing, or refreshing its data, or recharging its battery between runs. The environment
sets the context for the rest of the scenario. For example, a request for a modification that
arrives after the code has been frozen for a release may be treated differently than one
that arrives before the freeze. The fifth successive failure of a component may be treated
differently than the first failure of that component.

 ■ Artifact. The stimulus arrives at some target. This is often captured as just the system
or project itself, but it’s helpful to be more precise if possible. The artifact may be a
collection of systems, the whole system, or one or more pieces of the system. A failure or
a change request may affect just a small portion of the system. A failure in a data store
may be treated differently than a failure in the metadata store. Modifications to the user
interface may have faster response times than modifications to the middleware.

To summarize, we capture quality attribute requirements as six-part scenarios. While it
is common to omit one or more of these six parts, particularly in the early stages of thinking
about quality attributes, knowing that all of the parts are there forces the architect to consider
whether each part is relevant.

We have created a general scenario for each of the quality attributes presented in Chap-
ters 4–13 to facilitate brainstorming and elicitation of concrete scenarios. We distinguish

44 Part II Quality Attributes | Chapter 3 Understanding Quality Attributes

Stimulus

Response

Response

Measure

Source

3

2
1

4

Environment

Artifact

6

1

2

3

4

5

general quality attribute scenarios—general scenarios—which are system independent and
can pertain to any system, from concrete quality attribute scenarios—concrete scenarios—
which are specific to the particular system under consideration.

To translate these generic attribute characterizations into requirements for a particular
system, the general scenarios need to be made system specific. But, as we have found, it is
much easier for a stakeholder to tailor a general scenario into one that fits their system than it
is for them to generate a scenario from thin air.

Figure 3.1 shows the parts of a quality attribute scenario just discussed. Figure 3.2 shows
an example of a general scenario, in this instance for availability.

FIGURE 3.1 The parts of a quality attribute scenario

Stimulus

Response

Response

Measure

Source

3

2
1

4

Environment

Artifact

Internal/external:

people, hardware,

software, physical

infrastructure,

physical

environment

Fault: omission,

crash, incorrect

timing, incorrect

response

Normal operation,

startup, shutdown,

repair mode, degraded

operation, overloaded

operation

Prevent the fault

from becoming a

failure

Detect the fault

Recover from the

fault

Time or time interval

when the system must

be available

Availability percentage

Time to detect the fault

Processors, communication

channels, storage, processes,

affected artifacts in the

system’s environment

FIGURE 3.2 A general scenario for availability

3.4 Achieving Quality Attributes through Architectural Patterns and Tactics 45

Not My Problem

Some time ago I was doing an architecture analysis on a complex system created by

and for Lawrence Livermore National Laboratory. If you visit this organization’s website

(llnl.gov) and try to figure out what Livermore Labs does, you will see the word “security”

mentioned over and over. The lab focuses on nuclear security, international and domes-

tic security, and environmental and energy security. Serious stuff . . .

Keeping this emphasis in mind, I asked my clients to describe the quality attributes of

concern for the system that I was analyzing. I’m sure you can imagine my surprise when

security wasn’t mentioned once! The system stakeholders mentioned performance,

modifiability, evolvability, interoperability, configurability, and portability, and one or two

more, but the word “security” never passed their lips.

Being a good analyst, I questioned this seemingly shocking and obvious omission.

Their answer was simple and, in retrospect, straightforward: “We don’t care about it.

Our systems are not connected to any external network, and we have barbed-wire

fences and guards with machine guns.”

Of course, someone at Livermore Labs was very interested in security. But not the

software architects. The lesson here is that the software architect may not bear the

responsibility for every QA requirement.

—RK

3.4 Achieving Quality Attributes through Architectural Patterns
and Tactics

We now turn to the techniques an architect can use to achieve the required quality attributes:
architectural patterns and tactics.

A tactic is a design decision that influences the achievement of a quality attribute
response—it directly affects the system’s response to some stimulus. Tactics may impart por-
tability to one design, high performance to another, and integrability to a third.

An architectural pattern describes a particular recurring design problem that arises in
specific design contexts and presents a well-proven architectural solution for the problem. The
solution is specified by describing the roles of its constituent elements, their responsibilities
and relationships, and the ways in which they collaborate. Like the choice of tactics, the choice
of an architectural pattern has a profound effect on quality attributes—usually more than one.

Patterns typically comprise multiple design decisions and, in fact, often comprise multi-
ple quality attribute tactics. We say that patterns often bundle tactics and, consequently, fre-
quently make tradeoffs among quality attributes.

We will look at example relationships between tactics and patterns in each of our quality
attribute–specific chapters. Chapter 14 explains how a set of tactics for any quality attribute
can be constructed; those tactics are, in fact, the steps we used to produce the sets found in this
book.

http://llnl.gov

46 Part II Quality Attributes | Chapter 3 Understanding Quality Attributes

While we discuss patterns and tactics as though they were foundational design decisions,
the reality is that architectures often emerge and evolve as a result of many small decisions and
business forces. For example, a system that was once tolerably modifiable may deteriorate over
time, through the actions of developers adding features and fixing bugs. Similarly, a system’s
performance, availability, security, and any other quality may (and typically does) deteriorate
over time, again through the well-intentioned actions of programmers who are focused on
their immediate tasks and not on preserving architectural integrity.

This “death by a thousand cuts” is common on software projects. Developers may make
suboptimal decisions due to a lack of understanding of the structures of the system, schedule
pressures, or perhaps a lack of clarity in the architecture from the start. This kind of deterio-
ration is a form of technical debt known as architecture debt. We discuss architecture debt in
Chapter 23. To reverse this debt, we typically refactor.

Refactoring may be done for many reasons. For example, you might refactor a system to
improve its security, placing different modules into different subsystems based on their secu-
rity properties. Or you might refactor a system to improve its performance, removing bottle-
necks and rewriting slow portions of the code. Or you might refactor to improve the system’s
modifiability. For example, when two modules are affected by the same kinds of changes over
and over because they are (at least partial) duplicates of each other, the common functionality
could be factored out into its own module, thereby improving cohesion and reducing the num-
ber of places that need to be changed when the next (similar) change request arrives.

Code refactoring is a mainstay practice of agile development projects, as a cleanup step
to make sure that teams have not produced duplicative or overly complex code. However, the
concept applies to architectural elements as well.

Successfully achieving quality attributes often involves process-related decisions, in
addition to architecture-related decisions. For example, a great security architecture is worth-
less if your employees are susceptible to phishing attacks or do not choose strong passwords.
We are not dealing with the process aspects in this book, but be aware that they are important.

3.5 Designing with Tactics

A system design consists of a collection of decisions. Some of these decisions help control the
quality attribute responses; others ensure achievement of system functionality. We depict this
relationship in Figure 3.3. Tactics, like patterns, are design techniques that architects have
been using for years. In this book, we isolate, catalog, and describe them. We are not inventing
tactics here, but rather just capturing what good architects do in practice.

Why do we focus on tactics? There are three reasons:

1. Patterns are foundational for many architectures, but sometimes there may be no pattern
that solves your problem completely. For example, you might need the high-availability
high-security broker pattern, not the textbook broker pattern. Architects frequently need
to modify and adapt patterns to their particular context, and tactics provide a systematic
means for augmenting an existing pattern to fill the gaps.

3.5 Designing with Tactics 47

2. If no pattern exists to realize the architect’s design goal, tactics allow the architect to
construct a design fragment from “first principles.” Tactics give the architect insight into
the properties of the resulting design fragment.

3. Tactics provide a way of making design and analysis more systematic within some lim-
itations. We’ll explore this idea in the next section.

Stimulus Response

Tactics

to Control

Response

FIGURE 3.3 Tactics are intended to control responses to stimuli.

Like any design concept, the tactics that we present here can and should be refined as
they are applied to design a system. Consider performance: Schedule resources is a common
performance tactic. But this tactic needs to be refined into a specific scheduling strategy, such
as shortest-job-first, round-robin, and so forth, for specific purposes. Use an intermediary is
a modifiability tactic. But there are multiple types of intermediaries (layers, brokers, prox-
ies, and tiers, to name just a few), which are realized in different ways. Thus a designer will
employ refinements to make each tactic concrete.

In addition, the application of a tactic depends on the context. Again, consider perfor-
mance: Manage sampling rate is relevant in some real-time systems but not in all real-time
systems, and certainly not in database systems or stock-trading systems where losing a single
event is highly problematic.

Note that there are some “super-tactics”—tactics that are so fundamental and so perva-
sive that they deserve special mention. For example, the modifiability tactics of encapsulation,
restricting dependencies, using an intermediary, and abstracting common services are found
in the realization of almost every pattern ever! But other tactics, such as the scheduling tactic
from performance, also appear in many places. For example, a load balancer is an intermedi-
ary that does scheduling. We see monitoring appearing in many quality attributes: We monitor
aspects of a system to achieve energy efficiency, performance, availability, and safety. Thus
we should not expect a tactic to live in only one place, for just a single quality attribute. Tactics
are design primitives and, as such, are found over and over in different aspects of design. This
is actually an argument for why tactics are so powerful and deserving of our attention—and
yours. Get to know them; they’ll be your friends.

48 Part II Quality Attributes | Chapter 3 Understanding Quality Attributes

3.6 Analyzing Quality Attribute Design Decisions: Tactics-Based
Questionnaires

In this section, we introduce a tool the analyst can use to understand potential quality attribute
behavior at various stages through the architecture’s design: tactics-based questionnaires.

Analyzing how well quality attributes have been achieved is a critical part of the task of
designing an architecture. And (no surprise) you shouldn’t wait until your design is complete
before you begin to do it. Opportunities for quality attribute analysis crop up at many different
points in the software development life cycle, even very early ones.

At any point, the analyst (who might be the architect) needs to respond appropriately to
whatever artifacts have been made available for analysis. The accuracy of the analysis and
expected degree of confidence in the analysis results will vary according to the maturity of the
available artifacts. But no matter the state of the design, we have found tactics-based question-
naires to be helpful in gaining insights into the architecture’s ability (or likely ability, as it is
refined) to provide the needed quality attributes.

In Chapters 4–13, we include a tactics-based questionnaire for each quality attribute cov-
ered in the chapters. For each question in the questionnaire, the analyst records the following
information:

 ■ Whether each tactic is supported by the system’s architecture.
 ■ Whether there are any obvious risks in the use (or nonuse) of this tactic. If the tactic has

been used, record how it is realized in the system, or how it is intended to be realized
(e.g., via custom code, generic frameworks, or externally produced components).

 ■ The specific design decisions made to realize the tactic and where in the code base the
implementation (realization) may be found. This is useful for auditing and architecture
reconstruction purposes.

 ■ Any rationale or assumptions made in the realization of this tactic.

To use these questionnaires, simply follow these four steps:

1. For each tactics question, fill the “Supported” column with “Y” if the tactic is supported
in the architecture and with “N” otherwise.

2. If the answer in the “Supported” column is “Y,” then in the “Design Decisions and
Location” column describe the specific design decisions made to support the tactic and
enumerate where these decisions are, or will be, manifested (located) in the architecture.
For example, indicate which code modules, frameworks, or packages implement this
tactic.

3. In the “Risk” column indicate the risk of implementing the tactic using a (H = High,
M = Medium, L = Low) scale.

4. In the “Rationale” column, describe the rationale for the design decisions made (includ-
ing a decision to not use this tactic). Briefly explain the implications of this decision. For
example, explain the rationale and implications of the decision in terms of the effort on
cost, schedule, evolution, and so forth.

3.8 For Further Reading 49

While this questionnaire-based approach might sound simplistic, it can actually be very
powerful and insightful. Addressing the set of questions forces the architect to take a step back
and consider the bigger picture. This process can also be quite efficient: A typical question-
naire for a single quality attribute takes between 30 and 90 minutes to complete.

3.7 Summary

Functional requirements are satisfied by including an appropriate set of responsibilities within
the design. Quality attribute requirements are satisfied by the structures and behaviors of the
architecture.

One challenge in architectural design is that these requirements are often captured poorly,
if at all. To capture and express a quality attribute requirement, we recommend the use of a
quality attribute scenario. Each scenario consists of six parts:

1. Source of stimulus
2. Stimulus
3. Environment
4. Artifact
5. Response
6. Response measure

An architectural tactic is a design decision that affects a quality attribute response. The
focus of a tactic is on a single quality attribute response. An architectural pattern describes a
particular recurring design problem that arises in specific design contexts and presents a well-
proven architectural solution for the problem. Architectural patterns can be seen as “bundles”
of tactics.

An analyst can understand the decisions made in an architecture through the use of a
 tactics-based checklist. This lightweight architecture analysis technique can provide insights
into the strengths and weaknesses of the architecture in a very short amount of time.

3.8 For Further Reading

 Some extended case studies showing how tactics and patterns are used in design can be found
in [Cervantes 16].

A substantial catalog of architectural patterns can be found in the five-volume set
Pattern-Oriented Software Architecture, by Frank Buschmann et al.

Arguments showing that many different architectures can provide the same functionality—
that is, that architecture and functionality are largely orthogonal—can be found in [Shaw 95].

50 Part II Quality Attributes | Chapter 3 Understanding Quality Attributes

3.9 Discussion Questions

1. What is the relationship between a use case and a quality attribute scenario? If you
wanted to add quality attribute information to a use case, how would you do it?

2. Do you suppose that the set of tactics for a quality attribute is finite or infinite? Why?

3. Enumerate the set of responsibilities that an automatic teller machine should support and
propose a design to accommodate that set of responsibilities. Justify your proposal.

4. Choose an architecture that you are familiar with (or choose the ATM architecture you
defined in question 3) and walk through the performance tactics questionnaire (found in
Chapter 9). What insight did these questions provide into the design decisions made (or
not made)?

51

4
 Availability

Technology does not always rhyme
with perfection and reliability.

Far from it in reality!
—Jean-Michel Jarre

Availability refers to a property of software—namely, that it is there and ready to carry out
its task when you need it to be. This is a broad perspective and encompasses what is normally
called reliability (although it may encompass additional considerations such as downtime due
to periodic maintenance). Availability builds on the concept of reliability by adding the notion
of recovery—that is, when the system breaks, it repairs itself. Repair may be accomplished by
various means, as we’ll see in this chapter.

Availability also encompasses the ability of a system to mask or repair faults such that
they do not become failures, thereby ensuring that the cumulative service outage period does
not exceed a required value over a specified time interval. This definition subsumes concepts
of reliability, robustness, and any other quality attribute that involves a concept of unaccept-
able failure.

A failure is the deviation of the system from its specification, where that deviation is
externally visible. Determining that a failure has occurred requires some external observer in
the environment.

A failure’s cause is called a fault. A fault can be either internal or external to the system
under consideration. Intermediate states between the occurrence of a fault and the occurrence
of a failure are called errors. Faults can be prevented, tolerated, removed, or forecast. Through
these actions, a system becomes “resilient” to faults. Among the areas with which we are
concerned are how system faults are detected, how frequently system faults may occur, what
happens when a fault occurs, how long a system is allowed to be out of operation, when faults
or failures may occur safely, how faults or failures can be prevented, and what kinds of notifi-
cations are required when a failure occurs.

Availability is closely related to, but clearly distinct from, security. A denial-of-service
attack is explicitly designed to make a system fail—that is, to make it unavailable. Availability
is also closely related to performance, since it may be difficult to tell when a system has failed

52 Part II Quality Attributes | Chapter 4 Availability

and when it is simply being egregiously slow to respond. Finally, availability is closely allied
with safety, which is concerned with keeping the system from entering a hazardous state and
recovering or limiting the damage when it does.

One of the most demanding tasks in building a high-availability fault-tolerant system is
to understand the nature of the failures that can arise during operation. Once those are under-
stood, mitigation strategies can be designed into the system.

Since a system failure is observable by users, the time to repair is the time until the fail-
ure is no longer observable. This may be an imperceptible delay in a user’s response time or it
may be the time it takes someone to fly to a remote location in the Andes to repair a piece of
mining machinery (as was recounted to us by a person responsible for repairing the software
in a mining machine engine). The notion of “observability” is critical here: If a failure could
have been observed, then it is a failure, whether or not it was actually observed.

In addition, we are often concerned with the level of capability that remains when a fail-
ure has occurred—a degraded operating mode.

Distinguishing between faults and failures allows us to discuss repair strategies. If code
containing a fault is executed but the system is able to recover from the fault without any observ-
able deviation from the otherwise specified behavior, we say that no failure has occurred.

The availability of a system can be measured as the probability that it will provide the
specified services within the required bounds over a specified time interval. A well-known
expression is used to derive steady-state availability (which came from the world of hardware):

MTBF/(MTBF + MTTR)

where MTBF refers to the mean time between failures and MTTR refers to the mean time to
repair. In the software world, this formula should be interpreted to mean that when thinking
about availability, you should think about what will make your system fail, how likely it is that
such an event will occur, and how much time will be required to repair it.

From this formula, it is possible to calculate probabilities and make claims like “the sys-
tem exhibits 99.999 percent availability” or “there is a 0.001 percent probability that the system
will not be operational when needed.” Scheduled downtimes (when the system is intentionally
taken out of service) should not be considered when calculating availability, since the system
is deemed “not needed” then; of course, this is dependent on the specific requirements for the
system, which are often encoded in a service level agreement (SLA). This may lead to seem-
ingly odd situations where the system is down and users are waiting for it, but the downtime is
scheduled and so is not counted against any availability requirements.

Detected faults can be categorized prior to being reported and repaired. This categori-
zation is commonly based on the fault’s severity (critical, major, or minor) and service impact
(service-affecting or non-service-affecting). It provides the system operator with a timely and
accurate system status and allows for an appropriate repair strategy to be employed. The repair
strategy may be automated or may require manual intervention.

As just mentioned, the availability expected of a system or service is frequently expressed
as an SLA. The SLA specifies the availability level that is guaranteed and, usually, the

4.1 Availability General Scenario 53

penalties that the provider will suffer if the SLA is violated. For example, Amazon provides
the following SLA for its EC2 cloud service:

AWS will use commercially reasonable efforts to make the Included Services each
available for each AWS region with a Monthly Uptime Percentage of at least 99.99%,
in each case during any monthly billing cycle (the “Service Commitment”). In the
event any of the Included Services do not meet the Service Commitment, you will be
eligible to receive a Service Credit as described below.

Table 4.1 provides examples of system availability requirements and associated threshold
values for acceptable system downtime, measured over observation periods of 90 days and
one year. The term high availability typically refers to designs targeting availability of 99.999
percent (“5 nines”) or greater. As mentioned earlier, only unscheduled outages contribute to
system downtime.

TABLE 4.1 System Availability Requirements

Availability Downtime/90 Days Downtime/Year

99.0% 21 hr, 36 min 3 days, 15.6 hr

99.9% 2 hr, 10 min 8 hr, 0 min, 46 sec

99.99% 12 min, 58 sec 52 min, 34 sec

99.999% 1 min, 18 sec 5 min, 15 sec

99.9999% 8 sec 32 sec

 4.1 Availability General Scenario

We can now describe the individual portions of an availability general scenario as summa-
rized in Table 4.2.

TABLE 4.2 Availability General Scenario

Portion of
Scenario

Description Possible Values

Source This specifies where the fault comes
from.

Internal/external: people, hardware,
software, physical infrastructure, physical
environment

Stimulus The stimulus to an availability scenario
is a fault.

Fault: omission, crash, incorrect timing,
incorrect response

Artifact This specifies which portions of the
system are responsible for and affected
by the fault.

Processors, communication channels,
storage, processes, affected artifacts in the
system’s environment

continues

54 Part II Quality Attributes | Chapter 4 Availability

Portion of
Scenario

Description Possible Values

Environment We may be interested in not only
how a system behaves in its “normal”
environment, but also how it behaves
in situations such as when it is already
recovering from a fault.

Normal operation, startup, shutdown, repair
mode, degraded operation, overloaded
operation

Response The most commonly desired response
is to prevent the fault from becoming a
failure, but other responses may also
be important, such as notifying people
or logging the fault for later analysis.
This section specifies the desired
system response.

Prevent the fault from becoming a failure

Detect the fault:
 ■ Log the fault
 ■ Notify the appropriate entities (people or

systems)
 ■ Recover from the fault
 ■ Disable the source of events causing the

fault
 ■ Be temporarily unavailable while a repair

is being effected
 ■ Fix or mask the fault/failure or contain the

damage it causes
 ■ Operate in a degraded mode while a

repair is being effected

Response
measure

We may focus on a number of
measures of availability, depending
on the criticality of the service being
provided.

 ■ Time or time interval when the system
must be available

 ■ Availability percentage (e.g., 99.999
percent)

 ■ Time to detect the fault
 ■ Time to repair the fault
 ■ Time or time interval in which system can

be in degraded mode
 ■ Proportion (e.g., 99 percent) or rate (e.g.,

up to 100 per second) of a certain class
of faults that the system prevents, or
handles without failing

An example concrete availability scenario derived from the general scenario in Table 4.2
is shown in Figure 4.1. The scenario is this: A server in a server farm fails during normal
operation, and the system informs the operator and continues to operate with no downtime.

TABLE 4.2 Availability General Scenario continued

4.2 Tactics for Availability 55

Stimulus

Response

Response

Measure

Source

3

2
1

4

Environment

Artifact

Server in a

server farm

Server

fails

Normal

operation

System informs

operator

System continues

to operate

No downtime

Server

FIGURE 4.1 Sample concrete availability scenario

4.2 Tactics for Availability

A failure occurs when the system no longer delivers a service that is consistent with its speci-
fication and this failure is observable by the system’s actors. A fault (or combination of faults)
has the potential to cause a failure. Availability tactics, in turn, are designed to enable a system
to prevent or endure system faults so that a service being delivered by the system remains
compliant with its specification. The tactics we discuss in this section will keep faults from
becoming failures or at least bound the effects of the fault and make repair possible, as illus-
trated in Figure 4.2.

Fault Fault masked,

prevented, or

repair made

Tactics

to Control

Response

FIGURE 4.2 Goal of availability tactics

56 Part II Quality Attributes | Chapter 4 Availability

Availability tactics have one of three purposes: fault detection, fault recovery, or fault
prevention. The tactics for availability are shown in Figure 4.3. These tactics will often be pro-
vided by a software infrastructure, such as a middleware package, so your job as an architect
may be choosing and assessing (rather than implementing) the right availability tactics and the
right combination of tactics.

Detect Faults Prevent FaultsRecover from Faults

Availability Tactics

Monitor

Ping/Echo

Heartbeat

Timestamp

Condition Monitoring

Sanity Checking

Voting

Exception Detection

Self-Test

Redundant Spare

Rollback

Exception Handling

Software Upgrade

Retry

Ignore Faulty Behavior

Graceful Degradation

Shadow

State Resynchronization

Escalating Restart

Nonstop Forwarding

Removal from Service

Transactions

Predictive Model

Exception Prevention

Increase Competence Set

ReintroductionPreparation

and Repair

FIGURE 4.3 Availability tactics

Detect Faults

Before any system can take action regarding a fault, the presence of the fault must be detected
or anticipated. Tactics in this category include:

 ■ Monitor. This component is used to monitor the state of health of various other parts
of the system: processors, processes, I/O, memory, and so forth. A system monitor can

4.2 Tactics for Availability 57

detect failure or congestion in the network or other shared resources, such as from a
denial-of-service attack. It orchestrates software using other tactics in this category to
detect malfunctioning components. For example, the system monitor can initiate self-
tests, or be the component that detects faulty timestamps or missed heartbeats.1

 ■ Ping/echo. In this tactic, an asynchronous request/response message pair is exchanged
between nodes; it is used to determine reachability and the round-trip delay through the
associated network path. In addition, the echo indicates that the pinged component is
alive. The ping is often sent by a system monitor. Ping/echo requires a time threshold to
be set; this threshold tells the pinging component how long to wait for the echo before
considering the pinged component to have failed (“timed out”). Standard implementa-
tions of ping/echo are available for nodes interconnected via Internet Protocol (IP).

 ■ Heartbeat. This fault detection mechanism employs a periodic message exchange
between a system monitor and a process being monitored. A special case of heartbeat is
when the process being monitored periodically resets the watchdog timer in its monitor
to prevent it from expiring and thus signaling a fault. For systems where scalability is a
concern, transport and processing overhead can be reduced by piggybacking heartbeat
messages onto other control messages being exchanged. The difference between heart-
beat and ping/echo lies in who holds the responsibility for initiating the health check—
the monitor or the component itself.

 ■ Timestamp. This tactic is used to detect incorrect sequences of events, primarily in dis-
tributed message-passing systems. A timestamp of an event can be established by assign-
ing the state of a local clock to the event immediately after the event occurs. Sequence
numbers can also be used for this purpose, since timestamps in a distributed system may
be inconsistent across different processors. See Chapter 17 for a fuller discussion of the
topic of time in a distributed system.

 ■ Condition monitoring. This tactic involves checking conditions in a process or device,
or validating assumptions made during the design. By monitoring conditions, this tactic
prevents a system from producing faulty behavior. The computation of checksums is a
common example of this tactic. However, the monitor must itself be simple (and, ideally,
provably correct) to ensure that it does not introduce new software errors.

 ■ Sanity checking. This tactic checks the validity or reasonableness of specific operations
or outputs of a component. It is typically based on a knowledge of the internal design,
the state of the system, or the nature of the information under scrutiny. It is most often
employed at interfaces, to examine a specific information flow.

 ■ Voting. Voting involves comparing computational results from multiple sources that
should be producing the same results and, if they are not, deciding which results to use.
This tactic depends critically on the voting logic, which is usually realized as a simple,
rigorously reviewed, and tested singleton so that the probability of error is low. Voting

1. When the detection mechanism is implemented using a counter or timer that is periodically reset, this special-
ization of the system monitor is referred to as a watchdog. During nominal operation, the process being monitored
will periodically reset the watchdog counter/timer as part of its signal that it’s working correctly; this is sometimes
referred to as “petting the watchdog.”

58 Part II Quality Attributes | Chapter 4 Availability

also depends critically on having multiple sources to evaluate. Typical schemes include
the following:

 ■ Replication is the simplest form of voting; here, the components are exact clones
of each other. Having multiple copies of identical components can be effective in
protecting against random failures of hardware but cannot protect against design or
implementation errors, in hardware or software, since there is no form of diversity
embedded in this tactic.

 ■ Functional redundancy, in contrast, is intended to address the issue of common-mode
failures (where replicas exhibit the same fault at the same time because they share the
same implementation) in hardware or software components, by implementing design
diversity. This tactic attempts to deal with the systematic nature of design faults by
adding diversity to redundancy. The outputs of functionally redundant components
should be the same given the same input. The functional redundancy tactic is still
vulnerable to specification errors—and, of course, functional replicas will be more
expensive to develop and verify.

 ■ Analytic redundancy permits not only diversity among components’ private sides, but
also diversity among the components’ inputs and outputs. This tactic is intended to
tolerate specification errors by using separate requirement specifications. In embedded
systems, analytic redundancy helps when some input sources are likely to be unavail-
able at times. For example, avionics programs have multiple ways to compute aircraft
altitude, such as using barometric pressure, with the radar altimeter, and geometrically
using the straight-line distance and look-down angle of a point ahead on the ground.
The voter mechanism used with analytic redundancy needs to be more sophisticated
than just letting majority rule or computing a simple average. It may have to under-
stand which sensors are currently reliable (or not), and it may be asked to produce a
higher-fidelity value than any individual component can, by blending and smoothing
individual values over time.

 ■ Exception detection. This tactic focuses on the detection of a system condition that alters
the normal flow of execution. It can be further refined as follows:

 ■ System exceptions will vary according to the processor hardware architecture
employed. They include faults such as divide by zero, bus and address faults, illegal
program instructions, and so forth.

 ■ The parameter fence tactic incorporates a known data pattern (such as 0xDEADBEEF)
placed immediately after any variable-length parameters of an object. This allows for
runtime detection of overwriting the memory allocated for the object’s variable-length
parameters.

 ■ Parameter typing employs a base class that defines functions that add, find, and iterate
over type-length-value (TLV) formatted message parameters. Derived classes use the
base class functions to provide functions to build and parse messages. Use of parameter
typing ensures that the sender and the receiver of messages agree on the type of the
content, and detects cases where they don’t.

 ■ Timeout is a tactic that raises an exception when a component detects that it or another
component has failed to meet its timing constraints. For example, a component

4.2 Tactics for Availability 59

awaiting a response from another component can raise an exception if the wait time
exceeds a certain value.

 ■ Self-test. Components (or, more likely, whole subsystems) can run procedures to test
themselves for correct operation. Self-test procedures can be initiated by the component
itself or invoked from time to time by a system monitor. These may involve employing
some of the techniques found in condition monitoring, such as checksums.

 Recover from Faults

Recover from faults tactics are refined into preparation and repair tactics and reintroduction
tactics. The latter are concerned with reintroducing a failed (but rehabilitated) component
back into normal operation.

Preparation and repair tactics are based on a variety of combinations of retrying a com-
putation or introducing redundancy:

 ■ Redundant spare. This tactic refers to a configuration in which one or more duplicate
components can step in and take over the work if the primary component fails. This
tactic is at the heart of the hot spare, warm spare, and cold spare patterns, which differ
primarily in how up-to-date the backup component is at the time of its takeover.

 ■ Rollback. A rollback permits the system to revert to a previous known good state
(referred to as the “rollback line”)—rolling back time—upon the detection of a failure.
Once the good state is reached, then execution can continue. This tactic is often com-
bined with the transactions tactic and the redundant spare tactic so that after a rollback
has occurred, a standby version of the failed component is promoted to active status.
Rollback depends on a copy of a previous good state (a checkpoint) being available to
the components that are rolling back. Checkpoints can be stored in a fixed location and
updated at regular intervals, or at convenient or significant times in the processing, such
as at the completion of a complex operation.

 ■ Exception handling. Once an exception has been detected, the system will handle it
in some fashion. The easiest thing it can do is simply to crash—but, of course, that’s a
terrible idea from the point of availability, usability, testability, and plain good sense.
There are much more productive possibilities. The mechanism employed for exception
handling depends largely on the programming environment employed, ranging from
simple function return codes (error codes) to the use of exception classes that contain
information helpful in fault correlation, such as the name of the exception, the origin of
the exception, and the cause of the exception Software can then use this information to
mask or repair the fault.

 ■ Software upgrade. The goal of this tactic is to achieve in-service upgrades to executable
code images in a non-service-affecting manner. Strategies include the following:

 ■ Function patch. This kind of patch, which is used in procedural programming, employs
an incremental linker/loader to store an updated software function into a pre-allocated
segment of target memory. The new version of the software function will employ the
entry and exit points of the deprecated function.

60 Part II Quality Attributes | Chapter 4 Availability

 ■ Class patch. This kind of upgrade is applicable for targets executing object-oriented
code, where the class definitions include a backdoor mechanism that enables the run-
time addition of member data and functions.

 ■ Hitless in-service software upgrade (ISSU). This leverages the redundant spare tactic
to achieve non-service-affecting upgrades to software and associated schema.

In practice, the function patch and class patch are used to deliver bug fixes, while the
hitless ISSU is used to deliver new features and capabilities.

 ■ Retry. The retry tactic assumes that the fault that caused a failure is transient, and that
retrying the operation may lead to success. It is used in networks and in server farms
where failures are expected and common. A limit should be placed on the number of
retries that are attempted before a permanent failure is declared.

 ■ Ignore faulty behavior. This tactic calls for ignoring messages sent from a particular
source when we determine that those messages are spurious. For example, we would like
to ignore the messages emanating from the live failure of a sensor.

 ■ Graceful degradation. This tactic maintains the most critical system functions in the
presence of component failures, while dropping less critical functions. This is done in
circumstances where individual component failures gracefully reduce system functional-
ity, rather than causing a complete system failure.

 ■ Reconfiguration. Reconfiguration attempts to recover from failures by reassigning
responsibilities to the (potentially restricted) resources or components left functioning,
while maintaining as much functionality as possible.

Reintroduction occurs when a failed component is reintroduced after it has been repaired.
Reintroduction tactics include the following:

 ■ Shadow. This tactic refers to operating a previously failed or in-service upgraded
component in a “shadow mode” for a predefined duration of time prior to reverting the
component back to an active role. During this duration, its behavior can be monitored for
correctness and it can repopulate its state incrementally.

 ■ State resynchronization. This reintroduction tactic is a partner to the redundant spare
tactic. When used with active redundancy—a version of the redundant spare tactic—the
state resynchronization occurs organically, since the active and standby components
each receive and process identical inputs in parallel. In practice, the states of the active
and standby components are periodically compared to ensure synchronization. This
comparison may be based on a cyclic redundancy check calculation (checksum) or, for
systems providing safety-critical services, a message digest calculation (a one-way hash
function). When used alongside the passive redundancy version of the redundant spare
tactic, state resynchronization is based solely on periodic state information transmitted
from the active component(s) to the standby component(s), typically via checkpointing.

 ■ Escalating restart. This reintroduction tactic allows the system to recover from faults
by varying the granularity of the component(s) restarted and minimizing the level of
service affectation. For example, consider a system that supports four levels of restart,
numbered 0–3. The lowest level of restart (Level 0) has the least impact on services and

4.2 Tactics for Availability 61

employs passive redundancy (warm spare), where all child threads of the faulty com-
ponent are killed and recreated. In this way, only data associated with the child threads
is freed and reinitialized. The next level of restart (Level 1) frees and reinitializes all
unprotected memory; protected memory is untouched. The next level of restart (Level 2)
frees and reinitializes all memory, both protected and unprotected, forcing all applica-
tions to reload and reinitialize. The final level of restart (Level 3) involves completely
reloading and reinitializing the executable image and associated data segments. Support
for the escalating restart tactic is particularly useful for the concept of graceful deg-
radation, where a system is able to degrade the services it provides while maintaining
support for mission-critical or safety-critical applications.

 ■ Nonstop forwarding. This concept originated in router design, and assumes that func-
tionality is split into two parts: the supervisory or control plane (which manages con-
nectivity and routing information) and the data plane (which does the actual work of
routing packets from sender to receiver). If a router experiences the failure of an active
supervisor, it can continue forwarding packets along known routes—with neighboring
routers—while the routing protocol information is recovered and validated. When the
control plane is restarted, it implements a “graceful restart,” incrementally rebuilding its
routing protocol database even as the data plane continues to operate.

P revent Faults

Instead of detecting faults and then trying to recover from them, what if your system could
prevent them from occurring in the first place? Although it might sound as if some measure
of clairvoyance would be required, it turns out that in many cases it is possible to do just that.2

 ■ Removal from service. This tactic refers to temporarily placing a system component
in an out-of-service state for the purpose of mitigating potential system failures. For
example, a component of a system might be taken out of service and reset to scrub latent
faults (such as memory leaks, fragmentation, or soft errors in an unprotected cache)
before the accumulation of faults reaches the service-affecting level, resulting in system
failure. Other terms for this tactic are software rejuvenation and therapeutic reboot. If
you reboot your computer every night, you are practicing removal from service.

 ■ Transactions. Systems targeting high-availability services leverage transactional seman-
tics to ensure that asynchronous messages exchanged between distributed components
are atomic, consistent, isolated, and durable—properties collectively referred to as
the “ACID properties.” The most common realization of the transactions tactic is the
“two-phase commit” (2PC) protocol. This tactic prevents race conditions caused by two
processes attempting to update the same data item at the same time.

2. These tactics deal with runtime means to prevent faults from occurring. Of course, an excellent way to prevent
faults—at least in the system you’re building, if not in systems that your system must interact with—is to produce
high-quality code. This can be done by means of code inspections, pair programming, solid requirements reviews,
and a host of other good engineering practices.

62 Part II Quality Attributes | Chapter 4 Availability

 ■ Predictive model. A predictive model, when combined with a monitor, is employed to
monitor the state of health of a system process to ensure that the system is operating
within its nominal operating parameters, and to take corrective action when the system
nears a critical threshold. The operational performance metrics monitored are used to
predict the onset of faults; examples include the session establishment rate (in an HTTP
server), threshold crossing (monitoring high and low watermarks for some constrained,
shared resource), statistics on the process state (e.g., in-service, out-of-service, under
maintenance, idle), and message queue length statistics.

 ■ Exception prevention. This tactic refers to techniques employed for the purpose of
preventing system exceptions from occurring. The use of exception classes, which allows
a system to transparently recover from system exceptions, was discussed earlier. Other
examples of exception prevention include error-correcting code (used in telecommuni-
cations), abstract data types such as smart pointers, and the use of wrappers to prevent
faults such as dangling pointers or semaphore access violations. Smart pointers prevent
exceptions by doing bounds checking on pointers, and by ensuring that resources are
automatically de-allocated when no data refers to them, thereby avoiding resource leaks.

 ■ Increase competence set. A program’s competence set is the set of states in which it is
“competent” to operate. For example, the state when the denominator is zero is outside
the competence set of most divide programs. When a component raises an exception, it
is signaling that it has discovered itself to be outside its competence set; in essence, it
doesn’t know what to do and is throwing in the towel. Increasing a component’s compe-
tence set means designing it to handle more cases—faults—as part of its normal oper-
ation. For example, a component that assumes it has access to a shared resource might
throw an exception if it discovers that access is blocked. Another component might
simply wait for access or return immediately with an indication that it will complete its
operation on its own the next time it does have access. In this example, the second com-
ponent has a larger competence set than the first.

4.3 Tactics-Based Questionnaire for Availability

Based on the tactics described in Section 4.2, we can create a set of availability tactics–inspired
questions, as presented in Table 4.3. To gain an overview of the architectural choices made to
support availability, the analyst asks each question and records the answers in the table. The
answers to these questions can then be made the focus of further activities: investigation of
documentation, analysis of code or other artifacts, reverse engineering of code, and so forth.

4.3 Tactics-Based Questionnaire for Availability 63

 TABLE 4.3 Tactics-Based Questionnaire for Availability

Tactics
Group

Tactics Question Support?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Detect Faults Does the system use ping/
echo to detect failure of a
component or connection, or
network congestion?

Does the system use a
component to monitor the
state of health of other parts
of the system? A system
monitor can detect failure or
congestion in the network or
other shared resources, such
as from a denial-of-service
attack.

Does the system use a
heartbeat—a periodic
message exchange between
a system monitor and a
process—to detect failure of a
component or connection, or
network congestion?

Does the system use a
timestamp to detect incorrect
sequences of events in
distributed systems?

Does the system use voting
to check that replicated
components are producing the
same results?

The replicated components
may be identical replicas,
functionally redundant, or
analytically redundant.

Does the system use
exception detection to detect
a system condition that alters
the normal flow of execution
(e.g., system exception,
parameter fence, parameter
typing, timeout)?

Can the system do a self-
test to test itself for correct
operation?

continues

64 Part II Quality Attributes | Chapter 4 Availability

Tactics
Group

Tactics Question Support?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Recover
from Faults
(Preparation
and Repair)

Does the system employ
redundant spares?

Is a component’s role as active
versus spare fixed, or does it
change in the presence of a
fault? What is the switchover
mechanism? What is the
trigger for a switchover? How
long does it take for a spare to
assume its duties?

Does the system employ
exception handling to deal
with faults?

Typically the handling involves
either reporting, correcting, or
masking the fault.

Does the system employ
rollback, so that it can revert
to a previously saved good
state (the “rollback line”) in the
event of a fault?

Can the system perform in-
service software upgrades to
executable code images in a
non-service-affecting manner?

Does the system systemat-
ically retry in cases where
the component or connection
failure may be transient?

Can the system simply
ignore faulty behavior (e.g.,
ignore messages when it
is determined that those
messages are spurious)?

Does the system have a policy
of degradation when resources
are compromised, maintain-
ing the most critical system
functions in the presence of
component failures, and drop-
ping less critical functions?

Does the system have
consistent policies
and mechanisms for
reconfiguration after failures,
reassigning responsibilities to
the resources left functioning,
while maintaining as much
functionality as possible?

 TABLE 4.3 Tactics-Based Questionnaire for Availability continued

4.3 Tactics-Based Questionnaire for Availability 65

Tactics
Group

Tactics Question Support?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Recover
from Faults
(Reintroduction)

Can the system operate
a previously failed or in-
service upgraded component
in a “shadow mode” for
a predefined time prior to
reverting the component back
to an active role?

If the system uses active
or passive redundancy,
does it also employ state
resynchronization to send
state information from active
components to standby
components?

Does the system employ
escalating restart to recover
from faults by varying the
granularity of the component(s)
restarted and minimizing the
level of service affected?

Can message processing and
routing portions of the system
employ nonstop forwarding,
where functionality is split into
supervisory and data planes?

Prevent Faults Can the system remove
components from service,
temporarily placing a system
component in an out-of-
service state for the purpose
of preempting potential system
failures?

Does the system employ
transactions—bundling state
updates so that asynchronous
messages exchanged between
distributed components are
atomic, consistent, isolated,
and durable?

Does the system use a
predictive model to monitor
the state of health of a
component to ensure that the
system is operating within
nominal parameters?

When conditions are detected
that are predictive of likely
future faults, the model initiates
corrective action.

66 Part II Quality Attributes | Chapter 4 Availability

4.4 Patterns for Availability

This section presents a few of the most important architectural patterns for availability.
The first three patterns are all centered on the redundant spare tactic, and will be described

as a group. They differ primarily in the degree to which the backup components’ state matches
that of the active component. (A special case occurs when the components are stateless, in which
case the first two patterns become identical.)

 ■ Active redundancy (hot spare). For stateful components, this refers to a configuration in
which all of the nodes (active or redundant spare) in a protection group3 receive and pro-
cess identical inputs in parallel, allowing the redundant spare(s) to maintain a synchro-
nous state with the active node(s). Because the redundant spare possesses an identical
state to the active processor, it can take over from a failed component in a matter of
milliseconds. The simple case of one active node and one redundant spare node is com-
monly referred to as one-plus-one redundancy. Active redundancy can also be used for
facilities protection, where active and standby network links are used to ensure highly
available network connectivity.

 ■ Passive redundancy (warm spare). For stateful components, this refers to a configuration
in which only the active members of the protection group process input traffic. One of
their duties is to provide the redundant spare(s) with periodic state updates. Because the
state maintained by the redundant spares is only loosely coupled with that of the active
node(s) in the protection group (with the looseness of the coupling being a function of
the period of the state updates), the redundant nodes are referred to as warm spares.
Passive redundancy provides a solution that achieves a balance between the more highly
available but more compute-intensive (and expensive) active redundancy pattern and the
less available but significantly less complex cold spare pattern (which is also signifi-
cantly cheaper).

 ■ Spare (cold spare). Cold sparing refers to a configuration in which redundant spares
remain out of service until a failover occurs, at which point a power-on-reset4 procedure
is initiated on the redundant spare prior to its being placed in service. Due to its poor
recovery performance, and hence its high mean time to repair, this pattern is poorly
suited to systems having high-availability requirements.

Benefits:
 ■ The benefit of a redundant spare is a system that continues to function correctly after

only a brief delay in the presence of a failure. The alternative is a system that stops
functioning correctly, or stops functioning altogether, until the failed component is
repaired. This repair could take hours or days.

3. A protection group is a group of processing nodes in which one or more nodes are “active,” with the remaining
nodes serving as redundant spares.

4. A power-on-reset ensures that a device starts operating in a known state.

4.4 Patterns for Availability 67

Tradeoffs:
 ■ The tradeoff with any of these patterns is the additional cost and complexity incurred

in providing a spare.
 ■ The tradeoff among the three alternatives is the time to recover from a failure versus

the runtime cost incurred to keep a spare up-to-date. A hot spare carries the highest
cost but leads to the fastest recovery time, for example.

Other patterns for availability include the following.

 ■ Triple modular redundancy (TMR). This widely used implementation of the voting tactic
employs three components that do the same thing. Each component receives identi-
cal inputs and forwards its output to the voting logic, which detects any inconsistency
among the three output states. Faced with an inconsistency, the voter reports a fault.
It must also decide which output to use, and different instantiations of this pattern use
different decision rules. Typical choices are letting the majority rule or choosing some
computed average of the disparate outputs.

Of course, other versions of this pattern that employ 5 or 19 or 53 redundant compo-
nents are also possible. However, in most cases, 3 components are sufficient to ensure a
reliable result.

Benefits:
 ■ TMR is simple to understand and to implement. It is blissfully independent of what

might be causing disparate results, and is only concerned about making a reasonable
choice so that the system can continue to function.

Tradeoffs:
 ■ There is a tradeoff between increasing the level of replication, which raises the cost,

and the resulting availability. In systems employing TMR, the statistical likelihood of
two or more components failing is vanishingly small, and three components represents
a sweet spot between availability and cost.

 ■ Circuit breaker. A commonly used availability tactic is retry. In the event of a timeout or
fault when invoking a service, the invoker simply tries again—and again, and again. A
circuit breaker keeps the invoker from trying countless times, waiting for a response that
never comes. In this way, it breaks the endless retry cycle when it deems that the system
is dealing with a fault. That’s the signal for the system to begin handling the fault. Until
the circuit break is “reset,” subsequent invocations will return immediately without pass-
ing along the service request.

Benefits:
 ■ This pattern can remove from individual components the policy about how many

retries to allow before declaring a failure.
 ■ At worst, endless fruitless retries would make the invoking component as useless as

the invoked component that has failed. This problem is especially acute in distributed
systems, where you could have many callers calling an unresponsive component and
effectively going out of service themselves, causing the failure to cascade across the

68 Part II Quality Attributes | Chapter 4 Availability

whole system. The circuit breaker, in conjunction with software that listens to it and
begins recovery procedures, prevents that problem.

Tradeoffs:
 ■ Care must be taken in choosing timeout (or retry) values. If the timeout is too long,

then unnecessary latency is added. But if the timeout is too short, then the circuit
breaker will be tripping when it does not need to—a kind of “false positive”—which
can lower the availability and performance of these services.

Other availability patterns that are commonly used include the following:

 ■ Process pairs. This pattern employs checkpointing and rollback. In case of failure, the
backup has been checkpointing and (if necessary) rolling back to a safe state, so is ready
to take over when a failure occurs.

 ■ Forward error recovery. This pattern provides a way to get out of an undesirable state
by moving forward to a desirable state. This often relies upon built-in error-correction
capabilities, such as data redundancy, so that errors may be corrected without the need
to fall back to a previous state or to retry. Forward error recovery finds a safe, possibly
degraded state from which the operation can move forward.

 4.5 For Further Reading

Patterns for availability:

 ■ You can read about patterns for fault tolerance in [Hanmer 13].

General tactics for availability:

 ■ A more detailed discussion of some of the availability tactics in this chapter is given in
[Scott 09]. This is the source of much of the material in this chapter.

 ■ The Internet Engineering Task Force has promulgated a number of standards support-
ing availability tactics. These standards include Non-Stop Forwarding [IETF 2004],
Ping/Echo (ICMP [IETF 1981] or ICMPv6 [RFC 2006b] Echo Request/Response), and
MPLS (LSP Ping) networks [IETF 2006a].

Tactics for availability—fault detection:

 ■ Triple modular redundancy (TMR) was developed in the early 1960s by Lyons [Lyons 62].
 ■ The fault detection in the voting tactic is based on the fundamental contributions to

automata theory by Von Neumann, who demonstrated how systems having a prescribed
reliability could be built from unreliable components [Von Neumann 56].

Tactics for availability—fault recovery:

 ■ Standards-based realizations of active redundancy exist for protecting network
links (i.e., facilities) at both the physical layer of the seven-layer OSI (Open Systems

4.6 Discussion Questions 69

Interconnection) model [Bellcore 98, 99; Telcordia 00] and the network/link layer
[IETF 2005].

 ■ Some examples of how a system can degrade through use (degradation) are given in
[Nygard 18].

 ■ Mountains of papers have been written about parameter typing, but [Utas 05] writes
about it in the context of availability (as opposed to bug prevention, its usual context).
[Utas 05] has also written about escalating restart.

 ■ Hardware engineers often use preparation and repair tactics. Examples include error
detection and correction (EDAC) coding, forward error correction (FEC), and temporal
redundancy. EDAC coding is typically used to protect control memory structures in
high-availability distributed real-time embedded systems [Hamming 80]. Conversely,
FEC coding is typically employed to recover from physical layer errors occurring in
external network links [Morelos-Zaragoza 06]. Temporal redundancy involves sampling
spatially redundant clock or data lines at time intervals that exceed the pulse width of
any transient pulse to be tolerated, and then voting out any defects detected [Mavis 02].

Tactics for availability—fault prevention:

 ■ Parnas and Madey have written about increasing an element’s competence set [Parnas 95].
 ■ The ACID properties, important in the transactions tactic, were introduced by Gray in

the 1970s and discussed in depth in [Gray 93].

Disaster recovery:
 ■ A disaster is an event such as an earthquake, flood, or hurricane that destroys an

entire data center. The U.S. National Institute of Standards and Technology (NIST)
identifies eight different types of plans that should be considered in the event of a
disaster, See Section 2.2 of NIST Special Publication 800-34, Contingency Planning
Guide for Federal Information Systems, https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-34r1.pdf.

4.6 Discussion Questions

1. Write a set of concrete scenarios for availability using each of the possible responses in
the general scenario.

2. Write a concrete availability scenario for the software for a (hypothetical) driverless car.

3. Write a concrete availability scenario for a program like Microsoft Word.

4. Redundancy is a key strategy for achieving high availability. Look at the patterns and
tactics presented in this chapter and decide how many of them exploit some form of
redundancy and how many do not.

5. How does availability trade off against modifiability and deployability? How would you
make a change to a system that is required to have 24/7 availability (i.e., no scheduled or
unscheduled down time, ever)?

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-34r1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-34r1.pdf

70 Part II Quality Attributes | Chapter 4 Availability

6. Consider the fault detection tactics (ping/echo, heartbeat, system monitor, voting, and
exception detection). What are the performance implications of using these tactics?

7. Which tactics are used by a load balancer (see Chapter 17) when it detects a failure of an
instance?

8. Look up recovery point objective (RPO) and recovery time objective (RTO), and explain
how these can be used to set a checkpoint interval when using the rollback tactic.

71

5
 Deployability

From the day we arrive on the planet
And blinking, step into the sun

There’s more to be seen than can ever be seen
More to do than can ever be done

—The Lion King

There comes a day when software, like the rest of us, must leave home and venture out into
the world and experience real life. Unlike the rest of us, software typically makes the trip
many times, as changes and updates are made. This chapter is about making that transition as
orderly and as effective and—most of all—as rapid as possible. That is the realm of continu-
ous deployment, which is most enabled by the quality attribute of deployability.

Why has deployability come to take a front-row seat in the world of quality attributes?
In the “bad old days,” releases were infrequent—large numbers of changes were bun-

dled into releases and scheduled. A release would contain new features and bug fixes. One
release per month, per quarter, or even per year was common. Competitive pressures in many
domains—with the charge being led by e-commerce—resulted in a need for much shorter
release cycles. In these contexts, releases can occur at any time—possibly hundreds of releases
per day—and each can be instigated by a different team within an organization. Being able to
release frequently means that bug fixes in particular do not have to wait until the next sched-
uled release, but rather can be made and released as soon as a bug is discovered and fixed.
It also means that new features do not need to be bundled into a release, but can be put into
production at any time.

This is not desirable, or even possible, in all domains. If your software exists in a complex
ecosystem with many dependencies, it may not be possible to release just one part of it without
coordinating that release with the other parts. In addition, many embedded systems, systems
in hard-to-access locations, and systems that are not networked would be poor candidates for a
continuous deployment mindset.

This chapter focuses on the large and growing numbers of systems for which just-in-time
feature releases are a significant competitive advantage, and just-in-time bug fixes are essen-
tial to safety or security or continuous operation. Often these systems are microservice and
cloud-based, although the techniques here are not limited to those technologies.

72 Part II Quality Attributes | Chapter 5 Deployability

5.1 Continuous Deployment

Deployment is a process that starts with coding and ends with real users interacting with the sys-
tem in a production environment. If this process is fully automated—that is, if there is no human
intervention—then it is called continuous deployment. If the process is automated up to the point
of placing (portions of) the system into production and human intervention is required (perhaps
due to regulations or policies) for this final step, the process is called continuous delivery.

To speed up releases, we need to introduce the concept of a deployment pipeline: the
sequence of tools and activities that begin when you check your code into a version control
 system and end when your application has been deployed for users to send it requests. In
between those points, a series of tools integrate and automatically test the newly committed
code, test the integrated code for functionality, and test the application for concerns such as
performance under load, security, and license compliance.

Each stage in the deployment pipeline takes place in an environment established to sup-
port isolation of the stage and perform the actions appropriate to that stage. The major envi-
ronments are as follows:

 ■ Code is developed in a development environment for a single module where it is subject
to standalone unit tests. Once it passes the tests, and after appropriate review, the code is
committed to a version control system that triggers the build activities in the integration
environment.

 ■ An integration environment builds an executable version of your service. A continuous
integration server compiles1 your new or changed code, along with the latest compatible
versions of code for other portions of your service and constructs an executable image
for your service.2 Tests in the integration environment include the unit tests from the
various modules (now run against the built system), as well as integration tests designed
specifically for the whole system. When the various tests are passed, the built service is
promoted to the staging environment.

 ■ A staging environment tests for various qualities of the total system. These include perfor-
mance testing, security testing, license conformance checks, and possibly user testing. For
embedded systems, this is where simulators of the physical environment (feeding synthetic
inputs to the system) are brought to bear. An application that passes all staging environ-
ment tests—which may include field testing—is deployed to the production environment,
using either a blue/green model or a rolling upgrade (see Section 5.6). In some cases, par-
tial deployments are used for quality control or to test the market response to a proposed
change or offering.

 ■ Once in the production environment, the service is monitored closely until all parties
have some level of confidence in its quality. At that point, it is considered a normal part
of the system and receives the same amount of attention as the other parts of the system.

1. If you are developing software using an interpreted language such as Python or JavaScript, there is no compila-
tion step.

2. In this chapter, we use the term “service” to denote any independently deployable unit.

5.1 Continuous Deployment 73

You perform a different set of tests in each environment, expanding the testing scope
from unit testing of a single module in the development environment, to functional testing of
all the components that make up your service in the integration environment, and ending
with broad quality testing in the staging environment and usage monitoring in the production
environment.

But not everything always goes according to plan. If you find problems after the software
is in its production environment, it is often necessary to roll back to a previous version while
the defect is being addressed.

Architectural choices affect deployability. For example, by employing the microservice
architecture pattern (see Section 5.6), each team responsible for a microservice can make its
own technology choices; this removes incompatibility problems that would previously have
been discovered at integration time (e.g., incompatible choices of which version of a library to
use). Since microservices are independent services, such choices do not cause problems.

Similarly, a continuous deployment mindset forces you to think about the testing infra-
structure earlier in the development process. This is necessary because designing for contin-
uous deployment requires continuous automated testing. In addition, the need to be able to
roll back or disable features leads to architectural decisions about mechanisms such as feature
toggles and backward compatibility of interfaces. These decisions are best taken early on.

The Effect of Virtualization on the Different Environments

Before the widespread use of virtualization technology, the environments that we describe

here were physical facilities. In most organizations, the development, integration, and

staging environments comprised hardware and software procured and operated by

different groups. The development environment might consist of a few desktop com-

puters that the development team repurposed as servers. The integration environment

was operated by the test or quality-assurance team, and might consist of some racks,

populated with previous-generation equipment from the data center. The staging envi-

ronment was operated by the operations team and might have hardware similar to that

used in production.

A lot of time was spent trying to figure out why a test that passed in one environment

failed in another environment. One benefit of environments that employ virtualization is

the ability to have environment parity, where environments may differ in scale but not in

type of hardware or fundamental structure. A variety of provisioning tools support envi-

ronment parity by allowing every team to easily build a common environment and by

ensuring that this common environment mimics the production environment as closely

as possible.

Three important ways to measure the quality of the pipeline are as follows:

 ■ Cycle time is the pace of progress through the pipeline. Many organizations will deploy
to production several or even hundreds of times a day. Such rapid deployment is not pos-
sible if human intervention is required. It is also not possible if one team must coordinate

74 Part II Quality Attributes | Chapter 5 Deployability

with other teams before placing its service in production. Later in this chapter, we will
see architectural techniques that allow teams to perform continuous deployment without
consulting other teams.

 ■ Traceability is the ability to recover all of the artifacts that led to an element having a
problem. That includes all the code and dependencies that are included in that element. It
also includes the test cases that were run on that element and the tools that were used to
produce the element. Errors in tools used in the deployment pipeline can cause problems
in production. Typically, traceability information is kept in an artifact database. This
database will contain code version numbers, version numbers of elements the system
depends on (such as libraries), test version numbers, and tool version numbers.

 ■ Repeatability is getting the same result when you perform the same action with the
same artifacts. This is not as easy as it sounds. For example, suppose your build process
fetches the latest version of a library. The next time you execute the build process, a new
version of the library may have been released. As another example, suppose one test
modifies some values in the database. If the original values are not restored, subsequent
tests may not produce the same results.

DevOps

DevOps—a portmanteau of “development” and “operations”—is a concept closely

associated with continuous deployment. It is a movement (much like the Agile movement),

a description of a set of practices and tools (again, much like the Agile movement), and a

marketing formula touted by vendors selling those tools. The goal of DevOps is to shorten

time to market (or time to release). The goal is to dramatically shorten the time between

a developer making a change to an existing system—implementing a feature or fixing a

bug—and the system reaching the hands of end users, as compared with traditional

software development practices.

A formal definition of DevOps captures both the frequency of releases and the ability

to perform bug fixes on demand:

DevOps is a set of practices intended to reduce the time between committing a

change to a system and the change being placed into normal production, while

ensuring high quality. [Bass 15]

Implementing DevOps is a process improvement effort. DevOps encompasses not

only the cultural and organizational elements of any process improvement effort, but

also a strong reliance on tools and architectural design. All environments are different,

of course, but the tools and automation we describe are found in the typical tool chains

built to support DevOps.

The continuous deployment strategy we describe here is the conceptual heart of

DevOps. Automated testing is, in turn, a critically important ingredient of continuous

deployment, and the tooling for that often represents the highest technological hurdle

for DevOps. Some forms of DevOps include logging and post-deployment monitoring of

those logs, for automatic detection of errors back at the “home office,” or even moni-

toring to understand the user experience. This, of course, requires a “phone home” or

log delivery capability in the system, which may or may not be possible or allowable in

some systems.

5.2 Deployability 75

DevSecOps is a flavor of DevOps that incorporates approaches for security (for the

infrastructure and for the applications it produces) into the entire process. DevSecOps

is increasingly popular in aerospace and defense applications, but is also valid in any

application area where DevOps is useful and a security breach would be particularly

costly. Many IT applications fall in this category.

5.2 Deployability

Deployability refers to a property of software indicating that it may be deployed—that is,
 allocated to an environment for execution—within a predictable and acceptable amount of
time and effort. Moreover, if the new deployment is not meeting its specifications, it may
be rolled back, again within a predictable and acceptable amount of time and effort. As the
world moves increasingly toward virtualization and cloud infrastructures, and as the scale of
deployed software-intensive systems inevitably increases, it is one of the architect’s respon-
sibilities to ensure that deployment is done in an efficient and predictable way, minimizing
overall system risk.3

To achieve these goals, an architect needs to consider how an executable is updated on
a host platform, and how it is subsequently invoked, measured, monitored, and controlled.
Mobile systems in particular present a challenge for deployability in terms of how they are
updated because of concerns about bandwidth. Some of the issues involved in deploying soft-
ware are as follows:

 ■ How does it arrive at its host (i.e., push, where updates deployed are unbidden, or pull,
where users or administrators must explicitly request updates)?

 ■ How is it integrated into an existing system? Can this be done while the existing system
is executing?

 ■ What is the medium, such as DVD, USB drive, or Internet delivery?
 ■ What is the packaging (e.g., executable, app, plug-in)?
 ■ What is the resulting integration into an existing system?
 ■ What is the efficiency of executing the process?
 ■ What is the controllability of the process?

With all of these concerns, the architect must be able to assess the associated risks.
Architects are primarily concerned with the degree to which the architecture supports deploy-
ments that are:

 ■ Granular. Deployments can be of the whole system or of elements within a system. If the
architecture provides options for finer granularity of deployment, then certain risks can
be reduced.

3. The quality attribute of testability (see Chapter 12) certainly plays a critical role in continuous deployment, and
the architect can provide critical support for continuous deployment by ensuring that the system is testable, in all the
ways just mentioned. However, our concern here is the quality attribute directly related to continuous deployment
over and above testability: deployability.

76 Part II Quality Attributes | Chapter 5 Deployability

 ■ Controllable. The architecture should provide the capability to deploy at varying levels
of granularity, monitor the operation of the deployed units, and roll back unsuccessful
deployments.

 ■ Efficient. The architecture should support rapid deployment (and, if needed, rollback)
with a reasonable level of effort.

These characteristics will be reflected in the response measures of the general scenario
for deployability.

5.3 Deployability General Scenario

Table 5.1 enumerates the elements of the general scenario that characterize deployability.

TABLE 5.1 General Scenario for Deployability

Portion of Scenario Description Possible Values

Source The trigger for the
deployment

End user, developer, system administrator,
operations personnel, component
marketplace, product owner.

Stimulus What causes the trigger A new element is available to be deployed.
This is typically a request to replace a
software element with a new version (e.g.,
fix a defect, apply a security patch, upgrade
to the latest release of a component or
framework, upgrade to the latest version of
an internally produced element).

New element is approved for incorporation.

An existing element/set of elements needs
to be rolled back.

Artifacts What is to be changed Specific components or modules, the
system’s platform, its user interface, its
environment, or another system with which
it interoperates. Thus the artifact might be a
single software element, multiple software
elements, or the entire system.

Environment Staging, production (or a
specific subset of either)

Full deployment.

Subset deployment to a specified portion of
users, VMs, containers, servers, platforms.

Response What should happen Incorporate the new components.

Deploy the new components.

Monitor the new components.

Roll back a previous deployment.

5.3 Deployability General Scenario 77

Portion of Scenario Description Possible Values

Response measure A measure of cost, time, or
process effectiveness for a
deployment, or for a series
of deployments over time

Cost in terms of:
 ■ Number, size, and complexity of

affected artifacts
 ■ Average/worst-case effort
 ■ Elapsed clock or calendar time
 ■ Money (direct outlay or opportunity cost)
 ■ New defects introduced

Extent to which this deployment/rollback
affects other functions or quality attributes.

Number of failed deployments.

Repeatability of the process.

Traceability of the process.

Cycle time of the process.

 Figure 5.1 illustrates a concrete deployability scenario: “A new release of an authentication/
authorization service (which our product uses) is made available in the component marketplace
and the product owner decides to incorporate this version into the release. The new service is
tested and deployed to the production environment within 40 hours of elapsed time and no
more than 120 person-hours of effort. The deployment introduces no defects and no SLA is
violated.”

Stimulus

Response

Response

Measure

Source

3

2
1

4

Environment

Artifact

Component

marketplace

New release of the

authentication/authorization

service is made available

and the product owner

decides to incorporate it

Production The new service is

tested in-house

and deployed to

production servers

Within 40 hours and

no more than 120

person-hours of effort

No defects introduced

no SLA violated

Authentication/authorization

service

;

 FIGURE 5.1 Sample concrete deployability scenario

78 Part II Quality Attributes | Chapter 5 Deployability

 5.4 Tactics for Deployability

A deployment is catalyzed by the release of a new software or hardware element. The deploy-
ment is successful if these new elements are deployed within acceptable time, cost, and quality
constraints. We illustrate this relationship—and hence the goal of deployability tactics—in
Figure 5.2.

New elements

arrive

Elements deployed

within time, cost, and

quality constraints

Tactics

to Control

Response

FIGURE 5.2 Goal of deployability tactics

The tactics for deployability are shown in Figure 5.3. In many cases, these tactics will be
provided, at least in part, by a CI/CD (continuous integration/continuous deployment) infra-
structure that you buy rather than build. In such a case, your job as an architect is often one of
choosing and assessing (rather than implementing) the right deployability tactics and the right
combination of tactics.

Deployability Tactics

Scale Rollouts

Script Deployment Commands

Rollback

Manage Service Interactions

Package Dependencies

Toggle Features

Manage Deployed SystemManage Deployment Pipeline

FIGURE 5.3 Deployability tactics

5.4 Tactics for Deployability 79

Next, we describe these six deployability tactics in more detail. The first category
of deployability tactics focuses on strategies for managing the deployment pipeline, and the
second category deals with managing the system as it is being deployed and once it has been
deployed.

Manage Deployment Pipeline

 ■ Scale rollouts. Rather than deploying to the entire user base, scaled rollouts deploy a
new version of a service gradually, to controlled subsets of the user population, often
with no explicit notification to those users. (The remainder of the user base continues
to use the previous version of the service.) By gradually releasing, the effects of new
deployments can be monitored and measured and, if necessary, rolled back. This tactic
minimizes the potential negative impact of deploying a flawed service. It requires an
architectural mechanism (not part of the service being deployed) to route a request from
a user to either the new or old service, depending on that user’s identity.

 ■ Roll back. If it is discovered that a deployment has defects or does not meet user expec-
tations, then it can be “rolled back” to its prior state. Since deployments may involve
multiple coordinated updates of multiple services and their data, the rollback mechanism
must be able to keep track of all of these, or must be able to reverse the consequences of
any update made by a deployment, ideally in a fully automated fashion.

 ■ Script deployment commands. Deployments are often complex and require many steps to
be carried out and orchestrated precisely. For this reason, deployment is often scripted.
These deployment scripts should be treated like code—documented, reviewed, tested,
and version controlled. A scripting engine executes the deployment script automatically,
saving time and minimizing opportunities for human error.

Manage Deployed System

 ■ Manage service interactions. This tactic accommodates simultaneous deployment and
execution of multiple versions of system services. Multiple requests from a client could
be directed to either version in any sequence. Having multiple versions of the same
service in operation, however, may introduce version incompatibilities. In such cases, the
interactions between services need to be mediated so that version incompatibilities are
proactively avoided. This tactic is a resource management strategy, obviating the need to
completely replicate the resources so as to separately deploy the old and new versions.

 ■ Package dependencies. This tactic packages an element together with its dependencies
so that they get deployed together and so that the versions of the dependencies are con-
sistent as the element moves from development into production. The dependencies may
include libraries, OS versions, and utility containers (e.g., sidecar, service mesh), which
we will discuss in Chapter 9. Three means of packaging dependencies are using contain-
ers, pods, or virtual machines; these are discussed in more detail in Chapter 16.

80 Part II Quality Attributes | Chapter 5 Deployability

 ■ Feature toggle. Even when your code is fully tested, you might encounter issues after
deploying new features. For that reason, it is convenient to be able to integrate a “kill
switch” (or feature toggle) for new features. The kill switch automatically disables a
feature in your system at runtime, without forcing you to initiate a new deployment. This
provides the ability to control deployed features without the cost and risk of actually
redeploying services.

 5.5 Tactics-Based Questionnaire for Deployability

 Based on the tactics described in Section 5.4, we can create a set of deployability tactics–
inspired questions, as presented in Table 5.2. To gain an overview of the architectural choices
made to support deployability, the analyst asks each question and records the answers in the
table. The answers to these questions can then be made the focus of subsequent activities:
investigation of documentation, analysis of code or other artifacts, reverse engineering of
code, and so forth.

TABLE 5.2 Tactics-Based Questionnaire for Deployability

Tactics
Groups

Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Manage
deployment
pipeline

Do you scale rollouts, rolling
out new releases gradually (in
contrast to releasing in an all-
or-nothing fashion)?

Are you able to automatically
roll back deployed services
if you determine that they are
not operating in a satisfactory
fashion?

Do you script deployment
commands to automatically
execute complex sequences of
deployment instructions?

Manage
deployed
system

Do you manage service
interactions so that
multiple versions of services
can be safely deployed
simultaneously?

Do you package depen-
dencies so that services are
deployed along with all of the
libraries, OS versions, and
utility containers that they
depend on?

5.6 Patterns for Deployability 81

Tactics
Groups

Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Do you employ feature
toggles to automatically
disable a newly released
feature (rather than rolling back
the newly deployed service) if
the feature is determined to be
problematic?

5.6 Patterns for Deployability

 Patterns for deployability can be organized into two categories. The first category contains pat-
terns for structuring services to be deployed. The second category contains patterns for how
to deploy services, which can be parsed into two broad subcategories: all-or-nothing or par-
tial deployment. The two main categories for deployability are not completely independent of
each other, because certain deployment patterns depend on certain structural properties of the
services.

Patterns for Structuring Services

Microservice Architecture

The microservice architecture pattern structures the system as a collection of independently
deployable services that communicate only via messages through service interfaces. There is
no other form of interprocess communication allowed: no direct linking, no direct reads of
another team’s data store, no shared-memory model, no back-doors whatsoever. Services are
usually stateless, and (because they are developed by a single relatively small team4) are rela-
tively small—hence the term microservice. Service dependencies are acyclic. An integral part
of this pattern is a discovery service so that messages can be appropriately routed.

Benefits:
 ■ Time to market is reduced. Since each service is small and independently deployable,

a modification to a service can be deployed without coordinating with teams that own
other services. Thus, once a team completes its work on a new version of a service and
that version has been tested, it can be deployed immediately.

4. At Amazon, service teams are constrained in size by the “two pizza rule”: The team must be no larger than can
be fed by two pizzas.

82 Part II Quality Attributes | Chapter 5 Deployability

 ■ Each team can make its own technology choices for its service, as long as the technology
choices support message passing. No coordination is needed with respect to library ver-
sions or programming languages. This reduces errors due to incompatibilities that arise
during integration—and which are a major source of integration errors.

 ■ Services are more easily scaled than coarser-grained applications. Since each service is
independent, dynamically adding instances of the service is straightforward. In this way,
the supply of services can be more easily matched to the demand.

Tradeoffs:
 ■ Overhead is increased, compared to in-memory communication, because all commu-

nication among services occurs via messages across a network. This can be mitigated
somewhat by using the service mesh pattern (see Chapter 9), which constrains the
deployment of some services to the same host to reduce network traffic. Furthermore,
because of the dynamic nature of microservice deployments, discovery services are
heavily used, adding to the overhead. Ultimately, those discovery services may become
a performance bottleneck.

 ■ Microservices are less suitable for complex transactions because of the difficulty of
synchronizing activities across distributed systems.

 ■ The freedom for every team to choose its own technology comes at a cost—the organi-
zation must maintain those technologies and the required experience base.

 ■ Intellectual control of the total system may be difficult because of the large number of
microservices. This introduces a requirement for catalogs and databases of interfaces to
assist in maintaining intellectual control. In addition, the process of properly combining
services to achieve a desired outcome may be complex and subtle.

 ■ Designing the services to have appropriate responsibilities and an appropriate level of
granularity is a formidable design task.

 ■ To achieve the ability to deploy versions independently, the architecture of the services
must be designed to allow for that deployment strategy. Using the manage service inter-
actions tactic described in Section 5.4 can help achieve this goal.

Organizations that have heavily employed the microservice architecture pattern include
Google, Netflix, PayPal, Twitter, Facebook, and Amazon. Many other organizations have
adopted the microservice architecture pattern as well; books and conferences exist that focus
on how an organization can adopt the microservice architecture pattern for its own needs.

 Patterns for Complete Replacement of Services

Suppose there are N instances of Service A and you wish to replace them with N instances of
a new version of Service A, leaving no instances of the original version. You wish to do this
with no reduction in quality of service to the clients of the service, so there must always be N
instances of the service running.

5.6 Patterns for Deployability 83

Two different patterns for the complete replacement strategy are possible, both of which
are realizations of the scale rollouts tactic. We’ll cover them both together:

1. Blue/green. In a blue/green deployment, N new instances of the service would be created
and each populated with new Service A (let’s call these the green instances). After the
N instances of new Service A are installed, the DNS server or discovery service would
be changed to point to the new version of Service A. Once it is determined that the new
instances are working satisfactorily, then and only then are the N instances of the origi-
nal Service A removed. Before this cutoff point, if a problem is found in the new version,
it is a simple matter of switching back to the original (the blue services) with little or no
interruption.

2. Rolling upgrade. A rolling upgrade replaces the instances of Service A with instances of
the new version of Service A one at a time. (In practice, you can replace more than one
instance at a time, but only a small fraction are replaced in any single step.) The steps of
the rolling upgrade are as follows:

a. Allocate resources for a new instance of Service A (e.g., a virtual machine).
b. Install and register the new version of Service A.
c. Begin to direct requests to the new version of Service A.
d. Choose an instance of the old Service A, allow it to complete any active processing,

and then destroy that instance.
e. Repeat the preceding steps until all instances of the old version have been replaced.

Figure 5.4 shows a rolling upgrade process as implemented by Netflix’s Asgard tool on
Amazon’s EC2 cloud platform.

Benefits:
 ■ The benefit of these patterns is the ability to completely replace deployed versions of

services without having to take the system out of service, thus increasing the system’s
availability.

Tradeoffs:
 ■ The peak resource utilization for a blue/green approach is 2N instances, whereas the peak

utilization for a rolling upgrade is N + 1 instances. In either case, resources to host these
instances must be procured. Before the widespread adoption of cloud computing, procure-
ment meant purchase: An organization had to purchase physical computers to perform the
upgrade. Most of the time there was no upgrade in progress, so these additional computers
largely sat idle. This made the financial tradeoff clear, and rolling upgrade was the stan-
dard approach. Now that computing resources can be rented on an as-needed basis, rather
than purchased, the financial tradeoff is less compelling but still present.

 ■ Suppose you detect an error in the new Service A when you deploy it. Despite all the
testing you did in the development, integration, and staging environments, when your
service is deployed to production, there may still be latent errors. If you are using blue/
green deployment, by the time you discover an error in the new Service A, all of the
original instances may have been deleted and rolling back to the old version could take
considerable time. In contrast, a rolling upgrade may allow you to discover an error in
the new version of the service while instances of the old version are still available.

84 Part II Quality Attributes | Chapter 5 Deployability

Remove and De-register
Old Instance from

Elastic Load Balancer

Terminate Old
Instance

Update Auto Scaling
Group (ASG)

Sort Instances

Confirm Upgrade Spec

Wait for ASG to Start
New Instance

Register New Instance
with Elastic Load

Balancer

FIGURE 5.4 A flowchart of the rolling upgrade pattern as implemented by Netflix’s Asgard tool

5.6 Patterns for Deployability 85

 ■ From a client’s perspective, if you are using the blue/green deployment model, then
at any point in time either the new version or the old version is active, but not both. If
you are using the rolling upgrade pattern, both versions are simultaneously active. This
introduces the possibility of two types of problems: temporal inconsistency and interface
mismatch.

 ■ Temporal inconsistency. In a sequence of requests by Client C to Service A, some may
be served by the old version of the service and some may be served by the new version.
If the versions behave differently, this may cause Client C to produce erroneous, or at
least inconsistent, results. (This can be prevented by using the manage service inter-
actions tactic.)

 ■ Interface mismatch. If the interface to the new version of Service A is different from
the interface to the old version of Service A, then invocations by clients of Service A that
have not been updated to reflect the new interface will produce unpredictable results.
This can be prevented by extending the interface but not modifying the existing inter-
face, and using the mediator pattern (see Chapter 7) to translate from the extended
interface to an internal interface that produces correct behavior. See Chapter 15 for a
fuller discussion.

Patterns for Partial Replacement of Services

Sometimes changing all instances of a service is undesirable. Partial-deployment patterns aim
at providing multiple versions of a service simultaneously for different user groups; they are
used for purposes such as quality control (canary testing) and marketing tests (A/B testing).

Canary Testing

Before rolling out a new release, it is prudent to test it in the production environment, but
with a limited set of users. Canary testing is the continuous deployment analog of beta test-
ing.5 Canary testing designates a small set of users who will test the new release. Sometimes,
these testers are so-called power users or preview-stream users from outside your organization
who are more likely to exercise code paths and edge cases that typical users may use less
frequently. Users may or may not know that they are being used as guinea pigs—er, that is,
canaries. Another approach is to use testers from within the organization that is developing
the software. For example, Google employees almost never use the release that external users
would be using, but instead act as testers for upcoming releases. When the focus of the testing
is on determining how well new features are accepted, a variant of canary testing called dark
launch is used.

In both cases, the users are designated as canaries and routed to the appropriate version
of a service through DNS settings or through discovery-service configuration. After testing is

5. Canary testing is named after the 19th-century practice of bringing canaries into coal mines. Coal mining
releases gases that are explosive and poisonous. Because canaries are more sensitive to these gases than humans,
coal miners brought canaries into the mines and watched them for signs of reaction to the gases. The canaries acted
as early warning devices for the miners, indicating an unsafe environment.

86 Part II Quality Attributes | Chapter 5 Deployability

complete, users are all directed to either the new version or the old version, and instances of
the deprecated version are destroyed. Rolling upgrade or blue/green deployment could be used
to deploy the new version.

Benefits:
 ■ Canary testing allows real users to “bang on” the software in ways that simulated testing

cannot. This allows the organization deploying the service to collect “in use” data and
perform controlled experiments with relatively low risk.

 ■ Canary testing incurs minimal additional development costs, because the system being
tested is on a path to production anyway.

 ■ Canary testing minimizes the number of users who may be exposed to a serious defect
in the new system.

Tradeoffs:
 ■ Canary testing requires additional up-front planning and resources, and a strategy for

evaluating the results of the tests needs to be formulated.
 ■ If canary testing is aimed at power users, those users have to be identified and the new

version routed to them.

A/B Testing

A/B testing is used by marketers to perform an experiment with real users to determine which
of several alternatives yields the best business results. A small but meaningful number of users
receive a different treatment from the remainder of the users. The difference can be minor,
such as a change to the font size or form layout, or it can be more significant. For example,
HomeAway (now Vrbo) has used A/B testing to vary the format, content, and look-and-feel
of its worldwide websites, tracking which editions produced the most rentals. The “winner”
would be kept, the “loser” discarded, and another contender designed and deployed. Another
example is a bank offering different promotions to open new accounts. An oft-repeated story
is that Google tested 41 different shades of blue to decide which shade to use to report search
results.

As in canary testing, DNS servers and discovery-service configurations are set to send
client requests to different versions. In A/B testing, the different versions are monitored to see
which one provides the best response from a business perspective.

Benefits:
 ■ A/B testing allows marketing and product development teams to run experiments on,

and collect data from, real users.
 ■ A/B testing can allow for targeting of users based on an arbitrary set of characteristics.

Tradeoffs:
 ■ A/B testing requires the implementation of alternatives, one of which will be discarded.
 ■ Different classes of users, and their characteristics, need to be identified up front.

5.8 Discussion Questions 87

 5.7 For Further Reading

Much of the material in this chapter is adapted from Deployment and Operations for Software
Engineers by Len Bass and John Klein [Bass 19] and from [Kazman 20b].

A general discussion of deployability and architecture in the context of DevOps can be
found in [Bass 15].

The tactics for deployability owe much to the work of Martin Fowler and his colleagues,
which can be found in [Fowler 10], [Lewis 14], and [Sato 14].

Deployment pipelines are described in much more detail in [Humble 10]
Microservices and the process of migrating to microservices are described in [Newman 15].

 5.8 Discussion Questions

1. Write a set of concrete scenarios for deployability using each of the possible responses in
the general scenario.

2. Write a concrete deployability scenario for the software for a car (such as a Tesla).

3. Write a concrete deployability scenario for a smartphone app. Now write one for the
server-side infrastructure that communicates with this app.

4. If you needed to display the results of a search operation, would you perform A/B testing
or simply use the color that Google has chosen? Why?

5. Referring to the structures described in Chapter 1, which structures would be involved in
implementing the package dependencies tactic? Would you use the uses structure? Why
or why not? Are there other structures you would need to consider?

6. Referring to the structures described in Chapter 1, which structures would be involved in
implementing the manage service interactions tactic? Would you use the uses structure?
Why or why not? Are there other structures you would need to consider?

7. Under what circumstances would you prefer to roll forward to a new version of service,
rather than to roll back to a prior version? When is roll forward a poor choice?

This page intentionally left blank

89

6
 Energy Efficiency

Energy is a bit like money: If you have a positive balance,
you can distribute it in various ways, but according to the

classical laws that were believed at the beginning of the
century, you weren’t allowed to be overdrawn.

—Stephen Hawking

Energy used by computers used to be free and unlimited—or at least that’s how we behaved.
Architects rarely gave much consideration to the energy consumption of software in the past.
But those days are now gone. With the dominance of mobile devices as the primary form of
computing for most people, with the increasing adoption of the Internet of Things (IoT) in
industry and government, and with the ubiquity of cloud services as the backbone of our com-
puting infrastructure, energy has become an issue that architects can no longer ignore. Power
is no longer “free” and unlimited. The energy efficiency of mobile devices affects us all.
Likewise, cloud providers are increasingly concerned with the energy efficiency of their server
farms. In 2016, it was reported that data centers globally accounted for more energy consump-
tion (by 40 percent) than the entire United Kingdom—about 3 percent of all energy consumed
worldwide. More recent estimates put that share up as high as 10 percent. The energy costs
associated with running and, more importantly, cooling large data centers have led people
to calculate the cost of putting whole data centers in space, where cooling is free and the sun
provides unlimited power. At today’s launch prices, the economics are actually beginning to
look favorable. Notably, server farms located underwater and in arctic climates are already
a reality.

At both the low end and the high end, energy consumption of computational devices has
become an issue that we should consider. This means that we, as architects, now need to add
energy efficiency to the long list of competing qualities that we consider when designing a sys-
tem. And, as with every other quality attribute, there are nontrivial tradeoffs to consider: energy
usage versus performance or availability or modifiability or time to market. Thus considering
energy efficiency as a first-class quality attribute is important for the following reasons:

1. An architectural approach is necessary to gain control over any important system quality
attribute, and energy efficiency is no different. If system-wide techniques for monitoring

90 Part II Quality Attributes | Chapter 6 Energy Efficiency

and managing energy are lacking, then developers are left to invent them on their own.
This will, in the best case, result in an ad hoc approach to energy efficiency that produces
a system that is hard to maintain, measure, and evolve. In the worst case, it will yield an
approach that simply does not predictably achieve the desired energy efficiency goals.

2. Most architects and developers are unaware of energy efficiency as a quality attribute
of concern, and hence do not know how to go about engineering and coding for it. More
fundamentally, they lack an understanding of energy efficiency requirements—how
to gather them and analyze them for completeness. Energy efficiency is not taught, or
typically even mentioned, as a programmer’s concern in today’s educational curricula.
In consequence, students may graduate with degrees in engineering or computer science
without ever having been exposed to these issues.

3. Most architects and developers lack suitable design concepts—models, patterns, tactics,
and so forth—for designing for energy efficiency, as well as managing and monitoring
it at runtime. But since energy efficiency is a relatively recent concern for the software
engineering community, these design concepts are still in their infancy and no catalog
yet exists.

Cloud platforms typically do not have to be concerned with running out of energy (except
in disaster scenarios), whereas this is a daily concern for users of mobile devices and some
IoT devices. In cloud environments, scaling up and scaling down are core competencies, so
decisions must be made on a regular basis about optimal resource allocation. With IoT devices,
their size, form factors, and heat output all constrain their design space—there is no room for
bulky batteries. In addition, the sheer number of IoT devices projected to be deployed in the
next decade makes their energy usage a concern.

In all of these contexts, energy efficiency must be balanced with performance and avail-
ability, requiring engineers to consciously reason about such tradeoffs. In the cloud context,
greater allocation of resources—more servers, more storage, and so on—creates improved
performance capabilities as well as improved robustness against failures of individual devices,
but at the cost of energy and capital outlays. In the mobile and IoT contexts, greater allocation
of resources is typically not an option (although shifting the computational burden from a
mobile device to a cloud back-end is possible), so the tradeoffs tend to center on energy effi-
ciency versus performance and usability. Finally, in all contexts, there are tradeoffs between
energy efficiency, on the one hand, and buildability and modifiability, on the other hand.

 6.1 Energy Efficiency General Scenario

From these considerations, we can now determine the various portions of the energy efficiency
general scenario, as presented in Table 6.1.

6.1 Energy Efficiency General Scenario 91

TABLE 6.1 Energy Efficiency General Scenario

Portion of
Scenario

Description Possible Values

Source This specifies who or
what requests or initiates
a request to conserve or
manage energy.

End user, manager, system administrator, automated
agent

Stimulus A request to conserve
energy.

Total usage, maximum instantaneous usage, average
usage, etc.

Artifacts This specifies what is to
be managed.

Specific devices, servers, VMs, clusters, etc.

Environment Energy is typically
managed at runtime, but
many interesting special
cases exist, based on
system characteristics.

Runtime, connected, battery-powered, low-battery
mode, power-conservation mode

Response What actions the system
takes to conserve or
manage energy usage.

One or more of the following:
 ■ Disable services
 ■ Deallocate runtime services
 ■ Change allocation of services to servers
 ■ Run services at a lower consumption mode
 ■ Allocate/deallocate servers
 ■ Change levels of service
 ■ Change scheduling

Response
measure

The measures revolve
around the amount of
energy saved or consumed
and the effects on other
functions or quality
attributes.

Energy managed or saved in terms of:
 ■ Maximum/average kilowatt load on the system
 ■ Average/total amount of energy saved
 ■ Total kilowatt hours used
 ■ Time period during which the system must stay

powered on

. . . while still maintaining a required level of
functionality and acceptable levels of other quality
attributes

Figure 6.1 illustrates a concrete energy efficiency scenario: A manager wants to save
energy at runtime by deallocating unused resources at non-peak periods. The system deal-
locates resources while maintaining worst-case latency of 2 seconds on database queries,
saving on average 50 percent of the total energy required.

92 Part II Quality Attributes | Chapter 6 Energy Efficiency

Stimulus

Response

Response

Measure

Source

3

2
1

4

Environment

Artifact

Manager Wants to save energy at

runtime by deallocating

unused resources at

non-peak periods

Non-peak period The system

deallocates

resources

Maintaining worst-case

latency of 2 seconds on

database queries, saving

on average 50% of the

total energy required

System

FIGURE 6.1 Sample energy efficiency scenario

 6.2 Tactics for Energy Efficiency

An energy efficiency scenario is catalyzed by the desire to conserve or manage energy while
still providing the required (albeit not necessarily full) functionality. This scenario is success-
ful if the energy responses are achieved within acceptable time, cost, and quality constraints.
We illustrate this simple relationship—and hence the goal of energy efficiency tactics—in
Figure 6.2.

Energy savings

objective

Energy responses

realized within

constraints

Tactics

to Control

Response

FIGURE 6.2 Goal of energy efficiency tactics

6.2 Tactics for Energy Efficiency 93

Energy efficiency is, at its heart, about effectively utilizing resources. We group the tac-
tics into three broad categories: resource monitoring, resource allocation, and resource adap-
tation (Figure 6.3). By “resource,” we mean a computational device that consumes energy
while providing its functionality. This is analogous to the definition of a hardware resource in
Chapter 9, which includes CPUs, data stores, network communications, and memory.

Monitor Resources Reduce Resource DemandAllocate Resources

Metering Reduce Usage

Discovery

Schedule Resources

Manage Event Arrival

Limit Event Response

Prioritize Events

Reduce Computational Overhead

FIGURE 6.3 Energy efficiency tactics

 Monitor Resources

You can’t manage what you can’t measure, and so we begin with resource monitoring. The
tactics for resource monitoring are metering, static classification, and dynamic classification.

 ■ Metering. The metering tactic involves collecting data about the energy consumption of
computational resources via a sensor infrastructure, in near real time. At the coarsest level,
the energy consumption of an entire data center can be measured from its power meter.
Individual servers or hard drives can be measured using external tools such as amp meters
or watt-hour meters, or using built-in tools such as those provided with metered rack PDUs
(power distribution units), ASICs (application-specific integrated circuits), and so forth. In
battery-operated systems, the energy remaining in a battery can be determined through
a battery management system, which is a component of modern batteries.

 ■ Static classification. Sometimes real-time data collection is infeasible. For example,
if an organization is using an off-premises cloud, it might not have direct access to
real-time energy data. Static classification allows us to estimate energy consumption by

94 Part II Quality Attributes | Chapter 6 Energy Efficiency

cataloging the computing resources used and their known energy characteristics—the
amount of energy used by a memory device per fetch, for example. These characteristics
are available as benchmarks, or from manufacturers’ specifications.

 ■ Dynamic classification. In cases where a static model of a computational resource is
inadequate, a dynamic model might be required. Unlike static models, dynamic mod-
els estimate energy consumption based on knowledge of transient conditions such as
workload. The model could be a simple table lookup, a regression model based on data
collected during prior executions, or a simulation.

 Allocate Resources

Resource allocation means assigning resources to do work in a way that is mindful of energy
consumption. The tactics for resource allocation are to reduce usage, discovery, and scheduling.

 ■ Reduce usage. Usage can be reduced at the device level by device-specific activities such
as reducing the refresh rate of a display or darkening the background. Removing or deac-
tivating resources when demands no longer require them is another method for decreas-
ing energy consumption. This may involve spinning down hard drives, turning off CPUs
or servers, running CPUs at a slower clock rate, or shutting down current to blocks of
the processor that are not in use. It might also take the form of moving VMs onto the
minimum number of physical servers (consolidation), combined with shutting down
idle computational resources. In mobile applications, energy savings may be realized by
sending part of the computation to the cloud, assuming that the energy consumption of
communication is lower than the energy consumption of computation.

 ■ Discovery. As we will see in Chapter 7, a discovery service matches service requests (from
clients) with service providers, supporting the identification and remote invocation of those
services. Traditionally discovery services have made these matches based on a description
of the service request (typically an API). In the context of energy efficiency, this request
could be annotated with energy information, allowing the requestor to choose a service
provider (resource) based on its (possibly dynamic) energy characteristics. For the cloud, this
energy information can be stored in a “green service directory” populated by information
from metering, static classification, or dynamic classification (the resource monitoring
tactics). For a smartphone, the information could be obtained from an app store. Currently
such information is ad hoc at best, and typically nonexistent in service APIs.

 ■ Schedule resources. Scheduling is the allocation of tasks to computational resources. As
we will see in Chapter 9, the schedule resources tactic can increase performance. In the
energy context, it can be used to effectively manage energy usage, given task constraints
and respecting task priorities. Scheduling can be based on data collected using one or
more resource monitoring tactics. Using an energy discovery service in a cloud context,
or a controller in a multi-core context, a computational task can dynamically switch
among computational resources, such as service providers, selecting the ones that offer
better energy efficiency or lower energy costs. For example, one provider may be more
lightly loaded than another, allowing it to adapt its energy usage, perhaps using some of
the tactics described earlier, and consume less energy, on average, per unit of work.

6.3 Tactics-Based Questionnaire for Energy Efficiency 95

 Reduce Resource Demand

This category of tactics is detailed in Chapter 9. Tactics in this category—manage event
arrival, limit event response, prioritize events (perhaps letting low-priority events go unser-
viced), reduce computational overhead, bound execution times, and increase resource usage
efficiency—all directly increase energy efficiency by doing less work. This is a complemen-
tary tactic to reduce usage, in that the reduce usage tactic assumes that the demand stays the
same, whereas the reduce resource demand tactics are a means of explicitly managing (and
reducing) the demand.

6.3 Tactics-Based Questionnaire for Energy Efficiency

 As described in Chapter 3, this tactics-based questionnaire is intended to very quickly under-
stand the degree to which an architecture employs specific tactics to manage energy efficiency.

Based on the tactics described in Section 6.2, we can create a set of tactics-inspired ques-
tions, as presented in Table 6.2. To gain an overview of the architectural choices made to
support energy efficiency, the analyst asks each question and records the answers in the table.
The answers to these questions can then be made the focus of further activities: investigation
of documentation, analysis of code or other artifacts, reverse engineering of code, and so forth.

TABLE 6.2 Tactics-Based Questionnaire for Energy Efficiency

Tactics
Group

Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Resource
Monitoring

Does your system meter the
use of energy?

That is, does the system collect
data about the actual energy
consumption of computational
devices via a sensor
infrastructure, in near real time?

Does the system statically
classify devices and
computational resources?
That is, does the system have
reference values to estimate the
energy consumption of a device
or resource (in cases where real-
time metering is infeasible or too
computationally expensive)?

continues

96 Part II Quality Attributes | Chapter 6 Energy Efficiency

Tactics
Group

Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Resource
Monitoring

Does the system dynamically
classify devices and
computational resources? In
cases where static classification
is not accurate due to varying
load or environmental
conditions, does the system use
dynamic models, based on prior
data collected, to estimate the
varying energy consumption of a
device or resource at runtime?

Resource
Allocation

Does the system reduce
usage to scale down resource
usage? That is, can the system
deactivate resources when
demands no longer require
them, in an effort to save
energy? This may involve
spinning down hard drives,
darkening displays, turning off
CPUs or servers, running CPUs
at a slower clock rate, or shutting
down memory blocks of the
processor that are not being
used.

Does the system schedule
resources to more effectively
utilize energy, given task
constraints and respecting
task priorities, by switching
computational resources, such
as service providers, to the
ones that offer better energy
efficiency or lower energy costs?
Is scheduling based on data
collected (using one or more
resource monitoring tactics)
about the state of the system?

Does the system make use of
a discovery service to match
service requests to service
providers? In the context of
energy efficiency, a service
request could be annotated with
energy requirement information,
allowing the requestor to choose
a service provider based on
its (possibly dynamic) energy
characteristics.

TABLE 6.2 Tactics-Based Questionnaire for Energy Efficiency continued

6.4 Patterns 97

Tactics
Group

Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Reduce
Resource
Demand

Do you consistently attempt to
reduce resource demand?
Here, you may insert the
questions in this category from
the Tactics-Based Questionnaire
for Performance from Chapter 9.

6.4 Patterns

Some examples of patterns used for energy efficiency include sensor fusion, kill abnormal
tasks, and power monitor.

Sensor Fusion

Mobile apps and IoT systems often collect data from their environment using multiple sensors.
In this pattern, data from low-power sensors can be used to infer whether data needs to be
collected from higher-power sensors. A common example in the mobile phone context is using
accelerometer data to assess if the user has moved and, if so, to update the GPS location. This
pattern assumes that accessing the low-power sensor is much cheaper, in terms of energy con-
sumption, than accessing the higher-power sensor.

Benefits:
 ■ The obvious benefit of this pattern is the ability to minimize the usage of more energy-

intensive devices in an intelligent way rather than, for example, just reducing the fre-
quency of consulting the more energy-intensive sensor.

Tradeoffs:
 ■ Consulting and comparing multiple sensors adds up-front complexity.
 ■ The higher-energy-consuming sensor will provide higher-quality data, albeit at the cost of

increased power consumption. And it will provide this data more quickly, since using the
more energy-intensive sensor alone takes less time than first consulting a secondary sensor.

 ■ In cases where the inference frequently results in accessing the higher-power sensor, this
pattern could result in overall higher energy usage.

Kill Abnormal Tasks

Mobile systems, because they are often executing apps of unknown provenance, may end up
unknowingly running some exceptionally power-hungry apps. This pattern provides a way

98 Part II Quality Attributes | Chapter 6 Energy Efficiency

to monitor the energy usage of such apps and to interrupt or kill energy-greedy operations.
For example, if an app is issuing an audible alert and vibrating the phone and the user is not
responding to these alerts, then after a predetermined timeout period the task is killed.

Benefits:
 ■ This pattern provides a “fail-safe” option for managing the energy consumption of apps

with unknown energy properties.

Tradeoffs:
 ■ Any monitoring process adds a small amount of overhead to system operations, which

may affect performance and, to a small extent, energy usage.
 ■ The usability of this pattern needs to be considered. Killing energy-hungry tasks may be

counter to the user’s intention.

Power Monitor

The power monitor pattern monitors and manages system devices, minimizing the time during
which they are active. This pattern attempts to automatically disable devices and interfaces
that are not being actively used by the application. It has long been used within integrated
circuits, where blocks of the circuit are shut down when they are not being used, in an effort
to save energy.

Benefits:
 ■ This pattern can allow for intelligent savings of power at little to no impact to the end

user, assuming that the devices being shut down are truly not needed.

Tradeoffs:
 ■ Once a device has been switched off, switching it on adds some latency before it can

respond, as compared with keeping it continually running. And, in some cases, the
startup may be more energy expensive than a certain period of steady-state operation.

 ■ The power monitor needs to have knowledge of each device and its energy consumption
characteristics, which adds up-front complexity to the system design.

6.5 For Further Reading

The first published set of energy tactics appeared in [Procaccianti 14]. These were, in part, the
inspiration for the tactics presented here. The 2014 paper subsequently inspired [Paradis 21].
Many of the tactics presented in this chapter owe a debt to these two papers.

For a good general introduction to energy usage in software development—and what
developers do not know—you should read [Pang 16].

6.6 Discussion Questions 99

Several research papers have investigated the consequences of design choices on energy
consumption, such as [Kazman 18] and [Chowdhury 19].

A general discussion of the importance of creating “energy-aware” software can be found
in [Fonseca 19].

Energy patterns for mobile devices have been catalogued by [Cruz 19] and
[Schaarschmidt 20].

6.6 Discussion Questions

1. Write a set of concrete scenarios for energy efficiency using each of the possible
responses in the general scenario.

2. Create a concrete energy efficiency scenario for a smartphone app (for example, a health
monitoring app).

3. Create a concrete energy efficiency scenario for a cluster of data servers in a data center.
What are the important distinctions between this scenario and the one you created for
question 2?

4. Enumerate the energy efficiency techniques that are currently employed by your laptop
or smartphone.

5. What are the energy tradeoffs in your smartphone between using Wi-Fi and the cellular
network?

6. Calculate the amount of greenhouse gases in the form of carbon dioxide that you, over
an average lifetime, will exhale into the atmosphere. How many Google searches does
this equate to?

7. Suppose Google reduced its energy usage per search by 1 percent. How much energy
would that save per year?

8. How much energy did you use to answer question 7?

This page intentionally left blank

101

7
 Integrability

Integration is a basic law of life; when we resist it, disintegration is
the natural result, both inside and outside of us. Thus we come to the

concept of harmony through integration.
—Norman Cousins

According to the Merriam-Webster dictionary, the adjective integrable means “capable of
being integrated.” We’ll give you a moment to catch your breath and absorb that profound
insight. But for practical software systems, software architects need to be concerned about
more than just making separately developed components cooperate; they are also concerned
with the costs and technical risks of anticipated and (to varying degrees) unanticipated future
integration tasks. These risks may be related to schedule, performance, or technology.

A general, abstract representation of the integration problem is that a project needs to
integrate a unit of software C, or a set of units C

1
, C

2
, … C

n
, into a system S. S might be a

platform, into which we integrate {C
i
}, or it might be an existing system that already contains

{C
1
, C

2
, …, C

n
} and our task is to design for, and analyze the costs and technical risks of, inte-

grating {C
n+1

, … C
m
}.

We assume we have control over S, but the {C
i
} may be outside our control—supplied by

external vendors, for example, so our level of understanding of each C
i
 may vary. The clearer

our understanding of C
i
, the more capable the design and accurate the analysis will be.

Of course, S is not static but will evolve, and this evolution may require reanalysis.
Integrability (like other quality attributes such as modifiability) is challenging because it is
about planning for a future when we have incomplete information at our disposal. Simply put,
some integrations will be simpler than others because they have been anticipated and accom-
modated in the architecture, whereas others will be more complex because they have not been.

 Consider a simple analogy: To plug a North American plug (an example of a C
i
) into

a North American socket (an interface provided by the electrical system S), the “integra-
tion” is trivial. However, integrating a North American plug into a British socket will require
an adapter. And the device with the North American plug may only run on 110-volt power,
requiring further adaptation before it will work in a British 220-volt socket. Furthermore, if
the component was designed to run at 60 Hz and the system provides 70 Hz, the component
may not operate as intended even though it plugs in just fine. The architectural decisions made

102 Part II Quality Attributes | Chapter 7 Integrability

by the creators of S and C
i
—for example, to provide plug adapters or voltage adapters, or to

make the component operate identically at different frequencies—will affect the cost and risk
of the integration.

 7.1 Evaluating the Integrability of an Architecture

Integration difficulty—the costs and the technical risks—can be thought of as a function of
the size of and the “distance” between the interfaces of {C

i
} and S:

Size is the number of potential dependencies between {C
i
} and S.

Distance is the difficulty of resolving differences at each of the dependencies.

Dependencies are often measured syntactically. For example, we say that module A is
dependent on component B if A calls B, if A inherits from B, or if A uses B. But while syn-
tactic dependency is important, and will continue to be important in the future, dependency
can occur in forms that are not detectable by any syntactic relation. Two components might be
coupled temporally or through resources because they share and compete for a finite resource
at runtime (e.g., memory, bandwidth, CPU), share control of an external device, or have a
timing dependency. Or they might be coupled semantically because they share knowledge of
the same protocol, file format, unit of measure, metadata, or some other aspect. The reason
that these distinctions are important is that temporal and semantic dependencies are not often
well understood, explicitly acknowledged, or properly documented. Missing or implicit knowl-
edge is always a risk for a large, long-lived project, and such knowledge gaps will inevitably
increase the costs and risks of integration and integration testing.

Consider the trend toward services and microservices in computation today. This
approach is fundamentally about decoupling components to reduce the number and distance
of their dependencies. Services only “know” each other via their published interfaces and,
if that interface is an appropriate abstraction, changes to one service have less chance to ripple
to other services in the system. The ever-increasing decoupling of components is an indus-
try-wide trend that has been going on for decades. Service orientation, by itself, addresses
(that is, reduces) only the syntactic aspects of dependency; it does not address the temporal
or semantic aspects. Supposedly decoupled components that have detailed knowledge of each
other and make assumptions about each other are in fact tightly coupled, and changing them in
the future may well be costly.

For integrability purposes, “interfaces” must be understood as much more than simply
APIs. They must characterize all of the relevant dependencies between the elements. When
trying to understand dependencies between components, the concept of “distance” is helpful.
As components interact, how aligned are they with respect to how they cooperate to success-
fully carry out an interaction? Distance may mean:

 ■ Syntactic distance. The cooperating elements must agree on the number and type of the
data elements being shared. For example, if one element sends an integer and the other

7.1 Evaluating the Integrability of an Architecture 103

expects a floating point, or perhaps the bits within a data field are interpreted differently,
this discrepancy presents a syntactic distance that must be bridged. Differences in data
types are typically easy to observe and predict. For example, such type mismatches
could be caught by a compiler. Differences in bit masks, while similar in nature, are
often more difficult to detect, and the analyst may need to rely on documentation or
scrutiny of the code to identify them.

 ■ Data semantic distance. The cooperating elements must agree on the data semantics;
that is, even if two elements share the same data type, their values are interpreted
differently. For example, if one data value represents altitude in meters and the other
represents altitude in feet, this presents a data semantic distance that must be bridged.
This kind of mismatch is typically difficult to observe and predict, although the analyst’s
life is improved somewhat if the elements involved employ metadata. Mismatches in
data semantics may be discovered by comparing interface documentation or metadata
descriptions, if available, or by checking the code, if available.

 ■ Behavioral semantic distance. The cooperating elements must agree on behavior, par-
ticularly with respect to the states and modes of the system. For example, a data element
may be interpreted differently in system startup, shutdown, or recovery mode. Such
states and modes may, in some cases, be explicitly captured in protocols. As another
example, C

i
 and C

j
 may make different assumptions regarding control, such as each

expecting the other to initiate interactions.
 ■ Temporal distance. The cooperating elements must agree on assumptions about time.

Examples of temporal distance include operating at different rates (e.g., one element
emits values at a rate of 10 Hz and the other expects values at 60 Hz) or making different
timing assumptions (e.g., one element expects event A to follow event B and the other
element expects event A to follow event B with no more than 50 ms latency). While this
might be considered to be a subcase of behavioral semantics, it is so important (and often
subtle) that we call it out explicitly.

 ■ Resource distance. The cooperating elements must agree on assumptions about shared
resources. Examples of resource distance may involve devices (e.g., one element requires
exclusive access to a device, whereas another expects shared access) or computational
resources (e.g., one element needs 12 GB of memory to run optimally and the other
needs 10 GB, but the target CPU has only 16 GB of physical memory; or three elements
are simultaneously producing data at 3 Mbps each, but the communication channel
offers a peak capacity of just 5 Mbps). Again, this distance may be seen as related to
behavioral distance, but it should be consciously analyzed.

Such details are not typically mentioned in a programming language interface descrip-
tion. In the organizational context, however, these unstated, implicit interfaces often add time
and complexity to integration tasks (and modification and debugging tasks). This is why inter-
faces are architectural concerns, as we will discuss further in Chapter 15.

In essence, integrability is about discerning and bridging the distance between the ele-
ments of each potential dependency. This is a form of planning for modifiability. We will
revisit this topic in Chapter 8.

104 Part II Quality Attributes | Chapter 7 Integrability

7.2 General Scenario for Integrability

Table 7.1 presents the general scenario for integrability.

TABLE 7.1 General Scenario for Integrability

Portion of
Scenario

Description Possible Values

Source Where does the stimulus
come from?

One or more of the following:
 ■ Mission/system stakeholder
 ■ Component marketplace
 ■ Component vendor

Stimulus What is the stimulus?
That is, what kind of
integration is being
described?

One of the following:
 ■ Add new component
 ■ Integrate new version of existing component
 ■ Integrate existing components together in a new way

Artifact What parts of the system
are involved in the
integration?

One of the following:
 ■ Entire system
 ■ Specific set of components
 ■ Component metadata
 ■ Component configuration

Environment What state is the system
in when the stimulus
occurs?

One of the following:
 ■ Development
 ■ Integration
 ■ Deployment
 ■ Runtime

Response How will an “integrable”
system respond to the
stimulus?

One or more of the following:
 ■ Changes are {completed, integrated, tested, deployed}
 ■ Components in the new configuration are successfully

and correctly (syntactically and semantically)
exchanging information

 ■ Components in the new configuration are successfully
collaborating

 ■ Components in the new configuration do not violate
any resource limits

Response
measure

How is the response
measured?

One or more of the following:
 ■ Cost, in terms of one or more of:

 ■ Number of components changed
 ■ Percentage of code changed
 ■ Lines of code changed
 ■ Effort
 ■ Money
 ■ Calendar time

 ■ Effects on other quality attribute response measures
(to capture allowable tradeoffs)

7.3 Integrability Tactics 105

Stimulus

Response

Response

Measure

Source

3

2
1

4

Environment

Artifact

Component

marketplace component becomes

Development The new component

deployed

than 1 person-month

of effort

System

Figure 7.1 illustrates a sample integrability scenario constructed from the general sce-
nario: A new data filtering component has become available in the component marketplace.
The new component is integrated into the system and deployed in 1 month, with no more than
1 person-month of effort.

FIGURE 7.1 Sample integrability scenario

 7.3 Integrability Tactics

The goals for the integrability tactics are to reduce the costs and risks of adding new com-
ponents, reintegrating changed components, and integrating sets of components together to
fulfill evolutionary requirements, as illustrated in Figure 7.2.

New components

arrive

Components are

integrated within

time, cost, and

quality constraints

Tactics

to Control

Response

FIGURE 7.2 Goal of integrability tactics

106 Part II Quality Attributes | Chapter 7 Integrability

The tactics achieve these goals either by reducing the number of potential dependencies
between components or by reducing the expected distance between components. Figure 7.3
shows an overview of the integrability tactics.

Limit Dependencies CoordinateAdapt

Integrability Tactics

Encapsulate

Use an Intermediary

Restrict Communication Paths

Adhere to Standards

Abstract Common Services

Discover

Tailor Interface

Orchestrate

Manage Resources

FIGURE 7.3 Integrability tactics

 Limit Dependencies

 Encapsulate

Encapsulation is the foundation upon which all other integrability tactics are built. It is there-
fore seldom seen on its own, but its use is implicit in the other tactics described here.

Encapsulation introduces an explicit interface to an element and ensures that all access to
the element passes through this interface. Dependencies on the element internals are eliminated,
because all dependencies must flow through the interface. Encapsulation reduces the probability
that a change to one element will propagate to other elements, by reducing either the number
of dependencies or their distances. These strengths are, however, reduced because the interface
limits the ways in which external responsibilities can interact with the element (perhaps through
a wrapper). In consequence, the external responsibilities can only directly interact with the ele-
ment through the exposed interface (indirect interactions, such as dependence on quality of ser-
vice, will likely remain unchanged).

Encapsulation may also hide interfaces that are not relevant for a particular integration
task. An example is a library used by a service that can be completely hidden from all consum-
ers and changed without these changes propagating to the consumers.

Encapsulation, then, can reduce the number of dependencies as well as the syntactic,
data, and behavior semantic distances between C and S.

7.3 Integrability Tactics 107

 Use an Intermediary

Intermediaries are used for breaking dependencies between a set of components C
i
 or between

C
i
 and the system S. Intermediaries can be used to resolve different types of dependencies. For

example, intermediaries such as a publish–subscribe bus, shared data repository, or dynamic
service discovery all reduce dependencies between data producers and consumers by removing
any need for either to know the identity of the other party. Other intermediaries, such as data
transformers and protocol translators, resolve forms of syntactic and data semantic distance.

Determining the specific benefits of a particular intermediary requires knowledge of
what the intermediary actually does. An analyst needs to determine whether the intermediary
reduces the number of dependencies between a component and the system and which dimen-
sions of distance, if any, it addresses.

Intermediaries are often introduced during integration to resolve specific dependencies,
but they can also be included in an architecture to promote integrability with respect to antic-
ipated scenarios. Including a communication intermediary such as a publish–subscribe bus in
an architecture, and then restricting communication paths to and from sensors to this bus, is an
example of using an intermediary with the goal of promoting integrability of sensors.

 Restrict Communication Paths

This tactic restricts the set of elements with which a given element can communicate. In prac-
tice, this tactic is implemented by restricting a element’s visibility (when developers cannot
see an interface, they cannot employ it) and by authorization (i.e., restricting access to only
authorized elements). The restrict communication paths tactic is seen in service-oriented
architectures (SOAs), in which point-to-point requests are discouraged in favor of forcing all
requests to go through an enterprise service bus so that routing and preprocessing can be done
consistently.

 Adhere to Standards

Standardization in system implementations is a primary enabler of integrability and interoper-
ability, across both platforms and vendors. Standards vary considerably in terms of the scope
of what they prescribe. Some focus on defining syntax and data semantics. Others include
richer descriptions, such as those describing protocols that include behavioral and temporal
semantics.

Standards similarly vary in their scope of applicability or adoption. For example, standards
published by widely recognized standards-setting organizations such as the Institute of Electrical
and Electronics Engineers (IEEE), the International Organization for Standardization (ISO), and
the Object Management Group (OMG) are more likely to be broadly adopted. Conventions that
are local to an organization, particularly if well documented and enforced, can provide similar
benefits as “local standards,” though with less expectation of benefits when integrating compo-
nents from outside the local standard’s sphere of adoption.

Adopting a standard can be an effective integrability tactic, although its effectiveness is
limited to benefits based on the dimensions of difference addressed in the standard and how
likely it is that future component suppliers will conform to the standard. Restricting commu-
nication with a system S to require use of the standard often reduces the number of potential

108 Part II Quality Attributes | Chapter 7 Integrability

dependencies. Depending on what is defined in a standard, it may also address syntactic, data
semantic, behavioral semantic, and temporal dimensions of distance.

 Abstract Common Services

Where two elements provide services that are similar but not quite the same, it may be useful
to hide both specific elements behind a common abstraction for a more general service. This
abstraction might be realized as a common interface implemented by both, or it might involve
an intermediary that translates requests for the abstract service to more specific requests for
the elements hidden behind the abstraction. The resulting encapsulation hides the details of the
elements from other components in the system. In terms of integrability, this means that future
components can be integrated with a single abstraction rather than separately integrated with
each of the specific elements.

When the abstract common services tactic is combined with an intermediary (such as a
wrapper or adapter), it can also normalize syntactic and semantic variations among the spe-
cific elements. For example, we see this when systems use many sensors of the same type from
different manufacturers, each with its own device drivers, accuracy, or timing properties, but
the architecture provides a common interface to them. As another example, your browser may
accommodate various kinds of ad-blocking plug-ins, yet because of the plug-in interface the
browser itself can remain blissfully unaware of your choice.

 Abstracting common services allows for consistency when handling common infrastruc-
ture concerns (e.g., translations, security mechanisms, and logging). When these features change,
or when new versions of the components implementing these features change, the changes can
be made in a smaller number of places. An abstract service is often paired with an intermediary
that may perform processing to hide syntactic and data semantic differences among specific
elements.

Adapt

Discover

A discovery service is a catalog of relevant addresses, which comes in handy whenever there is
a need to translate from one form of address to another, whenever the target address may have
been dynamically bound, or when there are multiple targets. It is the mechanism by which
applications and services locate each other. A discovery service may be used to enumerate
variants of particular elements that are used in different products.

Entries in a discovery service are there because they were registered. This registration
can happen statically, or it can happen dynamically when a service is instantiated. Entries in
the discovery service should be de-registered when they are no longer relevant. Again, this
can be done statically, such as with a DNS server, or dynamically. Dynamic de-registration can
be handled by the discovery service itself performing health checks on its entries, or it can be
carried out by an external piece of software that knows when a particular entry in the catalog
is no longer relevant.

A discovery service may include entries that are themselves discovery services. Likewise,
entries in a discovery service may have additional attributes, which a query may reference. For

7.3 Integrability Tactics 109

example, a weather discovery service may have an attribute of “cost of forecast”; you can then
ask a weather discovery service for a service that provides free forecasts.

The discover tactic works by reducing the dependencies between cooperating services,
which should be written without knowledge of each other. This enables flexibility in the bind-
ing between services, as well as when that binding occurs.

 Tailor Interface

Tailoring an interface is a tactic that adds capabilities to, or hides capabilities in, an exist-
ing interface without changing the API or implementation. Capabilities such as translation,
buffering, and data smoothing can be added to an interface without changing it. An example
of removing capabilities is hiding particular functions or parameters from untrusted users. A
common dynamic application of this tactic is intercepting filters that add functionality such
as data validation to help prevent SQL injections or other attacks, or to translate between data
formats. Another example is using techniques from aspect-oriented programming that weave
in preprocessing and postprocessing functionality at compile time.

The tailor interface tactic allows functionality that is needed by many services to be
added or hidden based on context and managed independently. It also enables services with
syntactic differences to interoperate without modification to either service.

This tactic is typically applied during integration; however, designing an architecture so
that it facilitates interface tailoring can support integrability. Interface tailoring is commonly
used to resolve syntactic and data semantic distance during integration. It can also be applied
to resolve some forms of behavioral semantic distance, though it can be more complex to do
(e.g., maintaining a complex state to accommodate protocol differences) and is perhaps more
accurately categorized as introducing an intermediary.

 Configure Behavior

The tactic of configuring behavior is used by software components that are implemented to be
configurable in prescribed ways that allow them to more easily interact with a range of com-
ponents. The behavior of a component can be configured during the build phase (recompile
with a different flag), during system initialization (read a configuration file or fetch data from
a database), or during runtime (specify a protocol version as part of your requests). A simple
example is configuring a component to support different versions of a standard on its inter-
faces. Ensuring that multiple options are available increases the chances that the assumptions
of S and a future C will match.

Building configurable behavior into portions of S is an integrability tactic that allows S
to support a wider range of potential Cs. This tactic can potentially address syntactic, data
semantic, behavioral semantic, and temporal dimensions of distance.

 Coordinate

Orchestrate

Orchestrate is a tactic that uses a control mechanism to coordinate and manage the invocation
of particular services so that they can remain unaware of each other.

110 Part II Quality Attributes | Chapter 7 Integrability

Orchestration helps with the integration of a set of loosely coupled reusable services to
create a system that meets a new need. Integration costs are reduced when orchestration is
included in an architecture in a way that supports the services that are likely to be integrated
in the future. This tactic allows future integration activities to focus on integration with the
orchestration mechanism instead of point-to-point integration with multiple components.

Workflow engines commonly make use of the orchestrate tactic. A workflow is a set of
organized activities that order and coordinate software components to complete a business
process. It may consist of other workflows, each of which may itself consist of aggregated
services. The workflow model encourages reuse and agility, leading to more flexible business
processes. Business processes can be managed under a philosophy of business process man-
agement (BPM) that views processes as a set of competitive assets to be managed. Complex
orchestration can be specified in a language such as BPEL (Business Process Execution
Language).

Orchestration works by reducing the number of dependencies between a system S and
new components {C

i
}, and eliminating altogether the explicit dependencies among the com-

ponents {C
i
}, by centralizing those dependencies at the orchestration mechanism. It may also

reduce syntactic and data semantic distance if the orchestration mechanism is used in conjunc-
tion with tactics such as adherence to standards.

 Manage Resources

A resource manager is a specific form of intermediary that governs access to computing
resources; it is similar to the restrict communication paths tactic. With this tactic, software
components are not allowed to directly access some computing resources (e.g., threads or
blocks of memory), but instead request those resources from a resource manager. Resource
managers are typically responsible for allocating resource access across multiple components
in a way that preserves some invariants (e.g., avoiding resource exhaustion or concurrent use),
enforces some fair access policy, or both. Examples of resource managers include operating
systems, transaction mechanisms in databases, use of thread pools in enterprise systems, and
use of the ARINC 653 standard for space and time partitioning in safety-critical systems.

The manage resource tactic works by reducing the resource distance between a system S
and a component C, by clearly exposing the resource requirements and managing their com-
mon use.

 7.4 Tactics-Based Questionnaire for Integrability

 Based on the tactics described in Section 7.3, we can create a set of integrability tactics–
inspired questions, as presented in Table 7.2. To gain an overview of the architectural choices
made to support integrability, the analyst asks each question and records the answers in the
table. The answers to these questions can then be made the focus of further activities: investi-
gation of documentation, analysis of code or other artifacts, reverse engineering of code, and
so forth.

7.4 Tactics-Based Questionnaire for Integrability 111

TABLE 7.2 Tactics-Based Questionnaire for Integrability

Tactics Group Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Limit
Dependencies

Does the system
encapsulate functionality
of each element by
introducing explicit
interfaces and requiring
that all access to the
elements passes through
these interfaces?

Does the system broadly
use intermediaries for
breaking dependencies
between components—for
example, removing a data
producer’s knowledge of
its consumers?

Does the system abstract
common services,
providing a general,
abstract interface for
similar services?

Does the system provide
a means to restrict
communication paths
between components?

Does the system adhere
to standards in terms of
how components interact
and share information with
each other?

Adapt Does the system provide
the ability to statically
(i.e., at compile time)
tailor interfaces—that
is, the ability to add or
hide capabilities of a
component’s interface
without changing its API or
implementation?

Does the system
provide a discovery
service, cataloguing and
disseminating information
about services?

Does the system provide
a means to configure the
behavior of components
at build, initialization, or
runtime?

continues

112 Part II Quality Attributes | Chapter 7 Integrability

Tactics Group Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Coordinate Does the system include
an orchestration
mechanism that
coordinates and manages
the invocation of
components so they can
remain unaware of each
other?

Does the system provide
a resource manager
that governs access to
computing resources?

7.5 Patterns

 The first three patterns are all centered on the tailor interface tactic, and are described here as
a group:

 ■ Wrappers. A wrapper is a form of encapsulation whereby some component is encased
within an alternative abstraction. A wrapper is the only element allowed to use that
component; every other piece of software uses the component’s services by going through
the wrapper. The wrapper transforms the data or control information for the component it
wraps. For example, a component may expect input using Imperial measures but find itself
in a system in which all of the other components produce metric measures. Wrappers can:

 ■ Translate an element of a component interface into an alternative element
 ■ Hide an element of a component interface
 ■ Preserve an element of a component’s base interface without change

 ■ Bridges. A bridge translates some “requires” assumptions of one arbitrary component
to some “provides” assumptions of another component. The key difference between a
bridge and a wrapper is that a bridge is independent of any particular component. Also,
the bridge must be explicitly invoked by some external agent—possibly but not neces-
sarily by one of the components the bridge spans. This last point should convey the idea
that bridges are usually transient and that the specific translation is defined at the time of
bridge construction (e.g., bridge compile time). The significance of both of these distinc-
tions will be made clear in the discussion of mediators.

Bridges typically focus on a narrower range of interface translations than do wrappers
because bridges address specific assumptions. The more assumptions a bridge tries to
address, the fewer components to which it applies.

TABLE 7.2 Tactics-Based Questionnaire for Integrability continued

7.5 Patterns 113

 ■ Mediators. Mediators exhibit properties of both bridges and wrappers. The major
 distinction between bridges and mediators, is that mediators incorporate a planning
function that results in runtime determination of the translation, whereas bridges estab-
lish this translation at bridge construction time.

A mediator is also similar to a wrapper insofar as it becomes an explicit component
in the system architecture. That is, semantically primitive, often transient bridges can be
thought of as incidental repair mechanisms whose role in a design can remain implicit.
In contrast, mediators have sufficient semantic complexity and runtime autonomy (per-
sistence) to play a first-class role in a software architecture.

Benefits:
 ■ All three patterns allow access to an element without forcing a change to the element or

its interface.

Tradeoffs:
 ■ Creating any of the patterns requires up-front development work.
 ■ All of the patterns will introduce some performance overhead while accessing the ele-

ment, although typically this overhead is small.

Service-Oriented Architecture Pattern

The service-oriented architecture (SOA) pattern describes a collection of distributed com-
ponents that provide and/or consume services. In an SOA, service provider components and
service consumer components can use different implementation languages and platforms.
Services are largely standalone entities: Service providers and service consumers are usually
deployed independently, and often belong to different systems or even different organizations.
Components have interfaces that describe the services they request from other components
and the services they provide. A service’s quality attributes can be specified and guaranteed
with a service level agreement (SLA), which may sometimes be legally binding. Components
perform their computations by requesting services from one another. Communication among
the services is typically performed by using web services standards such as WSDL (Web
Services Description Language) or SOAP (Simple Object Access Protocol).

The SOA pattern is related to the microservice architecture pattern (see Chapter 5). Micro-
service architectures are assumed to compose a single system and be managed by a single
organization, however, whereas SOAs provide reusable components that are assumed to be
heterogeneous and managed by distinct organizations.

Benefits:
 ■ Services are designed to be used by a variety of clients, leading them to be more generic.

Many commercial organizations will provide and market their service with the goal of
broad adoption.

 ■ Services are independent. The only method for accessing a service is through its inter-
face and through messages over a network. Consequently, a service and the rest of the
system do not interact, except through their interfaces.

114 Part II Quality Attributes | Chapter 7 Integrability

 ■ Services can be implemented heterogeneously, using whatever languages and technolo-
gies are most appropriate.

Tradeoffs:
 ■ SOAs, because of their heterogeneity and distinct ownership, come with a great many

interoperability features such as WSDL and SOAP. This adds complexity and overhead.

 Dynamic Discovery

Dynamic discovery applies the discovery tactic to enable the discovery of service providers at
runtime. Consequently, a runtime binding can occur between a service consumer and a con-
crete service.

Use of a dynamic discovery capability sets the expectation that the system will clearly
advertise both the services available for integration with future components and the mini-
mal information that will be available for each service. The specific information available
will vary, but typically comprises data that can be mechanically searched during discovery
and runtime integration (e.g., identifying a specific version of an interface standard by string
match).

Benefits:
 ■ This pattern allows for flexibility in binding services together into a cooperating whole.

For example, services may be chosen at startup or runtime based on their pricing or
availability.

Tradeoffs:
 ■ Dynamic discovery registration and de-registration must be automated, and tools for this

purpose must be acquired or generated.

7.6 For Further Reading

Much of the material for this chapter was inspired by and drawn from [Kazman 20a].
An in-depth discussion of the quality attribute of integrability can be found in

[Hentonnen 07].
[MacCormack 06] and [Mo 16] define and provide empirical evidence for architecture-

level coupling metrics, which can be useful in measuring designs for integrability.
The book Design Patterns: Elements of Reusable Object-Oriented Software [Gamma 94]

defines and distinguishes the bridge, wrapper, and adapter patterns.

7.7 Discussion Questions 115

 7.7 Discussion Questions

1. Think about an integration that you have done in the past—perhaps integrating a library
or a framework into your code. Identify the various “distances” that you had to deal
with, as discussed in Section 7.1. Which of these required the greatest effort to resolve?

2. Write a concrete integrability scenario for a system that you are working on (perhaps an
exploratory scenario for some component that you are considering integrating).

3. Which of the integrability tactics do you think would be the easiest to implement in
practice, and why? Which would be the most difficult, and why?

4. Many of the integrability tactics are similar to the modifiability tactics. If you make
your system highly modifiable, does that automatically mean that it will be easy to inte-
grate into another context?

5. A standard use of SOA is to add a shopping cart feature to an e-commerce site. Which
commercially available SOA platforms provide different shopping cart services? What
are the attributes of the shopping carts? Can these attributes be discovered at runtime?

6. Write a program that accesses the Google Play Store, via its API, and returns a list of
weather forecasting applications and their attributes.

7. Sketch a design for a dynamic discovery service. Which types of distances does this
service help to mitigate?

This page intentionally left blank

117

8
 Modifiability

It is not the strongest of the species that survive, nor the most
intelligent, but the one most responsive to change.

—Charles Darwin

Change happens.
Study after study shows that most of the cost of the typical software system occurs after it

has been initially released. If change is the only constant in the universe, then software change
is not only constant but ubiquitous. Changes happen to add new features, to alter or even retire
old ones. Changes happen to fix defects, tighten security, or improve performance. Changes
happen to enhance the user’s experience. Changes happen to embrace new technology, new
platforms, new protocols, new standards. Changes happen to make systems work together,
even if they were never designed to do so.

Modifiability is about change, and our interest in it is to lower the cost and risk of making
changes. To plan for modifiability, an architect has to consider four questions:

 ■ What can change? A change can occur to any aspect of a system: the functions that
the system computes, the platform (the hardware, operating system, middleware), the
environment in which the system operates (the systems with which it must interoperate,
the protocols it uses to communicate with the rest of the world), the qualities the system
exhibits (its performance, its reliability, and even its future modifications), and its capac-
ity (number of users supported, number of simultaneous operations).

 ■ What is the likelihood of the change? One cannot plan a system for all potential
changes—the system would never be done or if it was done it would be far too expensive
and would likely suffer quality attribute problems in other dimensions. Although any-
thing might change, the architect has to make the tough decisions about which changes
are likely, and hence which changes will be supported and which will not.

 ■ When is the change made and who makes it? Most commonly in the past, a change was
made to source code. That is, a developer had to make the change, which was tested and
then deployed in a new release. Now, however, the question of when a change is made is
intertwined with the question of who makes it. An end user changing the screen saver
is clearly making a change to one aspect of the system. Equally clear, it is not in the

118 Part II Quality Attributes | Chapter 8 Modifiability

same category as changing the system so that it uses a different database management
system. Changes can be made to the implementation (by modifying the source code),
during compilation (using compile-time switches), during the build (by choice of librar-
ies), during configuration setup (by a range of techniques, including parameter setting),
or during execution (by parameter settings, plug-ins, allocation to hardware, and so
forth). A change can also be made by a developer, an end user, or a system administrator.
Systems that learn and adapt supply a whole different answer to the question of when a
change is made and “who” makes it—it is the system itself that is the agent for change.

 ■ What is the cost of the change? Making a system more modifiable involves two types of
costs:

 ■ The cost of introducing the mechanism(s) to make the system more modifiable
 ■ The cost of making the modification using the mechanism(s)

For example, the simplest mechanism for making a change is to wait for a change request
to come in, then change the source code to accommodate the request. In such a case, the cost
of introducing the mechanism is zero (since there is no special mechanism); the cost of exer-
cising it is the cost of changing the source code and revalidating the system.

Toward the other end of the spectrum is an application generator, such as a user interface
builder. The builder takes as input a description of the designed UI produced through direct
manipulation techniques and which may then produce source code. The cost of introducing
the mechanism is the cost of acquiring the UI builder, which may be substantial. The cost of
using the mechanism is the cost of producing the input to feed the builder (this cost can be
either substantial or negligible), the cost of running the builder (close to zero), and finally the
cost of whatever testing is performed on the result (usually much less than for hand-coding).

Still further along the spectrum are software systems that discover their environments,
learn, and modify themselves to accommodate any changes. For those systems, the cost of
making the modification is zero, but that ability was purchased along with implementing and
testing the learning mechanisms, which may have been quite costly.

For N similar modifications, a simplified justification for a change mechanism is that

N * Cost of making change without the mechanism ≤
Cost of creating the mechanism + (N * cost of making the change using the mechanism)

Here, N is the anticipated number of modifications that will use the modifiability mechanism—
but it is also a prediction. If fewer changes than expected come in, then an expensive modi-
fication mechanism may not be warranted. In addition, the cost of creating the modifiability
mechanism could be applied elsewhere (opportunity cost)—in adding new functionality, in
improving the performance, or even in non-software investments such as hiring or training.
Also, the equation does not take time into account. It might be cheaper in the long run to
build a sophisticated change-handling mechanism, but you might not be able to wait for its
completion. However, if your code is modified frequently, not introducing some architectural
mechanism and simply piling change on top of change typically leads to substantial technical
debt. We address the topic of architectural debt in Chapter 23.

Part II Quality Attributes | Chapter 8 Modifiability 119

Change is so prevalent in the life of software systems that special names have been given
to specific flavors of modifiability. Some of the common ones are highlighted here:

 ■ Scalability is about accommodating more of something. In terms of performance, scal-
ability means adding more resources. Two kinds of performance scalability are horizon-
tal scalability and vertical scalability. Horizontal scalability (scaling out) refers to adding
more resources to logical units, such as adding another server to a cluster of servers.
Vertical scalability (scaling-up) refers to adding more resources to a physical unit, such
as adding more memory to a single computer. The problem that arises with either type
of scaling is how to effectively utilize the additional resources. Being effective means
that the additional resources result in a measurable improvement of some system quality,
did not require undue effort to add, and did not unduly disrupt operations. In cloud-
based environments, horizontal scalability is called elasticity. Elasticity is a property
that enables a customer to add or remove virtual machines from the resource pool (see
Chapter 17 for further discussion of such environments).

 ■ Variability refers to the ability of a system and its supporting artifacts, such as code,
requirements, test plans, and documentation, to support the production of a set of
variants that differ from each other in a preplanned fashion. Variability is an especially
important quality attribute in a product line, which is a family of systems that are sim-
ilar but vary in features and functions. If the engineering assets associated with these
systems can be shared among members of the family, then the overall cost of the product
line plummets. This is achieved by introducing mechanisms that allow the artifacts to
be selected and/or adapt to usages in the different product contexts that are within the
product line’s scope. The goal of variability in a software product line is to make it easy
to build and maintain products in that family over a period of time.

 ■ Portability refers to the ease with which software that was built to run on one platform
can be changed to run on a different platform. Portability is achieved by minimizing
platform dependencies in the software, isolating dependencies to well-identified loca-
tions, and writing the software to run on a “virtual machine” (for example, a Java Virtual
Machine) that encapsulates all the platform dependencies. Scenarios describing porta-
bility deal with moving software to a new platform by expending no more than a certain
level of effort or by counting the number of places in the software that would have to
change. Architectural approaches to dealing with portability are intertwined with those
for deployability, a topic addressed in Chapter 5.

 ■ Location independence refers to the case where two pieces of distributed software interact
and the location of one or both of the pieces is not known prior to runtime. Alternatively,
the location of these pieces may change during runtime. In distributed systems, services
are often deployed to arbitrary locations, and clients of those services must discover
their location dynamically. In addition, services in a distributed system must often
make their location discoverable once they have been deployed to a location. Designing
the system for location independence means that the location will be easy to modify with
minimal impact on the rest of the system.

120 Part II Quality Attributes | Chapter 8 Modifiability

8 .1 Modifiability General Scenario

From these considerations, we can construct the general scenario for modifiability. Table 8.1
summarizes this scenario.

TABLE 8.1 General Scenario for Modifiability

Portion of
Scenario

Description Possible Values

Source The agent that causes a change to
be made. Most are human actors, but
the system might be one that learns
or self-modifies, in which case the
source is the system itself.

End user, developer, system administrator,
product line owner, the system itself

Stimulus The change that the system
needs to accommodate. (For this
categorization, we regard fixing a
defect as a change, to something that
presumably wasn’t working correctly.)

A directive to add/delete/modify functionality,
or change a quality attribute, capacity,
platform, or technology; a directive to add a
new product to a product line; a directive to
change the location of a service to another
location

Artifacts The artifacts that are modified.
Specific components or modules, the
system’s platform, its user interface,
its environment, or another system
with which it interoperates.

Code, data, interfaces, components,
resources, test cases, configurations,
documentation

Environment The time or stage at which the
change is made.

Runtime, compile time, build time, initiation
time, design time

Response Make the change and incorporate it
into the system.

One or more of the following:
 ■ Make modification
 ■ Test modification
 ■ Deploy modification
 ■ Self-modify

Response
measure

The resources that were expended to
make the change.

Cost in terms of:
 ■ Number, size, complexity of affected

artifacts
 ■ Effort
 ■ Elapsed time
 ■ Money (direct outlay or opportunity cost)
 ■ Extent to which this modification affects

other functions or quality attributes
 ■ New defects introduced
 ■ How long it took the system to adapt

Figure 8.1 illustrates a concrete modifiability scenario: A developer wishes to change the
user interface. This change will be made to the code at design time, it will take less than three
hours to make and test the change, and no side effects will occur.

8.2 Tactics for Modifiability 121

Stimulus

Response

Response

Measure

Source

3

2
1

4

Environment

Artifact

Developer Wants to change the

user interface

Design time Change is made Less than 3 hours to

make and test change;

no side effects

User interface

FIGURE 8.1 Sample concrete modifiability scenario

 8.2 Tactics for Modifiability

Tactics to control modifiability have as their goal controlling the complexity of making
changes, as well as the time and cost to make changes. Figure 8.2 shows this relationship.

Change

arrives

Changes made

within time and

budget

Tactics

to Control

Response

FIGURE 8.2 Goal of modifiability tactics

To understand modifiability, we begin with some of the earliest and most fundamental
complexity measures of software design—coupling and cohesion—which were first described
in the 1960s.

Generally, a change that affects one module is easier and less expensive than a change that
affects more than one module. However, if two modules’ responsibilities overlap in some way,

122 Part II Quality Attributes | Chapter 8 Modifiability

then a single change may well affect them both. We can quantify this overlap by measuring
the probability that a modification to one module will propagate to the other. This relationship
is called coupling, and high coupling is an enemy of modifiability. Reducing the coupling
between two modules will decrease the expected cost of any modification that affects either
one. Tactics that reduce coupling are those that place intermediaries of various sorts between
the two otherwise highly coupled modules.

Cohesion measures how strongly the responsibilities of a module are related. Informally,
it measures the module’s “unity of purpose.” Unity of purpose can be measured by the change
scenarios that affect a module. The cohesion of a module is the probability that a change sce-
nario that affects a responsibility will also affect other (different) responsibilities. The higher
the cohesion, the lower the probability that a given change will affect multiple modules. High
cohesion is good for modifiability; low cohesion is bad for it. If module A has a low cohe-
sion, then cohesion can be improved by removing responsibilities unaffected by anticipated
changes.

A third characteristic that affects the cost and complexity of a change is the size of a mod-
ule. All other things being equal, larger modules are more difficult and more costly to change,
and are more prone to have bugs.

Finally, we need to be concerned with the point in the software development life cycle
where a change occurs. If we ignore the cost of preparing the architecture for the modification,
we prefer that a change is bound as late as possible. Changes can be successfully made (i.e.,
quickly and at low cost) late in the life cycle only if the architecture is suitably prepared to
accommodate them. Thus the fourth and final parameter in a model of modifiability is bind-
ing time of modification. An architecture that is suitably equipped to accommodate modifica-
tions late in the life cycle will, on average, cost less than an architecture that forces the same
modification to be made earlier. The preparedness of the system means that some costs will be
zero, or very low, for modifications that occur late in the life cycle.

Now we can understand tactics and their consequences as affecting one or more of these
parameters: reducing size, increasing cohesion, reducing coupling, and deferring binding time.
These tactics are shown in Figure 8.3.

 Increase Cohesion

Several tactics involve redistributing responsibilities among modules. This step is taken to
reduce the likelihood that a single change will affect multiple modules.

 ■ Split module. If the module being modified includes responsibilities that are not cohe-
sive, the modification costs will likely be high. Refactoring the module into several more
cohesive modules should reduce the average cost of future changes. Splitting a mod-
ule should not simply consist of placing half of the lines of code into each submodule;
instead, it should sensibly and appropriately result in a series of submodules that are
cohesive on their own.

 ■ Redistribute responsibilities. If responsibilities A, A, and A (all similar responsibili-
ties) are sprinkled across several distinct modules, they should be placed together. This

8.2 Tactics for Modifiability 123

refactoring may involve creating a new module, or it may involve moving responsibili-
ties to existing modules. One method for identifying responsibilities to be moved is to
hypothesize a set of likely changes as scenarios. If the scenarios consistently affect just
one part of a module, then perhaps the other parts have separate responsibilities and
should be moved. Alternatively, if some scenarios require modifications to multiple
modules, then perhaps the responsibilities affected should be grouped together into a
new module.

Re duce Coupling

We now turn to tactics that reduce the coupling between modules. These tactics overlap with
the integrability tactics described in Chapter 7, because reducing dependencies among inde-
pendent components (for integrability) is similar to reducing coupling among modules (for
modifiability).

 ■ En capsulate. See the discussion in Chapter 7.
 ■ Use an intermediary. See the discussion in Chapter 7.
 ■ Abstract common services. See the discussion in Chapter 7.

Increase Cohesion Defer BindingReduce Coupling

Resource Files

FIGURE 8.3 Modifiability tactics

124 Part II Quality Attributes | Chapter 8 Modifiability

 ■ Restrict dependencies. This tactic restricts which modules a given module interacts with
or depends on. In practice, this tactic is implemented by restricting a module’s visibility
(when developers cannot see an interface, they cannot employ it) and by authorization
(restricting access to only authorized modules). The restrict dependencies tactic is seen
in layered architectures, in which a layer is allowed to use only lower layers (sometimes
only the next lower layer), and with the use of wrappers, where external entities can see
(and hence depend on) only the wrapper, and not the internal functionality that it wraps.

De fer Binding

Because the work of people is almost always more expensive error-prone than the work of
computers, letting computers handle a change as much as possible will almost always reduce
the cost of making that change. If we design artifacts with built-in flexibility, then exercising
that flexibility is usually cheaper than hand-coding a specific change.

Parameters are perhaps the best-known mechanism for introducing flexibility, and their
use is reminiscent of the abstract common services tactic. A parameterized function f(a, b)
is more general than the similar function f(a) that assumes b = 0. When we bind the value of
some parameters at a different phase in the life cycle than the one in which we defined the
parameters, we are deferring binding.

In general, the later in the life cycle we can bind values, the better. However, putting the
mechanisms in place to facilitate that late binding tends to be more expensive—a well-known
tradeoff. And so the equation given earlier in the chapter comes into play. We want to bind as
late as possible, as long as the mechanism that allows it is cost-effective.

The following tactics can be used to bind values at compile time or build time:

 ■ Component replacement (for example, in a build script or makefile)
 ■ Compile-time parameterization
 ■ Aspects

The following tactics are available to bind values at deployment, startup time, or initial-
ization time:

 ■ Configuration-time binding
 ■ Resource files

Tactics to bind values at runtime include the following:

 ■ Discovery (see Chapter 7)
 ■ Interpret parameters
 ■ Shared repositories
 ■ Polymorphism

Separating the building of a mechanism for modifiability from the use of that mecha-
nism to make a modification admits the possibility of different stakeholders being involved—
one stakeholder (usually a developer) to provide the mechanism and another stakeholder (an
administrator or installer) to exercise it later, possibly in a completely different life-cycle

8.3 Tactics-Based Questionnaire for Modifiability 125

phase. Installing a mechanism so that someone else can make a change to the system without
having to change any code is sometimes called externalizing the change.

8. 3 Tactics-Based Questionnaire for Modifiability

Based on the tactics described in Section 8.2, we can create a set of tactics-inspired questions,
as presented in Table 8.2. To gain an overview of the architectural choices made to support
modifiability, the analyst asks each question and records the answers in the table. The answers
to these questions can then be made the focus of further activities: investigation of documenta-
tion, analysis of code or other artifacts, reverse engineering of code, and so forth.

TABLE 8.2 Tactics-Based Questionnaire for Modifiability

Tactics
Group

Tactics Question Supported?
(Y/N)

Risk? Design
Decisions
and
Location

Rationale
and
Assumptions

Increase
Cohesion

Do you make modules more
cohesive by splitting the
module? For example, if you
have a large, complex module,
can you split it into two (or more)
more cohesive modules?

Do you make modules more
cohesive by redistributing
responsibilities? For example,
if responsibilities in a module
do not serve the same purpose,
they should be placed in other
modules.

Reduce
Coupling

Do you consistently encapsulate
functionality? This typically
involves isolating the functionality
under scrutiny and introducing an
explicit interface to it.

Do you consistently use an
intermediary to keep modules
from being too tightly coupled?
For example, if A calls concrete
functionality C, you might
introduce an abstraction B that
mediates between A and C.

Do you restrict dependencies
between modules in a systematic
way? Or is any system module
free to interact with any other
module?

continues

126 Part II Quality Attributes | Chapter 8 Modifiability

Tactics
Group

Tactics Question Supported?
(Y/N)

Risk? Design
Decisions
and
Location

Rationale
and
Assumptions

Reduce
Coupling

Do you abstract common
services, in cases where you
are providing several similar
services? For example, this
technique is often used when you
want your system to be portable
across operating systems,
hardware, or other environmental
variations.

Defer
Binding

Does the system regularly defer
binding of important functionality
so that it can be replaced later in
the life cycle? For example, are
there plug-ins, add-ons, resource
files, or configuration files that
can extend the functionality of the
system?

8.4 Patterns

Patterns for modifiability divide the system into modules in such a way that the modules can
be developed and evolved separately with little interaction among them, thereby supporting
portability, modifiability, and reuse. There are probably more patterns designed to support
modifiability than for any other quality attribute. We present a few that are among the most
commonly used here.

Client-Server Pattern

The client-server pattern consists of a server providing services simultaneously to multiple dis-
tributed clients. The most common example is a web server providing information to multiple
simultaneous users of a website.

The interactions between a server and its clients follow this sequence:

 ■ Discovery:

 ■ Communication is initiated by a client, which uses a discovery service to determine
the location of the server.

 ■ The server responds to the client using an agreed-upon protocol.

TABLE 8.2 Tactics-Based Questionnaire for Modifiability continued

8.4 Patterns 127

 ■ Interaction:

 ■ The client sends requests to the server.
 ■ The server processes the requests and responds.

Several points about this sequence are worth noting:

 ■ The server may have multiple instances if the number of clients grows beyond the
capacity of a single instance.

 ■ If the server is stateless with respect to the clients, each request from a client is treated
independently.

 ■ If the server maintains state with respect to the clients, then:

 ■ Each request must identify the client in some fashion.
 ■ The client should send an “end of session” message so that the server can remove

resources associated with that particular client.
 ■ The server may time out if the client has not sent a request in a specified time so that

resources associated with the client can be removed.

Benefits:
 ■ The connection between a server and its clients is established dynamically. The server has

no a priori knowledge of its clients—that is, there is low coupling between the server and
its clients.

 ■ There is no coupling among the clients.
 ■ The number of clients can easily scale and is constrained only by the capacity of the

server. The server functionality can also scale if its capacity is exceeded.
 ■ Clients and servers can evolve independently.
 ■ Common services can be shared among multiple clients.
 ■ The interaction with a user is isolated to the client. This factor has resulted in the devel-

opment of specialized languages and tools for managing the user interface.

Tradeoffs:
 ■ This pattern is implemented such that communication occurs over a network, perhaps

even the Internet. Thus messages may be delayed by network congestion, leading to
degradation (or at least unpredictability) of performance.

 ■ For clients that communicate with servers over a network shared by other applications,
special provisions must be made for achieving security (especially confidentiality) and
maintaining integrity.

Plug-in (Microkernel) Pattern

The plug-in pattern has two types of elements—elements that provide a core set of functional-
ity and specialized variants (called plug-ins) that add functionality to the core via a fixed set of
interfaces. The two types are typically bound together at build time or later.

128 Part II Quality Attributes | Chapter 8 Modifiability

Examples of usage include the following cases:

 ■ The core functionality may be a stripped-down operating system (the microkernel) that
provides the mechanisms needed to implement operating system services, such as low-
level address space management, thread management, and interprocess communication
(IPC). The plug-ins provide the actual operating system functionality, such as device
drivers, task management, and I/O request management.

 ■ The core functionality is a product providing services to its users. The plug-ins provide
portability, such as operating system compatibility or supporting library compatibility.
The plug-ins can also provide additional functionality not included in the core product.
In addition, they can act as adapters to enable integration with external systems (see
Chapter 7).

Benefits:
 ■ Plug-ins provide a controlled mechanism to extend a core product and make it useful in a

variety of contexts.
 ■ The plug-ins can be developed by different teams or organizations than the developers

of the microkernel. This allows for the development of two different markets: for the
core product and for the plug-ins.

 ■ The plug-ins can evolve independently from the microkernel. Since they interact through
fixed interfaces, as long as the interfaces do not change, the two types of elements are
not otherwise coupled.

Tradeoffs:
 ■ Because plug-ins can be developed by different organizations, it is easier to introduce

security vulnerabilities and privacy threats.

Layers Pattern

The layers pattern divides the system in such a way that the modules can be developed and
evolved separately with little interaction among the parts, which supports portability, modifi-
ability, and reuse. To achieve this separation of concerns, the layers pattern divides the soft-
ware into units called layers. Each layer is a grouping of modules that offers a cohesive set of
services. The allowed-to-use relationship among the layers is subject to a key constraint: The
relations must be unidirectional.

Layers completely partition a set of software, and each partition is exposed through a
public interface. The layers are created to interact according to a strict ordering relation. If
(A, B) is in this relation, we say that the software assigned to layer A is allowed to use any
of the public facilities provided by layer B. (In a vertically arranged representation of layers,
which is almost ubiquitous, A will be drawn higher than B.) In some cases, modules in one
layer are required to directly use modules in a nonadjacent lower layer, although normally only
next-lower-layer uses are allowed. This case of software in a higher layer using modules in a
nonadjacent lower layer is called layer bridging. Upward usages are not allowed in this pattern.

8.4 Patterns 129

Benefits:
 ■ Because a layer is constrained to use only lower layers, software in lower layers can be

changed (as long as the interface does not change) without affecting the upper layers.
 ■ Lower-level layers may be reused across different applications. For example, suppose a

certain layer allows portability across operating systems. This layer would be useful in
any system that must run on multiple, different operating systems. The lowest layers are
often provided by commercial software—an operating system, for example, or network
communications software.

 ■ Because the allowed-to-use relations are constrained, the number of interfaces that any
team must understand is reduced.

Tradeoffs:
 ■ If the layering is not designed correctly, it may actually get in the way, by not providing

the lower-level abstractions that programmers at the higher levels need.
 ■ Layering often adds a performance penalty to a system. If a call is made from a function

in the top-most layer, it may have to traverse many lower layers before being executed by
the hardware.

 ■ If many instances of layer bridging occur, the system may not meet its portability and
modifiability goals, which strict layering helps to achieve.

Publish-Subscribe Pattern

Publish-subscribe is an architectural pattern in which components communicate primarily
through asynchronous messages, sometimes referred to as “events” or “topics.” The publish-
ers have no knowledge of the subscribers, and subscribers are only aware of message types.
Systems using the publish-subscribe pattern rely on implicit invocation; that is, the component
publishing a message does not directly invoke any other component. Components publish mes-
sages on one or more events or topics, and other components register an interest in the publi-
cation. At runtime, when a message is published, the publish–subscribe (or event) bus notifies
all of the elements that registered an interest in the event or topic. In this way, the message
publication causes an implicit invocation of (methods in) other components. The result is loose
coupling between the publishers and the subscribers.

The publish-subscribe pattern has three types of elements:

 ■ Publisher component. Sends (publishes) messages.
 ■ Subscriber component. Subscribes to and then receives messages.
 ■ Event bus. Manages subscriptions and message dispatch as part of the runtime

infrastructure.

Benefits:
 ■ Publishers and subscribers are independent and hence loosely coupled. Adding or

changing subscribers requires only registering for an event and causes no changes to the
publisher.

130 Part II Quality Attributes | Chapter 8 Modifiability

 ■ System behavior can be easily changed by changing the event or topic of a message
being published, and consequently which subscribers might receive and act on this
message. This seemingly small change can have large consequences, as features may be
turned on or off by adding or suppressing messages.

 ■ Events can be logged easily to allow for record and playback and thereby reproduce error
conditions that can be challenging to recreate manually.

Tradeoffs:
 ■ Some implementations of the publish-subscribe pattern can negatively impact per-

formance (latency). Use of a distributed coordination mechanism will ameliorate the
performance degradation.

 ■ In some cases, a component cannot be sure how long it will take to receive a published
message. In general, system performance and resource management are more difficult to
reason about in publish-subscribe systems.

 ■ Use of this pattern can negatively impact the determinism produced by synchronous sys-
tems. The order in which methods are invoked, as a result of an event, can vary in some
implementations.

 ■ Use of the publish-subscribe pattern can negatively impact testability. Seemingly small
changes in the event bus—such as a change in which components are associated with
which events—can have a wide impact on system behavior and quality of service.

 ■ Some publish-subscribe implementations limit the mechanisms available to flexibly
implement security (integrity). Since publishers do not know the identity of their sub-
scribers, and vice versa, end-to-end encryption is limited. Messages from a publisher to
the event bus can be uniquely encrypted, and messages from the event bus to a sub-
scriber can be uniquely encrypted; however, any end-to-end encrypted communication
requires all publishers and subscribers involved to share the same key.

8.5 For Further Reading

Serious students of software engineering and its history should read two early papers about
designing for modifiability. The first is Edsger Dijkstra’s 1968 paper about the T.H.E. operat-
ing system, which is the first paper that talks about designing systems to use layers, and the
modifiability benefits that this approach brings [Dijkstra 68]. The second is David Parnas’s
1972 paper that introduced the concept of information hiding. [Parnas 72] suggested defining
modules not by their functionality, but by their ability to internalize the effects of changes.

More patterns for modifiability are given in Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives [Woods 11].

The Decoupling Level metric [Mo 16] is an architecture-level coupling metric that can
give insights into how globally coupled an architecture is. This information can be used to
track coupling over time, as an early warning indicator of technical debt.

8.6 Discussion Questions 131

A fully automated way of detecting modularity violations—and other kinds of design
flaws—has been described in [Mo 19]. The detected violations can be used as a guide to refac-
toring, so as to increase cohesion and reduce coupling.

Software modules intended for use in a software product line are often imbued with vari-
ation mechanisms that allow them to be quickly modified to serve in different applications—
that is, in different members of the product line. Lists of variation mechanisms for components
in a product line can be found in the works by Bachmann and Clements [Bachmann 05],
Jacobson and colleagues [Jacobson 97], and Anastasopoulos and colleagues [Anastasopoulos 00].

The layers pattern comes in many forms and variations—“layers with a sidecar,” for
example. Section 2.4 of [DSA2] sorts them all out, and discusses why (surprisingly for an
architectural pattern invented more than a half-century ago) most layer diagrams for soft-
ware that you’ve ever seen are very ambiguous. If you don’t want to spring for the book, then
[Bachmann 00a] is a good substitute.

8.6 Discussion Questions

1. Modifiability comes in many flavors and is known by many names; we discussed a few
in the opening section of this chapter, but that discussion only scratches the surface. Find
one of the IEEE or ISO standards dealing with quality attributes, and compile a list of
quality attributes that refer to some form of modifiability. Discuss the differences.

2. In the list you compiled for question 1, which tactics and patterns are especially helpful
for each?

3. For each quality attribute that you discovered as a result of question 2, write a modifi-
ability scenario that expresses it.

4. In many laundromats, washing machines and dryers accept coins but do not give change.
Instead, separate machines dispense change. In an average laundromat, there are six or
eight washers and dryers for every change machine. What modifiability tactics do you
see at work in this arrangement? What can you say about availability?

5. For the laundromat in question 4, describe the specific form of modifiability (using a
modifiability scenario) that seems to be the aim of arranging the machines as described.

6. A wrapper, introduced in Chapter 7, is a common architectural pattern to aid modifiabil-
ity. Which modifiability tactics does a wrapper embody?

7. Other common architectural patterns that can increase a system’s modifiability include
blackboard, broker, peer-to-peer, model-view-controller, and reflection. Discuss each in
terms of the modifiability tactics it packages.

8. Once an intermediary has been introduced into an architecture, some modules may
attempt to circumvent it, either inadvertently (because they are not aware of the

132 Part II Quality Attributes | Chapter 8 Modifiability

intermediary) or intentionally (for performance, for convenience, or out of habit).
Discuss some architectural means to prevent an undesirable circumvention of an inter-
mediary. Discuss some non-architectural means as well.

9. The abstract common services tactic is intended to reduce coupling but might also
reduce cohesion. Discuss.

10. Discuss the proposition that the client-server pattern is the microkernel pattern with
runtime binding.

133

9
Performance

An ounce of performance is worth pounds of promises.
—Mae West

It’s about time.
Performance, that is: It’s about time and the software system’s ability to meet timing

requirements. The melancholy fact is that operations on computers take time. Computations
take time on the order of thousands of nanoseconds, disk access (whether solid state or rotat-
ing) takes time on the order of tens of milliseconds, and network access takes time ranging
from hundreds of microseconds within the same data center to upward of 100 milliseconds for
intercontinental messages. Time must be taken into consideration when designing your system
for performance.

When events occur—interrupts, messages, requests from users or other systems, or
clock events marking the passage of time—the system, or some element of the system, must
respond to them in time. Characterizing the events that can occur (and when they can occur)
and the system’s or element’s time-based response to those events is the essence of discussing
performance.

Web-based system events come in the form of requests from users (numbering in the tens
or tens of millions) via their clients such as web browsers. Services get events from other ser-
vices. In a control system for an internal combustion engine, events come from the operator’s
controls and the passage of time; the system must control both the firing of the ignition when
a cylinder is in the correct position and the mixture of the fuel to maximize power and effi-
ciency and minimize pollution.

For a web-based system, a database-centric system, or a system processing input signals
from its environment, the desired response might be expressed as the number of requests that can
be processed in a unit of time. For the engine control system, the response might be the allow-
able variation in the firing time. In each case, the pattern of events arriving and the pattern of
responses can be characterized, and this characterization forms the language with which to
construct performance scenarios.

134 Part II Quality Attributes | Chapter 9 Performance

For much of the history of software engineering, which began when computers were slow
and expensive and the tasks to perform dwarfed the ability to do them, performance has been
the driving factor in architecture. As such, it has frequently compromised the achievement of
all other qualities. As the price/performance ratio of hardware continues to plummet and the
cost of developing software continues to rise, other qualities have emerged as important com-
petitors to performance.

But performance remains of fundamental importance. There are still (and will likely
always be) important problems that we know how to solve with computers, but that we can’t
solve fast enough to be useful.

All systems have performance requirements, even if they are not expressed. For example,
a word processing tool may not have any explicit performance requirement, but no doubt you
would agree that waiting an hour (or a minute, or a second) before seeing a typed character
appear on the screen is unacceptable. Performance continues to be a fundamentally important
quality attribute for all software.

Performance is often linked to scalability—that is, increasing your system’s capacity for
work, while still performing well. They’re certainly linked, although technically scalability is
making your system easy to change in a particular way, and so is a kind of modifiability, as
discussed in Chapter 8. In addition, scalability of services in the cloud is discussed explicitly
in Chapter 17.

 Often, performance improvement happens after you have constructed a version of your
system and found its performance to be inadequate. You can anticipate this by architecting
your system with performance in mind. For example, if you have designed the system with
a scalable resource pool, and you subsequently determine that this pool is a bottleneck (from
your instrumented data), then you can easily increase the size of the pool. If not, your options
are limited—and mostly all bad—and they may involve considerable rework.

 It is not useful to spend a lot of your time optimizing a portion of the system that is
responsible for only a small percentage of the total time. Instrumenting the system by logging
timing information will help you determine where the actual time is spent and allow you to
focus on improving the performance of critical portions of the system.

9.1 Performance General Scenario

A performance scenario begins with an event arriving at the system. Responding correctly
to the event requires resources (including time) to be consumed. While this is happening, the
system may be simultaneously servicing other events.

9.1 Performance General Scenario 135

Concurrency

Concurrency is one of the more important concepts that an architect must understand

and one of the least-taught topics in computer science courses. Concurrency refers to

operations occurring in parallel. For example, suppose there is a thread that executes

the statements

x = 1;
x++;

and another thread that executes the same statements. What is the value of x after both

threads have executed those statements? It could be either 2 or 3. I leave it to you to

figure out how the value 3 could occur—or should I say I interleave it to you?

Concurrency occurs anytime your system creates a new thread, because threads,

by definition, are independent sequences of control. Multitasking on your system is

supported by independent threads. Multiple users are simultaneously supported on

your system through the use of threads. Concurrency also occurs anytime your system

is executing on more than one processor, whether those processors are packaged sep-

arately or as multi-core processors. In addition, you must consider concurrency when

you use parallel algorithms, parallelizing infrastructures such as map-reduce, or NoSQL

databases, or when you use one of a variety of concurrent scheduling algorithms. In

other words, concurrency is a tool available to you in many ways.

Concurrency, when you have multiple CPUs or wait states that can exploit it, is a

good thing. Allowing operations to occur in parallel improves performance, because

delays introduced in one thread allow the processor to progress on another thread. But

because of the interleaving phenomenon just described (referred to as a race condition),

concurrency must also be carefully managed.

As our example shows, race conditions can occur when two threads of control are

present and there is shared state. The management of concurrency frequently comes

down to managing how state is shared. One technique for preventing race conditions is

to use locks to enforce sequential access to state. Another technique is to partition the

state based on the thread executing a portion of code. That is, if we have two instances

of x, x is not shared by the two threads and no race condition will occur.

Race conditions are among the hardest types of bugs to discover; the occurrence of

the bug is sporadic and depends on (possibly minute) differences in timing. I once had a

race condition in an operating system that I could not track down. I put a test in the code

so that the next time the race condition occurred, a debugging process was triggered. It

took more than a year for the bug to recur so that the cause could be determined.

Do not let the difficulties associated with concurrency dissuade you from utilizing this

very important technique. Just use it with the knowledge that you must carefully identify

critical sections in your code and ensure (or take actions to ensure) that race conditions

will not occur in those sections.

—LB

Table 9.1 summarizes the general scenario for performance.

136 Part II Quality Attributes | Chapter 9 Performance

TABLE 9.1 Performance General Scenario

Portion of
Scenario

Description Possible Values

Source The stimulus can come from a user (or
multiple users), from an external system,
or from some portion of the system
under consideration.

External:
 ■ User request
 ■ Request from external system
 ■ Data arriving from a sensor or other

system

Internal:
 ■ One component may make a request of

another component.
 ■ A timer may generate a notification.

Stimulus The stimulus is the arrival of an
event. The event can be a request for
service or a notification of some state
of either the system under consideration
or an external system.

Arrival of a periodic, sporadic, or
stochastic event:

 ■ A periodic event arrives at a predictable
interval.

 ■ A stochastic event arrives according to
some probability distribution.

 ■ A sporadic event arrives according to
a pattern that is neither periodic nor
stochastic.

Artifact The artifact stimulated may be the whole
system or just a portion of the system.
For example, a power-on event may
stimulate the whole system. A user
request may arrive at (stimulate) the
user interface.

 ■ Whole system
 ■ Component within the system

Environment The state of the system or component
when the stimulus arrives. Unusual
modes—error mode, overloaded mode—
will affect the response. For example,
three unsuccessful login attempts are
allowed before a device is locked out.

Runtime. The system or component can
be operating in:

 ■ Normal mode
 ■ Emergency mode
 ■ Error correction mode
 ■ Peak load
 ■ Overload mode
 ■ Degraded operation mode
 ■ Some other defined mode of the

system

Response The system will process the stimulus.
Processing the stimulus will take
time. This time may be required for
computation, or it may be required
because processing is blocked by
contention for shared resources.
Requests can fail to be satisfied
because the system is overloaded
or because of a failure somewhere in
the processing chain.

 ■ System returns a response
 ■ System returns an error
 ■ System generates no response
 ■ System ignores the request if

overloaded
 ■ System changes the mode or level of

service
 ■ System services a higher-priority event
 ■ System consumes resources

9.2 Tactics for Performance 137

Stimulus

Response

Response

Measure

Source

3

2
1

4

Environment

Artifact

500 users Initiate 2,000

requests in a

30-second interval

Normal operations Processes all

requests

Average latency

of 2 seconds

System

Portion of
Scenario

Description Possible Values

Response
measure

Timing measures can include latency
or throughput. Systems with timing
deadlines can also measure jitter
of response and ability to meet the
deadlines. Measuring how many of the
requests go unsatisfied is also a type of
measure, as is how much of a computing
resource (e.g., a CPU, memory, thread
pool, buffer) is utilized.

 ■ The (maximum, minimum, mean,
median) time the response takes
(latency)

 ■ The number or percentage of satisfied
requests over some time interval
(throughput) or set of events received

 ■ The number or percentage of requests
that go unsatisfied

 ■ The variation in response time (jitter)
 ■ Usage level of a computing resource

Figure 9.1 gives an example concrete performance scenario: Five hundred users initiate
2,000 requests in a 30-second interval, under normal operations. The system processes all of
the requests with an average latency of two seconds.

FIGURE 9.1 Sample performance scenario

9.2 Tactics for Performance

The goal of performance tactics is to generate a response to events arriving at the system under
some time-based or resource-based constraint. The event can be a single event or a stream, and
is the trigger to perform computation. Performance tactics control the time or resources used
to generate a response, as illustrated in Figure 9.2.

138 Part II Quality Attributes | Chapter 9 Performance

Events arrive Events processed

within time and

resource budgets

Tactics

to Control

Response

FIGURE 9.2 The goal of performance tactics

At any instant during the period after an event arrives but before the system’s response to
it is complete, either the system is working to respond to that event or the processing is blocked
for some reason. This leads to the two basic contributors to the response time and resource
usage: processing time (when the system is working to respond and actively consuming resources)
and blocked time (when the system is unable to respond).

 ■ Processing time and resource usage. Processing consumes resources, which takes time.
Events are handled by the execution of one or more components, whose time expended
is a resource. Hardware resources include CPU, data stores, network communication
bandwidth, and memory. Software resources include entities defined by the system under
design. For example, thread pools and buffers must be managed and access to critical
sections must be made sequential.

For example, suppose a message is generated by one component. It might be placed
on the network, after which it arrives at another component. It is then placed in a buffer;
transformed in some fashion; processed according to some algorithm; transformed for
output; placed in an output buffer; and sent onward to some component, another system,
or some actor. Each of these steps contributes to the overall latency and resource con-
sumption of the processing of that event.

Different resources behave differently as their utilization approaches their capacity—
that is, as they become saturated. For example, as a CPU becomes more heavily loaded,
performance usually degrades fairly steadily. In contrast, when you start to run out of
memory, at some point the page swapping becomes overwhelming and performance
crashes suddenly.

 ■ Blocked time and resource contention. A computation can be blocked because of con-
tention for some needed resource, because the resource is unavailable, or because the
computation depends on the result of other computations that are not yet available:

 ■ Contention for resources. Many resources can be used by only a single client at a time.
As a consequence, other clients must wait for access to those resources. Figure 9.2

9.2 Tactics for Performance 139

shows events arriving at the system. These events may be in a single stream or in mul-
tiple streams. Multiple streams vying for the same resource or different events in the
same stream vying for the same resource contribute to latency. The more contention
for a resource that occurs, the more latency grows.

 ■ Availability of resources. Even in the absence of contention, computation cannot pro-
ceed if a resource is unavailable. Unavailability may be caused by the resource being
offline or by failure of the component for any reason.

 ■ Dependency on other computation. A computation may have to wait because it must
synchronize with the results of another computation or because it is waiting for the
results of a computation that it initiated. If a component calls another component and
must wait for that component to respond, the time can be significant when the called
component is at the other end of a network (as opposed to co-located on the same pro-
cessor), or when the called component is heavily loaded.

Whatever the cause, you must identify places in the architecture where resource limitations
might cause a significant contribution to overall latency.

With this background, we turn to our tactic categories. We can either reduce demand
for resources (control resource demand) or make the resources we have available handle the
demand more effectively (manage resources).

Control Resource Demand

One way to increase performance is to carefully manage the demand for resources. This can
be done by reducing the number of events processed or by limiting the rate at which the sys-
tem responds to events. In addition, a number of techniques can be applied to ensure that the
resources that you do have are applied judiciously:

 ■ Manage work requests. One way to reduce work is to reduce the number of requests
coming into the system to do work. Ways to do that include the following:

 ■ Manage event arrival. A common way to manage event arrivals from an external system
is to put in place a service level agreement (SLA) that specifies the maximum event
arrival rate that you are willing to support. An SLA is an agreement of the form “The
system or component will process X events arriving per unit time with a response time
of Y.” This agreement constrains both the system—it must provide that response—and
the client—if it makes more than X requests per unit time, the response is not guaran-
teed. Thus, from the client’s perspective, if it needs more than X requests per unit time
to be serviced, it must utilize multiple instances of the element processing the requests.
SLAs are one method for managing scalability for Internet-based systems.

 ■ Manage sampling rate. In cases where the system cannot maintain adequate response
levels, you can reduce the sampling frequency of the stimuli—for example, the rate at
which data is received from a sensor or the number of video frames per second that
you process. Of course, the price paid here is the fidelity of the video stream or the
information you gather from the sensor data. Nevertheless, this is a viable strategy if
the result is “good enough.” Such an approach is commonly used in signal processing

140 Part II Quality Attributes | Chapter 9 Performance

systems where, for example, different codices can be chosen with different sampling
rates and data formats. This design choice seeks to maintain predictable levels of
latency; you must decide whether having a lower fidelity but consistent stream of data
is preferable to having erratic latency. Some systems manage the sampling rate dynam-
ically in response to latency measures or accuracy needs.

 ■ Limit event response. When discrete events arrive at the system (or component) too
rapidly to be processed, then the events must be queued until they can be processed, or
they are simply discarded. You may choose to process events only up to a set maximum
rate, thereby ensuring predictable processing for the events that are actually processed.
This tactic could be triggered by a queue size or processor utilization exceeding some
warning level. Alternatively, it could be triggered by an event rate that violates an SLA.
If you adopt this tactic and it is unacceptable to lose any events, then you must ensure
that your queues are large enough to handle the worst case. Conversely, if you choose to
drop events, then you need to choose a policy: Do you log the dropped events or simply
ignore them? Do you notify other systems, users, or administrators?

 ■ Prioritize events. If not all events are equally important, you can impose a priority
scheme that ranks events according to how important it is to service them. If insufficient
resources are available to service them when they arise, low-priority events might be
ignored. Ignoring events consumes minimal resources (including time), thereby increas-
ing performance compared to a system that services all events all the time. For example,
a building management system may raise a variety of alarms. Life-threatening alarms
such as a fire alarm should be given higher priority than informational alarms such as a
room being too cold.

 ■ Reduce computational overhead. For events that do make it into the system, the follow-
ing approaches can be implemented to reduce the amount of work involved in handling
each event:

 ■ Reduce indirection. The use of intermediaries (so important for modifiability, as we saw
in Chapter 8) increases the computational overhead in processing an event stream, so
removing them improves latency. This is a classic modifiability/performance tradeoff.
Separation of concerns—another linchpin of modifiability—can also increase the pro-
cessing overhead necessary to service an event if it leads to an event being serviced by
a chain of components rather than a single component. You may be able to realize the
best of both worlds, however: Clever code optimization can let you program using the
intermediaries and interfaces that support encapsulation (and thus keep the modifiabil-
ity) but reduce, or in some cases eliminate, the costly indirection at runtime. Similarly,
some brokers allow for direct communication between a client and a server (after ini-
tially establishing the relationship via the broker), thereby eliminating the indirection
step for all subsequent requests.

 ■ Co-locate communicating resources. Context switching and intercomponent com-
munication costs add up, especially when the components are on different nodes on a
network. One strategy for reducing computational overhead is to co-locate resources.
Co-location may mean hosting cooperating components on the same processor to avoid

9.2 Tactics for Performance 141

the time delay of network communication; it may mean putting the resources in the
same runtime software component to avoid even the expense of a subroutine call; or it
may mean placing tiers of a multi-tier architecture on the same rack in the data center.

 ■ Periodic cleaning. A special case when reducing computational overhead is to perform
a periodic cleanup of resources that have become inefficient. For example, hash tables
and virtual memory maps may require recalculation and reinitialization. Many system
administrators and even regular computer users do a periodic reboot of their systems
for exactly this reason.

 ■ Bound execution times. You can place a limit on how much execution time is used to
respond to an event. For iterative, data-dependent algorithms, limiting the number of
iterations is a method for bounding execution times. The cost, however, is usually a
less accurate computation. If you adopt this tactic, you will need to assess its effect on
accuracy and see if the result is “good enough.” This resource management tactic is
frequently paired with the manage sampling rate tactic.

 ■ Increase efficiency of resource usage. Improving the efficiency of algorithms used in
critical areas can decrease latency and improve throughput and resource consumption.
This is, for some programmers, their primary performance tactic. If the system does not
perform adequately, they try to “tune up” their processing logic. As you can see, this
approach is actually just one of many tactics available.

Manage Resources

Even if the demand for resources is not controllable, the management of these resources can
be. Sometimes one resource can be traded for another. For example, intermediate data may be
kept in a cache or it may be regenerated depending on which resources are more critical: time,
space, or network bandwidth. Here are some resource management tactics:

 ■ Increase resources. Faster processors, additional processors, additional memory, and
faster networks all have the potential to improve performance. Cost is usually a con-
sideration in the choice of resources, but increasing the resources is, in many cases, the
cheapest way to get immediate improvement.

 ■ Introduce concurrency. If requests can be processed in parallel, the blocked time can be
reduced. Concurrency can be introduced by processing different streams of events on
different threads or by creating additional threads to process different sets of activities.
(Once concurrency has been introduced, you can choose scheduling policies to achieve
the goals you find desirable using the schedule resources tactic.)

 ■ Maintain multiple copies of computations. This tactic reduces the contention that would
occur if all requests for service were allocated to a single instance. Replicated services
in a microservice architecture or replicated web servers in a server pool are examples of
replicas of computation. A load balancer is a piece of software that assigns new work to
one of the available duplicate servers; criteria for assignment vary but can be as simple
as a round-robin scheme or assigning the next request to the least busy server. The load
balancer pattern is discussed in detail in Section 9.4.

142 Part II Quality Attributes | Chapter 9 Performance

 ■ Maintain multiple copies of data. Two common examples of maintaining multiple copies of
data are data replication and caching. Data replication involves keeping separate copies
of the data to reduce the contention from multiple simultaneous accesses. Because the
data being replicated is usually a copy of existing data, keeping the copies consistent and
synchronized becomes a responsibility that the system must assume. Caching also involves
keeping copies of data (with one set of data possibly being a subset of the other), but on
storage with different access speeds. The different access speeds may be due to memory
speed versus secondary storage speed, or the speed of local versus remote communication.
Another responsibility with caching is choosing the data to be cached. Some caches oper-
ate by merely keeping copies of whatever was recently requested, but it is also possible to
predict users’ future requests based on patterns of behavior, and to begin the calculations
or prefetches necessary to comply with those requests before the user has made them.

 ■ Bound queue sizes. This tactic controls the maximum number of queued arrivals and
consequently the resources used to process the arrivals. If you adopt this tactic, you
need to establish a policy for what happens when the queues overflow and decide if not
responding to lost events is acceptable. This tactic is frequently paired with the limit
event response tactic.

 ■ Schedule resources. Whenever contention for a resource occurs, the resource must be
scheduled. Processors are scheduled, buffers are scheduled, and networks are sched-
uled. Your concern as an architect is to understand the characteristics of each resource’s
use and choose the scheduling strategy that is compatible with it. (See the “Scheduling
Policies” sidebar.)

Figure 9.3 summarizes the tactics for performance.

Control Resource Demand Manage Resources

Performance Tactics

Manage Work Requests

Limit Event Response

Prioritize Events

Reduce Computational Overhead

Bound Execution Times

Increase Resources

Maintain Multiple Copies of Computations

Maintain Multiple Copies of Data

Bound Queue Sizes

Schedule Resources

FIGURE 9.3 Performance tactics

9.2 Tactics for Performance 143

Scheduling Policies

A scheduling policy conceptually has two parts: a priority assignment and dispatching.

All scheduling policies assign priorities. In some cases, the assignment is as simple as

first-in/first-out (or FIFO). In other cases, it can be tied to the deadline of the request

or its semantic importance. Competing criteria for scheduling include optimal resource

usage, request importance, minimizing the number of resources used, minimizing

latency, maximizing throughput, preventing starvation to ensure fairness, and so forth.

You need to be aware of these possibly conflicting criteria and the effect that the chosen

scheduling policy has on the system’s ability to meet them.

A high-priority event stream can be dispatched—assigned to a resource—only if

that resource is available. Sometimes this depends on preempting the current user

of the resource. Possible preemption options are as follows: can occur anytime, can

occur only at specific preemption points, or executing processes cannot be preempted.

Some common scheduling policies are these:

 ■ First-in/first-out. FIFO queues treat all requests for resources as equals and satisfy

them in turn. One possibility with a FIFO queue is that one request will be stuck

behind another one that takes a long time to generate a response. As long as all of

the requests are truly equal, this is not a problem—but if some requests are of higher

priority than others, it creates a challenge.
 ■ Fixed-priority scheduling. Fixed-priority scheduling assigns each source of resource

requests a particular priority and assigns the resources in that priority order. This

strategy ensures better service for higher-priority requests. However, it also admits

the possibility that a lower-priority, but still important request might take an arbi-

trarily long time to be serviced, because it is stuck behind a series of higher-priority

requests. Three common prioritization strategies are these:
 ■ Semantic importance. Semantic importance assigns a priority statically according

to some domain characteristic of the task that generates it.
 ■ Deadline monotonic. Deadline monotonic is a static priority assignment that

assigns a higher priority to streams with shorter deadlines. This scheduling policy

is used when scheduling streams of different priorities with real-time deadlines.
 ■ Rate monotonic. Rate monotonic is a static priority assignment for periodic

streams that assigns a higher priority to streams with shorter periods. This sched-

uling policy is a special case of deadline monotonic, but is better known and more

likely to be supported by the operating system.

 ■ Dynamic priority scheduling. Strategies include these:

 ■ Round-robin. The round-robin scheduling strategy orders the requests and then,

at every assignment possibility, assigns the resource to the next request in that

order. A special form of round-robin is a cyclic executive, where possible assign-

ment times are designated at fixed time intervals.
 ■ Earliest-deadline-first. Earliest-deadline-first assigns priorities based on the pend-

ing requests with the earliest deadline.
 ■ Least-slack-first. This strategy assigns the highest priority to the job having the

least “slack time,” which is the difference between the execution time remaining

and the time to the job’s deadline.

144 Part II Quality Attributes | Chapter 9 Performance

For a single processor and processes that are preemptible, both the earliest-

deadline-first and least-slack-first scheduling strategies are optimal choices. That is,

if the set of processes can be scheduled so that all deadlines are met, then these

strategies will be able to schedule that set successfully.
 ■ Static scheduling. A cyclic executive schedule is a scheduling strategy in which the

preemption points and the sequence of assignment to the resource are determined

offline. The runtime overhead of a scheduler is thereby obviated.

Performance Tactics on the Road

Tactics are generic design principles. To exercise this point, think about the design of

the systems of roads and highways where you live. Traffic engineers employ a bunch of

design “tricks” to optimize the performance of these complex systems, where perfor-

mance has a number of measures, such as throughput (how many cars per hour get

from the suburbs to the football stadium), average-case latency (how long it takes, on

average, to get from your house to downtown), and worst-case latency (how long does

it take an emergency vehicle to get you to the hospital). What are these tricks? None

other than our good old buddies, tactics.

Let’s consider some examples:

 ■ Manage event rate. Lights on highway entrance ramps let cars onto the highway only

at set intervals, and cars must wait (queue) on the ramp for their turn.
 ■ Prioritize events. Ambulances and police, with their lights and sirens going, have

higher priority than ordinary citizens; some highways have high-occupancy vehicle

(HOV) lanes, giving priority to vehicles with two or more occupants.
 ■ Maintain multiple copies. Add traffic lanes to existing roads or build parallel routes.

In addition, users of the system can employ their own tricks:

 ■ Increase resources. Buy a Ferrari, for example. All other things being equal, being

the fastest car with a competent driver on an open road will get you to your destina-

tion more quickly.
 ■ Increase efficiency. Find a new route that is quicker and/or shorter than your current

route.
 ■ Reduce computational overhead. Drive closer to the car in front of you, or load more

people into the same vehicle (i.e., carpooling).

What is the point of this discussion? To paraphrase Gertrude Stein: Performance is

performance is performance. Engineers have been analyzing and optimizing complex

systems for centuries, trying to improve their performance, and they have been employ-

ing the same design strategies to do so. So you should feel some comfort in knowing

that when you try to improve the performance of your computer-based system, you are

applying tactics that have been thoroughly “road tested.”

—RK

9.3 Tactics-Based Questionnaire for Performance 145

9.3 Tactics-Based Questionnaire for Performance

Based on the tactics described in Section 9.2, we can create a set of tactics-inspired questions,
as presented in Table 9.2. To gain an overview of the architectural choices made to support
performance, the analyst asks each question and records the answers in the table. The answers
to these questions can then be made the focus of further activities: investigation of documenta-
tion, analysis of code or other artifacts, reverse engineering of code, and so forth.

TABLE 9.2 Tactics-Based Questionnaire for Performance

Tactics
Group

Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Control
Resource
Demand

Do you have in place a service
level agreement (SLA) that
specifies the maximum event
arrival rate that you are willing to
support?

Can you manage the rate at
which you sample events arriving
at the system?

How will the system limit
the response (amount of
processing) for an event?

Have you defined different
categories of requests and
defined priorities for each
category?

Can you reduce computational
overhead by, for example, co-
location, cleaning up resources,
or reducing indirection?

Can you bound the execution
time of your algorithms?

Can you increase
computational efficiency
through your choice of
algorithms?

Manage
Resources

Can you allocate more
resources to the system or its
components?

Are you employing
concurrency? If requests can
be processed in parallel, the
blocked time can be reduced.

Can computations be
replicated on different
processors?

continues

146 Part II Quality Attributes | Chapter 9 Performance

Tactics
Group

Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Manage
Resources

Can data be cached (to
maintain a local copy that can be
quickly accessed) or replicated
(to reduce contention)?

Can queue sizes be bounded
to place an upper bound on the
resources needed to process
stimuli?

Have you ensured that the
scheduling strategies you are
using are appropriate for your
performance concerns?

 9.4 Patterns for Performance

Performance concerns have plagued software engineers for decades, so it comes as no surprise
that a rich set of patterns have been developed for managing various aspects of performance.
In this section, we sample just a few of them. Note that some patterns serve multiple purposes.
For example, we saw the circuit breaker pattern in Chapter 4, where it was identified as an
availability pattern, but it also has a benefit for performance—since it reduces the time that
you wait around for nonresponsive services.

The patterns we will introduce here are service mesh, load balancer, throttling, and
map-reduce.

Service Mesh

The service mesh pattern is used in microservice architectures. The main feature of the mesh
is a sidecar—a kind of proxy that accompanies each microservice, and which provides broadly
useful capabilities to address application-independent concerns such as interservice communi-
cations, monitoring, and security. A sidecar executes alongside each microservice and handles
all interservice communication and coordination. (As we will describe in Chapter 16, these
elements are often packaged into pods.) They are deployed together, which cuts down on the
latency due to networking, thereby boosting performance.

This approach allows developers to separate the functionality—the core business logic—
of the microservice from the implementation, management, and maintenance of cross-cutting
concerns, such as authentication and authorization, service discovery, load balancing, encryp-
tion, and observability.

TABLE 9.2 Tactics-Based Questionnaire for Performance continued

9.4 Patterns for Performance 147

Benefits:
 ■ Software to manage cross-cutting concerns can be purchased off the shelf or imple-

mented and maintained by a specialist team that does nothing else, allowing developers
of the business logic to focus on only that concern.

 ■ A service mesh enforces the deployment of utility functions onto the same processor
as the services that use those utility functions. This cuts down on communication time
between the service and its utilities since the communication does not need to use net-
work messages.

 ■ The service mesh can be configured to make communication dependent on context, thus
simplifying functions such as the canary and A/B testing described in Chapter 3.

Tradeoffs:
 ■ The sidecars introduce more executing processes, and each of these will consume some

processing power, adding to the system’s overhead.
 ■ A sidecar typically includes multiple functions, and not all of these will be needed in

every service or every invocation of a service.

Load Balancer

A load balancer is a kind of intermediary that handles messages originating from some set
of clients and determines which instance of a service should respond to those messages. The
key to this pattern is that the load balancer serves as a single point of contact for incoming
messages—for example, a single IP address—but it then farms out requests to a pool of pro-
viders (servers or services) that can respond to the request. In this way, the load can be bal-
anced across the pool of providers. The load balancer implements some form of the schedule
resources tactic. The scheduling algorithm may be very simple, such as round-robin, or it may
take into account the load on each provider, or the number of requests awaiting service at each
provider.

Benefits:
 ■ Any failure of a server is invisible to clients (assuming there are still some remaining

processing resources).
 ■ By sharing the load among several providers, latency can be kept lower and more pre-

dictable for clients.
 ■ It is relatively simple to add more resources (more servers, faster servers) to the pool

available to the load balancer, and no client needs to be aware of this.

Tradeoffs:
 ■ The load balancing algorithm must be very fast; otherwise, it may itself contribute to

performance problems.
 ■ The load balancer is a potential bottleneck or single point of failure, so it is itself often

replicated (and even load balanced).

Load balancers are discussed in much more detail in Chapter 17.

148 Part II Quality Attributes | Chapter 9 Performance

Throttling

The throttling pattern is a packaging of the manage work requests tactic. It is used to limit access
to some important resource or service. In this pattern, there is typically an intermediary—a
throttler—that monitors (requests to) the service and determines whether an incoming request
can be serviced.

Benefits:
 ■ By throttling incoming requests, you can gracefully handle variations in demand. In

doing so, services never become overloaded; they can be kept in a performance “sweet
spot” where they handle requests efficiently.

Tradeoffs:
 ■ The throttling logic must be very fast; otherwise, it may itself contribute to performance

problems.
 ■ If client demand regularly exceeds capacity, buffers will need to be very large, or there is

a risk of losing requests.
 ■ This pattern can be difficult to add to an existing system where clients and servers are

tightly coupled.

Map-Reduce

The map-reduce pattern efficiently performs a distributed and parallel sort of a large data set
and provides a simple means for the programmer to specify the analysis to be done. Unlike
our other patterns for performance, which are independent of any application, the map- reduce
pattern is specifically designed to bring high performance to a specific kind of recurring
problem: sort and analyze a large data set. This problem is experienced by any organization
dealing with massive data—think Google, Facebook, Yahoo, and Netflix—and all of these
organizations do in fact use map-reduce.

The map-reduce pattern has three parts:

 ■ First is a specialized infrastructure that takes care of allocating software to the hardware
nodes in a massively parallel computing environment and handles sorting the data as
needed. A node may be a virtual machine, a standalone processor, or a core in a multi-
core chip.

 ■ Second and third are two programmer-coded functions called, predictably enough, map
and reduce.

 ■ The map function takes as input a key and a data set. It uses the key to hash the data
into a set of buckets. For example, if our data set consisted of playing cards, the key
could be the suit. The map function is also used to filter the data—that is, determine
whether a data record is to be involved in further processing or discarded. Continuing
our card example, we might choose to discard jokers or letter cards (A, K, Q, J),
keeping only numeric cards, and we could then map each card into a bucket, based on
its suit. The performance of the map phase of the map-reduce pattern is enhanced by
having multiple map instances, each of which processes a different portion of the data

9.5 For Further Reading 149

set. An input file is divided into portions, and a number of map instances are created
to process each portion. Continuing our example, let’s consider that we have 1 billion
playing cards, not just a single deck. Since each card can be examined in isolation,
the map process can be carried out by tens or hundreds of thousands of instances in
parallel, with no need for communication among them. Once all of the input data has
been mapped, these buckets are shuffled by the map-reduce infrastructure, and then
assigned to new processing nodes (possibly reusing the nodes used in the map phase)
for the reduce phase. For example, all of the clubs could be assigned to one cluster of
instances, all of the diamonds to another cluster, and so forth.

 ■ All of the heavy analysis takes place in the reduce function. The number of reduce
instances corresponds to the number of buckets output by the map function. The
reduce phase does some programmer-specified analysis and then emits the results of
that analysis. For example, we could count the number of clubs, diamonds, hearts, and
spades, or we could sum the numeric values of all of the cards in each bucket. The out-
put set is almost always much smaller than the input sets—hence the name “reduce.”

The map instances are stateless and do not communicate with each other. The only com-
munication between the map instances and the reduce instances is the data emitted from the
map instances as <key, value> pairs.

Benefits:
 ■ Extremely large, unsorted data sets can be efficiently analyzed through the exploitation

of parallelism.
 ■ A failure of any instance has only a small impact on the processing, since map-reduce

typically breaks large input datasets into many smaller ones for processing, allocating
each to its own instance.

Tradeoffs:
 ■ If you do not have large data sets, the overhead incurred by the map-reduce pattern is not

justified.
 ■ If you cannot divide your data set into similarly sized subsets, the advantages of parallel-

ism are lost.
 ■ Operations that require multiple reduces are complex to orchestrate.

9.5 For Further Reading

Performance is the subject of a rich body of literature. Here are some books we recommend as
general overviews of performance:

 ■ Foundations of Software and System Performance Engineering: Process, Performance
Modeling, Requirements, Testing, Scalability, and Practice [Bondi 14]. This book
provides a comprehensive overview of performance engineering, ranging from technical
practices to organizational ones.

150 Part II Quality Attributes | Chapter 9 Performance

 ■ Software Performance and Scalability: A Quantitative Approach [Liu 09]. This book
covers performance geared toward enterprise applications, with an emphasis on queue-
ing theory and measurement.

 ■ Performance Solutions: A Practical Guide to Creating Responsive, Scalable Software
[Smith 01]. This book covers designing with performance in mind, with emphasis on
building (and populating with real data) practical predictive performance models.

 To get an overview of some of the many patterns for performance, see Real-Time Design
Patterns: Robust Scalable Architecture for Real-Time Systems [Douglass 99] and Pattern-
Oriented Software Architecture Volume 3: Patterns for Resource Management [Kircherb03].
In addition, Microsoft has published a catalog of performance and scalability patterns for
cloud-based applications: https://docs.microsoft.com/en-us/azure/architecture/patterns/category/
performance-scalability.

 9.6 Discussion Questions

1. “Every system has real-time performance constraints.” Discuss. Can you provide a
counterexample?

2. Write a concrete performance scenario that describes the average on-time flight arrival
performance for an airline.

3. Write several performance scenarios for an online auction site. Think about whether
your major concern is worst-case latency, average-case latency, throughput, or some
other response measure. Which tactics would you use to satisfy your scenarios?

4. Web-based systems often use proxy servers, which are the first element of the system to
receive a request from a client (such as your browser). Proxy servers are able to serve up
often-requested web pages, such as a company’s home page, without bothering the real
application servers that carry out transactions. A system may include many proxy servers,
and they are often located geographically close to large user communities, to decrease
response time for routine requests. What performance tactics do you see at work here?

5. A fundamental difference between interaction mechanisms is whether interaction is
synchronous or asynchronous. Discuss the advantages and disadvantages of each with
respect to each of these performance responses: latency, deadline, throughput, jitter, miss
rate, data loss, or any other required performance-related response you may be used to.

6. Find physical-world (that is, non-software) examples of applying each of the manage
resources tactics. For example, suppose you were managing a brick-and-mortar big-box
retail store. How would you get people through the checkout lines faster using these
tactics?

7. User interface frameworks typically are single-threaded. Why is this? What are the per-
formance implications? (Hint: Think about race conditions.)

https://docs.microsoft.com/en-us/azure/architecture/patterns/category/performance-scalability
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/performance-scalability

151

10
 Safety

Giles: Well, for god’s sake, be careful. . . . If you should be hurt or killed,
shall take it amiss.

Willow: Well, we try not to get killed. That’s part of our whole mission
statement: Don’t get killed.

Giles: Good.
—Buffy the Vampire Slayer, Season 3, episode “Anne”

“Don’t kill anyone” should be a part of every software architect’s mission statement.
The thought that software could kill people or cause injury or damage used to belong

solidly in the realm of computers-run-amok science fiction; think of HAL politely declining to
open the pod bay doors in the now-aged but still-classic movie 2001: A Space Odyssey, leaving
Dave stranded in space.

Sadly, it didn’t stay there. As software has come to control more and more of the devices
in our lives, software safety has become a critical concern.

The thought that software (strings of 0s and 1s) can kill or maim or destroy is still an
unnatural notion. To be fair, it’s not the 0s and 1s that wreak havoc—at least, not directly. It’s
what they’re connected to. Software, and the computer in which it runs, has to be connected to
the outside world in some way before it can do damage. That’s the good news. The bad news
is that the good news isn’t all that good. Software is connected to the outside world, always. If
your program has no effect whatsoever that is observable outside of itself, it probably serves
no purpose.

In 2009, an employee of the Shushenskaya hydroelectric power station used a cybernet-
work to remotely—and accidentally—activate an unused turbine with a few errant keystrokes.
The offline turbine created a “water hammer” that flooded and then destroyed the plant and
killed dozens of workers.

There are many other equally notorious examples. The Therac 25 fatal radiation over-
dose, the Ariane 5 explosion, and a hundred lesser-known accidents all caused harm because
the computer was connected to the environment: a turbine, an X-ray emitter, and a rocket’s
steering controls, in the examples just cited. The infamous Stuxnet virus was created to inten-
tionally cause damage and destruction. In these cases, software commanded some hardware
in its environment to take a disastrous action, and the hardware obeyed. Actuators are devices

152 Part II Quality Attributes | Chapter 10 Safety

that connect hardware to software; they are the bridge between the world of 0s and 1s and the
world of motion and control. Send a digital value to an actuator (or write a bit string in the
hardware register corresponding to the actuator) and that value is translated to some mechani-
cal action, for better or worse.

But connecting to the outside world doesn’t have to mean robot arms or uranium centri-
fuges or missile launchers: Connecting to a simple display screen is enough. Sometimes all the
computer has to do is send erroneous information to its human operators. In September 1983,
a Soviet satellite sent data to its ground system computer, which interpreted that data as a mis-
sile launched from the United States aimed at Moscow. Seconds later, the computer reported a
second missile in flight. Soon, a third, then a fourth, and then a fifth appeared. Soviet Strategic
Rocket Forces Lieutenant Colonel Stanislav Yevgrafovich Petrov made the astonishing deci-
sion to ignore the computers, believing them to be in error. He thought it extremely unlikely
that the United States would have fired just a few missiles, thereby inviting mass retaliatory
destruction. He decided to wait it out, to see if the missiles were real—that is, to see if his
country’s capital city was going to be incinerated. As we know, it wasn’t. The Soviet system
had mistaken a rare sunlight condition for missiles in flight. You and/or your parents may well
owe your life to Lieutenant Colonel Petrov.

Of course, the humans don’t always get it right when the computers get it wrong. On
the stormy night of June 1, 2009, Air France flight 447 from Rio de Janeiro to Paris plum-
meted into the Atlantic Ocean, killing all 228 people on board, despite the aircraft’s engines
and flight controls working perfectly. The Airbus A-330’s flight recorders, which were not
recovered until May 2011, showed that the pilots never knew that the aircraft had entered a
high-altitude stall. The sensors that measure airspeed had become clogged with ice and there-
fore unreliable; the autopilot disengaged as a result. The human pilots thought the aircraft
was going too fast (and in danger of structural failure) when in fact it was going too slow (and
falling). During the entire 3-minute-plus plunge from 35,000 feet, the pilots kept trying to pull
the nose up and throttle back to lower the speed, when all they needed to do was lower the
nose to increase the speed and resume normal flying. Very probably adding to the confusion
was the way the A-330’s stall warning system worked. When the system detects a stall, it emits
a loud audible alarm. The software deactivates the stall warning when it “thinks” that the
angle of attack measurements are invalid. This can occur when the airspeed readings are very
low. That is what happened with AF447: Its forward speed dropped below 60 knots, and the
angle of attack was extremely high. As a consequence of this flight control software rule, the
stall warning stopped and started several times. Worse, it came on whenever the pilot pushed
 forward on the stick (increasing the airspeed and taking the readings into the “valid” range,
but still in stall) and then stopped when he pulled back. That is, doing the right thing resulted
in exactly the wrong feedback, and vice versa. Was this an unsafe system, or a safe system
operated unsafely? Ultimately questions like this are decided in the courts.

As this edition was going to publication, Boeing was still reeling from the grounding
of its 737 MAX aircraft after two crashes that appear to have been caused at least partly by
a piece of software called MCAS, which pushed the aircraft’s nose down at the wrong time.
Faulty sensors seem to be involved here, too, as well as a baffling design decision that caused
the software to rely on only one sensor to determine its behavior, instead of the two available
on the aircraft. It also appears that Boeing never tested the software in question under the

Part II Quality Attributes | Chapter 10 Safety 153

conditions of a sensor failure. The company did provide a way to disable the system in flight,
although remembering how to do that when your airplane is doing its best to kill you may be
asking a lot of a flight crew—especially when they were never made aware of the existence
of the MCAS in the first place. In total, 346 people died in the two crashes of the 737 MAX.

Okay, enough scary stories. Let’s talk about the principles behind them as they affect
software and architectures.

Safety is concerned with a system’s ability to avoid straying into states that cause or lead
to damage, injury, or loss of life to actors in its environment. These unsafe states can be caused
by a variety of factors:

 ■ Omissions (the failure of an event to occur).
 ■ Commission (the spurious occurrence of an undesirable event). The event could be

acceptable in some system states but undesirable in others.
 ■ Timing. Early (the occurrence of an event before the time required) or late (the occur-

rence of an event after the time required) timing can both be potentially problematic.
 ■ Problems with system values. These come in two categories: Coarse incorrect values are

incorrect but detectable, whereas subtle incorrect values are typically undetectable.
 ■ Sequence omission and commission. In a sequence of events, either an event is missing

(omission) or an unexpected event is inserted (commission).
 ■ Out of sequence. A sequence of events arrive, but not in the prescribed order.

Safety is also concerned with detecting and recovering from these unsafe states to pre-
vent or at least minimize resulting harm.

Any portion of the system can lead to an unsafe state: The software, the hardware por-
tions, or the environment can behave in an unanticipated, unsafe fashion. Once an unsafe state
is detected, the potential system responses are similar to those enumerated for availability (in
Chapter 4). The unsafe state should be recognized and the system should be made through

 ■ Continuing operations after recovering from the unsafe state or placing the system in a
safe mode, or

 ■ Shutting down (fail safe), or
 ■ Transitioning to a state requiring manual operation (e.g., manual steering if the power

steering in a car fails).

In addition, the unsafe state should be reported immediately and/or logged.
Architecting for safety begins by identifying the system’s safety-critical functions—those

functions that could cause harm as just outlined—using techniques such as failure mode and
effects analysis (FMEA; also called hazard analysis) and fault tree analysis (FTA). FTA is a
top-down deductive approach to identify failures that could result in moving the system into an
unsafe state. Once the failures have been identified, the architect needs to design mechanisms
to detect and mitigate the fault (and ultimately the hazard).

The techniques outlined in this chapter are intended to discover possible hazards that
could result from the system’s operation and help in creating strategies to cope with these
hazards.

154 Part II Quality Attributes | Chapter 10 Safety

10.1 Safety General Scenario

With this background, we can construct the general scenario for safety, shown in Table 10.1.

TABLE 10.1 Safety General Scenario

Portion of
Scenario

Description Possible Values

Source A data source (a sensor,
a software component
that calculates a value, a
communication channel), a time
source (clock), or a user action

Specific instances of a:
 ■ Sensor
 ■ Software component
 ■ Communication channel
 ■ Device (such as a clock)

Stimulus An omission, commission, or
occurrence of incorrect data or
timing

A specific instance of an omission:
 ■ A value never arrives.
 ■ A function is never performed.

A specific instance of a commission:
 ■ A function is performed incorrectly.
 ■ A device produces a spurious event.
 ■ A device produces incorrect data.

A specific instance of incorrect data:
 ■ A sensor reports incorrect data.
 ■ A software component produces incorrect

results.

A timing failure:
 ■ Data arrives too late or too early.
 ■ A generated event occurs too late or too early

or at the wrong rate.
 ■ Events occur in the wrong order.

Environment System operating mode ■ Normal operation
 ■ Degraded operation
 ■ Manual operation
 ■ Recovery mode

Artifacts The artifact is some part of the
system.

Safety-critical portions of the system

Response The system does not leave a
safe state space, or the system
returns to a safe state space, or
the system continues to operate
in a degraded mode to prevent
(further) injury or damage or
to minimize injury or damage.
Users are advised of the unsafe
state or the prevention of entry
into the unsafe state. The event
is logged.

Recognize the unsafe state and one or more of
the following:

 ■ Avoid the unsafe state
 ■ Recover
 ■ Continue in degraded or safe mode
 ■ Shut down
 ■ Switch to manual operation
 ■ Switch to a backup system
 ■ Notify appropriate entities (people or systems)
 ■ Log the unsafe state (and the response to it)

10.1 Safety General Scenario 155

Stimulus

Response

Response

Measure

Source

3

2
1

4

Environment

Artifact

A sensor Fails to report a life-

critical value after

100 ms

Normal operations The failure is logged, a

warning light is illuminated

on the console, and a

sensor is engaged;

patient using the backup

sensor

After no more

than 300 ms

Portion of
Scenario

Description Possible Values

Response
measure

Time to return to safe state
space; damage or injury caused

One or more of the following:
 ■ Amount or percentage of entries into unsafe

states that are avoided
 ■ Amount or percentages of unsafe states from

which the system can (automatically) recover
 ■ Change in risk exposure: size(loss) * prob(loss)
 ■ Percentage of time the system can recover
 ■ Amount of time the system is in a degraded or

safe mode
 ■ Amount or percentage of time the system is

shut down
 ■ Elapsed time to enter and recover (from

manual operation, from a safe or degraded
mode)

A sample safety scenario is: A sensor in the patient monitoring system fails to report a
life-critical value after 100 ms. The failure is logged, a warning light is illuminated on the
console, and a backup (lower-fidelity) sensor is engaged. The system monitors the patient
using the backup sensor after no more than 300 ms. Figure 10.1 illustrates this scenario.

FIGURE 10.1 Sample concrete safety scenario

156 Part II Quality Attributes | Chapter 10 Safety

10.2 Tactics for Safety

Safety tactics may be broadly categorized as unsafe state avoidance, unsafe state detection, or
unsafe state remediation. Figure 10.2 shows the goal of the set of safety tactics.

Unsafe state entered

or imminent

Unsafe state detected,

avoided, or contained;

recovery occurs; and

safe operation continues

Tactics

to Control

Response

FIGURE 10.2 Goal of safety tactics

A logical precondition to avoid or detect entry into an unsafe state is the ability to rec-
ognize what constitutes an unsafe state. The following tactics assume that capability, which
means that you should perform your own hazard analysis or FTA once you have your architec-
ture in hand. Your design decisions may themselves have introduced new safety vulnerabilities
not accounted for during requirements analysis.

You will note a substantial overlap between the tactics presented here and those presented
in Chapter 4 on availability. This overlap occurs because availability problems may often lead
to safety problems, and because many of the design solutions for repairing these problems are
shared between the qualities.

Figure 10.3 summarizes the architectural tactics to achieve safety.

Unsafe State Avoidance

Substitution

This tactic employs protection mechanisms—often hardware-based—for potentially danger-
ous software design features. For example, hardware protection devices such as watchdogs,
monitors, and interlocks can be used in lieu of software versions. Software versions of these
mechanisms can be starved of resources, whereas a separate hardware device provides and
controls its own resources. Substitution is typically beneficial only when the function being
replaced is relatively simple.

10.2 Tactics for Safety 157

Unsafe State

Avoidance

RecoveryContainment

Safety Tactics

Substitution

Predictive Model

Unsafe State

Detection

Sanity Check

Comparison

Timeout

Condition Monitoring

Timestamp

Replication

Analytic Redundancy

Functional Redundancy

Masking

Abort

Degradation

Firewall

Interlock

Rollback

Repair State

BarrierRedundancy Limit

Consequences

FIGURE 10.3 Safety tactics

Predictive Model

The predictive model tactic, as introduced in Chapter 4, predicts the state of health of system
processes, resources, or other properties (based on monitoring the state), not only to ensure
that the system is operating within its nominal operating parameters but also to provide early
warning of a potential problem. For example, some automotive cruise control systems calcu-
late the closing rate between the vehicle and an obstacle (or another vehicle) ahead and warn
the driver before the distance and time become too small to avoid a collision. A predictive
model is typically combined with condition monitoring, which we discuss later.

Unsafe State Detection

Timeout

The timeout tactic is used to determine whether the operation of a component is meeting its
timing constraints. This might be realized in the form of an exception being raised, to indicate
the failure of a component if its timing constraints are not met. Thus this tactic can detect
late timing and omission failures. Timeout is a particularly common tactic in real-time or

158 Part II Quality Attributes | Chapter 10 Safety

embedded systems and distributed systems. It is related to the availability tactics of system
monitor, heartbeat, and ping-echo.

Timestamp

As described in Chapter 4, the timestamp tactic is used to detect incorrect sequences of events,
primarily in distributed message-passing systems. A timestamp of an event can be estab-
lished by assigning the state of a local clock to the event immediately after the event occurs.
Sequence numbers can also be used for this purpose, since timestamps in a distributed system
may be inconsistent across different processors.

Condition Monitoring

This tactic involves checking conditions in a process or device, or validating assumptions
made during the design, perhaps by using assertions. Condition monitoring identifies system
states that may lead to hazardous behavior. However, the monitor should be simple (and, ide-
ally, provable) to ensure that it does not introduce new software errors or contribute signifi-
cantly to overall workload. Condition monitoring provides the input to a predictive model and
to sanity checking.

Sanity Checking

The sanity checking tactic checks the validity or reasonableness of specific operation results,
or inputs or outputs of a component. This tactic is typically based on a knowledge of the inter-
nal design, the state of the system, or the nature of the information under scrutiny. It is most
often employed at interfaces, to examine a specific information flow.

Comparison

The comparison tactic allows the system to detect unsafe states by comparing the outputs
produced by a number of synchronized or replicated elements. Thus the comparison tactic
works together with a redundancy tactic, typically the active redundancy tactic presented in
the discussion of availability. When the number of replicants is three or greater, the compari-
son tactic can not only detect an unsafe state but also indicate which component has led to it.
Comparison is related to the voting tactic used in availability. However, a comparison may not
always lead to a vote; another option is to simply shut down if outputs differ.

Containment

Containment tactics seek to limit the harm associated with an unsafe state that has been
entered. This category includes three subcategories: redundancy, limit consequences, and
barrier.

Redundancy

The redundancy tactics, at first glance, appear to be similar to the various sparing/redun-
dancy tactics presented in the discussion of availability. Clearly, these tactics overlap, but since
the goals of safety and availability are different, the use of backup components differs. In

10.2 Tactics for Safety 159

the realm of safety, redundancy enables the system to continue operation in the case where a
total shutdown or further degradation would be undesirable.

Replication is the simplest redundancy tactic, as it just involves having clones of a com-
ponent. Having multiple copies of identical components can be effective in protecting against
random failures of hardware, but it cannot protect against design or implementation errors in
hardware or software since there is no form of diversity embedded in this tactic.

Functional redundancy, by contrast, is intended to address the issue of common-mode
failures (where replicas exhibit the same fault at the same time because they share the same
implementation) in hardware or software components, by implementing design diversity. This
tactic attempts to deal with the systematic nature of design faults by adding diversity to redun-
dancy. The outputs of functionally redundant components should be the same given the same
input. The functional redundancy tactic is still vulnerable to specification errors, however, and
of course, functional replicas will be more expensive to develop and verify.

Finally, the analytic redundancy tactic permits not only diversity of components, but also
a higher-level diversity that is visible at the input and output level. As a consequence, it can tol-
erate specification errors by using separate requirement specifications. Analytic redundancy
often involves partitioning the system into high assurance and high performance (low assur-
ance) portions. The high assurance portion is designed to be simple and reliable, whereas the
high performance portion is typically designed to be more complex and more accurate, but
less stable: It changes more rapidly, and may not be as reliable as the high assurance portion.
(Hence, here we do not mean high performance in the sense of latency or throughput; rather,
this portion “performs” its task better than the high assurance portion.)

Limit Consequences

The second subcategory of containment tactics is called limit consequences. These tactics are
all intended to limit the bad effects that may result from the system entering an unsafe state.

The abort tactic is conceptually the simplest. If an operation is determined to be unsafe,
it is aborted before it can cause damage. This technique is widely employed to ensure that sys-
tems fail safely.

The degradation tactic maintains the most critical system functions in the presence of
component failures, dropping or replacing functionality in a controlled way. This approach
allows individual component failures to gracefully reduce system functionality in a planned,
deliberate, and safe way, rather than causing a complete system failure. For example, a car
navigation system may continue to operate using a (less accurate) dead reckoning algorithm in
a long tunnel where it has lost its GPS satellite signal.

The masking tactic masks a fault by comparing the results of several redundant compo-
nents and employing a voting procedure in case one or more of the components differ. For this
tactic to work as intended, the voter must be simple and highly reliable.

Barrier

The barrier tactics contain problems by keeping them from propagating.
The firewall tactic is a specific realization of the limit access tactic, which is described in

Chapter 11. A firewall limits access to specified resources, typically processors, memory, and
network connections.

160 Part II Quality Attributes | Chapter 10 Safety

The interlock tactic protects against failures arising from incorrect sequencing of events.
Realizations of this tactic provide elaborate protection schemes by controlling all access to
protected components, including controlling the correct sequencing of events affecting those
components.

 Recovery

The final category of safety tactics is recovery, which acts to place the system in a safe state. It
encompasses three tactics: rollback, repair state, and reconfiguration.

The rollback tactic permits the system to revert to a saved copy of a previous known good
state—the rollback line—upon the detection of a failure. This tactic is often combined with
checkpointing and transactions, to ensure that the rollback is complete and consistent. Once
the good state is reached, then execution can continue, potentially employing other tactics such
as retry or degradation to ensure that the failure does not reoccur.

The repair state tactic repairs an erroneous state—effectively increasing the set of states
that a component can handle competently (i.e., without failure)—and then continues execu-
tion. For example, a vehicle’s lane keep assist feature will monitor whether a driver is staying
within their lane and actively return the vehicle to a position between the lines—a safe state—
if it drifts out. This tactic is inappropriate as a means of recovery from unanticipated faults.

Reconfiguration attempts to recover from component failures by remapping the logical
architecture onto the (potentially limited) resources left functioning. Ideally, this remapping
allows full functionality to be maintained. When this is not possible, the system may be able to
maintain partial functionality in combination with the degradation tactic.

10.3 Tactics-Based Questionnaire for Safety

Based on the tactics described in Section 10.2, we can create a set of tactics-inspired ques-
tions, as presented in Table 10.2. To gain an overview of the architectural choices made to sup-
port safety, the analyst asks each question and records the answers in the table. The answers to
these questions can then be made the focus of further activities: investigation of documenta-
tion, analysis of code or other artifacts, reverse engineering of code, and so forth.

Prior to beginning the tactics-based questionnaire for safety, you should assess whether
the project under review has performed a hazard analysis or FTA to identify what constitutes
an unsafe state (to be detected, avoided, contained, or recovered from) in your system. Without
this analysis, designing for safety is likely to be less effective.

10.3 Tactics-Based Questionnaire for Safety 161

TABLE 10.2 Tactics-Based Questionnaire for Safety

Tactics
Group

Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Unsafe State
Avoidance

Do you employ substitution—
that is, safer, often hardware-
based protection mechanisms
for potentially dangerous
software design features?

Do you use a predictive model
to predict the state of health of
system processes, resources,
or other properties—based on
monitored information—not
only to ensure that the system
is operating within its nominal
operating parameters, but also
to provide early warning of a
potential problem?

Unsafe State
Detection

Do you use timeouts to
determine whether the
operation of a component
meets its timing constraints?

Do you use timestamps to
detect incorrect sequences of
events?

Do you employ condition
monitoring to check
conditions in a process or
device, particularly to validate
assumptions made during
design?

Is sanity checking employed
to check the validity or
reasonableness of specific
operation results, or inputs or
outputs of a component?

Does the system employ
comparison to detect unsafe
states, by comparing the
outputs produced based on
the number of synchronized or
replicated elements?

Containment:
Redundancy

Do you use replication—
clones of a component—to
protect against random failures
of hardware?

Do you use functional
redundancy to address
the common-mode failures
by implementing diversely
designed components?

continues

162 Part II Quality Attributes | Chapter 10 Safety

Tactics
Group

Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Containment:
Redundancy

Do you use analytic
redundancy—functional
“replicas” that include high
assurance/high performance
and low assurance/low
performance alternatives—to
be able to tolerate specification
errors?

Containment:
Limit
Consequences

Can the system abort an
operation that is determined to
be unsafe before it can cause
damage?

Does the system provide
controlled degradation,
where the most critical system
functions are maintained in
the presence of component
failures, while less critical
functions are dropped or
degraded?

Does the system mask a fault
by comparing the results of
several redundant components
and employ a voting procedure
in case one or more of the
components differ?

Containment:
Barrier

Does the system support limiting
access to critical resources
(e.g., processors, memory, and
network connections) through a
firewall?

Does the system control access
to protected components and
protect against failures arising
from incorrect sequencing of
events through interlocks?

Recovery Is the system able to roll
back—that is, to revert to a
previous known good state—
upon the detection of a failure?

Can the system repair a state
determined to be erroneous,
without failure, and then
continue execution?

Can the system reconfigure
resources, in the event of
failures, by remapping the
logical architecture onto the
resources left functioning?

TABLE 10.2 Tactics-Based Questionnaire for Safety continued

10.4 Patterns for Safety 163

10.4 Patterns for Safety

A system that unexpectedly stops operating, or starts operating incorrectly, or falls into
a degraded mode of operation is likely to affect safety negatively, if not catastrophically.
Hence, the first place to look for safety patterns is in patterns for availability, such as the ones
described in Chapter 4. They all apply here.

 ■ Redundant sensors. If the data produced by a sensor is important to determine whether a
state is safe or unsafe, that sensor should be replicated. This protects against the fail-
ure of any single sensor. Also, independent software should monitor each sensor—in
essence, the redundant spare tactic from Chapter 4 applied to safety-critical hardware.

Benefits:
 ■ This form of redundancy, which is applied to sensors, guards against the failure of a

single sensor.

Tradeoffs:
 ■ Redundant sensors add cost to the system, and processing the inputs from multiple

sensors is more complicated than processing the input from a single sensor.

 ■ Monitor-actuator. This pattern focuses on two software elements—a monitor and an
actuator controller—that are employed before sending a command to a physical actuator.
The actuator controller performs the calculations necessary to determine the values to
send to the physical actuator. The monitor checks these values for reasonableness before
sending them. This separates the computation of the value from the testing of the value.

Benefits:
 ■ In this form of redundancy applied to actuator control, the monitor acts as a redundant

check on the actuator controller computations.

Tradeoffs:
 ■ The development and maintenance of the monitor take time and resources.
 ■ Because of the separation this pattern achieves between actuator control and moni-

toring, this particular tradeoff is easy to manipulate by making the monitor as simple
(easy to produce but may miss errors) or as sophisticated (more complex but catches
more errors) as required.

 ■ Separated safety. Safety-critical systems must frequently be certified as safe by
some authority. Certifying a large system is expensive, but dividing a system into
safety-critical portions and non-safety-critical portions can reduce those costs. The safety-
critical portion must still be certified. Likewise, the division into safety-critical and
non-critical portions must be certified to ensure that there is no influence on the
safety-critical portion from the non-safety-critical portion.

164 Part II Quality Attributes | Chapter 10 Safety

Benefits:
 ■ The cost of certifying the system is reduced because you need to certify only a

(usually small) portion of the total system.
 ■ Cost and safety benefits accrue because the effort focuses on just those portions of the

system that are germane to safety.

Tradeoffs:
 ■ The work involved in performing the separation can be expensive, such as installing

two different networks in a system to partition safety-critical and non-safety-critical
messages. However, this approach limits the risk and consequences of bugs in the
non-safety-critical portion from affecting the safety-critical portion.

 ■ Separating the system and convincing the certification agency that the separation
was performed correctly and that there are no influences from the non-safety-critical
portion on the safety-critical portion is difficult, but is far easier than the alternative:
having the agency certify everything to the same rigid level.

Design Assurance Levels

The separated safety pattern emphasizes dividing the software system into safety-

critical portions and non-safety-critical portions. In avionics, the distinction is finer-

grained. DO-178C, “Software Considerations in Airborne Systems and Equipment

Certification,” is the primary document by which certification authorities such as Federal

Aviation Administration (FAA), European Union Aviation Safety Agency (EASA), and

Transport Canada approve all commercial software-based aerospace systems. It

defines a ranking called Design Assurance Level (DAL) for each software function. The

DAL is determined from the safety assessment process and hazard analysis by examin-

ing the effects of a failure condition in the system. The failure conditions are categorized

by their effects on the aircraft, crew, and passengers:

 ■ A: Catastrophic. Failure may cause deaths, usually with loss of the airplane.
 ■ B: Hazardous. Failure has a large negative impact on safety or performance, or

reduces the crew’s ability to operate the aircraft due to physical distress or a higher

workload, or causes serious or fatal injuries among the passengers.
 ■ C: Major. Failure significantly reduces the safety margin or significantly increases

crew workload, and may result in passenger discomfort (or even minor injuries).
 ■ D: Minor. Failure slightly reduces the safety margin or slightly increases crew work-

load. Examples might include causing passenger inconvenience or a routine flight

plan change.
 ■ E: No effect. Failure has no impact on safety, aircraft operation, or crew workload.

Software validation and testing is a terrifically expensive task, undertaken with very

finite budgets. DALs help you decide where to put your limited testing resources. The

next time you’re on a commercial airline flight, if you see a glitch in the entertainment

system or your reading light keeps blinking off, take comfort by thinking of all the valida-

tion money spent on making sure the flight control system works just fine.

—PC

10.5 For Further Reading 165

10.5 For Further Reading

To gain an appreciation for the importance of software safety, we suggest reading some of the
disaster stories that arise when software fails. A venerable source is the ACM Risks Forum,
available at risks.org. This has been moderated by Peter Neumann since 1985 and is still going
strong.

Two prominent standard safety processes are described in ARP-4761, “Guidelines and
Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and
Equipment,” developed by SAE International, and MIL STD 882E, “Standard Practice:
System Safety,” developed by the U.S. Department of Defense.

Wu and Kelly [Wu 04] published a set of safety tactics in 2004, based on a survey of
existing architectural approaches, which inspired much of the thinking in this chapter.

Nancy Leveson is a thought leader in the area of software and safety. If you’re working
in safety-critical systems, you should become familiar with her work. You can start small
with a paper like [Leveson 04], which discusses a number of software-related factors that have
contributed to spacecraft accidents. Or you can start at the top with [Leveson 11], a book that
treats safety in the context of today’s complex, socio-technical, software-intensive systems.

The Federal Aviation Administration is the U.S. government agency charged with over-
sight of the U.S. airspace system and is extremely concerned about safety. Its 2019 System Safety
Handbook is a good practical overview of the topic. Chapter 10 of this handbook deals with
software safety. You can download it from faa.gov/regulations_policies/handbooks_manuals/
aviation/risk_management/ss_handbook/.

Phil Koopman is well known in the automotive safety field. He has several tutorials avail-
able online that deal with safety-critical patterns. See, for example, youtube.com/watch?v=
JA5wdyOjoXg and youtube.com/watch?v=4Tdh3jq6W4Y. Koopman’s book, Better Embedded
System Software, gives much more detail about safety patterns [Koopman 10].

 Fault tree analysis dates from the early 1960s, but the granddaddy of resources for it is
the U.S. Nuclear Regulatory Commission’s Fault Tree Handbook, published in 1981. NASA’s
2002 Fault Tree Handbook with Aerospace Applications is an updated comprehensive primer
of the NRC handbook. Both are available online as downloadable PDF files.

Similar to Design Assurance Levels, Safety Integrity Levels (SILs) provide definitions of
how safety-critical various functions are. These definitions create a common understanding
among the architects involved in designing the system, but also assist with safety evaluation.
The IEC 61508 Standard titled “Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems” defines four SILs, with SIL 4 being the most depend-
able and SIL 1 being the least dependable. This standard is instantiated through domain-
specific standards such as IEC 62279 for the railway industry, titled “Railway Applications:
Communication, Signaling and Processing Systems: Software for Railway Control and
Protection Systems.”

In a world where semi-autonomous and autonomous vehicles are the subject of much
research and development, functional safety is becoming increasingly more prominent. For
a long time, ISO 26026 has been the standard in functional safety of road vehicles. There is

http://risks.org
http://faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/
http://faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/
http://youtube.com/watch?v=JA5wdyOjoXg
http://youtube.com/watch?v=4Tdh3jq6W4Y
http://youtube.com/watch?v=JA5wdyOjoXg

166 Part II Quality Attributes | Chapter 10 Safety

also a wave of new norms such as ANSI/UL 4600, “Standard for Safety for the Evaluation
of Autonomous Vehicles and Other Products,” which tackle the challenges that emerge when
software takes the wheel, figuratively and literally.

 10.6 Discussion Questions

1. List 10 computer-controlled devices that are part of your everyday life right now, and
hypothesize ways that a malicious or malfunctioning system could use them to hurt you.

2. Write a safety scenario that is designed to prevent a stationary robotic device (such as
an assembly arm on a manufacturing line) from injuring someone, and discuss tactics to
achieve it.

3. The U.S. Navy’s F/A-18 Hornet fighter aircraft was one of the early applications of fly-
by-wire technology, in which onboard computers send digital commands to the control
surfaces (ailerons, rudder, etc.) based on the pilot’s input to the control stick and rudder
pedals. The flight control software was programmed to prevent the pilot from com-
manding certain violent maneuvers that might cause the aircraft to enter an unsafe flight
regime. During early flight testing, which often involves pushing the aircraft to (and
beyond) its utmost limits, an aircraft entered an unsafe state and “violent maneuvers”
were exactly what were needed to save it—but the computers dutifully prevented them.
The aircraft crashed into the ocean because of software designed to keep it safe. Write a
safety scenario to address this situation, and discuss the tactics that would have pre-
vented this outcome.

4. According to slate.com and other sources, a teenage girl in Germany “went into hiding
after she forgot to set her Facebook birthday invitation to private and accidentally invited
the entire Internet. After 15,000 people confirmed they were coming, the girl’s parents
canceled the party, notified police, and hired private security to guard their home.”
Fifteen hundred people showed up anyway, resulting in several minor injuries and untold
mayhem. Is Facebook unsafe? Discuss.

5. Write a safety scenario to protect the unfortunate girl in Germany from Facebook.

6. On February 25, 1991, during the Gulf War, a U.S. Patriot missile battery failed to inter-
cept an incoming Scud missile, which struck a barracks, killing 28 soldiers and injuring
dozens. The cause of the failure was an inaccurate calculation of the time since boot due
to arithmetic errors in the software that accumulated over time. Write a safety scenario
that addresses the Patriot failure and discuss tactics that might have prevented it.

7. Author James Gleick (“A Bug and a Crash,” around.com/ariane.html) writes that “It took
the European Space Agency 10 years and $7 billion to produce Ariane 5, a giant rocket
capable of hurling a pair of three-ton satellites into orbit with each launch. . . . All it
took to explode that rocket less than a minute into its maiden voyage . . . was a small

http://slate.com
http://around.com/ariane.html

10.6 Discussion Questions 167

computer program trying to stuff a 64-bit number into a 16-bit space. One bug, one
crash. Of all the careless lines of code recorded in the annals of computer science, this
one may stand as the most devastatingly efficient.” Write a safety scenario that addresses
the Ariane 5 disaster, and discuss tactics that might have prevented it.

8. Discuss how you think safety tends to “trade off” against the quality attributes of perfor-
mance, availability, and interoperability.

9. Discuss the relationship between safety and testability.

10. What is the relationship between safety and modifiability?

11. With the Air France flight 447 story in mind, discuss the relationship between safety and
usability.

12. Create a list of faults or a fault tree for an automatic teller machine. Include faults deal-
ing with hardware component failure, communications failure, software failure, running
out of supplies, user errors, and security attacks. How would you use tactics to accom-
modate these faults?

This page intentionally left blank

169

11
 Security

If you reveal your secrets to the wind, you should not blame the wind
for revealing them to the trees.

—Kahlil Gibran

Security is a measure of the system’s ability to protect data and information from unauthorized
access while still providing access to people and systems that are authorized. An attack—that
is, an action taken against a computer system with the intention of doing harm—can take a
number of forms. It may be an unauthorized attempt to access data or services or to modify
data, or it may be intended to deny services to legitimate users.

The simplest approach to characterizing security focuses on three characteristics: confi-
dentiality, integrity, and availability (CIA):

 ■ Confidentiality is the property that data or services are protected from unauthorized
access. For example, a hacker cannot access your income tax returns on a government
computer.

 ■ Integrity is the property that data or services are not subject to unauthorized manipula-
tion. For example, your grade has not been changed since your instructor assigned it.

 ■ Availability is the property that the system will be available for legitimate use. For exam-
ple, a denial-of-service attack won’t prevent you from ordering this book from an online
bookstore.

We will use these characteristics in our general scenario for security.
One technique that is used in the security domain is threat modeling. An “attack tree,”

which is similar to the fault tree discussed in Chapter 4, is used by security engineers to deter-
mine possible threats. The root of the tree is a successful attack, and the nodes are possi-
ble direct causes of that successful attack. Children nodes decompose the direct causes, and
so forth. An attack is an attempt to compromise CIA, with the leaves of attack trees being
the stimulus in the scenario. The response to the attack is to preserve CIA or deter attackers
through monitoring of their activities.

170 Part II Quality Attributes | Chapter 11 Security

Privacy

An issue closely related to security is the quality of privacy. Privacy concerns have

become more important in recent years and are enshrined into law in the European

Union through the General Data Protection Regulation (GDPR). Other jurisdictions have

adopted similar regulations.

Achieving privacy is about limiting access to information, which in turn is about which

information should be access-limited and to whom access should be allowed. The gen-

eral term for information that should be kept private is personally identifiable information

(PII). The National Institute of Standards and Technology (NIST) defines PII as “any

information about an individual maintained by an agency, including (1) any information

that can be used to distinguish or trace an individual’s identity, such as name, social

security number, date and place of birth, mother’s maiden name, or biometric records;

and (2) any other information that is linked or linkable to an individual, such as medical,

educational, financial, and employment information.”

The question of who is permitted access to such data is more complicated. Users are

routinely asked to review and agree to privacy agreements initiated by organizations.

These privacy agreements detail who, outside of the collecting organization, is entitled

to see PII. The collecting organization itself should have policies that govern who within

that organization can have access to such data. Consider, for example, a tester for a

software system. To perform tests, realistic data should be used. Does that data include

PII? Generally, PII is obscured for testing purposes.

Frequently the architect, perhaps acting for the project manager, is asked to verify

that PII is hidden from members of the development team who do not need to have

access to PII.

 11.1 Security General Scenario

From these considerations, we can now describe the individual portions of a security general
scenario, which is summarized in Table 11.1.

TABLE 11.1 Security General Scenario

Portion of
Scenario

Description Possible Values

Source The attack may be from
outside the organization or
from inside the organization.
The source of the attack may
be either a human or another
system. It may have been
previously identified (either
correctly or incorrectly) or may
be currently unknown.

 ■ Human
 ■ Another system

which is:
 ■ Inside the organization
 ■ Outside the organization
 ■ Previously identified
 ■ Unknown

11.1 Security General Scenario 171

Portion of
Scenario

Description Possible Values

Stimulus The stimulus is an attack. An unauthorized attempt to:
 ■ Display data
 ■ Capture data
 ■ Change or delete data
 ■ Access system services
 ■ Change the system’s behavior
 ■ Reduce availability

Artifact What is the target of the attack? ■ System services
 ■ Data within the system
 ■ A component or resources of the system
 ■ Data produced or consumed by the system

Environment What is the state of the system
when the attack occurs?

The system is:
 ■ Online or offline
 ■ Connected to or disconnected from a network
 ■ Behind a firewall or open to a network
 ■ Fully operational
 ■ Partially operational
 ■ Not operational

Response The system ensures that
confidentiality, integrity, and
availability are maintained.

Transactions are carried out in a fashion such that
 ■ Data or services are protected from

unauthorized access
 ■ Data or services are not being manipulated

without authorization
 ■ Parties to a transaction are identified with

assurance
 ■ The parties to the transaction cannot repudiate

their involvements
 ■ The data, resources, and system services will

be available for legitimate use

The system tracks activities within it by
 ■ Recording access or modification
 ■ Recording attempts to access data, resources,

or services
 ■ Notifying appropriate entities (people or

systems) when an apparent attack is occurring

Response
measure

Measures of a system’s
response are related to the
frequency of successful attacks,
the time and cost to resist
and repair attacks, and the
consequential damage of those
attacks.

One or more of the following:
 ■ How much of a resource is compromised or

ensured
 ■ Accuracy of attack detection
 ■ How much time passed before an attack was

detected
 ■ How many attacks were resisted
 ■ How long it takes to recover from a successful

attack
 ■ How much data is vulnerable to a particular

attack

172 Part II Quality Attributes | Chapter 11 Security

Stimulus

Response

Response

Measure

Source

3

2
1

4

Environment

Artifact

A disgruntled

employee at

a remote

location

Attempts to

improperly modify

the pay rate table

Normal operations The unauthorized

access is detected and

the system maintains

an audit trail

Correct data is

restored within

one day

Database

Figure 11.1 shows a sample concrete scenario derived from the general scenario: A dis-
gruntled employee at a remote location attempts to improperly modify the pay rate table
during normal operations. The unauthorized access is detected, the system maintains an
audit trail, and the correct data is restored within one day.

FIGURE 11.1 Sample scenario for security

11.2 Tactics for Security

One method for thinking about how to achieve security in a system is to focus on physical secu-
rity. Secure installations permit only limited access to them (e.g., by using fences and security
checkpoints), have means of detecting intruders (e.g., by requiring legitimate visitors to wear
badges), have deterrence mechanisms (e.g., by having armed guards), have reaction mechanisms
(e.g., automatic locking of doors), and have recovery mechanisms (e.g., off-site backup). These
lead to our four categories of tactics: detect, resist, react, and recover. The goal of security tactics
is shown in Figure 11.2, and Figure 11.3 outlines these categories of tactics.

Detect Attacks

The detect attacks category consists of four tactics: detect intrusion, detect service denial, ver-
ify message integrity, and detect message delay.

 ■ Detect intrusion. This tactic compares network traffic or service request patterns within
a system to a set of signatures or known patterns of malicious behavior stored in a data-
base. The signatures can be based on protocol characteristics, request characteristics,
payload sizes, applications, source or destination address, or port number.

 ■ Detect service denial. This tactic compares the pattern or signature of network traffic
coming into a system to historical profiles of known denial-of-service (DoS) attacks.

11.2 Tactics for Security 173

Attack System detects,

resists, or recovers

Tactics

to Control

Response

FIGURE 11.2 Goal of security tactics

Detect Attacks Recover from

Attacks

React to

Attacks

Security Tactics

Detect Intrusion

Detect Service Denial

Verify Message Integrity

Detect Message Delivery Anomalies

Identify Actors

Authenticate Actors

Authorize Actors

Limit Access

Limit Exposure

Encrypt Data

Separate Entities

Validate Input

Change Credential Settings

Revoke Access

Restrict Login

Inform Actors

Audit

Nonrepudiation

Resist Attacks

FIGURE 11.3 Security tactics

174 Part II Quality Attributes | Chapter 11 Security

 ■ Verify message integrity. This tactic employs techniques such as checksums or hash
values to verify the integrity of messages, resource files, deployment files, and configu-
ration files. A checksum is a validation mechanism wherein the system separately main-
tains redundant information for files and messages, and uses this redundant information
to verify the file or message. A hash value is a unique string generated by a hashing
function, whose input could be files or messages. Even a slight change in the original
files or messages results in a significant change in the hash value.

 ■ Detect message delivery anomalies. This tactic seeks to detect potential man-in-the-
middle-attacks, in which a malicious party is intercepting (and possibly modifying)
messages. If message delivery times are normally stable, then by checking the time that
it takes to deliver or receive a message, it becomes possible to detect suspicious timing
behavior. Similarly, abnormal numbers of connections and disconnections may indicate
such an attack.

Resist Attacks

There are a number of well-known means of resisting an attack:

 ■ Identify actors. Identifying actors (users or remote computers) focuses on identifying the
source of any external input to the system. Users are typically identified through user
IDs. Other systems may be “identified” through access codes, IP addresses, protocols,
ports, or some other means.

 ■ Authenticate actors. Authentication means ensuring that an actor is actually who or
what it purports to be. Passwords, one-time passwords, digital certificates, two-factor
authentication, and biometric identification provide a means for authentication. Another
example is CAPTCHA (Completely Automated Public Turing test to tell Computers and
Humans Apart), a type of challenge–response test that is used to determine whether the
user is human. Systems may require periodic reauthentication, such as when your smart-
phone automatically locks after a period of inactivity.

 ■ Authorize actors. Authorization means ensuring that an authenticated actor has the
rights to access and modify either data or services. This mechanism is usually enabled
by providing some access control mechanisms within a system. Access control can be
assigned per actor, per actor class, or per role.

 ■ Limit access. This tactic involves limiting access to computer resources. Limiting access
might mean restricting the number of access points to the resources, or restricting the
type of traffic that can go through the access points. Both kinds of limits minimize
the attack surface of a system. For example, a demilitarized zone (DMZ) is used when
an organization wants to let external users access certain services but not access other
services. The DMZ sits between the Internet and an intranet, and is protected by a pair
of firewalls, one on either side. The internal firewall is a single point of access to the
intranet; it functions as a limit to the number of access points as well as controls the type
of traffic allowed through to the intranet.

11.2 Tactics for Security 175

 ■ Limit exposure. This tactic focuses on minimizing the effects of damage caused by a
hostile action. It is a passive defense since it does not proactively prevent attackers from
doing harm. Limiting exposure is typically realized by reducing the amount of data or
services that can be accessed through a single access point, and hence compromised in a
single attack.

 ■ Encrypt data. Confidentiality is usually achieved by applying some form of encryp-
tion to data and to communication. Encryption provides extra protection to persistently
maintained data beyond that available from authorization. Communication links, by
comparison, may not have authorization controls. In such cases, encryption is the only
protection for passing data over publicly accessible communication links. Encryption can
be symmetric (readers and writers use the same key) or asymmetric (with readers and
writers use paired public and private keys).

 ■ Separate entities. Separating different entities limits the scope of an attack. Separation
within the system can be done through physical separation on different servers attached
to different networks, the use of virtual machines, or an “air gap”—that is, by having no
electronic connection between different portions of a system. Finally, sensitive data is
frequently separated from nonsensitive data to reduce the possibility of attack by users
who have access to nonsensitive data.

 ■ Validate input. Cleaning and checking input as it is received by a system, or portion of
a system, is an important early line of defense in resisting attacks. This is often imple-
mented by using a security framework or validation class to perform actions such as
filtering, canonicalization, and sanitization of input. Data validation is the main form of
defense against attacks such as SQL injection, in which malicious code is inserted into
SQL statements, and cross-site scripting (XSS), in which malicious code from a server
runs on a client.

 ■ Change credential settings. Many systems have default security settings assigned when
the system is delivered. Forcing the user to change those settings will prevent attack-
ers from gaining access to the system through settings that may be publicly available.
Similarly, many systems require users to choose a new password after some maximum
time period.

React to Attacks

Several tactics are intended to respond to a potential attack.

 ■ Revoke access. If the system or a system administrator believes that an attack is
under way, then access can be severely limited to sensitive resources, even for normally
legitimate users and uses. For example, if your desktop has been compromised by a
virus, your access to certain resources may be limited until the virus is removed from
your system.

 ■ Restrict login. Repeated failed login attempts may indicate a potential attack. Many
systems limit access from a particular computer if there are repeated failed attempts to
access an account from that computer. Of course, legitimate users may make mistakes

176 Part II Quality Attributes | Chapter 11 Security

in attempting to log in, so the limited access may last for only a certain time period.
In some cases, systems double the lockout time period after each unsuccessful login
attempt.

 ■ Inform actors. Ongoing attacks may require action by operators, other personnel, or
cooperating systems. Such personnel or systems—the set of relevant actors—must be
notified when the system has detected an attack.

Recover from Attacks

Once a system has detected and attempted to resist an attack, it needs to recover. Part of recov-
ery is restoration of services. For example, additional servers or network connections may be
kept in reserve for such a purpose. Since a successful attack can be considered a kind of fail-
ure, the set of availability tactics (from Chapter 4) that deal with recovering from a failure can
be brought to bear for this aspect of security as well.

In addition to the availability tactics for recovery, the audit and nonrepudiation tactics can
be used:

 ■ Audit. We audit systems—that is, keep a record of user and system actions and their
effects—to help trace the actions of, and to identify, an attacker. We may analyze audit
trails to attempt to prosecute attackers or to create better defenses in the future.

 ■ Nonrepudiation. This tactic guarantees that the sender of a message cannot later deny
having sent the message and that the recipient cannot deny having received the message.
For example, you cannot deny ordering something from the Internet, and the merchant
cannot disclaim getting your order. This could be achieved with some combination of
digital signatures and authentication by trusted third parties.

11.3 Tactics-Based Questionnaire for Security

Based on the tactics described in Section 11.2, we can create a set of security tactics–inspired
questions, as presented in Table 11.2. To gain an overview of the architectural choices made
to support security, the analyst asks each question and records the answers in the table. The
answers to these questions can then be made the focus of further activities: investigation of
documentation, analysis of code or other artifacts, reverse engineering of code, and so forth.

11.3 Tactics-Based Questionnaire for Security 177

 TABLE 11.2 Tactics-Based Questionnaire for Security

Tactics
Group

Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Detecting
Attacks

Does the system support the
detection of intrusions by, for
example, comparing network
traffic or service request patterns
within a system to a set of
signatures or known patterns
of malicious behavior stored in
a database?

Does the system support
the detection of denial-
of-service attacks by, for
example, comparing the pattern
or signature of network traffic
coming into a system to historical
profiles of known DoS attacks?

Does the system support the
verification of message
integrity via techniques such as
checksums or hash values?

Does the system support the
detection of message delays
by, for example, checking the
time that it takes to deliver a
message?

Resisting
Attacks

Does the system support the
identification of actors through
user IDs, access codes, IP
addresses, protocols, ports, etc.?

Does the system support the
authentication of actors
via, for example, passwords,
digital certificates, two-factor
authentication, or biometrics?

Does the system support the
authorization of actors,
ensuring that an authenticated
actor has the rights to access and
modify either data or services?

Does the system support limiting
access to computer resources
via restricting the number of
access points to the resources, or
restricting the type of traffic that
can go through the access points?

Does the system support limiting
exposure by reducing the amount
of data or services that can be
accessed through a single access
point?

continues

178 Part II Quality Attributes | Chapter 11 Security

Tactics
Group

Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Resisting
Attacks

Does the system support data
encryption, for data in transit or
data at rest?

Does the system design consider
the separation of entities via
physical separation on different
servers attached to different
networks, virtual machines, or an
“air gap”?

Does the system support
changing credential settings,
forcing the user to change those
settings periodically or at critical
events?

Does the system validate input
in a consistent, system-wide
way—for example, using a
security framework or validation
class to perform actions such as
filtering, canonicalization, and
sanitization of external input?

Reacting
to Attacks

Does the system support
revoking access by limiting
access to sensitive resources,
even for normally legitimate users
and uses if an attack is under way?

Does the system support
restricting login in instances
such as multiple failed login
attempts?

Does the system support
informing actors such as
operators, other personnel, or
cooperating systems when the
system has detected an attack?

Recovering
from
Attacks

Does the system support
maintaining an audit trail to
help trace the actions of, and to
identify, an attacker?

Does the system guarantee the
property of nonrepudiation,
which guarantees that the sender
of a message cannot later deny
having sent the message and that
the recipient cannot deny having
received the message?

Have you checked the “recover
from faults” category of tactics
from Chapter 4?

 TABLE 11.2 Tactics-Based Questionnaire for Security continued

11.4 Patterns for Security 179

 11.4 Patterns for Security

Two of the more well-known patterns for security are intercepting validator and intrusion pre-
vention system.

Intercepting Validator

This pattern inserts a software element—a wrapper—between the source and the destination
of messages. This approach assumes greater importance when the source of the messages is
outside the system. The most common responsibility of this pattern is to implement the verify
message integrity tactic, but it can also incorporate tactics such as detect intrusion and detect
service denial (by comparing messages to known intrusion patterns), or detect message deliv-
ery anomalies.

Benefits:
 ■ Depending on the specific validator that you create and deploy, this pattern can cover

most of the waterfront of the “detect attack” category of tactics, all in one package.

Tradeoffs:
 ■ As always, introducing an intermediary exacts a performance price.
 ■ Intrusion patterns change and evolve over time, so this component must be kept up-to-

date so that it maintains its effectiveness. This imposes a maintenance obligation on the
organization responsible for the system.

Intrusion Prevention System

An intrusion prevention system (IPS) is a standalone element whose main purpose is to iden-
tify and analyze any suspicious activity. If the activity is deemed acceptable, it is allowed.
Conversely, if it is suspicious, the activity is prevented and reported. These systems look for
suspicious patterns of overall usage, not just anomalous messages.

Benefits:
 ■ These systems can encompass most of the “detect attacks” and “react to attacks” tactics.

Tradeoffs:
 ■ The patterns of activity that an IPS looks for change and evolve over time, so the pat-

terns database must be constantly updated.
 ■ Systems employing an IPS incur a performance cost.
 ■ IPSs are available as commercial off-the-shelf components, which makes them unneces-

sary to develop but perhaps not entirely suited to a specific application.

Other notable security patterns include compartmentalization and distributed responsi-
bility. Both of these combine the “limit access” and “limit exposure” tactics—the former with
respect to information, the latter with respect to activities.

180 Part II Quality Attributes | Chapter 11 Security

Just as we included (by reference) tactics for availability in our list of security tactics,
patterns for availability also apply to security by counteracting attacks that seek to stop the
system from operating. Consider the availability patterns discussed in Chapter 4 here as well.

11.5 For Further Reading

The architectural tactics that we have described in this chapter are only one aspect of making
a system secure. Other aspects include the following:

 ■ Coding. Secure Coding in C and C++[Seacord 13] describes how to code securely.
 ■ Organizational processes. Organizations must have processes that take responsibility

for various aspects of security, including ensuring that systems are upgraded to put into
place the latest protections. NIST 800-53 provides an enumeration of organizational
processes [NIST 09]. Organizational processes must account for insider threats, which
account for 15–20 percent of attacks. [Cappelli 12] discusses insider threats.

 ■ Technical processes. Microsoft’s Security Development Lifecycle includes modeling of
threats: microsoft.com/download/en/details.aspx?id=16420.

The Common Weakness Enumeration is a list of the most common categories of vulnera-
bilities discovered in systems, including SQL injection and XSS: https://cwe.mitre.org/.

NIST has published several volumes that give definitions of security terms [NIST 04],
categories of security controls [NIST 06], and an enumeration of security controls that an orga-
nization could employ [NIST 09]. A security control could be a tactic, but it could also be
organizational, coding, or technical in nature.

Good books on engineering systems for security include Ross Anderson’s Security
Engineering: A Guide to Building Dependable Distributed Systems, third edition [Anderson 20],
and the series of books by Bruce Schneier.

Different domains have different sets of security practices that are relevant to their
domain. The Payment Card Industry (PCI), for example, has established a set of standards
intended for those involved in credit card processing (pcisecuritystandards.org).

The Wikipedia page on “Security Patterns” contains brief definitions of a large number
of security patterns.

Access control is commonly performed using a standard called OAuth. You can read
about OAuth at https://en.wikipedia.org/wiki/OAuth.

11.6 Discussion Questions

1. Write a set of concrete scenarios for security for an automobile. Consider in particular
how you would specify scenarios regarding control of the vehicle.

http://microsoft.com/download/en/details.aspx?id=16420
https://cwe.mitre.org/
http://pcisecuritystandards.org
https://en.wikipedia.org/wiki/OAuth

11.6 Discussion Questions 181

2. One of the most sophisticated attacks on record was carried out by a virus known as
Stuxnet. Stuxnet first appeared in 2009, but became widely known in 2011 when it
was revealed that it had apparently severely damaged or incapacitated the high-speed
centrifuges involved in Iran’s uranium enrichment program. Read about Stuxnet, and
see if you can devise a defense strategy against it, based on the tactics described in this
chapter.

3. Security and usability are often seen to be at odds with each other. Security often
imposes procedures and processes that seem like needless overhead to the casual user.
Nevertheless, some say that security and usability go (or should go) hand in hand, and
argue that making the system easy to use securely is the best way to promote security to
the users. Discuss.

4. List some examples of critical resources for security, which a DoS attack might target
and try to exhaust. Which architectural mechanisms could be employed to prevent this
kind of attack?

5. Which of the tactics detailed in this chapter will protect against an insider threat? Can
you think of any that should be added?

6. In the United States, Netflix typically accounts for more than 10 percent of all Internet
traffic. How would you recognize a DoS attack on Netflix.com? Can you create a sce-
nario to characterize this situation?

7. The public disclosure of vulnerabilities in an organization’s production systems is a
matter of controversy. Discuss why this is so, and identify the pros and cons of public
disclosure of vulnerabilities. How could this issue affect your role as an architect?

8. Similarly, the public disclosure of an organization’s security measures and the software
to achieve them (via open source software, for example) is a matter of controversy.
Discuss why this is so, identify the pros and cons of public disclosure of security mea-
sures, and describe how this could affect your role as an architect.

http://Netflix.com

This page intentionally left blank

183

12
 Testability

Testing leads to failure, and failure leads to understanding.
—Burt Rutan

A substantial portion of the cost of developing well-engineered systems is taken up by testing.
If a carefully thought-out software architecture can reduce this cost, the payoff is large.

Software testability refers to the ease with which software can be made to demonstrate
its faults through (typically execution-based) testing. Specifically, testability refers to the
probability, assuming that the software has at least one fault, that it will fail on its next test
execution. Intuitively, a system is testable if it “reveals” its faults easily. If a fault is present
in a system, then we want it to fail during testing as quickly as possible. Of course, calculat-
ing this probability is not easy and—as you will see when we discuss response measures for
 testability—other measures will be used. In addition, an architecture can enhance testability
by making it easier both to replicate a bug and to narrow down the possible root causes of the
bug. We do not typically think of these activities as part of testability per se, but in the end just
revealing a bug isn’t enough: You also need to find and fix the bug!

Figure 12.1 shows a simple model of testing in which a program processes input and pro-
duces output. An oracle is an agent (human or computational) that decides whether the output
is correct by comparing the output to the expected result. Output is not just the functionally
produced value, but can also include derived measures of quality attributes such as how long
it took to produce the output. Figure 12.1 also indicates that the program’s internal state can
be shown to the oracle, and an oracle can decide whether that state is correct—that is, it can
detect whether the program has entered an erroneous state and render a judgment as to the
correctness of the program. Setting and examining a program’s internal state is an aspect of
testing that will figure prominently in our tactics for testability.

For a system to be properly testable, it must be possible to control each component’s
inputs (and possibly manipulate its internal state) and then to observe its outputs (and possi-
bly its internal state, either after or on the way to computing the outputs). Frequently, control
and observation are accomplished through the use of a test harness, a set of specialized soft-
ware (or in some cases, hardware) designed to exercise the software under test. Test harnesses
come in various forms, and may include capabilities such as a record-and-playback capability

184 Part II Quality Attributes | Chapter 12 Testability

for data sent across interfaces, or a simulator for an external environment in which a piece
of embedded software is tested, or even distinct software that runs during production (see
the sidebar “Netflix’s Simian Army”). The test harness can provide assistance in executing the
test procedures and recording the output. A test harness and its accompanying infrastructure
can be substantial pieces of software in their own right, with their own architecture, stakehold-
ers, and quality attribute requirements.

Netflix’s Simian Army

Netflix distributes movies and television shows via both DVD and streaming video.

Its streaming video service has been extremely successful. In fact, in 2018, Netflix’s

streaming video accounted for 15 percent of the global Internet traffic. Naturally, high

availability is important to Netflix.

Netflix hosts its computer services in the Amazon EC2 cloud, and the company

utilizes a set of services that were originally called the “Simian Army” as a portion of its

testing process. Netflix began with a Chaos Monkey, which randomly killed processes

in the running system. This allows the monitoring of the effect of failed processes and

gives the ability to ensure that the system will not fail or suffer serious degradation as a

result of a process failure.

The Chaos Monkey acquired some friends to assist in the testing. The Netflix Simian

Army included these, in addition to the Chaos Monkey:

 ■ The Latency Monkey induced artificial delays in network communication to sim-

ulate service degradation and measured whether upstream services responded

appropriately.
 ■ The Conformity Monkey identified instances that did not adhere to best practices and

shut them down. For example, if an instance did not belong to an auto-scaling group,

it would not appropriately scale when demand went up.

Program

Oracle { }

Input Output

Approved
Rejected

Internal state

FIGURE 12.1 A model of testing

Part II Quality Attributes | Chapter 12 Testability 185

 ■ The Doctor Monkey tapped into health checks that ran on each instance as well

as monitoring other external signs of health (e.g., CPU load) to detect unhealthy

instances.
 ■ The Janitor Monkey ensured that the Netflix cloud environment was running free of

clutter and waste. It searched for unused resources and disposed of them.
 ■ The Security Monkey was an extension of Conformity Monkey. It found security

violations or vulnerabilities, such as improperly configured security groups, and

terminated the offending instances. It also ensured that all SSL and digital rights

management (DRM) certificates were valid and not coming up for renewal.
 ■ The 10-18 Monkey (localization-internationalization) detected configuration and run-

time problems in instances serving customers in multiple geographic regions, using

different languages and character sets. The name 10-18 comes from L10n-i18n, a

sort of shorthand for the words “localization” and “internationalization.”

Some members of the Simian Army used fault injection to place faults into the run-

ning system in a controlled and monitored fashion. Other members monitored various

specialized aspects of the system and its environment. Both of these techniques have

broader applicability than just for Netflix.

Given that not all faults are equal in terms of severity, more emphasis should be

placed on finding the most severe faults than on finding other faults. The Simian Army

reflected a determination by Netflix that the targeted faults were the most serious in

terms of their impacts.

Netflix’s strategy illustrates that some systems are too complex and adaptive to be

tested fully, because some of their behaviors are emergent. One aspect of testing in

that arena is logging of operational data produced by the system, so that when failures

occur, the logged data can be analyzed in the lab to try to reproduce the faults.

—LB

Testing is carried out by various developers, users, or quality assurance personnel. Either
portions of the system or the entire system may be tested. The response measures for testability
deal with how effective the tests are in discovering faults and how long it takes to perform the
tests to some desired level of coverage. Test cases can be written by the developers, the testing
group, or the customer. In some cases, testing actually drives development, as is the case with
test-driven development.

 Testing of code is a special case of validation, which entails making sure that an engi-
neered artifact meets its stakeholders’ needs or is suitable for use. In Chapter 21, we will
discuss architectural design reviews—another kind of validation, in which the artifact being
tested is the architecture.

186 Part II Quality Attributes | Chapter 12 Testability

12.1 Testability General Scenario

Table 12.1 enumerates the elements of the general scenario that characterize testability.

TABLE 12.1 Testability General Scenario

Portion of
Scenario

Description Possible Values

Source The test cases can be executed
by a human or an automated test
tool.

One or more of the following:
 ■ Unit testers
 ■ Integration testers
 ■ System testers
 ■ Acceptance testers
 ■ End users

Either run tests manually or use automated
testing tools

Stimulus A test or set of tests is initiated. These tests serve to:
 ■ Validate system functions
 ■ Validate qualities
 ■ Discover emerging threats to quality

Environment Testing occurs at various events
or life-cycle milestones.

The set of tests is executed due to:
 ■ The completion of a coding increment such

as a class, layer, or service
 ■ The completed integration of a subsystem
 ■ The complete implementation of the whole

system
 ■ The deployment of the system into a

production environment
 ■ The delivery of the system to a customer
 ■ A testing schedule

Artifacts The artifact is the portion of the
system being tested and any
required test infrastructure.

The portion being tested:
 ■ A unit of code (corresponding to a module in

the architecture)
 ■ Components
 ■ Services
 ■ Subsystems
 ■ The entire system
 ■ The test infrastructure

Response The system and its test
infrastructure can be controlled
to perform the desired tests, and
the results from the test can be
observed.

One or more of the following:
 ■ Execute test suite and capture results
 ■ Capture activity that resulted in the fault
 ■ Control and monitor the state of the system

12.2 Tactics for Testability 187

Stimulus

Response

Response

Measure

Source

3

2
1

4

Environment

Artifact

Developer Completes a code

unit

Development Performs a test

sequence

85% path

coverage within

30 minutes

Code unit

Portion of
Scenario

Description Possible Values

Response
measure

Response measures are aimed at
representing how easily a system
under test “gives up” its faults or
defects.

One or more of the following:
 ■ Effort to find a fault or class of faults
 ■ Effort to achieve a given percentage of state

space coverage
 ■ Probability of a fault being revealed by the

next test
 ■ Time to perform tests
 ■ Effort to detect faults
 ■ Length of time to prepare test infrastructure
 ■ Effort required to bring the system into a

specific state
 ■ Reduction in risk exposure: size(loss) ×

probability(loss)

 Figure 12.2 shows a concrete scenario for testability: The developer completes a code
unit during development and performs a test sequence whose results are captured and that
gives 85 percent path coverage within 30 minutes.

FIGURE 12. 2 Sample testability scenario

12.2 Tactics for Testability

Tactics for testability are intended to promote easier, more efficient, and more capable testing.
Figure 12.3 illustrates the goal of the testability tactics. Architectural techniques for enhanc-
ing the software testability have not received as much attention as other quality attribute dis-
ciplines such as modifiability, performance, and availability, but as we stated earlier, anything
the architect can do to reduce the high cost of testing will yield a significant benefit.

188 Part II Quality Attributes | Chapter 12 Testability

Tests executed Faults detected

Tactics

to Control

Response

FIGURE 12.3 The goal of testability tactics

 There are two categories of tactics for testability. The first category deals with adding
controllability and observability to the system. The second deals with limiting complexity in
the system’s design.

Control and Observe System State

Control and observation are so central to testability that some authors define testability in
those terms. The two go hand in hand; it makes no sense to control something if you can’t
observe what happens when you do. The simplest form of control and observation is to pro-
vide a software component with a set of inputs, let it do its work, and then observe its outputs.
However, the control-and-observe category of testability tactics provides insights into soft-
ware that go beyond its inputs and outputs. These tactics cause a component to maintain some
sort of state information, allow testers to assign a value to that state information, and make
that information accessible to testers on demand. The state information might be an operating
state, the value of some key variable, performance load, intermediate process steps, or any-
thing else useful to re-creating component behavior. Specific tactics include the following:

 ■ Specialized interfaces. Having specialized testing interfaces allows you to control or
capture variable values for a component either through the application of a test harness
or through normal execution. Examples of specialized test routines, some of which
might otherwise not be available except for testing purposes, include these:

 ■ A set and get method for important variables, modes, or attributes
 ■ A report method that returns the full state of the object
 ■ A reset method to set the internal state (e.g., all the attributes of a class) to a specified

internal state
 ■ A method to turn on verbose output, various levels of event logging, performance

instrumentation, or resource monitoring

12.2 Tactics for Testability 189

Specialized testing interfaces and methods should be clearly identified or kept sepa-
rate from the access methods and interfaces for required functionality, so that they can
be removed if needed. Note, however, that in performance-critical and some safety-
critical systems, it is problematic to field different code than that which was tested. If
you remove the test code, how will you know the code released has the same behavior,
particularly the same timing behavior, as the code you tested? Thus this strategy is more
effective for other kinds of systems.

 ■ Record/playback. The state that caused a fault is often difficult to re-create. Recording
the state when it crosses an interface allows that state to be used to “play the system
back” and to re-create the fault. Record refers to capturing information crossing an inter-
face and playback refers to using it as input for further testing.

 ■ Localize state storage. To start a system, subsystem, or component in an arbitrary state
for a test, it is most convenient if that state is stored in a single place. By contrast, if the
state is buried or distributed, this approach becomes difficult, if not impossible. The state
can be fine-grained, even bit-level, or coarse-grained to represent broad abstractions or
overall operational modes. The choice of granularity depends on how the states will be
used in testing. A convenient way to “externalize” state storage (i.e., to make it amenable
to manipulation through interface features) is to use a state machine (or state machine
object) as the mechanism to track and report current state.

 ■ Abstract data sources. Similar to the case when controlling a program’s state, the ability
to control its input data makes it easier to test. Abstracting the interfaces lets you substi-
tute test data more easily. For example, if you have a database of customer transactions,
you could design your architecture so that you can readily point your test system at other
test databases, or possibly even to files of test data instead, without having to change
your functional code.

 ■ Sandbox. “Sandboxing” refers to isolating an instance of the system from the real world
to enable experimentation that is unconstrained by any worries about having to undo the
consequences of the experiment. Testing is facilitated by the ability to operate the system
in such a way that it has no permanent consequences, or so that any consequences can be
rolled back. The sandbox tactic can be used for scenario analysis, training, and simula-
tion. Simulation, in particular, is a commonly employed strategy for testing and training
in contexts where failure in the real world might lead to severe consequences.

One common form of sandboxing is to virtualize resources. Testing a system often
involves interacting with resources whose behavior is outside the system’s control. Using
a sandbox, you can build a version of the resource whose behavior is under your control.
For example, the system clock’s behavior is typically not under our control—it incre-
ments one second each second. Thus, if we want to make the system think it’s midnight
on the day when all of the data structures are supposed to overflow, we need a way to
do that, because waiting around is a poor choice. When we can abstract system time
from clock time, we can allow the system (or components) to run at faster than wall-
clock time, and test the system (or components) at critical time boundaries such as the
next transition to or from Daylight Savings Time. Similar virtualizations could be done
for other resources, such as the memory, battery, network, and so on. Stubs, mocks, and
dependency injection are simple but effective forms of virtualization.

190 Part II Quality Attributes | Chapter 12 Testability

 ■ Executable assertions. With this tactic, assertions are (usually) hand-coded and placed at
desired locations to indicate when and where a program is in a faulty state. The assertions
are often designed to check that data values satisfy specified constraints. Assertions are
defined in terms of specific data declarations, and they must be placed where the data val-
ues are referenced or modified. Assertions can be expressed as pre- and post-conditions for
each method and also as class-level invariants. This increases the system’s observability, as
an assertion can be flagged as having failed. Assertions systematically inserted where data
values change can be seen as a manual way to produce an “extended” type. Essentially, the
user is annotating a type with additional checking code. Anytime an object of that type is
modified, the checking code executes automatically, with warnings being generated if any
conditions are violated. To the extent that the assertions cover the test cases, they effectively
embed the test oracle in the code—assuming the assertions are correct and correctly coded.

All of these tactics add some capability or abstraction to the software that (were we not inter-
ested in testing) otherwise would not be there. They can be seen as augmenting bare-bones,
get-the-job-done software with more elaborate software that has some special capabilities
designed to enhance the efficiency and effectiveness of testing.

In addition to the testability tactics, a number of techniques are available for replacing
one component with a different version of itself that facilitates testing:

 ■ Component replacement simply swaps the implementation of a component with a dif-
ferent implementation that (in the case of testability) has features that facilitate testing.
Component replacement is often accomplished in a system’s build scripts.

 ■ Preprocessor macros, when activated, can expand to state-reporting code or activate
probe statements that return or display information, or return control to a testing console.

 ■ Aspects (in aspect-oriented programs) can handle the cross-cutting concern of how the
state is reported.

Limit Complexity

Complex software is much harder to test. Its operating state space is large, and (all else being
equal) it is more difficult to re-create an exact state in a large state space than to do so in a
small state space. Because testing is not just about making the software fail, but also about
finding the fault that caused the failure so that it can be removed, we are often concerned with
making behavior repeatable. This category includes two tactics:

 ■ Limit structural complexity. This tactic includes avoiding or resolving cyclic depen-
dencies between components, isolating and encapsulating dependencies on the external
environment, and reducing dependencies between components in general (typically
realized by lowering the coupling between components). For example, in object-oriented
systems you can simplify the inheritance hierarchy:

 ■ Limit the number of classes from which a class is derived, or the number of classes
derived from a class.

 ■ Limit the depth of the inheritance tree, and the number of children of a class.
 ■ Limit polymorphism and dynamic calls.

12.2 Tactics for Testability 191

One structural metric that has been shown empirically to correlate to testability is
the response of a class. The response of class C is a count of the number of methods of
C plus the number of methods of other classes that are invoked by the methods of C.
Keeping this metric low can increase testability. In addition, architecture-level coupling
metrics, such as propagation cost and decoupling level, can be used to measure and track
the overall level of coupling in a system’s architecture.

Ensuring that the system has high cohesion, loose coupling, and separation of
 concerns—all modifiability tactics (see Chapter 8)—can also help with testability.
These characteristics limit the complexity of the architectural elements by giving
each element a focused task such that it has limited interactions with other elements.
Separation of concerns can help achieve controllability and observability, as well as
reduce the size of the overall program’s state space.

Finally, some architectural patterns lend themselves to testability. In a layered pattern,
you can test lower layers first, then test higher layers with confidence in the lower layers.

 ■ Limit nondeterminism. The counterpart to limiting structural complexity is limiting
behavioral complexity. When it comes to testing, nondeterminism is a pernicious form of
complex behavior, and nondeterministic systems are more difficult to test than deter-
ministic systems. This tactic involves finding all the sources of nondeterminism, such as
unconstrained parallelism, and weeding them out to the extent possible. Some sources of
nondeterminism are unavoidable—for instance, in multi-threaded systems that respond
to unpredictable events—but for such systems, other tactics (such as record/playback) are
available to help manage this complexity.

Figure 12.4 summarizes the tactics used for testability.

Control and Observe

System State

Limit Complexity

Testability Tactics

Specialized Interfaces

Record/Playback

Localize State Storage

Abstract Data Sources

Sandbox

Executable Assertions

Limit Structural Complexity

Limit Nondeterminism

FIGURE 12.4 Testability tactics

192 Part II Quality Attributes | Chapter 12 Testability

12.3 Tactics-Based Questionnaire for Testability

Based on the tactics described in Section 12.2, we can create a set of tactics-inspired ques-
tions, as presented in Table 12.2. To gain an overview of the architectural choices made to
support testability, the analyst asks each question and records the answers in the table. The
answers to these questions can then be made the focus of further activities: investigation of
documentation, analysis of code or other artifacts, reverse engineering of code, and so forth.

TABLE 12.2 Tactics-Based Questionnaire for Testability

Tactics
Group

Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Control and
Observe
System
State

Does your system have
specialized interfaces for
getting and setting values?

Does your system have a
record/playback
mechanism?

Is your system’s state
storage localized?

Does your system abstract
its data sources?

Can some or all of your
system operate in a
sandbox?

Is there a role for executable
assertions in your system?

Limit
Complexity

Does your system limit
structural complexity in a
systematic way?

Is there nondeterminism in
your system, and is there a
way to control or limit this
nondeterminism?

12.4 Patterns for Testability

Patterns for testability all make it easier to decouple test-specific code from the actual func-
tionality of a system. We discuss three patterns here: dependency injection, strategy, and inter-
cepting filter.

12.4 Patterns for Testability 193

Dependency Injection Pattern

In the dependency injection pattern, a client’s dependencies are separated from its behavior.
This pattern makes use of inversion of control. Unlike in traditional declarative programming,
where control and dependencies reside explicitly in the code, inversion of control dependen-
cies means that control and dependencies are provided from, and injected into the code, by
some external source.

In this pattern, there are four roles:

 ■ A service (that you want to make broadly available)
 ■ A client of the service
 ■ An interface (used by the client, implemented by the service)
 ■ An injector (that creates an instance of the service and injects it into the client)

When an interface creates the service and injects it into the client, a client is written with
no knowledge of a concrete implementation. In other words, all of the implementation specif-
ics are injected, typically at runtime.

Benefits:
 ■ Test instances can be injected (rather than production instances), and these test instances

can manage and monitor the state of the service. Thus the client can be written with no
knowledge of how it is to be tested. This is, in fact, how many modern testing frame-
works are implemented.

Tradeoffs:
 ■ Dependency injection makes runtime performance less predictable, because it might

change the behavior being tested.
 ■ Adding this pattern adds a small amount of up-front complexity and may require retrain-

ing of developers to think in terms of inversion of control.

Strategy Pattern

In the strategy pattern, a class’s behavior can be changed at runtime. This pattern is often
employed when multiple algorithms can be employed to perform a given task, and the specific
algorithm to be used can be chosen dynamically. The class simply contains an abstract method
for the desired functionality, with the concrete version of this method being selected based on
contextual factors. This pattern is often used to replace non-test versions of some functionality
with test versions that provide additional outputs, additional internal sanity checking, and so
forth.

Benefits:
 ■ This pattern makes classes simpler, by not combining multiple concerns (such as differ-

ent algorithms for the same function) into a single class.

194 Part II Quality Attributes | Chapter 12 Testability

Tradeoffs:
 ■ The strategy pattern, like all design patterns, adds a small amount of up-front complex-

ity. If the class is simple or if there are few runtime choices, this added complexity is
likely wasted.

 ■ For small classes, the strategy pattern can make code slightly less readable. However, as
complexity grows, breaking up the class in this way can enhance readability.

Intercepting Filter Pattern

The intercepting filter pattern is used to inject pre- and post-processing to a request or a
response between a client and a service. Any number of filters can be defined and applied, in
an arbitrary order, to the request before passing the request to the eventual service. For exam-
ple, logging and authentication services are filters that are often useful to implement once and
apply universally. Testing filters can be inserted in this way, without disturbing any of the
other processing in the system.

Benefits:
 ■ This pattern, like the strategy pattern, makes classes simpler, by not placing all of the

pre- and post-processing logic in the class.
 ■ Using an intercepting filter can be a strong motivator for reuse and can dramatically

reduce the size of the code base.

Tradeoffs:
 ■ If a large amount of data is being passed to the service, this pattern can be highly inef-

ficient and can add a nontrivial amount of latency, as each filter makes a complete pass
over the entire input.

12.5 For Further Reading

The literature on software testing would sink a battleship, but the writing about how to make
your system more testable from an architectural standpoint is less voluminous. For a good
overview of testing, see [Binder 00]. Jeff Voas’s foundational work on testability and the rela-
tionship between testability and reliability is worth investigating, too. There are several papers
to choose from, but [Voas 95] is a good start that will point you to others.

Bertolino and Strigini [Bertolino 96a, 96b] are the developers of the model of testing
shown in Figure 12.1.

“Uncle Bob” Martin has written extensively on test-driven development and the rela-
tionship between architecture and testing. The best book on this is Robert C. Martin’s Clean
Architecture: A Craftsman’s Guide to Software Structure and Design [Martin 17]. An early
and authoritative reference for test-driven development was written by Kent Beck: Test-Driven
Development by Example [Beck 02].

12.6 Discussion Questions 195

The propagation cost coupling metric was first described in [MacCormack 06]. The
decoupling level metric was described in [Mo 16].

Model checking is a technique that symbolically executes all possible code paths. The
size of a system that can be validated using model checking is limited, but device drivers
and microkernels have successfully been model checked. See https://en.wikipedia.org/wiki/
Model_checking for a list of model checking tools.

 12.6 Discussion Questions

1. A testable system is one that gives up its faults easily. That is, if a system contains a
fault, then it doesn’t take long or much effort to make that fault show up. In contrast,
fault tolerance is all about designing systems that jealously hide their faults; there,
the whole idea is to make it very difficult for a system to reveal its faults. Is it possible
to design a system that is both highly testable and highly fault tolerant, or are these two
design goals inherently incompatible? Discuss.

2. What other quality attributes do you think testability is most in conflict with? What
other quality attributes do you think testability is most compatible with?

3. Many of the tactics for testability are also useful for achieving modifiability. Why do
you think that is?

4. Write some concrete testability scenarios for a GPS-based navigation app. What tactics
would you employ in a design to respond to these scenarios?

5. One of our tactics is to limit nondeterminism, and one method is to use locking to
enforce synchronization. What impact does the use of locks have on other quality
attributes?

6. Suppose you’re building the next great social networking system. You anticipate that
within a month of your debut, you will have half a million users. You can’t pay half a
million people to test your system, yet it has to be robust and easy to use when all half
a million are banging away at it. What should you do? What tactics will help you? Write
a testability scenario for this social network system.

7. Suppose you use executable assertions to improve testability. Make a case for, and then
a case against, allowing the assertions to run in the production system as opposed to
removing them after testing.

https://en.wikipedia.org/wiki/Model_checking
https://en.wikipedia.org/wiki/Model_checking

This page intentionally left blank

197

13
 Usability

People ignore design that ignores people.
—Frank Chimero

Usability is concerned with how easy it is for the user to accomplish a desired task and the
kind of user support that the system provides. Over the years, a focus on usability has shown
itself to be one of the cheapest and easiest ways to improve a system’s quality (or more pre-
cisely, the user’s perception of quality) and hence end-user satisfaction.

Usability comprises the following areas:

 ■ Learning system features. If the user is unfamiliar with a particular system or a partic-
ular aspect of it, what can the system do to make the task of learning easier? This might
include providing help features.

 ■ Using a system efficiently. What can the system do to make the user more efficient in
its operation? This might include enabling the user to redirect the system after issuing a
command. For example, the user may wish to suspend one task, perform several opera-
tions, and then resume that task.

 ■ Minimizing the impact of user errors. What can the system do to ensure that a user error
has minimal impact? For example, the user may wish to cancel a command issued incor-
rectly or undo its effects.

 ■ Adapting the system to user needs. How can the user (or the system itself) adapt to make
the user’s task easier? For example, the system may automatically fill in URLs based on
a user’s past entries.

 ■ Increasing confidence and satisfaction. What does the system do to give the user
confidence that the correct action is being taken? For example, providing feedback that
indicates that the system is performing a long-running task, along with the completion
percentage so far, will increase the user’s confidence in the system.

Researchers focusing on human–computer interactions have used the terms user initia-
tive, system initiative, and mixed initiative to describe which of the human–computer pair
takes the initiative in performing certain actions and how the interaction proceeds. Usability
scenarios can combine initiatives from both perspectives. For example, when canceling a com-
mand, the user issues a cancel (user initiative) and the system responds. During the cancel,

198 Part II Quality Attributes | Chapter 13 Usability

however, the system may display a progress indicator (system initiative). Thus the cancel oper-
ation may comprise a mixed initiative. In this chapter, we will use this distinction between
user initiative and system initiative to discuss the tactics that the architect uses to achieve the
various scenarios.

There is a strong connection between the achievement of usability and modifiability. The
user interface design process consists of generating and then testing a user interface design. It
is highly unlikely that you will get this right the first time, so you should plan to iterate this
process—and hence you should design your architecture to make that iteration less painful.
This is why usability is strongly connected to modifiability. As you iterate, deficiencies in the
design are—one hopes—corrected and the process repeats.

This connection has resulted in standard patterns to support user interface design. Indeed,
one of the most helpful things you can do to achieve usability is to modify your system, over and
over, to make it better as you learn from your users and discover improvements to be made.

13.1 Usability General Scenario

Table 13.1 enumerates the elements of the general scenario that characterize usability.

TABLE 13.1 Usability General Scenario

Portion of
Scenario

Description Possible Values

Source Where does the stimulus come
from?

The end user (who may be in a specialized role,
such as a system or network administrator) is the
primary source of the stimulus for usability.

An external event arriving at a system (to which
the user may react) may also be a stimulus source.

Stimulus What does the end user want? End user wants to:
 ■ Use a system efficiently
 ■ Learn to use the system
 ■ Minimize the impact of errors
 ■ Adapt the system
 ■ Configure the system

Environment When does the stimulus reach
the system?

The user actions with which usability is concerned
always occur at runtime or at system configuration
time.

Artifacts What portion of the system is
being stimulated?

Common examples include:
 ■ A GUI
 ■ A command-line interface
 ■ A voice interface
 ■ A touch screen

13.1 Usability General Scenario 199

Portion of
Scenario

Description Possible Values

Response How should the system
respond?

The system should:
 ■ Provide the user with the features needed
 ■ Anticipate the user’s needs
 ■ Provide appropriate feedback to the user

Response
measure

How is the response
measured?

One or more of the following:
 ■ Task time
 ■ Number of errors
 ■ Learning time
 ■ Ratio of learning time to task time
 ■ Number of tasks accomplished
 ■ User satisfaction
 ■ Gain of user knowledge
 ■ Ratio of successful operations to total

operations
 ■ Amount of time or data lost when an error

occurs

Figure 13.1 gives an example of a concrete usability scenario that you could generate
using Table 13.1: The user downloads a new application and is using it productively after 2
minutes of experimentation.

Stimulus

Response

Response

Measure

Source

3

2
1

4

Environment

Artifact

User Downloads a new

application

Runtime Using it

productively

After only 2 minutes

of experimentation

Existing platform

FIGURE 13.1 Sample usability scenario

200 Part II Quality Attributes | Chapter 13 Usability

13.2 Tactics for Usability

Figure 13.2 shows the goal of the set of usability tactics.

User interaction User given

appropriate feedback

and assistance

Tactics

to Control

Response

FIGURE 13.2 The goal of usability tactics

Support User Initiative

Once a system is executing, usability is enhanced by giving the user feedback about what the
system is doing and by allowing the user to make appropriate responses. For example, the tac-
tics described next—cancel, undo, pause/resume, and aggregate—support the user in either
correcting errors or being more efficient.

The architect designs a response for user initiative by enumerating and allocating the
responsibilities of the system to respond to the user command. Here are some common exam-
ples of tactics to support user initiative:

 ■ Cancel. When the user issues a cancel command, the system must be listening for it
(thus there is the responsibility to have a constant listener that is not blocked by the
actions of whatever is being canceled); the activity being canceled must be terminated;
any resources being used by the canceled activity must be freed; and components that
are collaborating with the canceled activity must be informed so that they can also take
appropriate action.

 ■ Undo. To support the ability to undo, the system must maintain a sufficient amount of
information about system state so that an earlier state may be restored, at the user’s request.
Such a record may take the form of state “snapshots”—for example, checkpoints—
or a set of reversible operations. Not all operations can be easily reversed. For exam-
ple, changing all occurrences of the letter “a” to the letter “b” in a document cannot be
reversed by changing all instances of “b” to “a”, because some of those instances of “b”
may have existed prior to the original change. In such a case, the system must maintain a

13.2 Tactics for Usability 201

more elaborate record of the change. Of course, some operations cannot be undone at all:
You can’t unship a package or unfire a missile, for example.

Undo comes in flavors. Some systems allow a single undo (where invoking undo
again reverts you to the state in which you commanded the first undo, essentially undo-
ing the undo). In other systems, commanding multiple undo operations steps you back
through many previous states, either up to some limit or all the way back to the time
when the application was last opened.

 ■ Pause/resume. When a user has initiated a long-running operation—say, downloading a
large file or a set of files from a server—it is often useful to provide the ability to pause
and resume the operation. Pausing a long-running operation may be done to temporarily
free resources so that they may be reallocated to other tasks.

 ■ Aggregate. When a user is performing repetitive operations, or operations that affect a
large number of objects in the same way, it is useful to provide the ability to aggregate
the lower-level objects into a single group, so that the operation may be applied to the
group, thus freeing the user from the drudgery, and potential for mistakes, of doing the
same operation repeatedly. An example is aggregating all of the objects in a slide and
changing the text to 14-point font.

Support System Initiative

When the system takes the initiative, it must rely on a model of the user, a model of the task
being undertaken by the user, or a model of the system state. Each model requires various
types of input to accomplish its initiative. The support system initiative tactics identify the
models the system uses to predict either its own behavior or the user’s intention. Encapsulating
this information will make it easier to tailor or modify it. Tailoring and modification can either
be dynamically based on past user behavior or happen offline during development. The rele-
vant tactics are described here:

 ■ Maintain task model. The task model is used to determine context so the system can
have some idea of what the user is attempting to do and provide assistance. For example,
many search engines provide predictive type-ahead capabilities, and many mail clients
provide spell-correction. Both of these functions are based on task models.

 ■ Maintain user model. This model explicitly represents the user’s knowledge of the sys-
tem, the user’s behavior in terms of expected response time, and other aspects specific to
a user or a class of users. For example, language-learning apps are constantly monitoring
areas where a user makes mistakes and then providing additional exercises to correct
those behaviors. A special case of this tactic is commonly found in user interface cus-
tomization, wherein a user can explicitly modify the system’s user model.

 ■ Maintain system model. The system maintains an explicit model of itself. This is used
to determine expected system behavior so that appropriate feedback can be given to the
user. A common manifestation of a system model is a progress bar that predicts the time
needed to complete the current activity.

Figure 13.3 summarizes the tactics to achieve usability.

202 Part II Quality Attributes | Chapter 13 Usability

Support User Initiative Support System Initiative

Usability Tactics

Cancel

Undo

Pause/Resume

Aggregate

Maintain Task Model

Maintain User Model

Maintain System Model

FIGURE 13.3 Usability tactics

13.3 Tactics-Based Questionnaire for Usability

Based on the tactics described in Section 13.2, we can create a set of usability tactics–inspired
questions, as presented in Table 13.2. To gain an overview of the architectural choices made
to support usability, the analyst asks each question and records the answers in the table. The
answers to these questions can then be made the focus of further activities: investigation of
documentation, analysis of code or other artifacts, reverse engineering of code, and so forth.

TABLE 13.2 Tactics-Based Questionnaire for Usability

Tactics
Group

Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Support
User
Initiative

Is the system able to listen to and
respond to a cancel command?

Is it possible to undo the last
command, or the last several
commands?

Is it possible to pause and then
resume long-running operations?

Is it possible to aggregate UI
objects into a group and apply
operations on the group?

13.4 Patterns for Usability 203

Tactics
Group

Tactics Question Supported?
(Y/N)

Risk Design
Decisions
and
Location

Rationale
and
Assumptions

Support
System
Initiative

Does the system maintain a
model of the task?

Does the system maintain a
model of the user?

Does the system maintain a
model of itself?

13.4 Patterns for Usability

We will briefly discuss three usability patterns: model-view-controller (MVC) and its variants,
observer, and memento. These patterns primarily promote usability by promoting separation of
concerns, which in turn makes it easy to iterate the design of a user interface. Other kinds of pat-
terns are also possible—including patterns used in the design of the user interface itself, such as
breadcrumbs, shopping cart, or progressive disclosure—but we will not discuss them here.

Model-View-Controller

MVC is likely the most widely known pattern for usability. It comes in many variants, such as
MVP (model-view-presenter), MVVM (model-view-view-model), MVA (model-view-adapter),
and so forth. Essentially all of these patterns are focused on separating the model—the under-
lying “business” logic of the system—from its realization in one or more UI views. In the
original MVC model, the model would send updates to a view, which a user would see and
interact with. User interactions—key presses, button clicks, mouse motions, and so forth—are
transmitted to the controller, which interprets them as operations on the model and then sends
those operations to the model, which changes its state in response. The reverse path was also
a portion of the original MVC pattern. That is, the model might be changed and the controller
would send updates to the view.

The sending of updates depends on whether the MVC is in one process or is distributed
across processes (and potentially across the network). If the MVC is in one process, then the
updates are sent using the observer pattern (discussed in the next subsection). If the MVC is
distributed across processes, then the publish-subscribe pattern is often used to send updates
(see Chapter 8).

Benefits:
 ■ Because MVC promotes clear separation of concerns, changes to one aspect of the sys-

tem, such as the layout of the UI (the view), often have no consequences for the model or
the controller.

204 Part II Quality Attributes | Chapter 13 Usability

 ■ Additionally, because MVC promotes separation of concerns, developers can be working
on all aspects of the pattern—model, view, and controller—relatively independently and
in parallel. These separate aspects can also be tested in parallel.

 ■ A model can be used in systems with different views, or a view might be used in systems
with different models.

Tradeoffs:
 ■ MVC can become burdensome for complex UIs, as information is often sprinkled

throughout several components. For example, if there are multiple views of the same
model, a change to the model may require changes to several otherwise unrelated
components.

 ■ For simple UIs, MVC adds up-front complexity that may not pay off in downstream
savings.

 ■ MVC adds a small amount of latency to user interactions. While this is generally accept-
able, it might be problematic for applications that require very low latency.

Observer

The observer pattern is a way to link some functionality with one or more views. This pat-
tern has a subject—the entity being observed—and one or more observers of that subject.
Observers need to register themselves with the subject; then, when the state of the subject
changes, the observers are notified. This pattern is often used to implement MVC (and its
variants)—for example, as a way to notify the various views of changes to the model.

Benefits:
 ■ This pattern separates some underlying functionality from the concern of how, and how

many times, this functionality is presented.
 ■ The observer pattern makes it easy to change the bindings between the subject and the

observers at runtime.

Tradeoffs:
 ■ The observer pattern is overkill if multiple views of the subject are not required.
 ■ The observer pattern requires that all observers register and de-register with the subject.

If observers neglect to de-register, then their memory is never freed, which effectively
results in a memory leak. In addition, this can negatively affect performance, since obso-
lete observers will continue to be invoked.

 ■ Observers may need to do considerable work to determine if and how to reflect a state
update, and this work may be repeated for each observer. For example, suppose the sub-
ject is changing its state at a fine granularity, such as a temperature sensor that reports
1/100th degree fluctuations, but the view updates changes only in full degrees. In such
cases where there is an “impedance mismatch,” substantial processing resources may
be wasted.

13.6 Discussion Questions 205

Memento

The memento pattern is a common way to implement the undo tactic. This pattern features
three major components: the originator, the caretaker, and the memento. The originator is
processing some stream of events that change its state (originating from user interaction). The
caretaker is sending events to the originator that cause it to change its state. When the care-
taker is about to change the state of the originator, it can request a memento—a snapshot of
the existing state—and can use this artifact to restore that existing state if needed, by simply
passing the memento back to the originator. In this way, the caretaker knows nothing about
how state is managed; the memento is simply an abstraction that the caretaker employs.

Benefits:
 ■ The obvious benefit of this pattern is that you delegate the complicated process of imple-

menting undo, and figuring out what state to preserve, to the class that is actually cre-
ating and managing that state. In consequence, the originator’s abstraction is preserved
and the rest of the system does not need to know the details.

Tradeoffs:
 ■ Depending on the nature of the state being preserved, the memento can consume arbi-

trarily large amounts of memory, which can affect performance. In a very large docu-
ment, try cutting and pasting many large sections, and then undoing all of that. This is
likely to result in your text processor noticeably slowing down.

 ■ In some programming languages, it is difficult to enforce the memento as an opaque
abstraction.

13.5 For Further Reading

Claire Marie Karat has investigated the relation between usability and business advantage
[Karat 94].

Jakob Nielsen has also written extensively on this topic, including a calculation of the
ROI of usability [Nielsen 08].

Bonnie John and Len Bass have investigated the relation between usability and software
architecture. They have enumerated approximately two dozen usability scenarios that have
architectural impact and given associated patterns for these scenarios [Bass 03].

Greg Hartman has defined attentiveness as the system’s ability to support user initiative
and allow cancel or pause/resume [Hartman 10].

13.6 Discussion Questions

1. Write a concrete usability scenario for your automobile that specifies how long it takes
you to set your favorite radio stations. Now consider another part of the driver experience

206 Part II Quality Attributes | Chapter 13 Usability

and create scenarios that test other aspects of the response measures from the general
scenario table (Table 13.1).

2. How might usability trade off against security? How might it trade off against
performance?

3. Pick a few of your favorite websites that do similar things, such as social networking or
online shopping. Now pick one or two appropriate responses from the usability gen-
eral scenario (such as “anticipate the user’s need”) and an appropriate corresponding
response measure. Using the response and response measure you chose, compare the
websites’ usability.

4. Why is it that in so many systems, the cancel button in a dialog box appears to be unre-
sponsive? Which architectural principles do you think were ignored in these systems?

5. Why do you think that progress bars frequently behave erratically, moving from 10 to
90 percent in one step and then getting stuck on 90 percent?

6. Research the crash of Air France flight 296 into the forest at Habsheim, France, in 1988.
The pilots said they were unable to read the digital display of the radio altimeter or hear
its audible readout. In this context, discuss the relationship between usability and safety.

207

14
Working with Other Quality

Attributes

Quality is not what happens when what you do matches your
intentions. It is what happens when what you do matches

your customers’ expectations.
—Guaspari

Chapters 4–13 each dealt with a particular quality attribute (QA) that is important to software
systems. Each of those chapters discussed how its particular QA is defined, gave a general
scenario for that QA, and showed how to write specific scenarios to express precise shades of
meaning concerning that QA. In addition, each provided a collection of techniques to achieve
that QA in an architecture. In short, each chapter presented a kind of portfolio for specifying
and designing to achieve a particular QA.

However, as you can no doubt infer, those ten chapters only begin to scratch the surface
of the various QAs that you might need in a software system you’re working on.

This chapter will show how to build the same kind of specification and design approach
for a QA not covered in our “A list.”

14.1 Other Kinds of Quality Attributes

The quality attributes covered so far in Part II of this book all have something in common:
They deal with either the system in operation, or the development project that creates and
fields the system. Put another way, to measure one of those QAs, either you measure the sys-
tem while it is running (availability, energy efficiency, performance, security, safety, usabil-
ity), or you measure the people doing something to the system while it is not (modifiability,
deployability, integrability, testability). While these certainly give you an “A list” of important
QAs, there are other qualities that could be equally useful.

208 Part II Quality Attributes | Chapter 14 Working with Other Quality Attributes

Quality Attributes of the Architecture

Another category of QAs focuses on measuring the architecture itself. Here are three examples:

 ■ Buildability. This QA measures how well the architecture lends itself to rapid and effi-
cient development. It is measured by the cost (typically in money or time) that it takes
to turn the architecture into a working product that meets all of its requirements. In that
sense, it resembles the other QAs that measure a development project, but it differs in
that the knowledge targeted by the measurement relates to the architecture itself.

 ■ Conceptual integrity. Conceptual integrity refers to consistency in the design of the
architecture, and it contributes to the architecture’s understandability and leads to less
confusion and more predictability in its implementation and maintenance. Conceptual
integrity demands that the same thing is done in the same way through the architecture.
In an architecture with conceptual integrity, less is more. For example, there are count-
less ways that components can send information to each other: messages, data structures,
signaling of events, and so forth. An architecture with conceptual integrity would feature
a small number of ways, and provide alternatives only if there is a compelling reason to
do so. Similarly, components should all report and handle errors in the same way, log
events or transactions in the same way, interact with the user in the same way, sanitize
data in the same way, and so forth.

 ■ Marketability. An architecture’s “marketability” is another QA of concern. Some sys-
tems are well known for their architectures, and these architectures sometimes carry
a meaning all their own, independent of what other QAs they bring to the system. The
current emphasis on building cloud-based and micro-service-based systems has taught
us that the perception of an architecture can be at least as important as the actual quali-
ties that the architecture brings. Many organizations, for example, have felt compelled to
build cloud-based systems (or some other technologie du jour) whether or not that was
the correct technical choice.

Development Distributability

Development distributability is the quality of designing the software to support distributed
software development. Like modifiability, this quality is measured in terms of the activities
of a development project. Many systems these days are developed using globally distrib-
uted teams. One problem that must be overcome when adopting this approach is coordinat-
ing the teams’ activities. The system should be designed so that coordination among teams is
minimized—that is, the major subsystems should exhibit low coupling. This minimal coordi-
nation needs to be achieved both for the code and for the data model. Teams working on mod-
ules that communicate with each other may need to negotiate the interfaces of those modules.
When a module is used by many other modules, each developed by a different team, com-
munication and negotiation become more complex and burdensome. Thus the architectural
structure and the social (and business) structure of the project need to be reasonably aligned.
Similar considerations apply for the data model. Scenarios for development distributability

14.2 Using Standard Lists of Quality Attributes—Or Not 209

will deal with the compatibility of the communication structures and data model of the sys-
tem being developed and the coordination mechanisms utilized by the organizations doing the
development.

System Quality Attributes

Physical systems, such as aircraft and automobiles and kitchen appliances, that rely on soft-
ware embedded within them are designed to meet a whole litany of QAs: weight, size, electric
consumption, power output, pollution output, weather resistance, battery life, and on and on.
Often the software architecture can have a profound effect on the system’s QAs. For example,
software that makes inefficient use of computing resources might require additional memory,
a faster processor, a bigger battery, or even an additional processor (we dealt with the topic of
energy efficiency as a QA in Chapter 6). Additional processors will add to a system’s power
consumption, of course, but also to its weight, its physical profile, and expense.

Conversely, the architecture or implementation of a system can enable or preclude soft-
ware from meeting its QA requirements. For example:

1. The performance of a piece of software is fundamentally constrained by the perfor-
mance of the processor that runs it. No matter how well you design the software, you
just can’t run the latest whole-earth weather forecasting models on Grandpa’s laptop and
expect to know if it’s going to rain tomorrow.

2. Physical security is probably more important and more effective than software security
at preventing fraud and theft. If you don’t believe this, write your laptop’s password on
a slip of paper, tape it to your laptop, and leave it in an unlocked car with the windows
down. (Actually, please don’t do that. Consider this a thought experiment.)

The lesson here is that if you are the architect for software that resides in a physical sys-
tem, you will need to understand the QAs that are important for the entire system to achieve,
and work with the system architects and engineers to ensure that your software architecture
contributes positively to achieving them.

The scenario techniques we introduced for software QAs work equally well for system
QAs. If the system engineers and architects aren’t already using them, try to introduce them.

14.2 Using Standard Lists of Quality Attributes—Or Not

Architects have no shortage of QA lists for software systems at their disposal. The stan-
dard with the pause-and-take-a-breath title of “ISO/IEC FCD 25010: Systems and Software
Engineering: Systems and Software Product Quality Requirements and Evaluation (SQuaRE):
System and Software Quality Models” is a good example (Figure 14.1). This standard divides
QAs into those supporting a “quality in use” model and those supporting a “product quality”

S
y

s
te

m
 S

o
ft

w
a

re

P
ro

d
u

c
t

Q
u

a
li

ty

F
u

n
c
ti
o

n
a

l

s
u

it
a

b
il
it
y

F
u

n
c
ti
o

n
a

l

c
o

m
p

le
te

n
e

s
s

F
u

n
c
ti
o

n
a

l

c
o

rr
e

c
tn

e
s
s

F
u

n
c
ti
o

n
a

l

a
p

p
ro

p
ri

a
te

n
e

s
s

P
e

rf
o

rm
a

n
c
e

T
im

e
 b

e
h

a
v
io

r

R
e

s
o

u
rc

e

u
ti
li
z
a

ti
o

n

C
a

p
a

c
it
y

C
o

m
p

a
ti
b

il
it
y

C
o

e
x
is

te
n

c
e

In
te

ro
p

e
ra

b
il
it
y

L
e

a
rn

a
b

il
it
y

O
p

e
ra

b
il
it
y

U
s
e

r
in

te
rf

a
c
e

a
e

s
th

e
ti
c
s

A
c
c
e

s
s
ib

il
it
y

R
e

li
a

b
il
it
y

M
a

tu
ri

ty

A
v
a

il
a

b
il
it
y

F
a

u
lt
 t

o
le

ra
n

c
e

R
e

c
o

v
e

ra
b

il
it
y

S
e

c
u

ri
ty

In
te

g
ri

ty

A
c
c
o

u
n

ta
b

il
it
y

A
u

th
e

n
ti
c
it
y

M
a

in
ta

in
a

b
il
it
y

R
e

u
s
a

b
il
it
y

A
n

a
ly

z
a

b
il
it
y

T
e

s
ta

b
il
it
y

U
s
a

b
il
it
y

A
p

p
ro

p
ri

a
te

n
e

s
s

re
c
o

g
n

iz
a

b
il
it
y

U
s
e

r
e

rr
o

r

P
o

rt
a

b
il
it
y

In
s
ta

ll
a

b
il
it
y

R
e

p
la

c
e

a
b

il
it
y

F
IG

U
R

E
 1

4
.1

IS

O
/I

E
C

 F
C

D
 2

5
0
1
0

 P
ro

d
u

c
t

Q
u

a
lit

y
 S

ta
n

d
a
rd

14.2 Using Standard Lists of Quality Attributes—Or Not 211

model. That division is a bit of a stretch in some places, but it nevertheless begins a divide-
and-conquer march through a breathtaking array of qualities.

ISO 25010 lists the following QAs that deal with product quality:

 ■ Functional suitability. Degree to which a product or system provides functions that meet
the stated and implied needs when used under the specified conditions.

 ■ Performance efficiency. Performance relative to the amount of resources used under the
stated conditions.

 ■ Compatibility. Degree to which a product, system, or component can exchange informa-
tion with other products, systems, or components, and/or perform its required functions,
while sharing the same hardware or software environment.

 ■ Usability. Degree to which a product or system can be used by specified users to achieve
specified goals with effectiveness, efficiency, and satisfaction in a specified context of use.

 ■ Reliability. Degree to which a system, product, or component performs the specified
functions under the specified conditions for a specified period of time.

 ■ Security. Degree to which a product or system protects information and data so that
persons or other products or systems have the degree of data access appropriate to their
types and levels of authorization.

 ■ Maintainability. Degree of effectiveness and efficiency with which a product or system
can be modified by the intended maintainers.

 ■ Portability. Degree of effectiveness and efficiency with which a system, product, or
component can be transferred from one hardware, software, or other operational or
usage environment to another.

In ISO 25010, these “quality characteristics” are each composed of “quality sub-characteristics”
(for example, nonrepudiation is a sub-characteristic of security). The standard slogs through
almost five dozen separate descriptions of quality sub-characteristics in this way. It defines for
us the qualities of “pleasure and “comfort.” It distinguishes between “functional correctness”
and “functional completeness,” and then adds “functional appropriateness” for good measure.
To exhibit “compatibility,” systems must either have “interoperability” or just plain “coexis-
tence.” “Usability” is a product quality, not a quality-in-use quality, although it includes “sat-
isfaction,” which is a quality-in-use quality. “Modifiability” and “testability” are both part of
“maintainability.” So is “modularity,” which is a strategy for achieving a quality rather than a
goal in its own right. “Availability” is part of “reliability.” “Interoperability” is part of “com-
patibility.” And “scalability” isn’t mentioned at all.

Got all that?
Lists like these—and there are many of them floating around—do serve a purpose. They

can be helpful checklists to assist requirements gatherers in making sure that no important
needs were overlooked. Even more useful than standalone lists, they can serve as the basis for
creating your own checklist that contains the QAs of concern in your domain, your industry,
your organization, your products. QA lists can also serve as the basis for establishing mea-
sures, though the names themselves give little clue as to how to do this. If “fun” turns out
to be an important concern in your system, how do you measure it to know if your system is
providing enough of it?

212 Part II Quality Attributes | Chapter 14 Working with Other Quality Attributes

General lists like these also have some drawbacks. First, no list will ever be complete.
As an architect, you will inevitably be called upon to design a system to meet a stakeholder
concern not foreseen by any list-maker. For example, some writers speak of “manageability,”
which expresses how easy it is for system administrators to manage the application. This can
be achieved by inserting useful instrumentation for monitoring operations and for debugging
and performance tuning. We know of an architecture that was designed with the conscious
goal of retaining key staff and attracting talented new hires to a quiet region of the American
Midwest. That system’s architects spoke of imbuing the system with “Iowability.” They achieved
it by bringing in state-of-the-art technology and giving their development teams wide cre-
ative latitude. Good luck finding “Iowability” in any standard list of QAs, but that QA was as
important to that organization as any other.

Second, lists often generate more controversy than understanding. You might argue per-
suasively that “functional correctness” should be part of “reliability,” or that “portability” is just
a kind of “modifiability,” or that “maintainability” is a kind of “modifiability” (not the other
way around). The writers of ISO 25010 apparently spent time and effort deciding to make
security its own characteristic, instead of a sub-characteristic of functionality, which it was in
a previous version. We strongly believe that effort in making these arguments could be better
spent elsewhere.

Third, these lists often purport to be taxonomies—that is, lists with the special property
that every member can be assigned to exactly one place. But QAs are notoriously squishy in
this regard. For example, we discussed denial of service as being part of security, availability,
performance, and usability in Chapter 3.

These observations reinforce the lesson introduced in Chapter 3: QA names, by them-
selves, are largely useless and are at best invitations to begin a conversation. Moreover, spend-
ing time worrying about which qualities are subqualities of which other qualities is almost
useless. Instead, scenarios provide the best way for us to specify precisely what we mean when
we speak of a QA.

Use standard lists of QAs to the extent that they are helpful as checklists, but don’t feel
the need to slavishly adhere to their terminology or structure. And don’t fool yourself that such
a checklist removes the need for deeper analysis.

14.3 Dealing with “X-Ability”: Bringing a New QA into the Fold

Suppose, as an architect, you had to deal with a QA for which there is no compact body of
knowledge, no “portfolio” like Chapters 4–13 provided for those QAs. Suppose you find your-
self having to deal with a QA like “development distributability” or “manageability” or even
“Iowability”? What do you do?

14.3 Dealing with “X-Ability”: Bringing a New QA into the Fold 213

Capture Scenarios for the New Quality Attribute

The first step is to interview the stakeholders whose concerns have led to the need for this QA.
You can work with them, either individually or as a group, to build a set of attribute charac-
terizations that refine what is meant by the QA. For example, you might decompose develop-
ment distributability into the subattributes of software segmentation, software composition,
and team coordination. After that refinement, you can work with the stakeholders to craft a set
of specific scenarios that characterize what is meant by that QA. An example of this process
can be found in Chapter 22, where we describe building a “utility tree.”

Once you have a set of specific scenarios, then you can work to generalize the collection.
Look at the set of stimuli you’ve collected, the set of responses, the set of response measures,
and so on. Use those to construct a general scenario by making each part of the general sce-
nario a generalization of the specific instances you collected.

Model the Quality Attribute

If you can build (or even better, find) a conceptual model of the QA, that foundation can be
helpful in creating a set of design approaches for it. By “model,” we don’t mean anything
more than an understanding of the set of parameters to which the QA is sensitive and the set
of architectural characteristics that influence those parameters. For example, a model of mod-
ifiability might tell us that modifiability is a function of how many places in a system have
to be changed in response to a modification, and the interconnectedness of those places. A
model for performance might tell us that throughput is a function of transactional workload,
the dependencies among the transactions, and the number of transactions that can be pro-
cessed in parallel.

Figure 14.2 shows a simple queuing model for performance. Such models are widely used
to analyze the latency and throughput of various types of queuing systems, including manufac-
turing and service environments, as well as computer systems.

Results

Routing of

messages

Arrivals

Queue

Server

Scheduling

algorithm

FIGURE 14.2 A generic queuing model

214 Part II Quality Attributes | Chapter 14 Working with Other Quality Attributes

Within this model, seven parameters can affect the latency that the model predicts:

 ■ Arrival rate
 ■ Queuing discipline
 ■ Scheduling algorithm
 ■ Service time
 ■ Topology
 ■ Network bandwidth
 ■ Routing algorithm

These are the only parameters that can affect latency within this model. This is what gives the
model its power. Furthermore, each of these parameters can be affected by various architec-
tural decisions. This is what makes the model useful for an architect. For example, the routing
algorithm can be fixed or it could be a load-balancing algorithm. A scheduling algorithm must
be chosen. The topology can be affected by dynamically adding or removing new servers. And
so forth.

If you are creating your own model, your set of scenarios will inform your investigation.
Its parameters can be derived from the stimuli (and its sources), the responses (and their mea-
sures), the artifacts (and their properties), and the environment (and its characteristics).

 Assemble Design Approaches for the New Quality Attribute

The process of generating a set of mechanisms based on a model includes the following steps:

 ■ Enumerate the model’s parameters.
 ■ For each parameter, enumerate the architectural characteristics (and the mechanisms to

achieve those characteristics) that can affect this parameter. You can do this by:

 ■ Revisiting a body of mechanisms you’re familiar with and asking yourself how each
one affects the QA parameter.

 ■ Searching for designs that have successfully dealt with this QA. You can search on the
name you’ve given the QA itself, but you can also search for the terms you chose when
you refined the QA into subattributes.

 ■ Searching for publications and blog posts on this QA and attempting to generalize
their observations and findings.

 ■ Finding experts in this area and interviewing them or simply writing and asking them
for advice.

What results is a list of mechanisms to, in the example case, control performance and,
in the more general case, to control the QA that the model is concerned with. This makes the
design problem much more tractable. This list of mechanisms is finite and reasonably small,
because the number of parameters of the model is bounded and for each parameter, the num-
ber of architectural decisions to affect the parameter is limited.

14.5 Discussion Questions 215

14.4 For Further Reading

The mother of all QA lists may be the one on—where else?—Wikipedia. This list can be
found, naturally enough, under “List of system quality attributes.” As this book went to pub-
lication, you could gorge yourself on definitions of more than 80 distinct QAs. Our favorite is
“demonstrability,” which is helpfully defined as the quality of being demonstrable. Who says
you can’t believe what you read on the Internet?

See Chapter 8 of [Bass 19] to get a list of qualities of a deployment pipeline. These include
traceability, testability (of the deployment pipeline), tooling, and cycle time.

14.5 Discussion Questions

1. The Kingdom of Bhutan measures the happiness of its population, and government
policy is formulated to increase Bhutan’s GNH (gross national happiness). Read about
how the GNH is measured (try grossnationalhappiness.com) and then sketch a general
scenario for the QA of happiness that will let you express concrete happiness require-
ments for a software system.

2. Choose a QA not described in Chapters 4–13. For that QA, assemble a set of specific
scenarios that describe what you mean by it. Use that set of scenarios to construct a
general scenario for it.

3. For the QA you chose for question 2, assemble a set of design mechanisms (patterns and
tactics) that help you achieve it.

4. Repeat questions 2 and 3 for the QA of development cost, and then for the QA of operat-
ing cost.

 5. What might cause you to add a tactic or pattern to the sets of QAs already described in
Chapters 4–13 (or any other QA, for that matter)?

6. Discuss how you think development distributability tends to trade off against the QAs of
performance, availability, modifiability, and integrability.

7. Research some QA lists for things that are not software systems: qualities of a good car,
for example, or a good person to be in a relationship with. Add qualities of your own
choosing to the list or lists that you find.

8. Development-time tactics have to do with separating and encapsulating responsibili-
ties. Performance tactics have to do with putting things together. That is why they are
perpetually in conflict. Must it always be so? Is there a principled way of quantifying the
tradeoffs?

http://grossnationalhappiness.com

216 Part II Quality Attributes | Chapter 14 Working with Other Quality Attributes

9. Is there a taxonomy of tactics? Chemists have the periodic table and laws of molecular
interaction, atomic physicists have their catalogs of subatomic particles and laws for
what happens when they collide, pharmacologists have their catalogs of chemicals and
laws for their interactions with receptors and metabolic systems, and so forth. What is
the equivalent for tactics? And are there laws for their interaction?

10. Security is a QA that is especially sensitive to processes that take place in the physical
world outside the computer: processes for applying patches, processes for choosing and
safeguarding your passwords, processes for physically securing the installations where
computers and data live, processes for deciding whether to trust a piece of imported soft-
ware, processes for deciding whether to trust a human developer or user, and so forth.
What are the corresponding processes that are important for performance? Or usability?
Are there any? Why is security so process-sensitive? Should processes be a portion of
the QA structure or are they orthogonal to it?

11. What is the relationship between each pair of QAs in the following list?

 ■ Performance and security
 ■ Security and buildability
 ■ Energy efficiency and time to market

217

15
 Software Interfaces
With Cesare Pautasso

NASA lost its $125-million Mars Climate Orbiter because spacecraft
engineers failed to convert from English to metric measurements

when exchanging vital data before the craft was launched. . . .
A navigation team at [NASA] used the metric system of millimeters

and meters in its calculations, while [the company that] designed and
built the spacecraft provided crucial acceleration data in the English

system of inches, feet and pounds. . . .
In a sense, the spacecraft was lost in translation.

—Robert Lee Hotz, “Mars Probe Lost Due to Simple Math Error,” Los Angeles
Times, October 1, 1999

This chapter describes the concepts surrounding interfaces, and discusses how to design and
document them.

An interface, software or otherwise, is a boundary across which elements meet and interact,
communicate, and coordinate. Elements have interfaces that control access to their internals.
Elements may also be subdivided, with each sub-element having its own interface.

An element’s actors are the other elements, users, or systems with which it interacts. The
collection of actors with which an element interacts is called the environment of the element.
By “interacts,” we mean anything one element does that can impact the processing of another
element. This interaction is part of the element’s interface. Interactions can take a variety of
forms, though most involve the transfer of control and/or data. Some are supported by stan-
dard programming-language constructs, such as local or remote procedure calls (RPCs), data
streams, shared memory, and message passing.

These constructs, which provide points of direct interaction with an element, are called
resources. Other interactions are indirect. For example, the fact that using resource X on
element A leaves element B in a particular state is something that other elements using the
resource may need to know if it affects their processing, even though they never interact with
element A directly. That fact about A is a part of the interface between A and the other ele-
ments in A’s environment. In this chapter, we focus only on the direct interactions.

PART III Architectural Solutions

218 Part III Architectural Solutions | Chapter 15 Software Interfaces

Recall that, in Chapter 1, we defined architecture in terms of elements and their rela-
tionships. In this chapter, we focus on one type of relationship. Interfaces are a fundamen-
tal abstraction mechanism necessary to connect elements together. They have an outsized
impact on a system’s modifiability, usability, testability, performance, integrability, and more.
Furthermore, asynchronous interfaces, which are commonly part of distributed systems,
require event handlers—an architectural element.

For a given element’s interface, there can be one or more implementations, each of which
might have different performance, scalability, or availability guarantees. Likewise, different
implementations for the same interface may be constructed for different platforms.

Three points are implied by the discussion thus far:

1. All elements have interfaces. All elements interact with some actors; otherwise, what is
the point of the element’s existence?

2. Interfaces are two-way. When considering interfaces, most software engineers first think
of a summary of what an element provides. What methods does the element make avail-
able? What events does it process? But an element also interacts with its environment
by making use of resources external to it or by assuming that its environment behaves
in a certain way. If these resources are missing or if the environment doesn’t behave as
expected, the element can’t function correctly. So an interface is more than what is pro-
vided by an element; an interface also includes what is required by an element.

3. An element can interact with more than one actor through the same interface. For
example, web servers often restrict the number of HTTP connections that can be open
simultaneously.

15.1 Interface Concepts

In this section, we discuss the concepts of multiple interfaces, resources, operations, proper-
ties, and events, as well as the evolution of interfaces.

Multiple Interfaces

It is possible to split a single interface into multiple interfaces. Each of these has a related
logical purpose, and serves a different class of actors. Multiple interfaces provide a kind of
separation of concerns. A specific class of actor might require only a subset of the function-
ality available; this functionality can be provided by one of the interfaces. Conversely, the
provider of an element may want to grant actors different access rights, such as read or write,
or to implement a security policy. Multiple interfaces support different levels of access. For
example, an element might expose its functionality through its main interface and give access
to debugging or performance monitoring data or administrative functions via separate inter-
faces. There may be public read-only interfaces for anonymous actors and private interfaces
that allow authenticated and authorized actors to modify the state of an element.

15.1 Interface Concepts 219

Resources

Resources have syntax and semantics:

 ■ Resource syntax. The syntax is the resource’s signature, which includes any information
that another program will need to write a syntactically correct program that uses the
resource. The signature includes the name of the resource, the names and data types of
arguments, if any, and so forth.

 ■ Resource semantics. What is the result of invoking this resource? Semantics come in a
variety of guises, including the following:

 ■ Assignment of values to data that the actor invoking the resource can access. The
value assignment might be as simple as setting the value of a return argument or as
far-reaching as updating a central database.

 ■ Assumptions about the values crossing the interface.
 ■ Changes in the element’s state brought about by using the resource. This includes

exceptional conditions, such as side effects from a partially completed operation.
 ■ Events that will be signaled or messages that will be sent as a result of using the

resource.
 ■ How other resources will behave differently in the future as the result of using this

resource. For example, if you ask a resource to destroy an object, trying to access that
object in the future through other resources could produce an error as a result.

 ■ Humanly observable results. These are prevalent in embedded systems. For example,
calling a program that turns on a display in a cockpit has a very observable effect—the
display comes on. In addition, the statement of semantics should make it clear whether
the execution of the resource will be atomic or may be suspended or interrupted.

Operations, Events, and Properties

The resources of provided interfaces consist of operations, events, and properties. These resources
are complemented by an explicit description of the behavior caused or data exchanged when
accessing each interface resource in terms of its syntax, structure, and semantics. (Without this
description, how would the programmer or actor know whether or how to use the resources?)

Operations are invoked to transfer control and data to the element for processing. Most
operations also return a result. Operations may fail, and as part of the interface it should be
clear how actors can detect errors, either signaled as part of the output or through some dedi-
cated exception-handling channel.

In addition, events—which are normally asynchronous—may be described in interfaces.
Incoming events can represent the receipt of a message taken from a queue, or the arrival of a
stream element that is to be consumed. Active elements—those that do not passively wait to be
invoked by other elements—produce outgoing events used to notify listeners (or subscribers)
about interesting things happening within the element.

In addition to the data transferred via operations and events, an important aspect of inter-
faces is metadata, such as access rights, units of measure, or formatting assumptions. Another

220 Part III Architectural Solutions | Chapter 15 Software Interfaces

name for this interface metadata is properties. Property values can influence the behavior of
operations, as highlighted in the quotation that began this chapter. Property values also affect
the behavior of the element, depending on its state.

Complex interfaces of elements that are both stateful and active will feature a combina-
tion of operations, events, and properties.

Interface Evolution

All software evolves, including interfaces. Software that is encapsulated by an interface is free
to evolve without impact to the elements that use this interface as long as the interface itself
does not change. An interface, however, is a contract between an element and its actors. Just as
a legal contract can be changed only within certain constraints, software interfaces should be
changed with care. Three techniques can be used to change an interface: deprecation, version-
ing, and extension.

 ■ Deprecation. Deprecation means removing an interface. Best practice when deprecat-
ing an interface is to give extensive notice to the actors of the element. This warning,
in theory, allows the actors time to adjust to the interface’s removal. In practice, many
actors will not adjust in advance, but rather will discover the deprecation only when the
interface is removed. One technique when deprecating an interface is to introduce an
error code signifying that this interface is to be deprecated at (specific date) or that this
interface has been deprecated.

 ■ Versioning. Multiple interfaces support evolution by keeping the old interface and adding
a new one. The old one can be deprecated when it is no longer needed or the decision has
been made to no longer support it. This requires the actor to specify which version of an
interface it is using.

 ■ Extension. Extending an interface means leaving the original interface unchanged and
adding new resources to the interface that embody the desired changes. Figure 15.1(a)
shows the original interface. If the extension does not contain any incompatibilities
with the original interface, then the element can implement the external interface
directly, as shown in Figure 15.1(b). In contrast, if the extension introduces some incom-
patibilities, then it is necessary to have an internal interface for the element and to add a
mediator to translate between the external interface and the internal interface, as shown
in Figure 15.1(c). As an example of an incompatibility, suppose the original interface
assumed that apartment numbers were included in the address but the extended interface
broke out apartment numbers as a separate parameter. The internal interface would have
the apartment number as a separate parameter. Then the mediator, if invoked from the
original interface, would parse the address to determine any apartment number, whereas
the mediator would pass the apartment number included in the separate parameter on
to the internal interface unchanged.

15.1 Interface Concepts 221

E
le

m
e
n
t

A
c
to

r
1

A
c
to

r
N

A
c
to

r
1

O
ri

g
in

a
l

in
te

rf
a
c
e

A
c
to

r
N

A
c
to

r
1

A
c
to

r
N

(a
)

E
le

m
e

n
t

O
ri

g
in

a
l

in
te

rf
a

c
e

In
te

rf
a

c
e

e
x
te

n
s
io

n

O
ri

g
in

a
l

in
te

rf
a

c
e

In
te

rf
a

c
e

e
x
te

n
s
io

n

M
e

d
ia

to
r

th
a

t
tr

a
n

s
la

te
s
 b

e
tw

e
e

n
 e

x
te

rn
a

l
in

te
rf

a
c
e

s
a

n
d

 i
n

te
rn

a
l
in

te
rf

a
c
e

(b
)

.
.
.

.

 .

.
 .

.
.
.

E
le

m
e

n
t

In
te

rn
a

l
in

te
rf

a
c
e

(c
)

F
IG

U
R

E
 1

5
.1

(a

)
T

h
e

 o
ri

g
in

a
l
in

te
rf

a
c
e
.

(b
)

E
x
te

n
d

in
g

 t
h

e
 i
n

te
rf

a
c
e
.

(c
)

U
s
in

g
 a

n
 i
n

te
rm

e
d

ia
ry

.

222 Part III Architectural Solutions | Chapter 15 Software Interfaces

15.2 Designing an Interface

Decisions about which resources should be externally visible should be driven by the needs
of actors that use the resources. Adding resources to an interface implies a commitment to
maintain those resources as part of the interface for as long as the element will be in use. Once
actors start to depend on a resource you provide, their elements will break if the resource is
changed or removed. The reliability of your architecture is affected when the interface con-
tract between elements is broken.

Some additional design principles for interfaces are highlighted here:

 ■ Principle of least surprise. Interfaces should behave consistently with the actor’s expec-
tations. Names play a role here: An aptly named resource gives actors a good hint about
what the resource can be used for.

 ■ Small interfaces principle. If two elements need to interact, have them exchange as little
information as possible.

 ■ Uniform access principle. Avoid leaking implementation details through the interface.
A resource should be accessible to its actors in the same way regardless of how they
are implemented. An actor should be unaware, for example, whether a value is returned
from a cache, from a computation, or from a fresh fetch of the value from some external
source.

 ■ Don’t repeat yourself principle. Interfaces should offer a set of composable primitives as
opposed to many redundant ways to achieve the same goal.

Consistency is an important aspect of designing clear interfaces. As an architect, you
should establish and follow conventions on how resources are named, how API parameters are
ordered, and how errors should be handled. Of course, not all interfaces are under the control
of the architect, but insofar as possible the design of interfaces should be consistent throughout
all elements of the same architecture. Developers will also appreciate it if interfaces follow
the conventions of the underlying platform or the programming language idioms they expect.
More than winning developers’ goodwill, however, consistency will help minimize the num-
ber of development errors based on misunderstanding.

A successful interaction with an interface requires agreement on the following aspects:

1. Interface scope
2. Interaction style
3. Representation and structure of the exchanged data
4. Error handling

Each of these constitutes an important aspect of designing an interface. We’ll cover each
in turn.

15.2 Designing an Interface 223

Actor 1 Actor N

Element

Gateway

. . .

Resource

Interaction

Key

Interface Scope

The scope of an interface defines the collection of resources directly available to the actors.
You, as an interface designer, might want to reveal all resources; alternatively, you might wish
to constrain the access to certain resources or to certain actors. For example, you might want to
constrain access for reasons of security, performance management, and extensibility.

A common pattern for constraining and mediating access to resources of an element or
a group of elements is to establish a gateway element. A gateway—often called a message
gateway—translates actor requests into requests to the target element’s (or elements’) resources,
and so becomes an actor for the target element or elements. Figure 15.2 provides an example of
a gateway. Gateways are useful for the following reasons:

 ■ The granularity of resources provided by an element may be different than an actor
needs. A gateway can translate between elements and actors.

 ■ Actors may need access to, or be restricted to, specific subsets of the resources.
 ■ The specifics of the resources—their number, protocol, type, location, and properties—

may change over time, and the gateway can provide a more stable interface.

FIGURE 15.2 A gateway that provides access to a variety of different resources

We now turn to the specifics of designing particular interfaces. This means deciding which
operations, events, and properties it should feature. Additionally, you must choose suitable data
representation formats and data semantics to ensure the compatibility and interoperability of
your architectural elements with each other. Our opening quotation gives one example of the
importance of these decisions.

224 Part III Architectural Solutions | Chapter 15 Software Interfaces

Interaction Styles

Interfaces are meant to be connected together so that different elements can communicate
(transfer data) and coordinate (transfer control). There are many ways for such interactions to
take place, depending on the mix between communication and coordination, and on whether
the elements will be co-located or remotely deployed. For example:

 ■ Interfaces of co-located elements may provide efficient access to large quantities of data
via local shared memory buffers.

 ■ Elements that are expected to be available at the same time can use synchronous calls to
invoke the operations they require.

 ■ Elements deployed in an unreliable distributed environment will need to rely on asyn-
chronous interactions based on consuming and producing events, exchanged via message
queues or data streams.

Many different interaction styles exist, but we will focus on two of the most widely used:
RPC and REST.

 ■ Remote Procedure Call (RPC). RPC is modeled on procedure calls in imperative lan-
guages, except that the called procedure is located elsewhere on a network. The pro-
grammer codes the procedure call as if a local procedure were being called (with some
syntactic variation); the call is then translated into a message sent to a remote element
where the actual procedure is invoked. Finally, the results are sent back as a message to
the calling element.

RPC dates from the 1980s and has undergone many modifications since its inception.
The early versions of this protocol were synchronous, with the parameters of the mes-
sage being sent as text. The most recent RPC version, called gRPC, transfers parameters
in binary, is asynchronous, and supports authentication, bidirectional streaming and flow
control, blocking or nonblocking bindings, and cancellation and timeouts. gRPC uses
HTTP 2.0 for transport.

 ■ Representational State Transfer (REST). REST is a protocol for web services. It grew
out of the original protocol used when the World Wide Web was introduced. REST com-
prises a set of six constraints imposed on the interactions between elements:

 ■ Uniform interface. All interactions use the same form (typically HTTP). Resources
on the providing side of the interface are specified via URIs (Uniform Resource
Identifiers). Naming conventions should be consistent and, in general, the principle of
least surprise should be followed.

 ■ Client-server. The actors are clients and the resource providers are servers using the
client-server pattern.

 ■ Stateless. All client-server interactions are stateless. That is, the client should not
assume that the server has retained any information about the client’s last request. In
consequence, interactions such as authorization are encoded into a token and the token
is passed with each request.

 ■ Cacheable. Caching is applied to resources when applicable. Caching can be imple-
mented on the server side or the client side.

15.2 Designing an Interface 225

 ■ Tiered system architecture. The “server” can be broken into multiple independent
elements, which may be deployed independently. For example, the business logic and
the database can be deployed independently.

 ■ Code on demand (optional). It is possible for the server to provide code to the client to
be executed. JavaScript is an example.

Although not the only protocol that can be used with REST, HTTP is the most common
choice. HTTP, which has been standardized by the World Wide Web Consortium (W3C), has
the basic form of <command><URI>. Other parameters can be included, but the heart of the
protocol is the command and the URI. Table 15.1 lists the five most important commands in
HTTP and describes their relationship to the traditional CRUD (create, read, update, delete)
database operations.

TABLE 15.1 Most Important Commands in HTTP and
Their Relationship to CRUD Database Operations

HTTP Command CRUD Operation Equivalent

post create

get read

put update/replace

patch update/modify

delete delete

Representation and Structure of Exchanged Data

Every interface provides the opportunity to abstract the internal data representation, which is
typically built using programming language data types (e.g., objects, arrays, collections), into
a different one—that is, a representation more suitable for being exchanged across different
programming language implementations and sent across the network. Converting from the
internal to the external representation is termed “serialization,” “marshaling,” or “translation.”

In the following discussion, we focus on the selection of a general-purpose data inter-
change format or representation for sending information over a network. This decision is based
on the following concerns:

 ■ Expressiveness. Can the representation serialize arbitrary data structures? Is it optimized
for trees of objects? Does it need to carry text written in different languages?

 ■ Interoperability. Does the representation used by the interface match what its actors
expect and know how to parse? A standard representation (such as JSON, described later
in this section) will make it easy for actors to transform the bits transmitted across the
network into internal data structures. Does the interface implement a standard?

 ■ Performance. Does the chosen representation allow efficient usage of the available
communication bandwidth? What is the algorithmic complexity of parsing the repre-
sentation to read its content into the internal element representation? How much time is
spent preparing the messages before they can be sent out? What is the monetary cost of
the required bandwidth?

226 Part III Architectural Solutions | Chapter 15 Software Interfaces

 ■ Implicit coupling. What are the assumptions shared by the actors and elements that could
lead to errors and data loss when decoding messages?

 ■ Transparency. Is it possible to intercept the exchanged messages and easily observe their
content? This is a double-edged sword. On the one hand, if self-describing messages
help developers more easily debug message payloads and eavesdroppers more readily
intercept and interpret their content. On the other hand, binary representations, particu-
larly encrypted ones, require special debugging tools, but are more secure.

The most common programming-language–independent data representation styles can be
divided between textual (e.g., XML or JSON) and binary (e.g., protocol buffers) options.

EXtensible Markup Language (XML)

XML was standardized by the World Wide Web Consortium (W3C) in 1998. XML annota-
tions to a textual document, called tags, are used to specify how to interpret the information in
the document by breaking the information into chunks or fields and identifying the data type
of each field. Tags can be annotated with attributes.

XML is a meta-language: Out of the box, it does nothing except allow you to define a
customized language to describe your data. Your customized language is defined by an XML
schema, which is itself an XML document that specifies the tags you will use, the data type
that should be used to interpret fields enclosed by each tag, and the constraints that apply to
the structure of your document. XML schemas enable you as an architect to specify a rich
information structure.

XML documents are used as representations of structured data for many purposes: for
messages exchanged in a distributed system (SOAP), the content of web pages (XHTML), vec-
tor images (SVG), business documents (DOCX), web service interface description (WSDL),
and static configuration files (e.g., MacOS property lists).

One strength of XML is that a document annotated using this language can be checked
to validate that it conforms to a schema. This prevents faults caused by malformed documents
and eliminates the need for some kinds of error checking by the code that reads and processes
the document. The tradeoff is that parsing the document and validating it are relatively expen-
sive in terms of processing and memory. A document must be read completely before it can
be validated and may require multiple read passes to unmarshal. This requirement, coupled
with XML’s verbosity, can result in unacceptable runtime performance and bandwidth con-
sumption. While during XML’s heyday the argument was often made that “XML is human
readable,” today this benefit is cited far less often.

JavaScript Object Notation (JSON)

JSON structures data as nested name/value pairs and array data types. The JSON notation
grew out of the JavaScript language and was first standardized in 2013; today, however, it
is independent of any programming language. Like XML, JSON is a textual representation
featuring its own schema language. Compared to XML, however, JSON is significantly less
verbose, as field names occur only once. Using a name/value representation instead of start
and end tags, JSON documents can be parsed as they are read.

15.2 Designing an Interface 227

JSON data types are derived from JavaScript data types, and resemble those of any mod-
ern programming language. This makes JSON serialization and deserialization much more
efficient than XML. The notation’s original use case was to send JavaScript objects between a
browser and web server—for example, to transfer a lightweight data representation to be ren-
dered as HTML in the browser, as opposed to performing the rendering on the server side and
having to download more verbose views represented using HTML.

Protocol Buffers

The Protocol Buffer technology originated at Google and was used internally for several years
before being released as open source in 2008. Like JSON, Protocol Buffers use data types
that are close to programming-language data types, making serialization and deserialization
efficient. As with XML, Protocol Buffer messages have a schema that defines a valid struc-
ture, and that schema can specify both required and optional elements and nested elements.
However, unlike both XML and JSON, Protocol Buffers are a binary format, so they are
extremely compact and use memory and network bandwidth resources quite efficiently. In this
respect, Protocol Buffers harken back to a much earlier binary representation called Abstract
Syntax Notation One (ASN.1), which originated in the early 1980s when network bandwidth
was a precious resource and no bit could be wasted.

The Protocol Buffers open source project provides code generators to allow easy use of
Protocol Buffers with many programming languages. You specify your message schema in a
proto file, which is then compiled by a language-specific protocol buffer compiler. The pro-
cedures generated by the compilers will be used by an actor to serialize and by an element to
deserialize the data.

As when using XML and JSON, the interacting elements may be written in different lan-
guages. Each element then uses the Protocol Buffer compiler specific to its language. Although
Protocol Buffers can be used for any data-structuring purpose, they are mostly employed as
part of the gRPC protocol.

Protocol Buffers are specified using an interface description language. Since they are
compiled by language-specific compilers, the specification is necessary to ensure correct
behavior of the interface. It also acts as documentation for the interfaces. Placing the interface
specification in a database allows for searching it to see how values propagate through the
various elements.

Error Handling

When designing an interface, architects naturally concentrate on how it is supposed to be used
in the nominal case, when everything works according to plan. The real world, of course, is far
from the nominal case, and a well-designed system must know how to take appropriate action
in the face of undesired circumstances. What happens when an operation is called with invalid
parameters? What happens when a resource requires more memory than is available? What
happens when a call to an operation never returns, because it has failed? What happens when
the interface is supposed to trigger a notification event based on the value of a sensor, but the
sensor isn’t responding or is responding with gibberish?

228 Part III Architectural Solutions | Chapter 15 Software Interfaces

Actors need to know whether the element is working correctly, whether their interaction
is successful and whether an error has occurred. Strategies to do so include the following:

 ■ Failed operations may throw an exception.
 ■ Operations may return a status indicator with predefined codes, which would need to be

tested to detect erroneous outcomes.
 ■ Properties may be used to store data indicating whether the latest operation was success-

ful or not, or whether stateful elements are in an erroneous state.
 ■ Error events such as a timeout may be triggered for failed asynchronous interactions.
 ■ The error log may be read by connecting to a specific output data stream.

The specification of which exceptions, which status codes, which events, and which
information are used to describe erroneous outcomes becomes part of the interface of an ele-
ment. Common sources of errors (which the interface should handle gracefully) include the
following:

 ■ Incorrect, invalid, or illegal information was sent to the interface—for example, calling
an operation with a null value parameter that should not be null. Associating an error
condition with the resource is the prudent thing to do.

 ■ The element is in the wrong state for handling the request. The element may have
entered the improper state as a result of a previous action or the lack of a previous action
on the part of the same or another actor. Examples of the latter include invoking an oper-
ation or reading a property before the element’s initialization has completed, and writing
to a storage device that has been taken offline by the system’s human operator.

 ■ A hardware or software error occurred that prevented the element from successfully
executing. Processor failures, failure of the network to respond, and inability to allocate
more memory are examples of this kind of error condition.

 ■ The element is not configured correctly. For example, its database connection string
refers to the wrong database server.

Indicating the source of the error helps the system choose the appropriate correction and
recovery strategy. Temporary errors with idempotent operations can be dealt with by wait-
ing and retrying. Errors due to invalid input require fixing the bad requests and resending
them. Missing dependencies should be reinstalled before reattempting to use the interface.
Implementation bugs should be fixed by adding the usage failure scenario as an additional test
case to avoid regressions.

15.3 Documenting the Interface

Although an interface comprises all aspects of the interaction that an element has with its
environment, what we choose to disclose about an interface—that is, what we put in an inter-
face’s documentation—is more limited. Writing down every aspect of every possible interac-
tion is not practical and almost never desirable. Rather, you should expose only what the actors

15.3 Documenting the Interface 229

on an interface need to know to interact with it. Put another way, you choose what information
is permissible and appropriate for people to assume about the element.

The interface documentation indicates what other developers need to know about an
interface to use it in combination with other elements. A developer might subsequently observe
properties that are a manifestation of how the element is implemented, but that are not detailed
in the interface documentation. Because these are not part of the interface documentation,
they are subject to change, and developers use them at their own risk.

Also recognize that different people need to know different kinds of information about
the interface. You may have to include separate sections in the interface documentation that
accommodate different stakeholders of the interface. As you document an element’s interface,
keep the following stakeholder roles in mind:

 ■ Developer of the element. Needs to be aware of the contract that their interface must
fulfill. Developers can test only the information embodied in the interface description.

 ■ Maintainer. A special kind of developer who makes assigned changes to the element and
its interface while minimizing disruption of existing actors.

 ■ Developer of an element using the interface. Needs to understand the interface’s contract
and how to use it. Such developers can provide input to the interface design and docu-
mentation process in terms of use cases that the interface should support.

 ■ Systems integrator and tester. Puts the system together from its constituent elements and
has a strong interest in the behavior of the resulting assembly. This role needs detailed
information about all the resources and functionality provided by and required by an
element.

 ■ Analyst. This role depends on the types of analyses conducted. For a performance ana-
lyst, for example, the interface documentation should include a service level agreement
(SLA) guarantee, so that actors can adjust their requests appropriately.

 ■ Architect looking for assets to reuse in a new system. Often starts by examining the inter-
faces of elements from a previous system. The architect may also look in the commercial
marketplace to find off-the-shelf elements that can be purchased and do the job. To see
whether an element is a candidate, the architect is interested in the capabilities of the inter-
face resources, their quality attributes, and any variability that the element provides.

Describing an element’s interface means making statements about the element that other
elements can depend on. Documenting an interface means that you have to describe which
services and properties are parts of the contract—a step that represents a promise to actors that
the element will, indeed, fulfill this contract. Every implementation of the element that does
not violate the contract is a valid implementation.

A distinction must be drawn between the interface of an element and the documentation
of that interface. What you can observe about an element is part of its interface—how long an
operation takes, for example. The documentation of the interface covers a subset of that behav-
ior: It lays out what we want our actors to be able to depend on.

“Hyrum’s law” (www.hyrumslaw.com) states: “With a sufficient number of users of an
interface, it does not matter what you promise in the contract: All observable behaviors of your
system will be depended on by somebody.” True enough. But, as we said earlier, an actor that
depends on what you do not publish about an element’s interface does so at its own risk.

http://www.hyrumslaw.com

230 Part III Architectural Solutions | Chapter 15 Software Interfaces

15.4 Summary

Architectural elements have interfaces, which are boundaries over which elements interact
with each other. Interface design is an architectural duty, because compatible interfaces allow
architectures with many elements to do something productive and useful together. A primary
use of an interface is to encapsulate an element’s implementation, so that this implementation
may change without affecting other elements.

Elements may have multiple interfaces, providing different types of access and privileges
to different classes of actors. Interfaces state which resources the element provides to its actors
as well as what the element needs from its environment to function correctly. Like architec-
tures themselves, interfaces should be as simple as possible, but no simpler.

Interfaces have operations, events, and properties; these are the parts of an interface that
the architect can design. To do so, the architect must decide the element’s

 ■ Interface scope
 ■ Interaction style
 ■ Representation, structure, and semantics of the exchanged data
 ■ Error handling

Some of these issues can be addressed by standardized means. For example, data
exchange can use mechanisms such as XML, JSON, or Protocol Buffers.

All software evolves, including interfaces. Three techniques that can be used to change
an interface are deprecation, versioning, and extension.

The interface documentation indicates what other developers need to know about an
interface to use it in combination with other elements. Documenting an interface involves
deciding which element operations, events, and properties to expose to the element’s actors,
and detailing the interface’s syntax and semantics.

15.5 For Further Reading

To see the difference between an XML representation, a JSON representation, and a Protocol
Buffer representation of a postal address, see https://schema.org/PostalAddress,
https://schema.org/PostalAddress, and https://github.com/mgravell/protobuf-net/blob/master/
src/protogen.site/wwwroot/protoc/google/type/postal_address.proto.

You can read more about gRPC at https://grpc.io/.
REST was defined by Roy Fielding in his PhD thesis: ics.uci.edu/~fielding/pubs/

dissertation/top.htm.

https://schema.org/PostalAddress
https://schema.org/PostalAddress,and
https://github.com/mgravell/protobuf-net/blob/master/src/protogen.site/wwwroot/protoc/google/type/postal_address.proto
https://github.com/mgravell/protobuf-net/blob/master/src/protogen.site/wwwroot/protoc/google/type/postal_address.proto
https://grpc.io/
http://ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://ics.uci.edu/~fielding/pubs/dissertation/top.htm

15.6 Discussion Questions 231

15.6 Discussion Questions

1. Describe the interface to a dog, or another kind of animal with which you are familiar.
Describe its operations, events, and properties. Does a dog have multiple interfaces (e.g.,
one for a known human and another for a stranger)?

2. Document the interface to a light bulb. Document its operations, events, and properties.
Document its performance and resource utilization. Document any error states it may
enter and what the result will be. Can you think of multiple implementations that have
the same interface you just described?

3. Under what circumstances should performance (e.g., how long an operation takes) be a
part of an element’s published interface? Under what circumstances should it not?

4. Suppose an architectural element will be used in a high-availability system. How might
that affect its interface documentation? Suppose the same element will now be used in a
high-security system. What might you document differently?

5. The section “Error Handling” listed a number of different error-handling strategies.
For each, when is its use appropriate? Inappropriate? What quality attributes will each
enhance or diminish?

6. What would you have done to prevent the interface error that led to the loss of the Mars
Climate Orbiter, as described at the beginning of this chapter?

7. On June 4, 1996, an Ariane 5 rocket failed quite spectacularly, only 37 seconds after
launch. Research this failure, and discuss what better interface discipline could have
done to prevent it.

8. A database schema represents an interface between an element and a database; it pro-
vides the metadata for accessing the database. Given this view, schema evolution is a
form of interface evolution. Discuss ways in which a schema can evolve and not break
the existing interface, and ways in which it does break it. Describe how deprecation,
versioning, and extension apply to schema evolution.

This page intentionally left blank

233

16
 Virtualization

Virtual means never knowing where your next byte is coming from.
—Unknown

In the 1960s, the computing community was frustrated by the problem of sharing resources
such as memory, disk, I/O channels, and user input devices on one physical machine among
several independent applications. The inability to share resources meant that only one appli-
cation could be run at a time. Computers at that time cost millions of dollars—real money in
those days—and most applications used only a fraction, typically around 10%, of the available
resources, so this situation had a significant effect on computing costs.

Virtual machines and, later, containers emerged to deal with sharing. The goal of these
virtual machines and containers is to isolate one application from another, while still sharing
resources. Isolation allows developers to write applications as if they are the only ones using
the computer, while sharing resources allows multiple applications to run on the computer
at the same time. Because the applications are sharing one physical computer with a fixed set
of resources, there are limits to the illusion that isolation creates. If, for example, one appli-
cation consumes all of the CPU resources, then the other applications cannot execute. For
most purposes, however, these mechanisms have changed the face of systems and software
architecture. They fundamentally change how we conceive of, deploy, and pay for computing
resources.

Why is this topic of interest and concern to architects? As an architect, you may be
inclined—or indeed required—to use some form of virtualization to deploy the software that
you create. For an increasingly large set of applications, you’ll be deploying to the cloud (com-
ing up in Chapter 17) and using containers to do it. Furthermore, in cases where you will
deploy to specialized hardware, virtualization allows you to perform testing in an environment
that is much more accessible than the specialized hardware.

The purpose of this chapter is to introduce some of the most important terms, consider-
ations, and tradeoffs in employing virtual resources.

234 Part III Architectural Solutions | Chapter 16 Virtualization

16.1 Shared Resources

For economic reasons, many organizations have adopted some forms of shared resources.
These can dramatically lower the costs of deploying a system. There are four resources that we
typically care about sharing:

1. Central processor unit (CPU). Modern computers have multiple CPUs (and each CPU
can have multiple processing cores). They may also have one or more graphics processing
units (GPUs), or other special-purpose processors, such as a tensor processing unit (TPU).

2. Memory. A physical computer has a fixed amount of physical memory.
3. Disk storage. Disks provide persistent storage for instructions and data, across reboots

and shutdowns of the computer. A physical computer typically has one or more attached
disks, each with a fixed amount of storage capacity. Disk storage can refer to either a
rotating magnetic or optical hard disk drive device, or a solid-state disk drive device; the
latter has neither disks nor any moving parts to drive.

4. Network connection. Today, every nontrivial physical computer has one or more network
connections through which all messages pass.

Now that we have enumerated the resources that we want to share, we need to think about
how to share them, and how to do this in a sufficiently “isolated” way so that different applica-
tions are unaware of each other’s existence.

Processor sharing is achieved through a thread-scheduling mechanism. The scheduler
selects and assigns an execution thread to an available processor, and that thread maintains
control until the processor is rescheduled. No application thread can gain control of a proces-
sor without going through the scheduler. Rescheduling occurs when the thread yields control
of the processor, when a fixed time interval expires, or when an interrupt occurs.

Historically, as applications grew, all the code and data would not fit into physical mem-
ory. Virtual memory technology was developed to deal with this challenge. Memory man-
agement hardware partitions a process’s address space into pages, and swaps pages between
physical memory and secondary storage as needed. The pages that are in physical memory can
be accessed immediately, and other pages are stored on the secondary memory until they are
needed. The hardware supports the isolation of one address space from another.

Disk sharing and isolation are achieved using several mechanisms. First, the physical disks
can be accessed only through a disk controller that ensures the data streams to and from each
thread are delivered in sequence. Also, the operating system may tag executing threads and disk
content such as files and directories with information such as a user ID and group, and restrict
visibility or access by comparing the tags of the thread requesting access and the disk content.

Network isolation is achieved through the identification of messages. Every virtual
machine (VM) or container has an Internet Protocol (IP) address, which is used to identify
messages to or from that VM or container. In essence, the IP address is used to route responses
to the correct VM or container. Another network mechanism for sending and receiving mes-
sages relies on the use of ports. Every message intended for a service has a port number asso-
ciated with it. A service listens on a port and receives messages that arrive at the device on
which the service is executing designated for the port on which the service is listening.

16.2 Virtual Machines 235

 16.2 Virtual Machines

Now that we have seen how the resource usage of one application can be isolated from the
resource usage of another application, we can employ and combine these mechanisms. Virtual
machines allow the execution of multiple simulated, or virtual, computers in a single physical
computer.

Figure 16.1 depicts several VMs residing in a physical computer. The physical computer
is called the “host computer” and the VMs are called “guest computers.” Figure 16.1 also
shows a hypervisor, which is an operating system for the VMs. This hypervisor runs directly
on the physical computer hardware and is often called a bare-metal or Type 1 hypervisor. The
VMs that it hosts implement applications and services. Bare-metal hypervisors typically run in
a data center or cloud.

VM1 VM2

Hypervisor

Host Computer

VM3

FIGURE 16.1 Bare-metal hypervisor and VMs

Figure 16.2 depicts another type of hypervisor, called a hosted or Type 2 hypervisor. In
this case, the hypervisor runs as a service on top of a host operating system, and the hypervisor
in turn hosts one or more VMs. Hosted hypervisors are typically used on desktop or laptop
computers. They allow developers to run and test applications that are not compatible with
the computer’s host operating system (e.g., to run Linux applications on a Windows computer
or to run Windows applications on an Apple computer). They can also be used to replicate a
production environment on a development computer, even if the operating system is the same
on both. This approach ensures that the development and production environments match
each other.

236 Part III Architectural Solutions | Chapter 16 Virtualization

VM1 VM2

Hosted Hypervisor

Operating System

Host Computer

Other
application

Other
application

FIGURE 16.2 Hosted hypervisor

A hypervisor requires that its guest VMs use the same instruction set as the underly-
ing physical CPU—the hypervisor does not translate or simulate instruction execution. For
example, if you have a VM for a mobile or embedded device that uses an ARM processor, you
cannot run that virtual machine on a hypervisor that uses an x86 processor. Another technol-
ogy, related to hypervisors, supports cross-processor execution; it is called an emulator. An
emulator reads the binary code for the target or guest processor and simulates the execution
of guest instructions on the host processor. The emulator often also simulates guest I/O hard-
ware devices. For example, the open source QEMU emulator1 can emulate a full PC system,
including BIOS, x86 processor and memory, sound card, graphics card, and even a floppy disk
drive.

Hosted/Type 2 hypervisors and emulators allow a user to interact with the applications
running inside the VM through the host machine’s on-screen display, keyboard, and mouse/
touchpad. Developers working on desktop applications or working on specialized devices,
such as mobile platforms or devices for the Internet of Things, may use a hosted/Type 2 hyper-
visor and/or an emulator as part of their build/test/integrate toolchain.

A hypervisor performs two main functions: (1) It manages the code running in each VM,
and (2) it manages the VMs themselves. To elaborate:

1. Code that communicates outside the VM by accessing a virtualized disk or network
interface is intercepted by the hypervisor and executed by the hypervisor on behalf of
the VM. This allows the hypervisor to tag these external requests so that the response to
these requests can be routed to the correct VM.

1. qemu.org

http://qemu.org

16.2 Virtual Machines 237

The response to an external request to an I/O device or the network is an asynchro-
nous interrupt. This interrupt is initially handled by the hypervisor. Since multiple VMs
are operating on a single physical host machine and each VM may have I/O requests out-
standing, the hypervisor must have a method for forwarding the interrupt to the correct
VM. This is the purpose of the tagging mentioned earlier.

2. VMs must be managed. For example, they must be created and destroyed, among other
things. Managing VMs is a function of the hypervisor. The hypervisor does not decide
on its own to create or destroy a VM, but rather acts on instructions from a user or, more
frequently, from a cloud infrastructure (you’ll read more about this in Chapter 17). The
process of creating a VM involves loading a VM image (discussed in the next section).

In addition to creating and destroying VMs, the hypervisor monitors them. Health
checks and resource usage are part of the monitoring. The hypervisor is also located
inside the defensive security perimeter of the VMs, as a defense against attacks.

Finally, the hypervisor is responsible for ensuring that a VM does not exceed its
resource utilization limits. Each VM has limits on CPU utilization, memory, and disk
and network I/O bandwidth. Before starting a VM, the hypervisor first ensures that
sufficient physical resources are available to satisfy that VM’s needs, and then the hyper-
visor enforces those limits while the VM is running.

A VM is booted just as a bare-metal physical machine is booted. When the machine begins
executing, it automatically reads a special program called the boot loader from disk storage,
either internal to the computer or connected through a network. The boot loader reads the oper-
ating system code from disk into memory, and then transfers execution to the operating system.
In the case of a physical computer, the connection to the disk drive is made during the power-up
process. In the case of the VM, the connection to the disk drive is established by the hypervisor
when it starts the VM. The “VM Images” section discusses this process in more detail.

From the perspective of the operating system and software services inside a VM, it
appears as if the software is executing inside of a bare-metal physical machine. The VM pro-
vides a CPU, memory, I/O devices, and a network connection.

Given the many concerns that it must address, the hypervisor is a complicated piece
of software. One concern with VMs is the overhead introduced by the sharing and isolation
needed for virtualization. That is, how much slower does a service run on a virtual machine,
compared to running directly in a bare-metal physical machine? The answer to this question
is complicated: It depends on the characteristics of the service and on the virtualization
technology used. For example, services that perform more disk and network I/O incur more
overhead than services that do not share these host resources. Virtualization technology is
improving all the time, but overheads of approximately 10% have been reported by Microsoft
on its Hyper-V hypervisor.2

There are two major implications of VMs for an architect:

1. Performance. Virtualization incurs a performance cost. While Type 1 hypervisors carry
only a modest performance penalty, Type 2 hypervisors may impose a significantly
larger overhead.

2. https://docs.microsoft.com/en-us/biztalk/technical-guides/system-resource-costs-on-hyper-v

https://docs.microsoft.com/en-us/biztalk/technical-guides/system-resource-costs-on-hyper-v

238 Part III Architectural Solutions | Chapter 16 Virtualization

2. Separation of concerns. Virtualization allows an architect to treat runtime resources
as commodities, deferring provisioning and deployment decisions to another person or
organization.

 16.3 VM Images

We call the contents of the disk storage that we boot a VM from a VM image. This image
contains the bits that represent the instructions and data that make up the software that we will
run (i.e., the operating system and services). The bits are organized into files and directories
according to the file system used by your operating system. The image also contains the boot
load program, stored in its predetermined location.

There are three approaches you can follow to create a new VM image:

1. You can find a machine that is already running the software you want and make a snap-
shot copy of the bits in that machine’s memory.

2. You can start from an existing image and add additional software.
3. You can create an image from scratch. Here, you start by obtaining installation media for

your chosen operating system. You boot your new machine from the install media, and
it formats the machine’s disk drive, copies the operating system onto the drive, and adds
the boot loader in the predetermined location.

For the first two approaches, repositories of machine images (usually containing open-
source software) are available that provide a variety of minimal images with just OS kernels,
other images that include complete applications, and everything in between. These efficient
starting points can support you in quickly trying out a new package or program.

However, some issues may arise when you are pulling down and running an image that
you (or your organization) did not create:

 ■ You cannot control the versions of the OS and software.
 ■ The image may have software that contains vulnerabilities or that is not configured

securely; even worse, the image may include malware.

Other important aspects of VM images are:

 ■ These images are very large, so transferring them over a network can be very slow.
 ■ An image is bundled with all of its dependencies.
 ■ You can build a VM image on your development computer and then deploy it to the

cloud.
 ■ You may wish to add your own services to the VM.

While you could easily install services when creating an image, this would lead to a
unique image for every version of every service. Aside from the storage cost, this prolifera-
tion of images becomes difficult to keep track of and manage. Thus it is customary to create
images that contain only the operating system and other essential programs, and then add ser-
vices to these images after the VM is booted, in a process called configuration.

16.4 Containers 239

 16.4 Containers

VMs solve the problem of sharing resources and maintaining isolation. However, VM images
can be large, and transferring VM images around the network is time-consuming. Suppose
you have an 8 GB(yte) VM image. You wish to move this from one location on the network
to another. In theory, on a 1 Gb(it) per second network, this will take 64 seconds. However,
in practice a 1 Gbps network operates at around 35% efficiency. Thus transferring an 8 GB
VM image will take more than 3 minutes in the real world. Although you can adopt some
techniques to reduce this transfer time, the result will still be a duration measured in minutes.
After the image is transferred, the VM must boot the operating system and start your services,
which takes still more time.

Containers are a mechanism to maintain most of the advantages of virtualization while
reducing the image transfer time and startup time. Like VMs and VM images, containers
are packaged into executable container images for transfer. (However, this terminology is not
always followed in practice.)

Reexamining Figure 16.1, we see that a VM executes on virtualized hardware under
the control of the hypervisor. In Figure 16.3, we see several containers operating under the
control of a container runtime engine, which in turn is running on top of a fixed operating sys-
tem. The container runtime engine acts as a virtualized operating system. Just as all VMs on a
physical host share the same underlying physical hardware, all containers within a host share
the same operating system kernel through the runtime engine (and through the operating sys-
tem, they share the same underlying physical hardware). The operating system can be loaded
either onto a bare-metal physical machine or a virtual machine.

Container 1 Container 2

Container Runtime Engine

Operating System

Hypervisor or Bare Metal

Container 3

FIGURE 16.3 Containers on top of a container runtime engine on top of an operating system
on top of a hypervisor (or bare metal)

240 Part III Architectural Solutions | Chapter 16 Virtualization

VMs are allocated by locating a physical machine that has sufficient unused resources to
support an additional VM. This is done, conceptually, by querying the hypervisors to find one
with spare capacity. Containers are allocated by finding a container runtime engine that has
sufficient unused resources to support an additional container. This may, in turn, require the
creation of an additional VM to support an additional container runtime engine. Figure 16.3
depicts containers running on a container runtime engine running on an operating system run-
ning in a VM under the control of a hypervisor.

This sharing of the operating system represents a source of performance improvement
when transferring images. As long as the target machine has a standard container runtime
engine running on it (and these days all container runtime engines are built to standards), there
is no need to transfer the operating system as part of the container image.

The second source of performance improvement is the use of “layers” in the container
images. (Note that container layers are different from the notion of layers in module structures
that we introduced in Chapter 1.) To better understand container layers, we will describe how
a container image is constructed. In this case, we will illustrate the construction of a container
to run the LAMP stack, and we will build the image in layers. (LAMP—which stands for
Linux, Apache, MySQL, and PHP—is a widely used stack for constructing web applications.)

The process of building an image using the LAMP stack is as follows:

1. Create a container image containing a Linux distribution. (This image can be down-
loaded from a library using a container management system.)

2. Once you create the image and identify it as an image, execute it (i.e., instantiate it).
3. Use that container to load services—Apache, in our example, using features of Linux.
4. Exit the container and inform the container management system that this is a second

image.
5. Execute this second image and load MySQL.
6. Exit the container and give this third image a name.
7. Repeat this process one more time and load PHP. Now you have a fourth container

image; this one holds the entire LAMP stack.

Because this image was created in steps and you told the container management system to
make each step an image, the container management system considers the final image to be
made up of “layers.”

Now you can move the LAMP stack container image to a different location for produc-
tion use. The initial move requires moving all the elements of the stack. Suppose, however,
you update PHP to a newer version and move this revised stack into production (Step 7 in the
preceding process). The container management system knows that only PHP was revised and
moves only the PHP layer of the image. This saves the effort involved in moving the rest of the
stack. Since changing a software component within an image happens much more frequently
than initial image creation, placing a new version of the container into production becomes a
much faster process than it would be using a VM. Whereas loading a VM takes on the order
of minutes, loading a new version of a container takes on the order of microseconds or milli-
seconds. Note that this process works only with the uppermost layer of the stack. If, for exam-
ple, you wanted to update MySQL with a newer version, you would need to execute Steps 5
through 7 in the earlier list.

16.5 Containers and VMs 241

You can create a script with the steps for the creation of a container image and store it
in a file. This file is specific to the tool you are using to create the container image. Such a
file allows you to specify which pieces of software are to be loaded into the container and
saved as an image. Using version control on the specification file ensures that each member of
your team can create an identical container image and modify the specification file as needed.
Treating these scripts as code brings a wealth of advantages: These scripts can be consciously
designed, tested, configuration controlled, reviewed, documented, and shared.

 16.5 Containers and VMs

What are the tradeoffs between delivering your service in a VM and delivering your service in
a container?

As we noted earlier, a VM virtualizes the physical hardware: CPU, disk, memory, and
network. The software that you run on the VM includes an entire operating system, and you
can run almost any operating system in a VM. You can also run almost any program in a VM
(unless it must interact directly with the physical hardware), which is important when working
with legacy or purchased software. Having the entire operating system also allows you to run
multiple services in the same VM—a desirable outcome when the services are tightly coupled
or share large data sets, or if you want to take advantage of the efficient interservice commu-
nication and coordination that are available when the services run within the context of the
same VM. The hypervisor ensures that the operating system starts, monitors its execution, and
restarts the operating system if it crashes.

Container instances share an operating system. The operating system must be compatible
with the container runtime engine, which limits the software that can run on a container. The
container runtime engine starts, monitors, and restarts the service running in a container. This
engine typically starts and monitors just one program in a container instance. If that one pro-
gram completes and exits normally, execution of that container ends. For this reason, contain-
ers generally run a single service (although that service can be multi-threaded). Furthermore,
one benefit of using containers is that the size of the container image is small, including only
those programs and libraries necessary to support the service we want to run. Multiple ser-
vices in a container could bloat the image size, increasing the container startup time and run-
time memory footprint. As we will see shortly, we can group container instances running
related services so that they will execute on the same physical machine and can communicate
efficiently. Some container runtime engines even allow containers within a group to share
memory and coordination mechanisms such as semaphores.

Other differences between VMs and containers are as follows:

 ■ Whereas a VM can run any operating system, containers are currently limited to Linux,
Windows, or IOS.

 ■ Services within the VM are started, stopped, and paused through operating system
functions, whereas services within containers are started and stopped through container
runtime engine functions.

242 Part III Architectural Solutions | Chapter 16 Virtualization

 ■ VMs persist beyond the termination of services running within them; containers
do not.

 ■ Some restrictions on port usage exist when using containers that do not exist when
using VMs.

 16.6 Container Portability

We have introduced the concept of a container runtime manager with which the container
interacts. Several vendors provide container runtime engines, most notably Docker, containerd,
and Mesos. Each of these providers has a container runtime engine that provides capabili-
ties to create container images and to allocate and execute container instances. The interface
between the container runtime engine and the container has been standardized by the Open
Container Initiative, allowing a container created by one vendor’s package (say, Docker) to be
executed on a container runtime engine provided by another vendor (say, containerd).

This means that you can develop a container on your development computer, deploy it to
a production computer, and have it execute there. Of course, the resources available will be
different in each case, so deployment is still not trivial. If you specify all the resources as con-
figuration parameters, the movement of your container into production is simplified.

 16.7 Pods

Kubernetes is open source orchestration software for deploying, managing, and scaling con-
tainers. It has one more element in its hierarchy: Pods. A Pod is a group of related containers.
In Kubernetes, nodes (hardware or VMs) contain Pods, and Pods contain containers, as shown
in Figure 16.4. The containers in a Pod share an IP address and port space to receive requests
from other services. They can communicate with each other using interprocess communica-
tion (IPC) mechanisms such as semaphores or shared memory, and they can share ephemeral
storage volumes that exist for the lifetime of the Pod. They have the same lifetime—the con-
tainers in Pods are allocated and deallocated together. For example, service meshes, discussed
in Chapter 9, are often packaged as a Pod.

 The purpose of a Pod is to reduce communication costs between closely related contain-
ers. In Figure 16.4, if container 1 and container 2 communicate frequently, the fact they are
deployed as a Pod, and thus allocated onto the same VM, allows the use of faster communica-
tion mechanisms than message passing.

16.8 Serverless Architecture 243

Pod 1

Node

Container 1

Container 2

Pod 2

Container 3

FIGURE 16.4 Node with Pods that in turn have containers

16.8 Serverless Architecture

Recall that allocating a VM starts by locating a physical machine with enough free capac-
ity and then loading a VM image into that physical machine. The physical computers, there-
fore, constitute a pool from which you can allocate resources. Suppose now that instead of
allocating VMs into physical machines, you wish to allocate containers into container run-
time engines. That is, you have a pool of container runtime engines, into which containers are
allocated.

Load times for a container are very short—taking just a few seconds for a cold start
and a few milliseconds to reallocate. Now let’s carry this one step further. Since VM alloca-
tion and loading are relatively time-consuming, potentially taking minutes to load and start
the instance, you typically leave a VM instance running even if there is idle time between
requests. In comparison, since the allocation of a container into a container runtime engine
is fast, it is not necessary to leave the container running. We can afford to reallocate a new
container instance for every request. When your service completes the processing of a request,
instead of looping back to take another request, it exits, and the container stops running and is
deallocated.

This approach to system design is called serverless architecture—though it is not, in fact,
serverless. There are servers, which host container runtime engines, but since they are allo-
cated dynamically with each request, the servers and container runtime engines are embodied
in the infrastructure. You, as a developer, are not responsible for allocating or deallocating
them. The cloud service provider features that support this capability are called function-as-a-
service (FaaS).

244 Part III Architectural Solutions | Chapter 16 Virtualization

A consequence of the dynamic allocation and deallocation in response to individual
requests is that these short-lived containers cannot maintain any state: The containers must be
stateless. In a serverless architecture, any state needed for coordination must be stored in an
infrastructure service delivered by the cloud provider or passed as parameters.

Cloud providers impose some practical limitations on FaaS features. The first is that the
providers have a limited selection of base container images, which restricts your program-
ming language options and library dependencies. This is done to reduce the container load
time—your service is constrained to be a thin image layer on top of the provider’s base image
layer. The next limitation is that the “cold start” time, when your container is allocated and
loaded the first time, can be several seconds. Subsequent requests are handled nearly instanta-
neously, as your container image is cached on a node. Finally, the execution time for a request
is limited—your service must process the request and exit within the provider’s time limit or
it will be terminated. Cloud providers do this for economic reasons, so that they can tailor the
pricing of FaaS compared to other ways of running containers, and to ensure that no FaaS user
consumes too much of the resource pool. Some designers of serverless systems devote con-
siderable energy to working around or defeating these limitations—for example, prestarting
services to avoid cold-start latency, making dummy requests to keep services in cache, and
forking or chaining requests from one service to another to extend the effective execution time.

 16.9 Summary

Virtualization has been a boon for software and system architects, as it provides efficient,
cost-effective allocation platforms for networked (typically web-based) services. Hardware
virtualization allows for the creation of several virtual machines that share the same physical
machine. It does this while enforcing isolation of the CPU, memory, disk storage, and network.
Consequently, the resources of the physical machine can be shared among several VMs, while
the number of physical machines that an organization must purchase or rent is minimized.

A VM image is the set of bits that are loaded into a VM to enable its execution. VM
images can be created by various techniques for provisioning, including using operating sys-
tem functions or loading a pre-created image.

Containers are a packaging mechanism that virtualizes the operating system. A container
can be moved from one environment to another if a compatible container runtime engine is
available. The interface to container runtime engines has been standardized.

Placing several containers into a Pod means that they are all allocated together and any
communication between the containers can be done quickly.

Serverless architecture allows for containers to be rapidly instantiated and moves the
responsibility for allocation and deallocation to the cloud provider infrastructure.

16.11 Discussion Questions 245

 16.10 For Further Reading

The material in this chapter is taken from Deployment and Operations for Software Engineers
[Bass 19], where you can find more detailed discussions.

Wikipedia is always a good place to find current details of protocols, container runtime
engines, and serverless architectures.

16.11 Discussion Questions

1. Create a LAMP container using Docker. Compare the size of your container image to
one you find on the Internet. What is the source of the difference? Under what circum-
stances is this a cause of concern for you as an architect?

2. How does the container management system know that only one layer has been changed
so that it needs to transport only one layer?

3. We have focused on isolation among VMs that are running at the same time on a
hypervisor. VMs may shut down and stop executing, and new VMs may start up. What
does a hypervisor do to maintain isolation, or prevent leakage, between VMs running at
different times? Hint: Think about the management of memory, disk, virtual MAC, and
IP addresses.

4. What set of services would it make sense to group into a Pod (as was done with service
meshes) and why?

5. What are the security issues associated with containers? How would you mitigate them?

6. What are the concerns associated with employing virtualization technologies in embed-
ded systems?

7. What class of integration and deployment errors can be avoided with VMs, containers,
and Pods? What class cannot?

This page intentionally left blank

247

17
 The Cloud and Distributed

Computing

A distributed system is one in which the failure of a computer you
didn’t even know existed can render your own computer unusable.

—Leslie Lamport

Cloud computing is about the on-demand availability of resources. This term is used to refer
to a wide range of computing capabilities. For example, you might say, “All my photos are
backed up to the cloud.” But what does that mean? It means:

 ■ My photos are stored on someone else’s computers. They worry about the capital invest-
ment and maintenance and upkeep and backups.

 ■ My photos are accessible by me over the Internet.
 ■ I pay only for the space that I use, or that I requisition.
 ■ The storage service is elastic, meaning that it can grow or shrink as my needs change.
 ■ My use of the cloud is self-provisioned: I create an account and can immediately begin

using it to store my materials.

The computing capabilities delivered from the cloud range from applications such as
photo (or other kinds of digital artifact) storage, to fine-grained services exposed through
APIs (e.g., text translation or currency conversion), to low-level infrastructure services such as
processors, network, and storage virtualization.

In this chapter, we will focus on how a software architect can use infrastructure services
from the cloud to deliver the services that the architect is designing and developing. Along
the way, we will take a journey into some of the most important principles and techniques of
distributed computing. This means using multiple (real or virtual) computers to work cooper-
atively together, thereby producing faster performance and a more robust system than a single
computer doing all the work. We included this subject matter in this chapter because nowhere
is distributed computing more ingrained than in cloud-based systems. The treatment we give
here is a brief overview of the principles most relevant to architecture.

We first discuss how the cloud provides and manages virtual machines.

248 Part III Architectural Solutions | Chapter 17 The Cloud and Distributed Computing

17.1 Cloud Basics

Public clouds are owned and provided by cloud service providers. These organizations pro-
vide infrastructure services to anyone who agrees to the terms of service and can pay for use
of the services. In general, the services you build using this infrastructure are accessible on the
public Internet, although you can provision mechanisms such as firewalls to restrict visibility
and access.

Some organizations operate a private cloud. A private cloud is owned and operated by
an organization for the use of members of that organization. An organization might choose to
operate a private cloud because of concerns such as control, security, and cost. In this case, the
cloud infrastructure and the services developed on it are visible and accessible only within
the organization’s network.

The hybrid cloud approach is a mixed model, in which some workloads are run in a pri-
vate cloud and other workloads are run in a public cloud. A hybrid cloud might be used during
a migration from a private cloud to a public cloud (or vice versa), or it might be used because
some data are legally required to be subject to greater control and scrutiny than is possible
with a public cloud.

For an architect designing software using cloud services, there is not much difference,
from a technical perspective, between private clouds and public clouds. Thus we will focus our
discussion here on infrastructure-as-a-service public clouds.

A typical public cloud data center has tens of thousands of physical devices—closer to
100,000 than to 50,000. The limiting factor on the size of a data center is the electric power
it consumes and the amount of heat that the equipment produces: There are practical limits
to bringing electrical power into the buildings, distributing it to the equipment, and removing
the heat that the equipment generates. Figure 17.1 shows a typical cloud data center. Each
rack consists of more than 25 computers (each with multiple CPUs), with the exact number
depending on the power and cooling available. The data center consists of rows and rows of
such racks, with high-speed network switches connecting the racks. Cloud data centers are one
reason why energy efficiency (a topic discussed in Chapter 6) has become a critical quality
attribute in some applications.

 When you access a cloud via a public cloud provider, you are actually accessing data
centers scattered around the globe. The cloud provider organizes its data centers into regions.
A cloud region is both a logical and a physical construct. Since the services you develop and
deploy to the cloud are accessed over the Internet, cloud regions can help you be sure that the
service is physically close to its users, thereby reducing the network delay to access the service.
Also, some regulatory constraints, such as the General Data Protection Regulation (GDPR),
may restrict the transmission of certain types of data across national borders, so cloud regions
help cloud providers comply with these regulations.

A cloud region has many data centers that are physically distributed and have different
sources for electrical power and Internet connectivity. The data centers within a region are
grouped into availability zones, such that the probability of all data centers in two different
availability zones failing at the same time is extremely low.

17.1 Cloud Basics 249

FIGURE 17.1 A cloud data center

Choosing the cloud region that your service will run on is an important design decision.
When you ask to be provided with a new virtual machine (VM) that runs in the cloud, you
may specify which region the VM will run on. Sometimes the availability zone may be chosen
automatically, but you often will want to choose the zone yourself, for availability and busi-
ness continuity reasons.

All access to a public cloud occurs over the Internet. There are two main gateways into a
cloud: a management gateway and a message gateway (Figure 17.2). Here we will focus on the
management gateway; we discussed message gateways in Chapter 15.

Suppose you wish to have a VM allocated for you in the cloud. You send a request to the
management gateway asking for a new VM instance. This request has many parameters, but
three essential parameters are the cloud region where the new instance will run, the instance
type (e.g., CPU and memory size), and the ID of a VM image. The management gateway is
responsible for tens of thousands of physical computers, and each physical computer has a
hypervisor that manages the VMs on it. So, the management gateway will identify a hyper-
visor that can manage an additional VM of the type you have selected by asking, Is there
enough unallocated CPU and memory capacity available on that physical machine to meet

250 Part III Architectural Solutions | Chapter 17 The Cloud and Distributed Computing

your needs? If so, it will ask that hypervisor to create an additional VM; the hypervisor will
perform this task and return the new VM’s IP address to the management gateway. The man-
agement gateway then sends that IP address to you. The cloud provider ensures that enough
physical hardware resources are available in its data centers so that your request will never fail
due to insufficient resources.

The management gateway returns not only the IP address for the newly allocated VM,
but also a hostname. The hostname returned after allocating a VM reflects the fact that the
IP address has been added to the cloud Domain Name System (DNS). Any VM image can be
used to create the new VM instance; that is, the VM image may comprise a simple service or
be just one step in the deployment process to create a complex system.

The management gateway performs other functions in addition to allocating new VMs. It
supports collecting billing information about the VM, and it provides the capability to monitor
and destroy the VM.

 The management gateway is accessed through messages over the Internet to its API.
These messages can come from another service, such as a deployment service, or they can
be generated from a command-line program on your computer (allowing you to script opera-
tions). The management gateway can also be accessed through a web-based application oper-
ated by the cloud service provider, although this kind of interactive interface is not efficient for
more than the most trivial operations.

Management

gateway

Management UI

Client

Message

gateway

FIGURE 17.2 Gateways into a public cloud

17.2 Failure in the Cloud 251

 17.2 Failure in the Cloud

When a data center contains tens of thousands of physical computers, it is almost a certainty
that one or more will fail every day. Amazon reports that in a data center with around 64,000
computers, each with two spinning disk drives, approximately 5 computers and 17 disks will
fail every day. Google reports similar statistics. In addition to computer and disk failures, net-
work switches can fail; the data center can overheat, causing all the computers to fail; or some
natural disaster may bring the entire data center down. Although your cloud provider will have
relatively few total outages, the physical computer on which your specific VM is running may
fail. If availability is important to your service, you need to think carefully about what level of
availability you wish to achieve and how to achieve it.

We’ll discuss two concepts especially relevant to failure in the cloud: timeouts and long
tail latency.

Timeouts

 Recall from Chapter 4 that timeout is a tactic for availability. In a distributed system, timeouts
are used to detect failure. There are several consequences of using timeouts:

 ■ Timeouts can’t distinguish between a failed computer or broken network connection and
a slow reply to a message that exceeds the timeout period. This will cause you to label
some slow responses as failures.

 ■ A timeout will not tell you where the failure or slowness occurs.
 ■ Many times, a request to a service triggers that service to make requests to other services,

which make more requests. Even if each of the responses in this chain has a latency that
is close to (but slower than) the expected average response time, the overall latency may
(falsely) suggest a failure.

A timeout—a decision that a response has taken too long—is commonly used to detect
a failure. A timeout cannot isolate whether the failure is due to a failure in the software of the
requested service, the virtual or physical machine that the service is running on, or the net-
work connection to the service. In most cases, the cause is not important: You made a request,
or you were expecting a periodic keep-alive or heartbeat message, and did not receive a timely
response, and now you need to take action to remedy this.

This seems simple, but in real systems it can be complicated. There is usually a cost, such
as a latency penalty, for a recovery action. You may need to start a new VM, which could take
minutes before it is ready to accept new requests. You may need to establish a new session with
a different service instance, which may affect the usability of your system. The response times
in cloud systems can show considerable variations. Jumping to a conclusion that there was a
failure, when there was actually just a temporary delay, may add a recovery cost when it isn’t
necessary.

Distributed system designers generally parameterize the timeout detection mechanism so
that it can be tuned for a system or infrastructure. One parameter is the timeout interval—how

252 Part III Architectural Solutions | Chapter 17 The Cloud and Distributed Computing

long the system should wait before deciding that a response has failed. Most systems do
not trigger failure recovery after a single missed response. Instead, the typical approach is
to look for some number of missed responses over a longer time interval. The number of
missed responses is a second parameter for the timeout mechanism. For example, a timeout
might be set to 200 milliseconds, and failure recovery is triggered after 3 missed messages
over a 1-second interval.

For systems running with a single data center, timeouts and thresholds can be set aggres-
sively, since network delays are minimal and missed responses are likely due to software
crashes or hardware failures. In contrast, for systems operating over a wide area network, a
cellular radio network, or even a satellite link, more thought should be put into setting the
parameters, as these systems may experience intermittent but longer network delays. In such
cases, the parameters may be relaxed to reflect this possibility and avoid triggering unneces-
sary recovery actions.

 Long Tail Latency

 Regardless of whether the cause is an actual failure or just a slow response, the response to
your original request may exhibit what is called long tail latency. Figure 17.3 shows a his-
togram of the latency of 1,000 “launch instance” requests to Amazon Web Services (AWS).
Notice that some requests took a very long time to satisfy. When evaluating measurement sets
such as this one, you must be careful which statistic you use to characterize the data set. In
this case, the histogram peaks at a latency of 22 seconds; however, the average latency over
all the measurements is 28 seconds, and the median latency (half the requests are completed
with latency less than this value) is 23 seconds. Even after a latency of 57 seconds, 5 percent
of the requests have still not been completed (i.e., the 95th percentile is 57 seconds). So,
although the mean latency for each service-to-service request to a cloud-based service may be
within tolerable limits, a reasonable number of these requests can have much greater latency—
in this case, from 2 to 10 times longer than the average. These are the measurements in the
long tail on the right side of the histogram.

Long tail latencies are a result of congestion or failure somewhere in the path of the
service request. Many factors may contribute to congestion—server queues, hypervisor sched-
uling, or others—but the cause of the congestion is out of your control as a service developer.
Your monitoring techniques and your strategies to achieve your required performance and
availability must reflect the reality of a long tail distribution.

Two techniques to handle long tail problems are hedged requests and alternative requests.

 ■ Hedged requests. Make more requests than are needed and then cancel the requests (or
ignore responses) after sufficient responses have been received. For example, suppose
10 instances of a microservice (see Chapter 5) are to be launched. Issue 11 requests and
after 10 have completed, terminate the request that has not responded yet.

 ■ Alternative requests. A variant of the hedged request technique is called alternative
request. In the just-described scenario, issue 10 requests. When 8 requests have com-
pleted, issue 2 more, and when a total of 10 responses have been received, cancel the
2 requests that are still remaining.

17.3 Using Multiple Instances to Improve Performance and Availability 253

0
0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

20 40 60 80 100

Return Time (s)

120 140 160 180 200 220

FIGURE 17.3 Long tail distribution of 1,000 “launch instance” requests to AWS

17.3 Using Multiple Instances to Improve Performance and
Availability

If a service hosted in a cloud receives more requests than it can process within the required
latency, the service becomes overloaded. This can occur because there is an insufficient I/O
bandwidth, CPU cycles, memory, or some other resource. In some cases, you can resolve a ser-
vice overload issue by running the service in a different instance type that provides more of the
resource that is needed. This approach is simple: The design of the service does not change;
instead, the service just runs on a larger virtual machine. Called vertical scaling or scaling up,
this approach corresponds to the increased resources performance tactic from Chapter 9.

There are limits to what can be achieved with vertical scaling. In particular, there may
not be a large enough VM instance type to support the workload. In this case, horizontal
scaling or scaling out provides more resources of the type needed. Horizontal scaling involves
having multiple copies of the same service and using a load balancer to distribute requests
among them—equivalent to the maintain multiple copies of computations tactic and the load
balancer pattern, respectively, from Chapter 9.

 Distributed Computing and Load Balancers

Load balancers can be standalone systems, or they can bundled with other functions. A load
balancer must be very efficient because it sits in the path of every message from a client to a

254 Part III Architectural Solutions | Chapter 17 The Cloud and Distributed Computing

service, and even when it is packaged with other functions, it is logically isolated. Here, we
divide our discussion into two main aspects: how load balancers work and how services that
sit behind a load balancer must be designed to manage the service state. Once we understand
these processes, we can explore the management of the system’s health and how load balancers
can improve its availability.

A load balancer solves the following problem: There is a single instance of a service
running on a VM or in a container, and too many requests are arriving at this instance for it
to provide acceptable latency. One solution is to have multiple instances of the service and
distribute the requests among them. The distribution mechanism in such a case is a separate
service—the load balancer. Figure 17.4 shows a load balancer distributing requests between
two VM (service) instances. The same discussion would apply if there were two container
instances. (Containers were discussed in Chapter 16.)

Clients

Load

balancer

Service instances

FIGURE 17.4 A load balancer distributing requests from two clients to two service instances

You may be wondering what constitutes “too many requests” and “reasonable response
time.” We’ll come back to these questions later in this chapter when we discuss autoscaling.
For now, let’s focus on how a load balancer works.

In Figure 17.4, each request is sent to a load balancer. For the purposes of our discussion,
suppose the load balancer sends the first request to instance 1, the second request to instanceb2,
the third request back to instance 1, and so forth. This sends half of the requests to each
instance, balancing the load between the two instances—hence the name.

17.3 Using Multiple Instances to Improve Performance and Availability 255

Some observations about this simple example of a load balancer:

 ■ The algorithm we provided—alternate the messages between the two instances—is
called “round-robin.” This algorithm balances the load uniformly across the service
instances only if every request consumes roughly the same resources in its response.
Other algorithms for distributing the messages exist for cases where the resource con-
sumption needed to process requests varies.

 ■ From a client’s perspective, the service’s IP address is actually the address of the load
balancer. This address may be associated with a hostname in the DNS. The client does not
know, or need to know, how many instances of the service exist or the IP address of any
of those service instances. This makes the client resilient to changing this information—
an example of using an intermediary, as discussed in Chapter 8.

 ■ Multiple clients may coexist. Each client sends its messages to the load balancer, which
does not care about the message source. The load balancer distributes the messages as
they arrive. (We’ll ignore the concept called “sticky sessions” or “session affinity” for
the moment.)

 ■ Load balancers may get overloaded. In this case, the solution is to balance the load of the
load balancer, sometimes referred to as global load balancing. That is, a message goes
through a hierarchy of load balancers before arriving at the service instance.

 So far, our discussion of load balancers has focused on increasing the amount of work
that can be handled. Here, we will consider how load balancers also serve to increase the
availability of services.

Figure 17.4 shows messages from clients passing through the load balancer, but does not
show the return messages. Return messages go directly from the service instances to the cli-
ents (determined by the “from” field in the IP message header), bypassing the load balancer.
As a consequence, the load balancer has no information about whether a message was pro-
cessed by a service instance, or how long it took to process a message. Without additional
mechanisms, the load balancer would not know whether any service instance was alive and
processing, or if any instance or all instances had failed.

Health checks are a mechanism that allow the load balancer to determine whether an
instance is performing properly. This is the purpose of the “fault detection” category of
availability tactics from Chapter 4. The load balancer will periodically check the health
of the instances assigned to it. If an instance fails to respond to a health check, it is marked
as unhealthy and no further messages are sent to it. Health checks can consist of pings from
the load balancer to the instance, opening a TCP connection to the instance or even sending
a message for processing. In the latter case, the return IP address is the address of the load
balancer.

It is possible for an instance to move from healthy to unhealthy, and back again. Suppose,
for example, that the instance has an overloaded queue. When initially contacted, it may not
respond to the load balancer’s health check, but once the queue has been drained, it may
be ready to respond again. For this reason, the load balancer checks multiple times before
moving an instance to an unhealthy list, and then periodically checks the unhealthy list to
determine whether an instance is again responding. In other cases, a hard failure or crash may
cause the failed instance to restart and re-register with the load balancer, or a new replacement

256 Part III Architectural Solutions | Chapter 17 The Cloud and Distributed Computing

instance may be started and registered with the load balancer, so as to maintain overall service
delivery capacity.

A load balancer with health checking improves availability by hiding the failure of a ser-
vice instance from clients. The pool of service instances can be sized to accommodate some
number of simultaneous service instance failures while still providing enough overall service
capacity to handle the required volume of client requests within the desired latency. However,
even when using health checking, a service instance might sometimes start processing a client
request but never return a response. Clients must be designed so that they resend a request if
they do not receive a timely response, allowing the load balancer to distribute the request to a
different service instance. Services must correspondingly be designed such that multiple iden-
tical requests can be accommodated.

State Management in Distributed Systems

State refers to information internal to a service that affects the computation of a response to a
client request. State—or, more precisely, the collection of the values of the variables or data
structures that store the state—depends on the history of requests to the service.

Management of state becomes important when a service can process more than one client
request at the same time, either because a service instance is multi-threaded, because there are
multiple service instances behind a load balancer, or both. The key issue is where the state is
stored. The three options are:

1. The history maintained in each service instance, in which case the services are described
as “stateful.”

2. The history maintained in each client, in which case the services are described as
“stateless.”

3. The history persists outside the services and clients, in a database, in which case the
services are described as “stateless.”

Common practice is to design and implement services to be stateless. Stateful services
lose their history if they fail, and recovering that state can be difficult. Also, as we will see in
the next section, new service instances may be created, and designing services to be stateless
allows a new service instance to process a client request and produce the same response as any
other service instance.

In some cases, it may be difficult or inefficient to design a service to be stateless, so we
might want a series of messages from a client to be processed by the same service instance.
We can accomplish this by having the first request in the series be handled by the load bal-
ancer and distributed to a service instance, and then allowing the client to establish a ses-
sion directly with that service instance and subsequent requests to bypass the Load balancer.
Alternatively, some load balancers can be configured to treat certain types of requests as
sticky, which causes the load balancer to send subsequent requests from a client to the same
service instance that handled the last message from this client. These approaches—direct ses-
sions and sticky messages—should be used only under special circumstances because of the
possibility of failure of the instance and the risk that the instance to which the messages are
sticking may become overloaded.

17.3 Using Multiple Instances to Improve Performance and Availability 257

Frequently, there is a need to share information across all instances of a service. This
information may consist of state information, as discussed earlier, or it may be other infor-
mation that is needed for the service instances to work together efficiently—for example, the
IP address of the load balancer for the service. A solution exists to manage relatively small
amounts of information shared among all instances of a service, as discussed next.

 Time Coordination in a Distributed System

Determining exactly what time it is might seem to be a trivial task, but it is actually not easy.
Hardware clocks found in computers will gain or lose one second about every 12 days. If your
computing device is out in the world, so to speak, it may have access to a time signal from a
Global Positioning System (GPS) satellite, which provides a time accurate to within 100 nano-
seconds or less.

Having two or more devices agree on what time it is can be even more challenging. The
clock readings from two different devices on a network will be different. The Network Time
Protocol (NTP) is used to synchronize time across different devices that are connected over a
local or wide area network. It involves exchanging messages between a time server and client
devices to estimate the network latency, and then applying algorithms to synchronize a client
device’s clock to the time server. NTP is accurate to around 1 millisecond on local area net-
works and around 10 milliseconds on public networks. Congestion can cause errors of 100
milliseconds or more.

Cloud service providers provide very precise time references for their time servers. For
example, Amazon and Google use atomic clocks, which have virtually unmeasurable drift.
Both can therefore provide an extremely accurate answer to the question, “What time is it?” Of
course, what time it is when you get the answer is another matter.

Happily, for many purposes, almost-accurate time is good enough. However, as a prac-
tical matter, you should assume some level of error exists between the clock readings on two
different devices. For this reason, most distributed systems are designed so that time synchro-
nization among devices is not required for applications to function correctly. You can use
device time to trigger periodic actions, to timestamp log entries, and for a few other purposes
where accurate coordination with other devices is not necessary.

Also happily, for many proposes, it is more important to know the order of events rather
than the time at which those events occurred. Trading decisions on the stock market fall into
this category, as do online auctions of any form. Both rely on processing packets in the same
order in which they were transmitted.

For critical coordination across devices, most distributed systems use mechanisms such
as vector clocks (which are not really clocks, but rather counters that trace actions as they
propagate through the services in an application) to determine whether one event happened
before another event, rather than comparing times. This ensures that the application can apply
the actions in the correct order. Most of the data coordination mechanisms that we discuss
in the next section rely on this kind of ordering of actions.

For an architect, successful time coordination involves knowing whether you really need
to rely on actual clock times, or whether ensuring correct sequencing suffices. If the former is
important, then know your accuracy requirements and choose a solution accordingly.

258 Part III Architectural Solutions | Chapter 17 The Cloud and Distributed Computing

 Data Coordination in a Distributed System

Consider the problem of creating a resource lock to be shared across distributed machines.
Suppose some critical resource is being accessed by service instances on two distinct VMs
running on two distinct physical computers. We assume this critical resource is a data item—
for example, your bank account balance. Changing the account balance requires reading the
current balance, adding or subtracting the transaction amount, and then writing back the new
balance. If we allow both service instances to operate independently on this data item, there
is the possibility of a race condition, such as two simultaneous deposits overwriting each other.
The standard solution in this situation is to lock the data item, so that a service cannot access
your account balance until it gets the lock. We avoid a race condition because service instance
1 is granted a lock on your bank account and can work in isolation to make its deposit until it
yields the lock. Then service instance 2, which has been waiting for the lock to become avail-
able, can lock the bank account and make the second deposit.

This solution using a shared lock is easy to implement when the services are processes
running on a single machine, and requesting and releasing a lock are simple memory access
operations that are very fast and atomic. However, in a distributed system, two problems arise
with this scheme. First, the two-phase commit protocol traditionally used to acquire a lock
requires multiple messages to be transmitted across the network. In the best case, this just
adds delay to the actions, but in the worst case, any of these messages may fail to be delivered.
Second, service instance 1 may fail after it has acquired the lock, preventing service instanceb2
from proceeding.

The solution to these problems involves complicated distributed coordination algorithms.
Leslie Lamport, quoted at the beginning of the chapter, developed one of the first such algo-
rithms, which he named “Paxos.” Paxos and other distributed coordination algorithms rely
on a consensus mechanism to allow participants to reach agreement even when computer or
network failures occur. These algorithms are notoriously complicated to design correctly, and
even implementing a proven algorithm is difficult due to subtleties in programming language
and network interface semantics. In fact, distributed coordination is one of those problems
that you should not try to solve yourself. Using one of the existing solution packages, such as
Apache Zookeeper, Consul, and etcd, is almost always a better idea than rolling your own.
When service instances need to share information, they store it in a service that uses a distrib-
uted coordination mechanism to ensure that all services see the same values.

Our last distributed computing topic is the automatic creation and destruction of instances.

 Autoscaling: Automatic Creation and Destruction of Instances

Consider a traditional data center, where your organization owns all the physical resources. In
this environment, your organization needs to allocate enough physical hardware to a system to
handle the peak of the largest workload that it has committed to process. When the workload
is less than the peak, some (or much) of the hardware capacity allocated to the system is idle.
Now compare this to a cloud environment. Two of the defining features of the cloud are that
you pay only for the resources you requisition and that you can easily and quickly add and

17.3 Using Multiple Instances to Improve Performance and Availability 259

release resources (elasticity). Together, these features allow you to create systems that have the
capacity to handle your workload, and you don’t pay for any excess capacity.

Elasticity applies at different time scales. Some systems see relatively stable workloads,
in which case you might consider manually reviewing and changing resource allocation on a
monthly or quarterly time scale to match this slowly changing workload. Other systems see
more dynamic workloads with rapid increases and decreases in the rate of requests, and so
need a way to automate adding and releasing service instances.

Autoscaling is an infrastructure service that automatically creates new instances when
needed and releases surplus instances when they are no longer needed. It usually works in
conjunction with load balancing to grow and shrink the pool of service instances behind a
load balancer. Autoscaling containers is slightly different from autoscaling VMs. We discuss
autoscaling VMs first and then discuss the differences when containers are being autoscaled.

Autoscaling VMs

Returning to Figure 17.4, suppose that the two clients generate more requests than can be
handled by the two service instances shown. Autoscaling creates a third instance, based on
the same virtual machine image that was used for the first two instances. The new instance
is registered with the load balancer so that subsequent requests are distributed among three
instances rather than two. Figure 17.5 shows a new component, the autoscaler, that monitors
and autoscales the utilization of the server instances. Once the autoscaler creates a new ser-
vice instance, it notifies the load balancer of the new IP address so that the load balancer can
distribute requests to the new instance, in addition to the requests it distributes to the other
instances.

Autoscaler

FIGURE 17.5 An autoscaler monitoring the utilization

260 Part III Architectural Solutions | Chapter 17 The Cloud and Distributed Computing

Because the clients do not know how many instances exist or which instance is serving
their requests, autoscaling activities are invisible to service clients. Furthermore, if the client
request rate decreases, an instance can be removed from the load balancer pool, halted, and
deallocated, again without the client’s knowledge.

As an architect of a cloud-based service, you can set up a collection of rules for the auto-
scaler that govern its behavior. The configuration information you provide to the autoscaler
includes the following items:

 ■ The VM image to be launched when a new instance is created, and any instance config-
uration parameters required by the cloud provider, such as security settings

 ■ The CPU utilization threshold (measured over time) for any instance above which a new
instance is launched

 ■ The CPU utilization threshold (measured over time) for any instance below which an
existing instance is shut down

 ■ The network I/O bandwidth thresholds (measured over time) for creating and deleting
instances

 ■ The minimum and maximum number of instances you want in this group

The autoscaler does not create or remove instances based on instantaneous values of the
CPU utilization or network I/O bandwidth metrics, for two reasons. First, these metrics have
spikes and valleys and are meaningful only when averaged over a reasonable time interval.
Second, allocating and starting a new VM takes a relatively long time, on the order of minutes.
The VM image must be loaded and connected to the network, and the operating system must
boot before it will be ready to process messages. Consequently, autoscaler rules typically are
of the form, “Create a new VM when CPU utilization is above 80 percent for 5 minutes.”

In addition to creating and destroying VMs based on utilization metrics, you can set rules
to provide a minimum or maximum number of VMs or to create VMs based on a time sched-
ule. During a typical week, for example, load may be heavier during work hours; based on this
knowledge, you can allocate more VMs before the beginning of a workday and remove some
after the workday is over. These scheduled allocations should be based on historical data about
the pattern of usage of your services.

When the autoscaler removes an instance, it cannot just shut down the VM. First, it must
notify the load balancer to stop sending requests to the service instance. Next, because the
instance may be in the process of servicing a request, the autoscaler must notify the instance
that it should terminate its activities and shut down, after which it can be destroyed. This pro-
cess is called “draining” the instance. As a service developer, you are responsible for imple-
menting the appropriate interface to receive instructions to terminate and drain an instance of
your service.

Autoscaling Containers

Because containers are executing on runtime engines that are hosted on VMs, scaling con-
tainers involves two different types of decisions. When scaling VMs, an autoscaler decides
that additional VMs are required, and then allocates a new VM and loads it with the appro-
priate software. Scaling containers means making a two-level decision. First, decide that an

17.4 Summary 261

additional container (or Pod) is required for the current workload. Second, decide whether the
new container (or Pod) can be allocated on an existing runtime engine instance or whether a
new instance must be allocated. If a new instance must be allocated, you need to check whether
a VM with sufficient capacity is available or if an additional VM needs to be allocated.

The software that controls the scaling of containers is independent of the software that
controls the scaling of VMs. This allows the scaling of containers to be portable across differ-
ent cloud providers. It is possible that the evolution of containers will integrate the two types of
scaling. In such a case, you should be aware that you may be creating a dependency between
your software and the cloud provider that could be difficult to break.

 17.4 Summary

The cloud is composed of distributed data centers, with each data center containing tens of
thousands of computers. It is managed through a management gateway that is accessible over
the Internet and is responsible for allocating, deallocating, and monitoring VMs, as well as
measuring resource usage and computing billing.

Because of the large number of computers in a data center, failure of a computer in such
a center happens quite frequently. You, as an architect of a service, should assume that at some
point, the VMs on which your service is executing will fail. You should also assume that your
requests for other services will exhibit a long tail distribution, such that as many as 5 percent
of your requests will take 5 to 10 times longer than the average request. Thus you must be con-
cerned about the availability of your service.

Because single instances of your service may not be able to satisfy all requests in a timely
manner, you may decide to run multiple VMs or containers containing instances of your ser-
vice. These multiple instances sit behind a load balancer. The load balancer receives requests
from clients and distributes the requests to the various instances.

The existence of multiple instances of your service and multiple clients has a significant
impact on how you handle state. Different decisions on where to keep the state will lead to
different results. The most common practice is to keep services stateless, because stateless
services allow for easier recovery from failure and easier addition of new instances. Small
amounts of data can be shared among service instances by using a distributed coordination
service. Distributed coordination services are complicated to implement, but several proven
open source implementations are available for your use.

The cloud infrastructure can automatically scale your service by creating new instances
when demand grows and removing instances when demand shrinks. You specify the behavior
of the autoscaler through a set of rules giving the conditions for the creation or deletion of
instances.

262 Part III Architectural Solutions | Chapter 17 The Cloud and Distributed Computing

17.5 For Further Reading

More details about how networks and virtualization work can be found in [Bass 19].
The long tail latency phenomenon in the context of the cloud was first identified in

[Dean 13].
Paxos was first presented by [Lamport 98]. People found the original article difficult

to understand, but a very thorough description of Paxos can be found in Wikipedia—https://
en.wikipedia.org/wiki/Paxos_(computer_science). Around the same time, Brian Oki and
Barbara Liskov independently developed and published an algorithm called Viewstamped
Replication that was later shown to be equivalent to Lamport’s Paxos [Oki 88].

A description of Apache Zookeeper can be found at https://zookeeper.apache.org/. Consul
can be found at https://www.consul.io/, and etcd can be found at https://etcd.io/

A discussion of different types of load balancers can be found at https://
docs.aws.amazon.com/AmazonECS/latest/developerguide/load-balancer-types.html.

Time in a distributed system is discussed in https://medium.com/coinmonks/time-and-
clocks-and-ordering-of-events-in-a-distributed-system-cdd3f6075e73.

Managing state in a distributed system is discussed in https://conferences.oreilly.com/
software-architecture/sa-ny-2018/public/schedule/detail/64127.

17.6 Discussion Questions

1. A load balancer is a type of intermediary. Intermediaries enhance modifiability but
detract from performance, yet a load balancer exists to increase performance. Explain
this apparent paradox.

2. A context diagram displays an entity and other entities with which it communicates. It
separates the responsibilities allocated to the chosen entity from those responsibilities
allocated to other entities, and shows the interactions needed to accomplish the chosen
entity’s responsibilities. Draw a context diagram for a load balancer.

3. Sketch the set of steps to allocate a VM within a cloud and display its IP address.

4. Research the offerings of a major cloud provider. Write a set of rules that would govern
the autoscaling for a service that you would implement on this cloud.

5. Some load balancers use a technique called message queues. Research message queues and
describe the differences between load balancers with and without message queues.

https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://zookeeper.apache.org/
https://www.consul.io/
https://etcd.io/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/load-balancer-types.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/load-balancer-types.html
https://medium.com/coinmonks/time-and-clocks-and-ordering-of-events-in-a-distributed-system-cdd3f6075e73
https://medium.com/coinmonks/time-and-clocks-and-ordering-of-events-in-a-distributed-system-cdd3f6075e73
https://conferences.oreilly.com/software-architecture/sa-ny-2018/public/schedule/detail/64127
https://conferences.oreilly.com/software-architecture/sa-ny-2018/public/schedule/detail/64127

263

18
 Mobile Systems
With Yazid Hamdi and Greg Hartman

The telephone will be used to inform people that
a telegram has been sent.

—Alexander Graham Bell

So, what did Alexander Graham Bell know, anyway? Mobile systems, including and especially
phones, are ubiquitous in our world today. Besides phones, they include trains, planes, and
automobiles; they include ships and satellites, entertainment and personal computing devices,
and robotic systems (autonomous or not); they include essentially any system or device that has
no permanent connection to a continuous abundant power source.

A mobile system has the ability to be in movement while continuing to deliver some or all
of its functionality. This makes dealing with some of its characteristics a different matter from
dealing with fixed systems. In this chapter we focus on five of those characteristics:

1. Energy. Mobile systems have limited sources of power and must be concerned with
using power efficiently.

2. Network connectivity. Mobile systems tend to deliver much of their functionality by
exchanging information with other devices while they are in motion. They must there-
fore connect to those devices, but their mobility makes these connections tricky.

3. Sensors and actuators. Mobile systems tend to gain more information from sensors than
fixed systems do, and they often use actuators to interact with their environment.

4. Resources. Mobile systems tend to be more resource-constrained than fixed systems. For
one thing, they are often quite small, such that physical packaging becomes a limiting
factor. For another, their mobility often makes weight a factor. Mobile devices that must
be small and lightweight have limits on the resources they can provide.

5. Life cycle. Testing mobile systems differs from the testing of other systems. Deploying
new versions also introduces some special issues.

When designing a system for a mobile platform, you must deal with a large number of
domain-specific requirements. Self-driving automobiles and autonomous drones must be safe;

264 Part III Architectural Solutions | Chapter 18 Mobile Systems

smartphones must provide an open platform for a variety of vastly different applications;
entertainment systems must work with a wide range of content formats and service providers.
In this chapter, we’ll focus on the characteristics shared by many (if not all) mobile systems
that an architect must consider when designing a system.

18.1 Energy

In this section, we focus on the architectural concerns most relevant to managing the energy of
mobile systems. For many mobile devices, their source of energy is a battery with a very finite
capacity for delivering that energy. Other mobile devices, such as cars and planes, run on the
power produced by generators, which in turn may be powered by engines that run on fuel—
again, a finite resource.

 The Architect’s Concerns

The architect must be concerned with monitoring the power source, throttling energy usage,
and tolerating loss of power. We elaborate on these concerns in the next three subsections.

Monitoring the Power Source

In Chapter 6 on energy efficiency, we introduced a category of tactics called “resource moni-
toring” for monitoring the usage of computational resources, which are consumers of energy.
In mobile systems, we need to monitor the energy source, so that we can initiate appropri-
ate behavior when the energy available becomes low. Specifically, in a mobile device powered
by a battery, we may need to inform a user that the battery level is low, put the device into
 battery-saving mode, alert applications to the imminent shutdown of the device so they can
prepare for a restart, and determine the power usage of each application.

All of these uses depend on monitoring the current state of the battery. Most laptops or
smartphones use a smart battery as a power source. A smart battery is a rechargeable battery
pack with a built-in battery management system (BMS). The BMS can be queried to get the
current state of the battery. Other mobile systems might use a different battery technology, but
all have some equivalent capability. For the purposes of this section, we will assume that the
reading identifies the percentage of capacity left.

Battery-powered mobile systems include a component, often in the kernel of the operat-
ing system, that knows how to interact with the BMS and can return the current battery capac-
ity on request. A battery manager is responsible for periodically querying that component to
retrieve the state of the battery. This enables the system to inform the user of the energy status
and trigger the battery-saving mode, if necessary. To inform the applications that the device is
about to shut down, the applications must register with the battery manager.

Two characteristics of batteries change as they age: the maximum battery capacity and
the maximum sustained current. An architect must allow for managing consumption within

18.1 Energy 265

the changing envelope of available power so that the device still performs at an acceptable
level. Monitoring plays a role in generator-equipped systems as well, since some applications
may need to be shut down or put on standby when generator output is low. The battery man-
ager can also determine which applications are currently active and what their energy con-
sumption is. The overall percentage of the change in battery capacity can then be estimated
based on this information.

Of course, the battery manager itself utilizes resources—memory and CPU time. The
amount of CPU time consumed by the battery manager can be managed by adjusting the query
interval.

 Throttling Energy Usage

Energy usage can be reduced by either terminating or degrading portions of the system that
consume energy; this is the throttle usage tactic described in Chapter 6. The specifics of how
this is done depend on the individual elements of the system, but a common example is reduc-
ing the brightness or the refresh rate of the display on a smartphone. Other techniques for
throttling energy usage include reducing the number of active cores of the processor, reducing
the clock rate of the cores, and reducing the frequency of sensor readings. For example, instead
of asking for GPS location data every few seconds, ask for it every minute or so. Instead of
relying on different location data sources such as GPS and cell towers, use just one of those.

 Tolerating a Loss of Power

Mobile systems should gracefully tolerate power failures and restarts. For example, a require-
ment of such a system could be that following restoration of power, the system is back on and
working in the nominal mode within 30 seconds. This requirement implies different require-
ments apply to different portions of the system, such as the following:

 ■ Example hardware requirements:

 ■ The system’s computer does not suffer permanent damage if power is cut at any time.
 ■ The system’s computer (re)starts the OS robustly whenever sufficient power is

provided.
 ■ The system’s OS has the software scheduled to launch as soon as the OS is ready.

 ■ Example software requirements:

 ■ The runtime environment can be killed at any moment without affecting the integrity
of the binaries, configurations, and operational data in permanent storage, and while
keeping the state consistent after a restart (whether that is a reset or a resume).

 ■ Applications need a strategy to deal with data that arrives while the application is
inoperative.

 ■ The runtime can start after a failure so that the startup time, from system power on
to the software being in a ready state, is less than a specified period.

266 Part III Architectural Solutions | Chapter 18 Mobile Systems

18.2 Network Connectivity

In this section, we focus on the architectural concerns most relevant to network connectivity
of mobile systems. We will focus on wireless communication between the mobile platform
and the outside world. The network might be used to control the device or to send and receive
information.

Wireless networks are categorized based on the distance over which they operate.

 ■ Within 4 centimeters. Near Field Communication (NFC) is used for keycards and
contactless payment systems. Standards in this area are being developed by the GSM
Alliance.

 ■ Within 10 meters. The IEEE 802.15 family of standards covers this distance. Bluetooth
and Zigbee are common protocols within this category

 ■ Within 100 meters. The IEEE 802.11 family of standards (Wi-Fi) is used within this
distance.

 ■ Within several kilometers. The IEEE 802.16 standards cover this distance. WiMAX is
the commercial name for the IEEE 802.16 standards.

 ■ More than several kilometers. This is achieved by cellular or satellite communication.

Within all of these categories, the technologies and the standards are evolving rapidly.

The Architect’s Concerns

Designing for communication and network connectivity requires the architect to balance a
large number of concerns, including the following:

 ■ Number of communication interfaces to support. With all of the different protocols
and their rapid evolution, it is tempting for an architect to include all possible kinds of
network interfaces. The goal when designing a mobile system is just the opposite: Only
the strictly required interfaces should be included to optimize power consumption, heat
generation, and space allocation.

 ■ Movement from one protocol to another. Despite the need to take a minimalist approach
to interfaces, the architect must account for the possibility that during the course of a
session, the mobile system may move from an environment that supports one protocol to
an environment that supports another protocol. For example, a video may be streaming
on Wi-Fi, but then the system may move to an environment without Wi-Fi and the video
will be received over a cellular network. Such transitions should be seamless to the user.

 ■ Choosing the appropriate protocol dynamically. In the event that multiple protocols are
simultaneously available, the system should choose a protocol dynamically based on
factors such as cost, bandwidth, and power consumption.

 ■ Modifiability. Given the large number of protocols and their rapid evolution, it is likely
that over the lifetime of a mobile system, new or alternative protocols will need to be
supported. The system should be designed to support changes or replacements in the
elements of the system involved in communication.

.

18.3 Sensors and Actuators 267

 ■ Bandwidth. The information to be communicated to other systems should be analyzed
for distance, volume, and latency requirements so that appropriate architectural choices
can be made. The protocols all vary in terms of those qualities.

 ■ Intermittent/limited/no connectivity. Communication may be lost while the device is in
motion (e.g., a smartphone going through a tunnel). The system should be designed so
that data integrity is maintained in case of a loss of connectivity, and computation can
be resumed without loss of consistency when connectivity returns. The system should be
designed to deal gracefully with limited connectivity or even no connectivity. Degraded
and fallback modes should be dynamically available to deal with such situations.

 ■ Security. Mobile devices are particularly vulnerable to spoofing, eavesdropping, and man-
in-the-middle attacks, so responding to such attacks should be part of the architect’s
concerns.

18.3 Sensors and Actuators

A sensor is a device that detects the physical characteristics of its environment and translates
those characteristics into an electronic representation. A mobile device gathers environmental
data either to guide its own operation (such as the altimeter in a drone), or to report that data
back to a user (such as the magnetic compass in your smartphone).

A transducer senses external electronic impulses and converts them into a more usable
internal form. In this section. we will use the term “sensor” to encompass transducers as well,
and assume the electronic representation is digital.

A sensor hub is a coprocessor that helps integrate data from different sensors and process
it. A sensor hub can help offload these jobs from a product’s main CPU, thereby saving battery
consumption and improving performance.

Inside the mobile system, software will abstract some characteristics of the environment.
This abstraction may map directly to a sensor, such as with measurement of temperature or
pressure, or it may integrate the input of several sensors, such as pedestrians identified in a
self-driving automobile controller.

An actuator is the reverse of a sensor: It takes a digital representation as input and causes
some action in the environment. The lane keep assist feature in an automobile utilizes actua-
tors, as does an audio alert from your smartphone.

The Architect’s Concerns

An architect has several concerns with respect to sensors:

 ■ How to create an accurate representation of the environment based on the sensor inputs.
 ■ How the system should respond to that representation of the environment.
 ■ Security and privacy of the sensor data and actuator commands.
 ■ Degraded operation. If sensors fail or become unreadable, the system should enter a

degraded mode. For example, if GPS readings are not available in tunnels, the system
can use dead reckoning techniques to estimate location.

268 Part III Architectural Solutions | Chapter 18 Mobile Systems

The representation of the environment that is created and acted upon by a system is
domain specific, as is the appropriate approach to degraded operation. We discussed security
and privacy in detail in Chapter 8, but here we will focus on only the first concern: creating an
accurate representation of the environment based on the data returned by the sensors. This is
performed using the sensor stack—a confederation of devices and software drivers that help
turn raw data into interpreted information about the environment.

Different platforms and domains tend to have their own sensor stacks, and sensor stacks
often come with their own frameworks to help deal with the devices more easily. Over time,
sensors are likely to encompass more and more functionality; in turn, the functions of a par-
ticular stack will change over time. Here, we enumerate some of the functions that must be
achieved in the stack regardless of where a particular decomposition may have placed them:

 ■ Reading raw data. The lowest level of the stack is a software driver to read the raw data.
The driver reads the sensor either directly or, in the case where the sensor is a portion
of a sensor hub, through the hub. The driver gets a reading from the sensor periodically.
The period frequency is a parameter that will influence both the processor load from
reading and processing the sensor and the accuracy of the created representation.

 ■ Smoothing data. Raw data usually has a great deal of noise or variation. Voltage varia-
tions, dirt or grime on a sensor, and a myriad of other causes can make two successive
readings of a sensor differ. Smoothing is a process that uses a series of measurements
over time to produce an estimate that tends to be more accurate than single readings.
Calculating a moving average and using a Kalman filter are two of the many techniques
for smoothing data.

 ■ Converting data. Sensors can report data in many formats—from voltage readings in
millivolts to altitude above sea level in feet to temperature in degrees Celsius. It is possible,
however, that two different sensors measuring the same phenomenon might report their
data in different formats. The converter is responsible for converting readings from what-
ever form is reported by the sensor into a common form meaningful to the application. As
you might imagine, this function may need to deal with a wide variety of sensors.

 ■ Sensor fusion. Sensor fusion combines data from multiple sensors to build a more accu-
rate or more complete or more dependable representation of the environment than would
be possible from any individual sensor. For example, how does an automobile recognize
pedestrians in its path or likely to be in its path by the time it gets there, day or night, in
all kinds of weather? No single sensor can accomplish this feat. Instead, the automobile
must intelligently combine inputs from sensors such as thermal imagers, radar, lidar,
and cameras.

18.4 Resources

In this section, we discuss computing resources from the perspective of their physical charac-
teristics. For example, in devices where energy comes from batteries, we need to be concerned

18.4 Resources 269

with battery volume, weight, and thermal properties. The same holds true for resources such
as networks, processors, and sensors.

The tradeoff in the choice of resources is between the contribution of the particular
resource under consideration and its volume, weight, and cost. Cost is always a factor. Costs
include both the manufacturing costs and nonrecurring engineering costs. Many mobile sys-
tems are manufactured by the millions and are highly price-sensitive. Thus a small difference
in the price of a processor multiplied by the millions of copies of the system in which that pro-
cessor is embedded can make a significant difference to the profitability of the organization
producing the system. Volume discounts and reuse of hardware across different products are
techniques that device vendors use to reduce costs.

Volume, weight, and cost are constraints given both by the marketing department of an
organization and by the physical considerations of its use. The marketing department is con-
cerned with customers’ reactions. The physical considerations for the device’s use depend on
both human and usage factors. Smartphone displays must be large enough for a human to read;
automobiles are constrained by weight limits on roads; trains are constrained by track width;
and so forth.

Other constraints on mobile system resources (and therefore on software architects)
reflect the following factors:

 ■ Safety considerations. Physical resources that have safety consequences must not fail or
must have backups. Backup processors, networks, or sensors add cost and weight, as well
as consume space. For example, many aircraft have an emergency source of power that
can be used in case of engine failure.

 ■ Thermal limits. Heat can be generated by the system itself (think of your lap on which
your laptop sits), which can have a detrimental effect on the system’s performance, even
to the point of inducing failure. The environment’s ambient temperature—too high or
too low—can have an impact as well. There should be an understanding of the environ-
ment in which the system will be operated prior to making hardware choices.

 ■ Other environmental concerns. Other concerns include exposure to adverse conditions
such as moisture or dust, or being dropped.

The Architect’s Concerns

An architect must make a number of important decisions surrounding resources and their
usage:

 ■ Assigning tasks to electronic control units (ECUs). Larger mobile systems, such as cars
or airplanes, have multiple ECUs of differing power and capacity. A software architect
must decide which subsystems will be assigned to which ECUs. This decision can be
based on a number of factors:

 ■ Fit of the ECU to the function. Functions must be allocated to ECUs with sufficient
power to perform the function. Some ECUs may have specialized processors; for
example, an ECU with a graphics processor is a better fit for graphics functions.

270 Part III Architectural Solutions | Chapter 18 Mobile Systems

 ■ Criticality. More powerful ECUs may be reserved for critical functions. For exam-
ple, engine controllers are more critical and more reliable than the comfort features
subsystem.

 ■ Location in the vehicle. First-class passengers may have better Wi-Fi connectivity than
second-class passengers.

 ■ Connectivity. Some functions may be split among several ECUs. If so, they must be on
the same internal network and able to communicate with each other.

 ■ Locality of communication. Putting components that intensely communicate with each
other on the same ECU will improve their performance and reduce network traffic.

 ■ Cost. Typically a manufacturer wants to minimize the number of ECUs deployed.

 ■ Offloading functionality to the cloud. Applications such as route determination and pat-
tern recognition can be performed partly by the mobile system itself—where the sensors
are located—and partly from portions of the application that are resident on the cloud—
where more data storage and more powerful processors are available. The architect
must determine whether the mobile system has sufficient power for specific functions,
whether there is adequate connectivity to offload some functions, and how to satisfy
performance requirements when the functions are split between the mobile system and
the cloud. The architect should also take into consideration data storage available locally,
data update intervals, and privacy concerns.

 ■ Shutting down functions depending on the mode of operations. Subsystems that are not
being used can scale down their footprint, allowing competing subsystems to access
more resources, and thereby deliver better performance. In sports cars, an example is
switching on a “race mode,” which disables the processes responsible for calculating
comfortable suspension parameters based on the road profile and activates calculations
of torque distribution, braking power, suspension hardening, and centrifugal forces.

 ■ Strategy for displaying information. This issue is tied to available display resolution.
It’s possible to do GPS style mapping on a 320 × 320 pixel display, but a lot of effort has
to go into minimizing the information on the display. At a resolution of 1,280 × 720,
there are more pixels, so the information display can be richer. (Having the ability to
change the information on the display is a strong motivator for a pattern such as MVC
[see Chapter 13] so that the view can be swapped out based on the specific display
characteristics.)

18.5 Life Cycle

The life cycle of mobile systems tends to feature some idiosyncrasies that an architect needs to
take into account, and these differ from the choices made for traditional (nonmobile) systems.
We’ll dive right in.

18.5 Life Cycle 271

The Architect’s Concerns

The architect must be concerned with the hardware choices, testing, deploying updates, and
logging. We elaborate on these concerns in the next four subsections.

Hardware First

For many mobile systems, the hardware is chosen before the software is designed. Consequently,
the software architecture must live with the constraints imposed by the chosen hardware.

The main stakeholders in early hardware choices are management, sales, and regulators.
Their concerns typically focus on ways to reduce risks rather than ways to promote quality
attributes. The best approach for a software architect is to actively drive these early discus-
sions, emphasizing the tradeoffs involved, instead of passively awaiting their outcomes.

Testing

Mobile devices present some unique considerations for testing:

 ■ Test display layouts. Smartphones and tablets come in a wide variety of shapes, sizes,
and aspect ratios. Verifying the correctness of the layout on all of these devices is
complicated. Some operating system frameworks allow the user interface to be operated
from unit tests, but may miss some unpleasant edge cases. For example, suppose you
display control buttons on your screen, with the layout specified in HTML and CSS, and
suppose it’s automatically generated for all display devices you anticipate using. A naive
generation for a tiny display could produce a control on a 1 × 1 pixel, or controls right
at the edge of the display, or controls that overlap. These may easily escape detection
during testing.

 ■ Test operational edge cases.

 ■ An application should survive battery exhaustion and shutdown of the system. The
preservation of state in such cases needs to be ensured and tested.

 ■ The user interface typically operates asynchronously from the software that pro-
vides the functionality. When the user interface does not react correctly, re-creating
the sequence of events that caused the problem is difficult because the problem may
depend on the timing, or on a specific set of operations in progress at the time.

 ■ Test resource usage. Some vendors will make simulators of their devices available
to software architects. That’s helpful, but testing battery usage with a simulator is
problematic.

 ■ Test for network transitions. Ensuring that the system makes the best choice when
multiple communication networks are available is also difficult. As a device moves from
one network to another (e.g., from a Wi-Fi network to a cellular network and then to a
different Wi-Fi network), the user should be unaware of these transitions.

Testing for transportation or industrial systems tends to happen on four levels: the indi-
vidual software component level, the function level, the device level, and the system level. The
levels and boundaries between them may vary depending on the system, but they are implied
in several reference processes and standards such as Automotive SPICE.

272 Part III Architectural Solutions | Chapter 18 Mobile Systems

For example, suppose we are testing a car’s lane keep assist function, where the vehicle
stays in the lane defined by markings on the road and does so without driver input. Testing of
this system may address the following levels:

1. Software component. A lane detection software component will be tested through the
usual techniques for unit and end-to-end testing, with the aim of validating the soft-
ware’s stability and correctness.

2. Function. The next step is to run the software component together with other compo-
nents of the lane keep assist function, such as a mapping component to identify high-
way exits, in a simulated environment. The aim is to validate the interfacing and safe
concurrency when all components of the function are working together. Here, simulators
are used to provide the software function with inputs that correspond to a vehicle driving
down a marked road.

3. Device. The bundled lane keep assist function, even if it passes the tests in the simulated
environment and on the development computers, needs to be deployed on its target ECU
and tested there for performance and stability. In this device test phase, the environment
would still be simulated, but this time through simulated external inputs (messages from
other ECUs, sensor inputs, and so forth) connected to the ECU’s ports.

4. System. In the final system integration testing phase, all devices with all functions and
all components are built into full-size configurations, first in a test lab and then in a test
prototype. For example, the lane keep assist function could be subjected to testing, along
with its actions on the steering and acceleration/braking functions, while being fed a
projected image or a video of the road. The role of these tests is to confirm that the inte-
grated subsystems work together and deliver the desired functionality and system quality
attributes.

An important point here is test traceability: If an issue is found in step 4, it needs to be
reproducible and traceable through all test setups, since a fix will have to go through all four
test levels again.

Deploying Updates

In a mobile device, updates to the system either fix issues, provide new functionality, or
install features that are unfinished but perhaps were partially installed at the time of an earlier
release. Such an update may target the software, the data, or (less often) the hardware. Modern
cars, for example, require software updates, which are fetched over networks or downloaded
via USB interfaces. Beyond providing for the capability of updates during operation, the fol-
lowing specific issues relate to deploying updates:

 ■ Maintaining data consistency. For consumer devices, upgrades tend to be automatic and
one-way (there’s no way to roll back to an earlier version). This suggests keeping data on
the cloud is a good idea—but then all the interactions between the cloud and the applica-
tion need to be tested.

 ■ Safety. The architect needs to determine which states of the system can safely support
an update. For example, updating a car’s engine control software while the vehicle is

18.6 Summary 273

driving down the highway is a bad idea. This, in turn, implies that the system needs to be
aware of safety-relevant states with respect to updates.

 ■ Partial system deployment. Re-deploying a total application or large subsystem will
consume both bandwidth and time. The application or subsystem should be architected
so that the portions that change frequently can be easily updated. This calls for a specific
type of modifiability (see Chapter 8) and an attention to deployability (see Chapter 5). In
addition, updates should be easy and automated. Accessing physical portions of a device
to update them may be awkward. Returning to the engine controller example, updating
the controller software should not require access to the engine.

 ■ Extendability. Mobile vehicle systems tend to have relatively long lifetimes. Retrofitting
cars, trains, airplanes, satellites, and so forth will likely become necessary at some
point. Retrofitting means adding new technology to old systems, either by replacement
or addition. This could occur for the following reasons:

 ■ The component reaches the end of its life before the overall system reaches its end.
The end of life means support will be discontinued, which creates high risks in case
of failures: There will be no trusted source from which to get answers or support with
reasonable costs—that is, without having to dissect and reverse-engineer the compo-
nent in question.

 ■ Newer better technology has come out, prompting a hardware/software upgrade. An
example is retrofitting a 2000s car with a smartphone-connected infotainment system
instead of an old radio/CD player.

 ■ Newer technology is available that adds functionality without replacing existing func-
tionality. For example, suppose the 2000s-era car never had a radio/CD player at all, or
lacked a backup camera.

Logging

Logs are critical when investigating and resolving incidents that have occurred or may occur.
In mobile systems, the logs should be offloaded to a location where they are accessible regard-
less of the accessibility of the mobile system itself. This is useful not only for incident han-
dling, but also for performing various types of analyses on the usage of the system. Many
software applications do something similar when they encounter a problem and ask for per-
mission to send the details to the vendor. For mobile systems, this logging capability is partic-
ularly important, and they may very well not ask permission to obtain the data.

18.6 Summary

Mobile systems span a broad range of forms and applications, from smartphones and tablets
to vehicles such as automobiles and aircraft. We have categorized the differences between
mobile systems and fixed systems as being based on five characteristics: energy, connectivity,
sensors, resources, and life cycle.

274 Part III Architectural Solutions | Chapter 18 Mobile Systems

The energy in many mobile systems comes from batteries. Batteries are monitored to
determine both the remaining time on the battery and the usage of individual applications.
Energy usage can be controlled by throttling individual applications. Applications should be
constructed to survive power failures and restart seamlessly when power is restored.

Connectivity means connecting to other systems and the Internet through wireless means.
Wireless communication can be via short-distance protocols such as Bluetooth, medium-range
protocols such as Wi-Fi protocols, and long-distance cellular protocols. Communication should
be seamless when moving from one protocol class to another, and considerations such as band-
width and cost help the architect decide which protocols to support.

Mobile systems utilize a variety of sensors. Sensors provide readings of the external envi-
ronment, which the architect then uses to develop a representation within the system of the
external environment. Sensor readings are processed by a sensor stack specific to each oper-
ating system; these stacks will deliver readings meaningful to the representation. It may take
multiple sensors to develop a meaningful representation, with the readings from these sensors
then being fused (integrated). Sensors may also become degraded over time, so multiple sen-
sors may be needed to get an accurate representation of the phenomenon being measured.

Resources have physical characteristics such as size and weight, have processing capa-
bilities, and carry a cost. The design choices involve tradeoffs among these factors. Critical
functions may require more powerful and reliable resources. Some functions may be shared
between the mobile system and the cloud, and some functions may be shut down in certain
modes to free up resources for other functions.

Life-cycle issues include choice of hardware, testing, deploying updates, and logging.
Testing of the user interface may be more complicated with mobile systems than with fixed
systems. Likewise, deployment is more complicated because of bandwidth, safety consider-
ations, and other issues.

18.7 For Further Reading

The Battery University (https://batteryuniversity.com/) has more materials than you care about
on batteries of various types and their measurement.

You can read more about various network protocols at the following sites:

link-labs.com/blog/complete-list-iot-network-protocols

https://en.wikipedia.org/wiki/Wireless_ad_hoc_network

https://searchnetworking.techtarget.com/tutorial/Wireless-protocols-learning-guide

https://en.wikipedia.org/wiki/IEEE_802

You can find out more about sensors in [Gajjarby 17].
Some test tools for mobile applications can be found at these two sites:

https://codelabs.developers.google.com/codelabs/firebase-test-lab/index.html#0

https://firebase.google.com/products/test-lab

https://batteryuniversity.com/
http://link-labs.com/blog/complete-list-iot-network-protocols
https://en.wikipedia.org/wiki/Wireless_ad_hoc_network
https://searchnetworking.techtarget.com/tutorial/Wireless-protocols-learning-guide
https://en.wikipedia.org/wiki/IEEE_802
https://codelabs.developers.google.com/codelabs/firebase-test-lab/index.html#0
https://firebase.google.com/products/test-lab

18.8 Discussion Questions 275

Some of the difficulties involved in making self-driving cars safe are discussed in “Adventures
in Self Driving Car Safety,” Philip Koopman’s presentation on Slideshare: slideshare.net/
PhilipKoopman1/adventures-in-self-driving-car-safety?qid=eb5f5305-45fb-419e-83a5-
998a0b667004&v=&b=&from_search=3.

You can find out about Automotive SPICE at automotivespice.com.
ISO 26262, “Road Vehicles: Functional Safety,” is an international standard for func-

tional safety of automotive electrical and/or electronic systems (iso.org/standard/68383.html).

18.8 Discussion Questions

1. Which architectural choices would you make to design a system that could tolerate com-
plete loss of power and have the ability to restart where it left off without compromising
the integrity of its data?

2. What are the architectural issues involved in network transitions, such as starting a file
transfer over Bluetooth and then moving out of Bluetooth range and switching over to
Wi-Fi, all the while keeping the transfer seamlessly proceeding?

3. Determine the weight and size of the battery in one of your mobile systems. What com-
promises do you think the architect made because of the size and weight?

4. Which types of problems can a CSS testing tool find? Which does it miss? How do these
considerations affect the testing of mobile devices?

5. Consider an interplanetary probe such as those used in NASA’s Mars exploration program.
Does it meet the criteria of a mobile device? Characterize its energy characteristics, net-
work connectivity issues (obviously, none of the network types discussed in Section 18.2
are up to the task), sensors, resource issues, and special life-cycle considerations.

6. Consider mobility not as a class of computing system, but rather as a quality attribute, like
security or modifiability. Write a general scenario for mobility. Write a specific mobility
scenario for a mobile device of your choosing. Describe a set of tactics to achieve the
quality attribute of “mobility.”

7. Section 18.5 discussed several aspects of testing that are more challenging in mobile
systems. What testability tactics from Chapter 12 can help with these issues?

http://slideshare.net/PhilipKoopman1/adventures-in-self-driving-car-safety?qid=eb5f5305-45fb-419e-83a5-998a0b667004&v=&b=&from_search=3
http://automotivespice.com
http://iso.org/standard/68383.html
http://slideshare.net/PhilipKoopman1/adventures-in-self-driving-car-safety?qid=eb5f5305-45fb-419e-83a5-998a0b667004&v=&b=&from_search=3
http://slideshare.net/PhilipKoopman1/adventures-in-self-driving-car-safety?qid=eb5f5305-45fb-419e-83a5-998a0b667004&v=&b=&from_search=3

This page intentionally left blank

277

19
 Architecturally Significant

Requirements

The most important single aspect of software development is to be
clear about what you are trying to build.

—Bjarne Stroustrup, creator of C++

Architectures exist to build systems that satisfy requirements. By “requirements,” we do not
necessarily mean a documented catalog produced using the best techniques that requirements
engineering has to offer. Instead, we mean the set of properties that, if not satisfied by your
system, will cause the system to be a failure. Requirements exist in as many forms as there are
software development projects—from polished specifications to verbal shared understanding
(real or imagined) among principal stakeholders. The technical, economic, and philosophical
justifications for your project’s requirements practices are beyond the scope of this book. What
is in scope is that, regardless of how they are captured, they establish the criteria for success or
failure, and architects need to know them.

To an architect, not all requirements are created equal. Some have a much more pro-
found effect on the architecture than others. An architecturally significant requirement (ASR)
is a requirement that will have a profound effect on the architecture—that is, the architecture
might well be dramatically different in the absence of such a requirement.

You cannot hope to design a successful architecture if you do not know the ASRs. ASRs
often, but not always, take the form of quality attribute (QA) requirements—the performance,
security, modifiability, availability, usability, and so forth, that the architecture must provide
to the system. In Chapters 4–14, we introduced patterns and tactics to achieve QAs. Each time
you select a pattern or tactic to use in your architecture, you are doing so because of the need
to meet QA requirements. The more difficult and important the QA requirement, the more
likely it is to significantly affect the architecture, and hence to be an ASR.

Architects must identify ASRs, usually after doing a significant bit of work to uncover
candidate ASRs. Competent architects know this. Indeed, as we observe experienced architects
going about their duties, we notice that the first thing they do is start talking to the important

PART IV Scalable Architecture Practices

278 Part IV Scalable Architecture Practices | Chapter 19 Architecturally Significant Requirements

stakeholders. They’re gathering the information they need to produce the architecture that will
respond to the project’s needs—whether or not this information has been previously identified.

This chapter provides some systematic techniques for identifying the ASRs and other
factors that will shape the architecture.

19.1 Gathering ASRs from Requirements Documents

An obvious location to look for candidate ASRs is in the requirements document or in user sto-
ries. After all, we are looking for requirements, and requirements should be (duh) in require-
ments documents. Unfortunately, this is not usually the case, although information in the
requirements documents can certainly be useful.

Don’t Get Your Hopes Up

Many projects don’t create or maintain the kind of requirements document that professors in
software engineering classes or authors of traditional software engineering books love to pre-
scribe. Furthermore, no architect just sits and waits until the requirements are “finished” before
starting work. The architect must begin while the requirements are still in flux. Consequently,
the QA requirements are quite likely to be uncertain when the architect starts work. Even
where they exist and are stable, requirements documents often fail an architect in two ways:

 ■ Most of the information found in a requirements specification does not affect the archi-
tecture. As we’ve seen over and over, architectures are mostly driven or “shaped” by QA
requirements, which determine and constrain the most important architectural deci-
sions. Even so, the vast bulk of most requirements specifications focus on the required
features and functionality of a system, which shape the architecture the least. The best
software engineering practices do prescribe capturing QA requirements. For example,
the Software Engineering Body of Knowledge (SWEBOK) says that QA requirements
are like any other requirements: They must be captured if they are important, and they
should be specified unambiguously and be testable.

In practice, though, we rarely see adequate capture of QA requirements. How many
times have you seen a requirement of the form “The system shall be modular” or “The
system shall exhibit high usability” or “The system shall meet users’ performance expecta-
tions”? These are not useful requirements because they are not testable; they are not falsi-
fiable. But, looking on the bright side, they can be viewed as invitations for the architect to
begin a conversation about what the requirements in these areas really are.

 ■ Much of what is useful to an architect won’t be found in even the best requirements
document. Many concerns that drive an architecture do not manifest themselves at all as
observables in the system being specified, and thus are not the subject of requirements
specifications. ASRs often derive from business goals in the development organization
itself; we’ll explore this connection in Section 19.3. Developmental qualities are also out of

19.2 Gathering ASRs by Interviewing Stakeholders 279

scope; you will rarely see a requirements document that describes teaming assumptions,
for example. In an acquisition context, the requirements document represents the interests
of the acquirer, not those of the developer. Stakeholders, the technical environment, and
the organization itself all play a role in influencing architectures. When we discuss archi-
tecture design, in Chapter 20, we will explore these requirements in more detail.

Sniffing out ASRs from a Requirements Document

While requirements documents won’t tell an architect the whole story, they are still an import-
ant source of ASRs. Of course, ASRs will not be conveniently labeled as such; the architect
should expect to perform a bit of investigation and archaeology to ferret them out.

Some specific things to look for are the following categories of information:

 ■ Usage. User roles versus system modes, internationalization, language distinctions.
 ■ Time. Timeliness and element coordination.
 ■ External elements. External systems, protocols, sensors or actuators (devices),

middleware.
 ■ Networking. Network properties and configurations (including their security properties).
 ■ Orchestration. Processing steps, information flows.
 ■ Security properties. User roles, permissions, authentication.
 ■ Data. Persistence and currency.
 ■ Resources. Time, concurrency, memory footprint, scheduling, multiple users, multiple

activities, devices, energy usage, soft resources (e.g., buffers, queues), and scalability
requirements.

 ■ Project management. Plans for teaming, skill sets, training, team coordination.
 ■ Hardware choices. Processors, families of processors, evolution of processors.
 ■ Flexibility of functionality, portability, calibrations, configurations.
 ■ Named technologies, commercial packages.

Anything that is known about their planned or anticipated evolution will be useful informa-
tion, too.

Not only are these categories architecturally significant in their own right, but the pos-
sible change and evolution of each are also likely to be architecturally significant. Even if the
requirements document you’re mining doesn’t mention evolution, consider which of the items
in the preceding list are likely to change over time, and design the system accordingly.

19.2 Gathering ASRs by Interviewing Stakeholders

Suppose your project isn’t producing a comprehensive requirements document. Or maybe it is,
but it won’t have the QAs nailed down by the time you need to start your design work. What
do you do?

280 Part IV Scalable Architecture Practices | Chapter 19 Architecturally Significant Requirements

First, stakeholders often don’t know what their QA requirements actually are. In that
case, architects are called upon to help set the QA requirements for a system. Projects that
recognize this need for collaboration and encourage it are much more likely to be successful
than those that don’t. Relish the opportunity! No amount of nagging your stakeholders will
suddenly instill in them the necessary insights. If you insist on quantitative QA requirements,
you may get numbers that are arbitrary and at least some of those requirements will be diffi-
cult to satisfy and, in the end, actually detract from system success.

Experienced architects often have deep insights into which QA responses have been
exhibited by similar systems, and which QA responses are reasonable to expect and to pro-
vide in the current context. Architects can also usually give quick feedback as to which QA
responses will be straightforward to achieve and which will likely be problematic or even
prohibitive.

For example, a stakeholder may ask for 24/7 availability—who wouldn’t want that?
However, the architect can explain how much that requirement is likely to cost, which will
give the stakeholders information to make a tradeoff between availability and affordability.
Also, architects are the only people in the conversation who can say, “I can actually deliver
an architecture that will do better than what you had in mind—would that be useful to you?”

Interviewing the relevant stakeholders is the surest way to learn what they know and
need. Once again, it behooves a project to capture this critical information in a systematic,
clear, and repeatable way. Gathering this information from stakeholders can be achieved by
many methods. One such method is the Quality Attribute Workshop (QAW), described in the
sidebar.

The Quality Attribute Workshop

The QAW is a facilitated, stakeholder-focused method to generate, prioritize, and refine

quality attribute scenarios before the software architecture is completed. It emphasizes

system-level concerns and specifically the role that software will play in the system. The

QAW is keenly dependent on the participation of system stakeholders.

After introductions and an overview of the workshop steps, the QAW involves the

following elements:

 ■ Business/mission presentation. The stakeholder representing the business concerns

behind the system (typically a manager or management representative) spends about

one hour presenting the system’s business context, broad functional requirements,

constraints, and known QA requirements. The QAs that will be refined in later steps

will be derived largely from the business/mission needs presented in this step.
 ■ Architectural plan presentation. While a detailed system or software architecture

might not exist, it is possible that broad system descriptions, context drawings,

or other artifacts have been created that describe some of the system’s technical

details. At this point in the workshop, the architect will present the system archi-

tectural plans as they stand. This lets stakeholders know the current architectural

thinking, to the extent that it exists.

19.2 Gathering ASRs by Interviewing Stakeholders 281

 ■ Identification of architectural drivers. The facilitators will share their list of key archi-

tectural drivers that they assembled in the prior two steps, and ask the stakeholders

for clarifications, additions, deletions, and corrections. The idea is to reach a con-

sensus on a distilled list of architectural drivers that include overall requirements,

business drivers, constraints, and quality attributes.
 ■ Scenario brainstorming. Each stakeholder expresses a scenario representing his

or her concerns with respect to the system. Facilitators ensure that each scenario

addresses a QA concern, by specifying an explicit stimulus and response.
 ■ Scenario consolidation. After the scenario brainstorming, similar scenarios are con-

solidated where reasonable. Facilitators ask stakeholders to identify those scenarios

that are very similar in content. Scenarios that are similar are merged, as long as the

people who proposed them agree and feel that their scenarios will not be diluted in

the process.
 ■ Scenario prioritization. Prioritization of the scenarios is accomplished by allocating

each stakeholder a number of votes equal to 30 percent of the total number of sce-

narios generated after consolidation. Stakeholders can allocate any number of their

votes to any scenario or combination of scenarios. The votes are counted, and the

scenarios are prioritized accordingly.
 ■ Scenario refinement. After the prioritization, the top scenarios are refined and elab-

orated. Facilitators help the stakeholders put the scenarios in the six-part scenario

form of source–stimulus–artifact–environment–response–response measure that

we described in Chapter 3. As the scenarios are refined, issues surrounding their

satisfaction will emerge and should be recorded. This step lasts as long as time and

resources allow.

The results of stakeholder interviews should include a list of architectural drivers and a
set of QA scenarios that the stakeholders (as a group) prioritized. This information can be used
for the following purposes:

 ■ Refine system and software requirements.
 ■ Understand and clarify the system’s architectural drivers.
 ■ Provide a rationale for why the architect subsequently made certain design decisions.
 ■ Guide the development of prototypes and simulations.
 ■ Influence the order in which the architecture is developed.

I Don’t Know What That Requirement Should Be

It is not uncommon when interviewing stakeholders and probing for ASRs that they

will complain, “I don’t know what that requirement should be.” While it is true that this

is the way that they feel, it is also frequently the case that they know something about

the requirement, particularly if the stakeholders are experienced in the domain. In this

case, eliciting this “something” is far better than simply making up the requirement on

your own. For example, you might ask, “How quickly should the system respond to this

282 Part IV Scalable Architecture Practices | Chapter 19 Architecturally Significant Requirements

transaction request?” If the answer is “I don’t know,” my advice here is to play dumb.

You can say, “So . . . 24 hours would be OK?” The response is often an indignant and

astonished “No!” “Well, how about 1 hour? “No!” “Five minutes? “No!” “How about 10

seconds?” “Well, <grumble, mumble> I suppose I could live with something like that. . . .”

By playing dumb, you can often get people to at least give you a range of acceptable

values, even if they do not know precisely what the requirement should be. And this

range is typically enough for you to choose architectural mechanisms. A response time

of 24 hours versus 10 minutes versus 10 seconds versus 100 milliseconds means, to an

architect, choosing very different architectural approaches. Armed with this information,

you can now make informed design decisions.

—RK

19.3 Gathering ASRs by Understanding the Business Goals

Business goals are the raison d’être for building a system. No organization builds a system
without a reason; rather, the people involved want to further the mission and ambitions of their
organization and themselves. Common business goals include making a profit, of course, but
most organizations have many more concerns than simply profit. In still other organizations
(e.g., nonprofits, charities, governments), profit is the furthest thing from anyone’s mind.

Business goals are of interest to architects because they frequently lead directly to ASRs.
There are three possible relationships between business goals and an architecture:

1. Business goals often lead to quality attribute requirements. Every quality attribute
requirement—such as user-visible response time or platform flexibility or iron-clad secu-
rity or any of a dozen other needs—originates from some higher purpose that can be
described in terms of added value. A desire to differentiate a product from its competi-
tion and let the developing organization capture market share may lead to a requirement
for what might seem like an unusually fast response time. Also, knowing the business
goal behind a particularly stringent requirement enables the architect to question the
requirement in a meaningful way—or marshal the resources to meet it.

2. Business goals may affect the architecture without inducing a quality attribute require-
ment at all. A software architect related to us that some years ago he delivered an early
draft of the architecture to his manager. The manager remarked that a database was
missing from the architecture. The architect, pleased that the manager had noticed,
explained how he (the architect) had devised a design approach that obviated the need
for a bulky, expensive database. The manager, however, pressed for the design to include
a database, because the organization had a database unit employing a number of highly
paid technical staff who were currently unassigned and needed work. No requirements
specification would capture such a requirement, nor would any manager allow such a
motivation to be captured. And yet that architecture, had it been delivered without a
database, would have been just as deficient—from the manager’s point of view—as if it
had failed to deliver an important function or QA.

19.3 Gathering ASRs by Understanding the Business Goals 283

Business goals Quality attributes

ArchitectureNonarchitectural solutions

3. No influence of a business goal on the architecture. Not all business goals lead to qual-
ity attributes. For example, a business goal to “reduce cost” might be realized by lower-
ing the facility’s thermostats in the winter or reducing employees’ salaries or pensions.

Figure 19.1 illustrates the major points from this discussion. In the figure, the arrows
mean “leads to.” The solid arrows highlight the relationships of greatest interest to architects.

FIGURE 19.1 Some business goals may lead to quality attribute requirements, or lead directly
to architectural decisions, or lead to non-architectural solutions.

Architects often become aware of an organization’s business and business goals via
osmosis—working, listening, talking, and soaking up the goals that are at work in an orga-
nization. Osmosis is not without its benefits, but more systematic ways of determining such
goals are both possible and desirable. Moreover, it is worthwhile to capture business goals
explicitly, because they often imply ASRs that would otherwise go undetected until it is too
late or too expensive to address them.

One way to do this is to employ the PALM method, which entails holding a workshop
with the architect and key business stakeholders. The heart of PALM consists of these steps:

 ■ Business goals elicitation. Using the categories given later in this section to guide the
discussion, capture from stakeholders the set of important business goals for this system.
Elaborate the business goals and express them as business goal scenarios.1 Consolidate
almost-alike business goals to eliminate duplication. Have the participants prioritize the
resulting set to identify the most important goals.

 ■ Identify potential QAs from business goals. For each important business goal scenario,
have the participants describe a QA and response measure value that (if architected into
the system) would help achieve the goal.

The process of capturing business goals is well served by having a set of candidate busi-
ness goals handy to use as conversation-starters. If you know that many businesses want to
gain market share, for instance, you can use that motivation to engage the right stakeholders
in your organization: “What are our ambitions about market share for this product, and how
could the architecture contribute to meeting them?”

1. A business goal scenario is a structured seven-part expression that captures a business goal, similar in intent and
usage to a QA scenario. This chapter’s “For Further Reading” section contains a reference that describes PALM,
and business goal scenarios, in full detail.

284 Part IV Scalable Architecture Practices | Chapter 19 Architecturally Significant Requirements

Our research in business goals has led us to adopt the categories shown in the list that
follows. These categories can be used as an aid to brainstorming and elicitation. By employing
the list of categories, and asking the stakeholders about possible business goals in each cate-
gory, some assurance of coverage is gained.

1. Growth and continuity of the organization
2. Meeting financial objectives
3. Meeting personal objectives
4. Meeting responsibility to the employees
5. Meeting responsibility to society
6. Meeting responsibility to the state
7. Meeting responsibility to the shareholders
8. Managing market position
9. Improving business processes

10. Managing the quality and reputation of products
11. Managing change in the environment over time

 19.4 Capturing ASRs in a Utility Tree

In a perfect world, the techniques described in Sections 19.2 and 19.3 would be applied early
on in your development process: You would interview the key stakeholders, elicit their busi-
ness goals and driving architectural requirements, and have them prioritize all of these inputs
for you. Of course, the real world, lamentably, is less than perfect. It is often the case that you
do not have access to these stakeholders when you need them, for organizational or business
reasons. So what do you do?

Architects can use a construct called a utility tree when the “primary sources” of require-
ments are not available. A utility tree is a top-down representation of what you, as an architect,
believe to be the QA-related ASRs that are critical to the success of the system.

A utility tree begins with the word “Utility” as the root node. Utility is an expression of
the overall “goodness” of the system. You then elaborate on this root node by listing the major
QAs that the system is required to exhibit. (You might recall that we said in Chapter 3 that QA
names by themselves were not very useful. Never fear—they are only being used as intermedi-
ate placeholders for subsequent elaboration and refinement!)

Under each QA, record specific refinements of that QA. For example, performance might
be decomposed into “data latency” and “transaction throughput” or, alternatively, “user wait
time” and “time to refresh web page.” The refinements that you choose should be the ones that
are relevant to your system. Under each refinement, you can then record the specific ASRs,
expressed as QA scenarios.

Once the ASRs are recorded as scenarios and placed at the leaves of the tree, you can
evaluate these scenarios against two criteria: the business value of the candidate scenario and
the technical risk of achieving it. You can use any scale you like, but we find that a simple “H”
(high), “M” (medium), and “L” (low) scoring system suffices for each criterion. For business

19.4 Capturing ASRs in a Utility Tree 285

value, “high” designates a must-have requirement, “medium” identifies a requirement that is
important but would not lead to project failure were it omitted, and “low” describes a nice
requirement to meet but not something worth much effort. For technical risk, “high” means
that meeting this ASR is keeping you awake at night, “medium” means meeting this ASR is
concerning but does not carry a high risk, and “low” means that you have confidence in your
ability to meet this ASR.

Table 19.1 shows a portion of an example utility tree. Each ASR is labeled with an indica-
tor of its business value and its technical risk.

TABLE 19.1 Tabular Form of the Utility Tree for a System in the Healthcare Space

Quality
Attribute

Attribute
Refinement

ASR Scenario

Performance Transaction
response time

A user updates a patient’s account in response to a change-
of-address notification while the system is under peak load,
and the transaction completes in less than 0.75 seconds.
(H, H)

Throughput At peak load, the system is able to complete 150 normalized
transactions per second. (M, M)

Usability Proficiency training A new hire with two or more years’ experience in the
business can learn, with 1 week of training, to execute any
of the system’s core functions in less than 5 seconds. (M, L)

Efficiency of
operations

A hospital payment officer initiates a payment plan for a
patient while interacting with that patient and completes the
process with no input errors. (M, M)

Configurability Data configurability A hospital increases the fee for a particular service. The
configuration team makes and tests the change in 1 working
day; no source code needs to change. (H, L)

Maintainability Routine changes A maintainer encounters response-time deficiencies, fixes
the bug, and distributes the bug fix with no more than
3 person-days of effort. (H, M)

A reporting requirement requires a change to the report-
generating metadata. Change is made and tested in
4 person-hours of effort (M, L)

Upgrades to
commercial
components

The database vendor releases a new major version that
is successfully tested and installed in less than 3 person-
weeks. (H, M)

Adding new
feature

A feature that tracks blood bank donors is created and
successfully integrated within 2 person-months. (M, M)

Security Confidentiality A physical therapist is allowed to see that part of a patient’s
record dealing with orthopedic treatment, but not other parts
or any financial information. (H, M)

Resisting attacks The system repels an unauthorized intrusion attempt and
reports the attempt to authorities within 90 seconds. (H, M)

Availability No down time The database vendor releases new software, which is hot-
swapped into place, with no downtime. (H, L)

The system supports 24/7/365 web-based account access
by patients. (M, M)

286 Part IV Scalable Architecture Practices | Chapter 19 Architecturally Significant Requirements

Once you have a utility tree filled out, you can use it to make important checks. For
instance:

 ■ A QA or QA refinement without any ASR scenario is not necessarily an error or omis-
sion that needs to be rectified, but rather an indication you should investigate whether
there are unrecorded ASR scenarios in that area.

 ■ ASR scenarios that receive a (H, H) rating are obviously the ones that deserve the most
attention from you; these are the most significant of the significant requirements. A very
large number of these scenarios might be a cause for concern regarding whether the
system is, in fact, achievable.

19.5 Change Happens

Edward Berard said, “Walking on water and developing software from a specification are both
easy if both are frozen.” Nothing in this chapter should be taken to assume that such a mirac-
ulous state of affairs is likely to exist. Requirements—whether captured or not—change all
the time. Architects have to adapt and keep up, to ensure that their architectures are still the
right ones that will bring success to the project. In Chapter 25, where we discuss architecture
competence, we’ll advise that architects need to be great communicators, and this means great
bidirectional communicators, taking in as well as supplying information. Always keep a chan-
nel open to the key stakeholders who determine the ASRs so you can keep up with changing
requirements. The methods offered in this chapter can be applied repetitively to accommodate
change.

Even better than keeping up with change is staying one step ahead of it. If you get wind of
a change to the ASRs, you can take preliminary steps to design for it, as an exercise to under-
stand the implications. If the change will be prohibitively expensive, sharing that information
with the stakeholders will be a valuable contribution, and the earlier they know it, the better.
Even more valuable might be suggestions about changes that would do (almost) as well in
meeting the goals but without breaking the budget.

19.6 Summary

Architectures are driven by architecturally significant requirements. An ASR must have:

 ■ A profound impact on the architecture. Including this requirement will likely result in a
different architecture than if it were not included.

 ■ A high business or mission value. If the architecture is going to satisfy this requirement—
potentially at the expense of not satisfying others—it must be of high value to important
stakeholders.

19.8 Discussion Questions 287

ASRs can be extracted from a requirements document, captured from stakeholders during
a workshop (e.g., a QAW), captured from the architect in a utility tree, or derived from busi-
ness goals. It is helpful to record them in one place so that the list can be reviewed, referenced,
used to justify design decisions, and revisited over time or in the case of major system changes.

In gathering these requirements, you should be mindful of the organization’s business
goals. Business goals can be expressed in a common, structured form and represented as busi-
ness goal scenarios. Such goals may be elicited and documented using PALM, a structured
facilitation method.

A useful representation of QA requirements is a utility tree. Such a graphical depiction
helps to capture these requirements in a structured form, starting from coarse, abstract notions
of QAs and gradually refining them to the point where they are captured as scenarios. These
scenarios are then prioritized, with this prioritized set defining your “marching orders” as an
architect.

19.7 For Further Reading

 The Open Group Architecture Framework, available at opengroup.org/togaf/, provides a com-
plete template for documenting a business scenario that contains a wealth of useful infor-
mation. Although we believe architects can make use of a lighter-weight means to capture a
business goal, it’s worth a look.

The definitive reference source for the Quality Attribute Workshop is [Barbacci 03].
The term architecturally significant requirement was created by the SARA group

(Software Architecture Review and Assessment), as part of a document that can be retrieved at
http://pkruchten.wordpress.com/architecture/SARAv1.pdf.

The Software Engineering Body of Knowledge (SWEBOK), third edition, can be down-
loaded here: computer.org/education/bodies-of-knowledge/software-engineering/v3. As we go
to press, a fourth edition is being developed.

A full description of PALM [Clements 10b] can be found here: https://resources.sei.cmu
.edu/asset_files/TechnicalNote/2010_004_001_15179.pdf.

19.8 Discussion Questions

1. Interview representative stakeholders for a business system in use at your company or
your university and capture at least three business goals for it. To do so, use PALM’s
seven-part business goal scenario outline, referenced in the “For Further Reading”
section.

2. Based on the business goals you uncovered for question 1, propose a set of correspond-
ing ASRs.

http://opengroup.org/togaf/
http://pkruchten.wordpress.com/architecture/SARAv1.pdf
http://computer.org/education/bodies-of-knowledge/software-engineering/v3
https://resources.sei.cmu.edu/asset_files/TechnicalNote/2010_004_001_15179.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalNote/2010_004_001_15179.pdf

288 Part IV Scalable Architecture Practices | Chapter 19 Architecturally Significant Requirements

3. Create a utility tree for an ATM. (Interview some of your friends and colleagues if you
would like to have them contribute QA considerations and scenarios.) Consider a min-
imum of four different QAs. Ensure that the scenarios that you create at the leaf nodes
have explicit responses and response measures.

4. Find a software requirements specification that you consider to be of high quality.
Using colored pens (real ones if the document is printed; virtual ones if the document
is online), color red all the material that you find completely irrelevant to a software
architecture for that system. Color yellow all of the material that you think might be rel-
evant, but not without further discussion and elaboration. Color green all of the material
that you are certain is architecturally significant. When you’re done, every part of the
document that’s not white space should be red, yellow, or green. Approximately what
percentage of each color did your document end up being? Do the results surprise you?

289

20
 Designing an Architecture
With Humberto Cervantes

A designer knows he has achieved perfection not when there is nothing
left to add, but when there is nothing left to take away.

—Antoine de Saint-Exupéry

Design—including architectural design—is a complex activity to perform. It involves making
a myriad of decisions that take into account many aspects of a system. In the past, this task
was only entrusted to senior software engineers—gurus—with decades of hard-won experi-
ence. A systematic method provides guidance in performing this complex activity so that it
can be learned and capably performed by mere mortals.

In this chapter, we provide a detailed discussion of a method—Attribute-Driven Design
(ADD)—that allows an architecture to be designed in a systematic, repeatable, and cost-effective
way. Repeatability and teachability are the hallmarks of an engineering discipline. To make a
method repeatable and teachable, we need a set of steps that any suitably trained engineer can
follow.

We begin by providing an overview of ADD and its steps. This overview is followed by
more detailed discussions of some of the key steps.

20.1 Attribute-Driven Design

Architectural design for software systems is no different than design in general: It involves
making decisions, and working with the available materials and skills, to satisfy requirements
and constraints. In architectural design, we turn decisions about architectural drivers into
structures, as shown in Figure 20.1. Architectural drivers comprise architecturally significant
requirements (ASRs—the topic of Chapter 19), but also include functionality, constraints,
architectural concerns, and design purpose. The resulting structures are then used to guide the
project in the many ways we laid out in Chapter 2: They guide analysis and construction. They

290 Part IV Scalable Architecture Practices | Chapter 20 Designing an Architecture

Allocation

The Architect

<<gathers>>

Design Concepts

StructuresArchitectural Drivers

Work Assignment

Deployment Implementation

. . .

Component-and-Connector

Client-Server

Concurrency

Process

Shared Data

. . .

Module

Reference

Architectures

Externally

Developed

Components

Tactics Patterns

Uses

Decomposition

Layered

Class/Generalization

. . .

Architectural Concerns

Constraints

Quality Attributes

Primary Functionality

Design Purpose

<<produces>>

<<selects and

instantiates>>

serve as the foundation for educating a new project member. They guide cost and schedule
estimations, team formation, risk analysis and mitigation, and, of course, implementation.

FIGURE 20.1 Overview of the architecture design activity

Prior to starting architecture design, it is important to determine the scope of the system—
what is inside and what is outside of the system you are creating, and which external entities the
system will interact with. This context can be represented using a system context diagram, like
that shown in Figure 20.2. Context diagrams are discussed in more detail in Chapter 22.

System Being

Designed

User

Workstation

System under development

External system

Key

External

Services

Database

Server

FIGURE 20.2 Example of a system context diagram

20.1 Attribute-Driven Design 291

F
ro

m
 p

re
v
io

u
s
 r

o
u
n
d
 o

f
it
e
ra

ti
o
n
s
 o

r
fr

o
m

 e
x
is

ti
n
g

It
e
ra

te
 i
f
n
e
c
e
s
s
a
ry

Step 1: Review inputs

Primary functional

requirements

Design

purpose

Quality attribute

scenarios

Architecture Design

Constraints Concerns

Step 2: Establish iteration goal

Step 3: Choose one or more elements of the system

Step 5: Instantiate architectural elements, allocate

Driver

Key

Architecture design

Process step

Precedence

In ADD, architecture design is performed in rounds, each of which may consist of a series
of design iterations. A round comprises the architecture design activities performed within a
development cycle. Through one or more iterations, you produce an architecture that suits the
established design purpose for this round.

Within each iteration, a series of design steps is performed. ADD provides detailed guid-
ance on the steps that need to be performed inside each iteration. Figure 20.3 shows the steps
and artifacts associated with ADD. In the figure, steps 1–7 constitute a round. Within a round,
steps 2–7 constitute one or more iterations within a round. In the following subsections, we
provide an overview of each of these steps.

FIGURE 20.3 Steps and artifacts of ADD

292 Part IV Scalable Architecture Practices | Chapter 20 Designing an Architecture

20.2 The Steps of ADD

The sections that follow describe the steps for ADD.

Step 1: Review Inputs

Before starting a design round, you need to ensure that the architectural drivers (the inputs to
the design process) are available and correct. These include:

 ■ The purpose of the design round
 ■ The primary functional requirements
 ■ The primary quality attribute (QA) scenarios
 ■ Any constraints
 ■ Any concerns

Why do we explicitly capture the design purpose? You need to make sure that you are
clear about your goals for a round. In an incremental design context comprising multiple
rounds, the purpose for a design round may be, for example, to produce a design for early
estimation, to refine an existing design to build a new increment of the system, or to design
and generate a prototype to mitigate certain technical risks. In addition, you need to know the
existing architecture’s design, if this is not greenfield development.

At this point, the primary functionality—typically captured as a set of use cases or user
stories—and QA scenarios should have been prioritized, ideally by your most important proj-
ect stakeholders. (You can employ several different techniques to elicit and prioritize them, as
discussed in Chapter 19). You, the architect, must now “own” these. For example, you need to
check whether any important stakeholders were overlooked in the original requirements elici-
tation process, and whether any business conditions have changed since the prioritization was
performed. These inputs really do “drive” design, so getting them right and getting their prior-
ity right are crucial. We cannot stress this point strongly enough. Software architecture design,
like most activities in software engineering, is a “garbage-in-garbage-out” process. The results
of ADD cannot be good if the inputs are poorly formed.

The drivers become part of an architectural design backlog that you should use to per-
form the different design iterations. When you have made design decisions that account for all
of the items in the backlog, you’ve completed this round. (We discuss the idea of a backlog in
more depth in Section 20.8.)

Steps 2–7 make up the activities for each design iteration carried out within this design
round.

Step 2: Establish Iteration Goal by Selecting Drivers

Each design iteration focuses on achieving a particular goal. Such a goal typically involves
designing to satisfy a subset of the drivers. For example, an iteration goal could be to create
structures from elements that will allow a particular performance scenario, or a use case to

20.2 The Steps of ADD 293

be achieved. For this reason, when performing design activities, you need to establish a goal
before you start a particular design iteration.

Step 3: Choose One or More Elements of the System to Refine

Satisfying drivers requires you to make architectural design decisions, which then manifest
themselves in one or more architectural structures. These structures are composed of inter-
related elements—modules and/or components, as defined in Chapter 1—and these elements
are generally obtained by refining other elements that you previously identified in an ear-
lier iteration. Refinement can mean decomposition into finer-grained elements (top-down
approach), combination of elements into coarser-grained elements (bottom-up approach) or
the improvement of previously identified elements. For greenfield development, you can start
by establishing the system context and then selecting the only available element—that is, the
system itself—for refinement by decomposition. For existing systems or for later design iter-
ations in greenfield systems, you normally choose to refine elements that were identified in
prior iterations.

The elements that you will select are the ones involved in the satisfaction of specific
drivers. For this reason, when the design addresses an existing system, you need to have a
good understanding of the elements that are part of the as-built architecture of the system.
Obtaining this information might involve some “detective work,” reverse engineering, or dis-
cussions with developers.

In some cases, you may need to reverse the order of steps 2 and 3. For example, when
designing a greenfield system or when fleshing out certain types of reference architectures,
you will, at least in the early stages of design, focus on elements of the system and start the
iteration by selecting a particular element and then considering the drivers that you want to
address.

Step 4: Choose One or More Design Concepts That Satisfy the Selected

Drivers

Choosing the design concept(s) is probably the most difficult decision you will face in the
design process, because it requires you to identify the various design concepts that might plau-
sibly be used to achieve your iteration goal, and to then make a selection from these alterna-
tives. Many different types of design concepts are available—for example, tactics, patterns,
reference architectures, and externally developed components—and, for each type, many
options may exist. This can result in a considerable number of alternatives that need to be
analyzed to before making the final choice. In Section 20.3, we discuss the identification and
selection of design concepts in more detail.

294 Part IV Scalable Architecture Practices | Chapter 20 Designing an Architecture

Step 5: Instantiate Architectural Elements, Allocate Responsibilities, and

Define Interfaces

Once you have selected one or more design concepts, you must make another type of design
decision: how to instantiate elements out of the design concepts that you just selected. For
example, if you selected the layers pattern as a design concept, you must decide how many
layers will be used, and their allowed relationships, since the pattern itself does not prescribe
these.

After instantiating the elements, you then need to allocate responsibilities to each of
them. For example, in an app, at least three layers are usually present: presentation, business,
and data. The responsibilities of these layers differ: The responsibilities of the presentation
layer include managing all of the user interactions, the business layer manages application
logic and enforces business rules, and the data layer manages the persistence and consistency
of data.

Instantiating elements is only one part of creating structures that satisfy a driver or a
concern. The elements that have been instantiated also need to be connected, thereby allowing
them to collaborate with each other. This requires the existence of relationships between the
elements and the exchange of information through some kind of interface. The interface is a
contractual specification indicating how information should flow between the elements. In
Section 20.4, we present more details on how the different types of design concepts are instan-
tiated, how structures are created, and how interfaces are defined.

Step 6: Sketch Views and Record Design Decisions

At this point, you have finished performing the design activities for the iteration. However, you
may have not taken any actions to ensure that the views—the representations of the structures
you created—are preserved. For instance, if you performed step 5 in a conference room, you
probably ended up with a series of diagrams on a whiteboard. This information is essential to
the rest of the process, and you must capture it so that you can later analyze and communi-
cate it to other stakeholders. Capturing the views may be as simple as taking a picture of the
whiteboard.

The views that you have created are almost certainly not complete; thus, these diagrams
may need to be revisited and refined in a subsequent iteration. This is typically done to accom-
modate elements resulting from other design decisions that you will make to support addi-
tional drivers. This is why we speak of “sketching” the views in ADD, where a “sketch” refers
to a preliminary type of documentation. The more formal, more fully fleshed-out documenta-
tion of these views—should you choose to produce it (see Chapter 22)—occurs only after the
design iterations have been finished (as part of the architectural documentation activity).

In addition to capturing the sketches of the views, you should record the significant deci-
sions made in the design iteration, as well as the reasons that motivated these decisions (i.e.,
the rationale), to facilitate later analysis and understanding of the decisions. For example,
decisions about important tradeoffs should be recorded at this time. During a design itera-
tion, decisions are primarily made in steps 4 and 5. In Section 20.5, we explain how to create

20.3 More on ADD Step 4: Choose One or More Design Concepts 295

preliminary documentation during the design process, including recording design decisions
and their rationale.

Step 7: Perform Analysis of Current Design and Review Iteration Goal and

Achievement of Design Purpose

By step 7, you should have created a partial design that addresses the goal established for the
iteration. Making sure that this is actually the case is a good idea, to avoid unhappy stakehold-
ers and later rework. You can perform the analysis yourself by reviewing the sketches of the
views and design decisions that you captured, but an even better idea is to have someone else
help you review this design. We do this for the same reason that organizations frequently have
a separate testing/quality assurance group: Another person will not share your assumptions,
and will have a different experience base and a different perspective. This diversity helps to
find “bugs,” in both code and architecture. We discuss architectural analysis in more depth in
Chapter 21.

Once the design performed in the iteration has been analyzed, you should review the
state of your architecture in terms of your established design purpose. This means consid-
ering if, at this point, you have performed enough design iterations to satisfy the drivers that
are associated with the design round. It also means considering whether the design purpose
has been achieved or if additional design rounds are needed in future project increments. In
Sectionb20.6, we discuss simple techniques that allow you to keep track of design progress.

Iterate If Necessary

You should perform additional iterations and repeat steps 2–7 for every driver that was con-
sidered. More often than not, however, this kind of repetition will not be possible because
of time or resource constraints that force you to stop the design activities and move on to
implementation.

What are the criteria for evaluating if more design iterations are necessary? Let risk
be your guide. You should at least have addressed the drivers with the highest priority. Ideally,
you should have certainty that critical drivers are satisfied or, at least, that the design is “good
enough” to satisfy them.

20.3 More on ADD Step 4: Choose One or More Design Concepts

Most of the time you, as an architect, don’t need to, and should not, reinvent the wheel. Rather,
your major design activity is to identify and select design concepts to meet the most important
challenges and address the key drivers across the design iterations. Design is still an original
and creative endeavor, but the creativity resides in the appropriate identification of these exist-
ing solutions, followed by combining and adapting them to the problem at hand. Even with

296 Part IV Scalable Architecture Practices | Chapter 20 Designing an Architecture

an existing corpus of solutions to choose from—and we are not always blessed with a rich
 corpus—this is still the hardest part of design.

Identification of Design Concepts

The identification of design concepts might appear daunting, because of the vast number of
options available. There are likely dozens of design patterns and externally developed compo-
nents that you could use to address any particular issue. To make things worse, these design
concepts are scattered across many different sources: in practitioner blogs and websites, in
research literature, and in books. Moreover, in many cases, there is no canonical definition
of a concept. Different sites, for example, will define the broker pattern in different, largely
informal ways. Finally, once you have identified the alternatives that can potentially help you
achieve the design goals of the iteration, you need to select the best one(s) for your purposes.

To address a specific design problem, you can and often will use and combine different
types of design concepts. For example, to build a security driver, you might employ a security
pattern, a security tactic, a security framework, or some combination of these.

Once you have more clarity regarding the types of design concepts that you wish to use,
you still need to identify alternatives—that is, design candidates. You can achieve this in sev-
eral ways, although you will probably use a combination of these techniques rather than a
single method:

 ■ Leverage existing best practices. You can identify alternatives by making use of existing
catalogs. Some design concepts, such as patterns, are extensively documented; others,
such as externally developed components, are documented in a less thorough way. The
benefits of this approach are that you can identify many alternatives and leverage the
considerable knowledge and experience of others. The downsides are that searching and
studying the information can require a considerable amount of time, the quality of the
documented knowledge is often unknown, and the assumptions and biases of the authors
are also unknown.

 ■ Leverage your own knowledge and experience. If the system you are designing is similar
to other systems you have designed in the past, you will probably want to begin with
some of the design concepts that you have used before. The benefit of this approach
is that the identification of alternatives can be performed rapidly and confidently. The
downside is that you may end up using the same ideas repeatedly, even if they are not
the most appropriate for all the design problems that you are facing, or if they have been
superseded by newer, better approaches. As the saying goes: If all you have is a hammer,
all the world looks like a nail.

 ■ Leverage the knowledge and experience of others. As an architect, you have a background
and knowledge that you have gained through the years. This background and knowledge
will vary from person to person, especially if the types of design problems they have
addressed in the past differ. You can leverage this information by performing the identifi-
cation and selection of design concepts with some of your peers through brainstorming.

20.3 More on ADD Step 4: Choose One or More Design Concepts 297

Selection of Design Concepts

Once you have identified a list of alternative design concepts, you need to select which one of
the alternatives is the most appropriate to solve the design problem at hand. You can achieve
this in a relatively simple way, by creating a table that lists the pros and cons associated with
each alternative and selecting one of the alternatives based on those criteria and your drivers.
The table can also contain other criteria, such as the cost associated with the use of the alterna-
tive. Methods such as SWOT (strengths, weaknesses, opportunities, threats) analysis can help
you make this decision.

When identifying and selecting design concepts, keep in mind the constraints that are
part of the architectural drivers, because some constraints will restrict you from selecting par-
ticular alternatives. For example, a constraint might be that all libraries and frameworks must
employ an approved license. In that case, even if you have found a framework that could be
useful for your needs, you may need to discard it if it does not carry an approved license.

You also need to keep in mind that the decisions regarding the selection of design con-
cepts that you made in previous iterations may restrict the design concepts that you can now
select due to incompatibilities. An example would be selecting a web architecture in an initial
iteration and then selecting a user interface framework for local applications in a subsequent
iteration.

Creation of Prototypes

In case the previously mentioned analysis techniques do not guide you to make an appropriate
selection of design concepts, you may need to create prototypes and collect measurements
from them. Creating early “throwaway” prototypes is a useful technique to help in the selec-
tion of externally developed components. This type of prototype is usually created without
consideration for maintainability, reuse, or allowance for achieving other important goals.
Such a prototype should not be used as a basis for further development.

Although the creation of prototypes can be costly, certain scenarios strongly motivate
them. When thinking about whether you should create a prototype, ask these questions:

 ■ Does the project incorporate emerging technologies?
 ■ Is the technology new in the company?
 ■ Are there certain drivers, particularly QAs, whose satisfaction using the selected tech-

nology presents risks (i.e., it is not understood whether they can be satisfied)?
 ■ Is there a lack of trusted information, internal or external, that would provide some

degree of certainty that the selected technology will be useful to satisfy the project
drivers?

 ■ Are there configuration options associated with the technology that need to be tested or
understood?

 ■ Is it unclear whether the selected technology can be easily integrated with other technol-
ogies that are used in the project?

If most of your answers to these questions are “yes,” then you should strongly consider the
creation of a throwaway prototype.

298 Part IV Scalable Architecture Practices | Chapter 20 Designing an Architecture

To Prototype or Not to Prototype?

Architectural decisions must often be made with imperfect knowledge. To decide which

way to go, a team could run a series of experiments (such as building prototypes) to try

to reduce their uncertainty about which path to follow. The problem is that such experi-

ments could carry a substantial cost, and the conclusions drawn from them might not be

definitive.

For example, suppose a team needs to decide whether the system they are design-

ing should be based on a traditional three-tier architecture or should be composed

of microservices. Since it is the team’s first project with microservices, they are not

confident about that approach. They do a cost estimation for the two alternatives, and

project that the cost of developing the three-tier architecture would be $500,000 and

that of developing the microservices would be $650,000. If, having developed the three-

tier architecture, the team later concluded that the wrong architecture was chosen, the

estimated refactoring cost would be $300,000. If the microservices architecture was the

first one developed, and a later refactoring was needed, its estimated additional cost

would be $100,000.

What should the team do?

To decide whether it is worth it to conduct the experiments, or how much we should

be willing to spend on experimentation in relation to the confidence to be gained and the

cost of being wrong, the team could use a technique known as Value of Information (VoI)

to settle the questions. The VoI technique is used to calculate the expected gain from a

reduction in the uncertainty surrounding a decision through some form of data collection

exercise—in this case, the construction of prototypes. To use VoI, the team will need to

assess the following parameters: the cost of making the wrong design choice, the cost

of performing the experiments, the team’s level of confidence in each design choice, and

their level of confidence in the results of the experiments. Using these estimates, VoI

then applies Bayes’s Theorem to calculate two quantities: the expected value of perfect

information (EVPI) and the expected value of sample or imperfect information (EVSI).

EVPI denotes the maximum one should be willing to pay for the experiments, were they to

provide definitive results (e.g., no false positives or false negatives). EVSI represents how

much one should be willing to spend knowing that the results of the experiment might not

identify the right solution with 100 percent certainty.

As these results represent expected values, they should be evaluated in the context

of the team’s appetite for risk.

—Eduardo Miranda

20.4 More on ADD Step 5: Producing Structures

Design concepts per se won’t help you satisfy your drivers unless you produce structures; that
is, you need to identify and connect elements that are derived from the selected design con-
cepts. This is the “instantiation” phase for architectural elements in ADD: creating elements
and relationships between them, and associating responsibilities with these elements. Recall

20.4 More on ADD Step 5: Producing Structures 299

that the architecture of a software system is composed of a set of structures. As we saw in
Chapter 1, these structures can be grouped into three major categories:

 ■ Module structures, which are composed of elements that exist at development time, such
as files, modules, and classes

 ■ Component and connector (C&C) structures, which are composed of elements that exist
at runtime, such as processes and threads

 ■ Allocation structures, which are composed of both software elements (from a module
or C&C structure) and non-software elements that may exist both at development and at
runtime, such as file systems, hardware, and development teams

When you instantiate a design concept, you may actually affect more than one structure.
For example, in a particular iteration, you might instantiate the passive redundancy (warm
spare) pattern, introduced in Chapter 4. This will result in both a C&C structure and an alloca-
tion structure. As part of applying this pattern, you will need to choose the number of spares,
the degree to which the state of the spares is kept consistent with that of the active node, a
mechanism for managing and transferring state, and a mechanism for detecting the failure
of a node. These decisions are responsibilities that must live somewhere in the elements of a
module structure.

Instantiating Elements

Here’s how instantiation might look for each of the design concept categories:

 ■ Reference architectures. In the case of reference architectures, instantiation typically
means that you perform some sort of customization. This will require you to add or
remove elements that are part of the structure that is defined by the reference architec-
ture. For example, if you are designing a web application that needs to communicate
with an external application to handle payments, you will probably need to add an inte-
gration component alongside the traditional presentation, business, and data tiers.

 ■ Patterns. Patterns provide a generic structure composed of elements, along with their
relationships and their responsibilities. As this structure is generic, you will need to
adapt it to your specific problem. Instantiation usually involves transforming the generic
structure defined by the pattern into a specific one that is adapted to the needs of the
problem you are solving. For example, consider the client-server architectural pattern. It
establishes the basic elements of computation (i.e., clients and servers) and their relation-
ships (i.e., connection and communication), but does not specify how many clients or
servers you should use for your problem, or what the functionality of each should be, or
which clients should talk to which servers, or which communication protocol they should
use. Instantiation fills in these blanks.

 ■ Tactics. This design concept does not prescribe a particular structure. Thus, to instanti-
ate a tactic, you may adapt a different type of design concept (that you’re already using)
to realize the tactic. Alternatively, you may utilize a design concept that, without any
need for adaptation, already realizes the tactic. For example, you might (1) select a secu-
rity tactic of authenticating actors and instantiate it through a custom-coded solution
that you weave into your preexisting login process; or (2) adopt a security pattern that

300 Part IV Scalable Architecture Practices | Chapter 20 Designing an Architecture

includes actor authentication; or (3) integrate an externally developed component such as
a security framework that authenticates actors.

 ■ Externally developed components. The instantiation of these components may or not
imply the creation of new elements. For example, in the case of object-oriented frame-
works, instantiation may require you to create new classes that inherit from the base
classes defined in the framework. This will result in new elements. An example that does
not involve the creation of new elements is specifying configuration options for a chosen
technology, such as the number of threads in a thread pool.

Associating Responsibilities and Identifying Properties

When you are creating elements by instantiating design concepts, you need to consider the
responsibilities that are allocated to these elements. For example, if you instantiate the micro-
services architecture pattern (Chapter 5), you need to decide what the microservices will do, how
many of each you will deploy, and what the properties of those microservices will be. When
instantiating elements and allocating responsibilities, you should keep in mind the design
principle that elements should have high cohesion (internally), be defined by a narrow set of
responsibilities, and demonstrate low coupling (externally).

An important aspect that you need to consider when instantiating design concepts is the
properties of the elements. This may involve aspects such as the configuration options, state-
fulness, resource management, priority, or even hardware characteristics (if the elements that
you created are physical nodes) of the chosen technologies. Identifying these properties sup-
ports analysis and the documentation of your design rationale.

Establishing Relationships between the Elements

The creation of structures also requires making decisions with respect to the relationships
that exist between the elements and their properties. Consider again the client-server pattern.
In instantiating this pattern, you need to decide which clients will talk to which servers, via
which ports and protocols. You also need to decide whether communication will be synchro-
nous or asynchronous. Who initiates interactions? How much information is transferred and at
what rate?

These design decisions can have a significant impact with respect to achieving QAs such
as performance.

Defining Interfaces

Interfaces establish a contractual specification that allows elements to collaborate and exchange
information. They may be either external or internal.

External interfaces are interfaces of other systems with which your system must interact.
These may form constraints for your system, since you usually cannot influence their spec-
ification. As we noted earlier, establishing a system context at the beginning of the design

20.5 More on ADD Step 6: Creating Preliminary Documentation during the Design 301

process is useful to identify external interfaces. Since external entities and the system under
development interact via interfaces, there should be at least one external interface per external
system (as shown in Figure 20.2).

Internal interfaces are interfaces between the elements that result from the instantiation
of design concepts. To identify the relationships and the interface details, you need to under-
stand how the elements interact with each other to support use cases or QA scenarios. As we
said in Chapter 15 in our discussion of software Interfaces, “interacts” means anything one
element does that can impact the processing of another element. A particularly common type
of interaction is the runtime exchange of information.

Behavioral representations such as UML sequence diagrams, statecharts, and activity
diagrams (see Chapter 22) allow you to model the information that is exchanged between ele-
ments during execution. This type of analysis is also useful to identify relationships between
elements: If two elements need to exchange information directly or otherwise depend on each
other, then a relationship between these elements exists. Any information that is exchanged
becomes part of the specification of the interface.

The identification of interfaces is usually not performed equally across all design iterations.
When you are starting the design of a greenfield system, for example, your first iterations will
produce only abstract elements such as layers; these elements will then be refined in later
iterations. The interfaces of abstract elements such as layers are typically underspecified. For
example, in an early iteration you might simply specify that the UI tier sends “commands”
to the business logic tier, and the business logic tier sends “results” back. As the design pro-
cess proceeds, and particularly when you create structures to address specific use cases and
QA scenarios, you will need to refine the interfaces of the elements that participate in these
interactions.

In some special cases, identifying the appropriate interfaces may be greatly simplified.
For example, if you choose a complete technology stack or a set of components that have been
designed to interoperate, then the interfaces will already be defined by those technologies. In
such a case, the specification of interfaces is a relatively trivial task, as the chosen technolo-
gies have “baked in” many interface assumptions and decisions.

Finally, be aware that not all of the internal interfaces need to be identified in any given
ADD iteration. Some may be delegated to later design activities.

20.5 More on ADD Step 6: Creating Preliminary Documentation
during the Design

As we will see in Chapter 22, software architecture is documented as a set of views, which
represent the different structures that compose the architecture. The formal documentation of
these views is not part of ADD. Structures, however, are produced as part of design. Capturing
them, even if they are represented informally (as sketches), along with the design decisions that
led you to create these structures, is a task that should be performed as part of normal ADD
activities.

302 Part IV Scalable Architecture Practices | Chapter 20 Designing an Architecture

Master

Dataset
Batch

Views

Pre-

computing

Query

and

Reporting

Real-Time

Views

Batch Serving

Speed
Component boundary

Key

Element boundary

Data

Stream

Recording Sketches of the Views

When you produce structures by instantiating the design concepts that you have selected
to address a particular design problem, you will typically not only produce these structures
in your mind but also create some sketches of them. In the simplest case, you will produce
these sketches on a whiteboard, a flipchart, a drawing tool, or even just a piece of paper.
Additionally, you may use a modeling tool to draw the structures in a more rigorous way. The
sketches that you produce are an initial documentation for your architecture that you should
capture and that you may flesh out later, if necessary. When you create sketches, you don’t
necessarily need to use a more formal language such as UML—although if you’re fluent and
comfortable with this process, please do so. If you use some informal notation, you should be
careful in maintaining consistency in the use of symbols. Eventually, you will need to add a
legend to your diagrams to provide clarity and avoid ambiguity.

You should develop a discipline of writing down the responsibilities that you allocate
to the elements as you create the structures. The reasons for this are simple: As you identify
an element, you are determining some responsibilities for that element in your mind. Writing
them down at that moment ensures that you won’t have to remember the intended responsi-
bilities later. Also, it is easier to write down the responsibilities associated with your elements
gradually, rather than documenting all of them together at a later time.

Creating this preliminary documentation as you design the architecture requires some
discipline. The benefits are worth the effort, though, as you will be able to later produce the
more detailed architecture documentation relatively easily and quickly. One simple way to
document responsibilities, if you are using a whiteboard or a flipchart, is to take a photo of the
sketch that you have produced and paste it in a document, along with a table that summarizes
the responsibilities of every element depicted in the diagram (see an example in Figure 20.4).
If you use a design tool, you can select an element to create and use the text area that usually
appears in the properties sheet of the element to document its responsibilities, and then gener-
ate the documentation automatically.

FIGURE 20.4 Example preliminary documentation

20.5 More on ADD Step 6: Creating Preliminary Documentation during the Design 303

The diagram is complemented by a table that describes the element’s responsibilities.
Table 20.1 serves this purpose for some of the elements identified in Figure 20.4.

TABLE 20.1 Elements and Responsibilities

Element Responsibility

Data Stream This element collects data from all data sources in real time, and dispatches it to
both the Batch Component and the Speed Component for processing.

Batch This is responsible for storing raw data and pre-computing the Batch Views to be
stored in the Serving Component.

.

Of course, it’s not necessary to document everything at this stage. The three purposes of
documentation are analysis, construction, and education. At the moment you are designing,
you should choose a documentation purpose and then document to fulfill that purpose, based
on your risk mitigation concerns. For example, if you have a critical QA scenario that your
architecture design needs to meet, and if you will need to prove the proposed design satisfies
this criterion in an analysis, then you must take care to document the information that is rel-
evant for the analysis to be satisfactory. Likewise, if you anticipate having to train new team
members, then you should sketch a C&C view of the system, showing how it operates and how
the elements interact at runtime, and perhaps a module view of the system, showing at least the
major layers or subsystems.

Finally, remember as you are documenting that your design may eventually be analyzed.
Consequently, you need to think about which information should be documented to support
this analysis.

Recording Design Decisions

In each design iteration, you will make important design decisions to achieve your iteration goal.
When you study a diagram that represents an architecture, you might see the end product of a
thought process but can’t always easily understand the decisions that were made to achieve this
result. Recording design decisions beyond the representation of the chosen elements, relation-
ships, and properties is fundamental to help clarify how you arrived at the result—that is, the
design rationale. We delve into this topic in detail in Chapter 22.

304 Part IV Scalable Architecture Practices | Chapter 20 Designing an Architecture

 20.6 More on ADD Step 7: Perform Analysis of the Current
Design and Review the Iteration Goal and Achievement of
the Design Purpose

At the end of an iteration, it is prudent to do some analysis to reflect on the design decisions
that you just made. We describe several techniques to do so in Chapter 21. One kind of anal-
ysis that you need to perform at this point is to assess whether you have done enough design
work. In particular:

 ■ How much design do you need to do?
 ■ How much design have you done so far?
 ■ Are you finished?

Practices such as the use of backlogs and Kanban boards can help you track the design
progress and answer these questions.

 Use of an Architectural Backlog

An architectural backlog is a to-do list of the pending actions that still need to be performed
as part of the architecture design process. Initially, you should populate the design backlog
with your drivers, but other activities that support the design of the architecture can also be
included—for example:

 ■ Creation of a prototype to test a particular technology or to address a specific QA risk
 ■ Exploration and understanding of existing assets (possibly requiring reverse engineering)
 ■ Issues uncovered in a review of the design decisions made to this point

Also, you may add more items to the backlog as decisions are made. As a case in point,
if you choose a reference architecture, you will probably need to add specific concerns, or QA
scenarios derived from them, to the architectural design backlog. For example, if we choose a
web application reference architecture and discover that it does not provide session manage-
ment, then that becomes a concern that needs to be added to the backlog.

 Use of a Design Kanban Board

Another tool that can be used to track design progress is a Kanban board, such as the one
shown in Figure 20.5. This board establishes three categories of backlog items: “Not Yet
Addressed,” “Partially Addressed,” and “Completely Addressed.”

At the beginning of an iteration, the inputs to the design process become entries in the
backlog. Initially (in step 1), the entries in your backlog for this design round should be located
in the “Not Yet Addressed” column of the board. When you begin a design iteration, in step 2,
the backlog entries that correspond to the drivers that you address in the design iteration goal
should be moved to the “Partially Addressed” column. Finally, once you finish an iteration
and the analysis of your design decisions reveals that a particular driver has been addressed
(step 7), the entry should be moved to the “Completely Addressed” column of the board.

20.6 More on ADD Step 7: 305

CT-1 MVP release of the solution to

the selected consultants, customers,

and prospective licensees in

9 months, release in 1.5 years

Constraint

High Priority

Not Yet Addressed 6 7 1Partially Addressed Completely Addressed Discarded

High Priority

CT-Infrastructure team is not able

to support large-scale SaaS setup

Constraint

Medium Priority

QA-3 External user credentials are

QAScenario

QAScenario

QA-5 Data center infrastructure has

uptime of 99.95%

QA-8 Test code coverage should be

at least 85% for each CI

High Priority

QAScenario

against corporate AD

High Priority

QAScenario

QC4 - As sales person prepares

proposal plan

High Priority

UseCase

QN-1 Code base (reuse legacy code if

possible)

Low Priority

CN-2 Choose architecture style

High Priority

Concern

QA-4 User-facing parts are available

99.9% for 4 hours in

months (maintenance window)

High Priority

QAScenario

Medium Priority

UC10-3

Medium Priority

FIGURE 20.5 A Kanban board used to track design progress

It is important to establish clear criteria that will allow a driver to be moved to the
“Partially Addressed” or “Completely Addressed” columns. A criterion for “Completely
Addressed” may be, for example, that the driver has been analyzed or that it has been imple-
mented in a prototype, and you determine that the requirements for that driver have been satis-
fied. Drivers that are selected for a particular iteration may not be completely addressed in that
iteration. In that case, they should remain in the “Partially Addressed” column.

It can be useful to select a technique that will allow you to differentiate the entries in
the board according to their priority. For example, you might use different colors for entries,
depending on the priority.

A Kanban board makes it easy to visually track the advancement of design, as you can
quickly see how many of the (most important) drivers are being or have been addressed in the
iteration. This technique also helps you decide whether you need to perform additional iter-
ations. Ideally, the design round is terminated when a majority of your drivers (or at least the
ones with the highest priority) are located under the “Completely Addressed” column.

306 Part IV Scalable Architecture Practices | Chapter 20 Designing an Architecture

20.7 Summary

Design is hard. Methods are needed to make it more tractable (and repeatable). In this chapter,
we discussed the attribute-driven design (ADD) method in detail; it allows an architecture to
be designed in a systematic and cost-effective way.

We also discussed several important aspects that need to be considered in the steps of the
design process. These aspects include the identification and selection of design concepts, their
use in producing structures, the definition of interfaces, the production of preliminary docu-
mentation, and ways to track design progress.

20.8 For Further Reading

The first version of ADD, initially called “Architecture-Based Design,” was documented in
 [Bachmann 00b].

A description of ADD 2.0 was subsequently published in 2006. It was the first method
to focus specifically on QAs and their achievement through the selection of different types of
structures and their representation through views. Version 2.0 of ADD was first documented
in an SEI Technical Report [Wojcik 06].

The version of ADD described in this chapter is ADD 3.0. Some important improvements
over the original version include giving more consideration to the selection of implementation
technologies as primary design concepts, considering additional drivers such as design pur-
pose and architectural concerns, making initial documentation and analysis be explicit steps
of the design process, and providing guidance in how to begin the design process and how to
use it in Agile settings. An entire book [Cervantes 16] is devoted to architecture design using
ADD 3.0. Some of the concepts of ADD 3.0 were first introduced in an IEEE Software article
[Cervantes 13].

George Fairbanks wrote an engaging book that describes a risk-driven process of
architecture design, entitled Just Enough Software Architecture: A Risk-Driven Approach
[Fairbanks 10].

The Value of Information technique dates from the 1960s [Raiffa 00]. A more modern
treatment can be found in [Hubbard 14].

For a general approach on systems design, you can read the classic tome by Butler
Lampson [Lampson 11].

Using concepts of lean manufacturing, Kanban is a method for scheduling the production
of a system, as described by Corey Ladas [Ladas 09].

20.9 Discussion Questions 307

20.9 Discussion Questions

1. What are the advantages of following an established method for design? What are the
disadvantages?

2. Is performing architectural design compatible with an agile development methodology?
Choose an agile method and discuss ADD in that context.

3. What is the relationship between design and analysis? Are there some kinds of knowl-
edge that you need for one but not the other?

4. If you had to argue for the value of creating and maintaining architectural documenta-
tion to your manager during the design process, what arguments would you put forward?

5. How would your realization of the steps of ADD differ if you were doing greenfield
development versus brownfield development?

This page intentionally left blank

309

21
 Evaluating an Architecture

A doctor can bury his mistakes, but an architect can only
advise his clients to plant vines.

—Frank Lloyd Wright

In Chapter 2, we said that one major reason architecture is important is that you can predict
the quality attributes of any system derived from it, before you build the system, by examining
its architecture. That’s a pretty good deal, if you think about it. And this is the chapter where
that capability comes home.

Architecture evaluation is the process of determining the degree to which an architecture
is fit for the purpose for which it is intended. Architecture is such an important contributor
to the success of a system and software engineering project that it makes sense to pause and
make sure that the architecture you’re designing will be able to provide all that’s expected of
it. That’s the role of evaluation, which is based on analyzing the alternatives. Fortunately, there
are mature methods to analyze architectures that use many of the concepts and techniques
you’ve already learned in this book.

To be useful, the cost of evaluation needs to be less than the value it provides. Given this
relationship, an important question is “How much time and money is the evaluation going
to cost?” Different evaluation techniques come with different costs, but all of them can be
measured in terms of the time spent by the people involved in the preparation, execution, and
follow-up of the evaluation activities.

21.1 Evaluation as a Risk Reduction Activity

Every architecture comes with risks. The output of an architecture evaluation includes an iden-
tification of risky portions of the architecture. A risk is an event that has both an impact and a
probability. The estimated cost of a risk is the probability of that event occurring multiplied by
the cost of the impact. Fixing those risks is not an output of the evaluation. Once the risks have
been identified, then fixing them is, like the evaluation itself, a cost/benefit issue.

310 Part IV Scalable Architecture Practices | Chapter 21 Evaluating an Architecture

Applying this concept to architecture evaluation, you can see that if the system being
constructed costs millions or billions of dollars or has large safety-critical implications, then
the impact of a risk event will be large. By comparison, if the system is a console-based game
costing tens or hundreds of thousands of dollars to create, then the impact of a risk event will
be considerably smaller.

The probability of a risk event is related to, among other things, how precedented or
unprecedented the system under development and its architecture are. If you and your organi-
zation have long and deep experience in this domain, then the probability of producing a bad
architecture is less than if this project is your first go.

Thus evaluations act like an insurance policy. How much insurance you need depends on
how exposed you are to the risk of an unsuitable architecture and your risk tolerance.

Evaluations can be done throughout the development process at different phases, with
different evaluators, and with differences in how the evaluation is performed—we’ll cover
some of the options in this chapter. Regardless of their precise details, evaluations build on the
concepts you have already learned: Systems are constructed to satisfy business goals, business
goals are exemplified by quality attribute scenarios, and quality attribute goals are achieved
through the application of tactics and patterns.

21.2 What Are the Key Evaluation Activities?

Regardless of who performs the evaluation and when it is performed, an evaluation is based
on architectural drivers—primarily architecturally significant requirements (ASRs) expressed
as quality attribute scenarios. Chapter 19 describes how to determine ASRs. The number of
ASRs that enter into the evaluation is a function of the contextual factors and the cost of the
evaluation. We next describe the possible contextual factors for architecture evaluation.

An evaluation can be carried out at any point in the design process where a candidate
architecture, or at least a coherent reviewable part of one, exists.

Every evaluation should include (at least) these steps:

1. The reviewers individually ensure that they understand the current state of the archi-
tecture. This can be done through shared documentation, through a presentation by the
architect, or through some combination of these.

2. The reviewers determine a number of drivers to guide the review. These drivers may
already be documented, or they can be developed by the review team or by additional
stakeholders. Typically the most important drivers to review are the high-priority quality
attribute scenarios (and not, say, purely functional use cases).

3. For each scenario, each reviewer should determine whether the scenario is satisfied.
The reviewers pose questions to determine two types of information. First, they want
to determine that the scenario is, in fact, satisfied. This could be done by having the
architect walk through the architecture and explain how the scenario is satisfied. If
the architecture is already documented, then the reviewers can use that documenta-
tion to make this assessment. Second, they want to determine whether any of the other

21.3 Who Can Perform the Evaluation? 311

scenarios being considered will not be satisfied because of the decisions made in the
portion of the architecture being reviewed. The reviewers may pose alternatives to any
risky aspect of the current design that might better satisfy the scenario. These alterna-
tives should be subjected to the same type of analysis. Time constraints play a role in
determining how long this step is allowed to continue.

4. The reviewers capture potential problems exposed during the prior step. This list of
potential problems forms the basis for the follow-up of the review. If the potential prob-
lem is a real problem, then either it must be fixed or a decision must be explicitly made
by the designers and the project manager that they are willing to accept the risk.

How much analysis should you do? Decisions made to achieve one of the driving archi-
tectural requirements should be subject to more analysis than others, because they will shape
critical portions of the architecture. Some specific considerations include these:

 ■ The importance of the decision. The more important the decision, the more care should
be taken in making it and making sure it’s right.

 ■ The number of potential alternatives. The more alternatives, the more time could be
spent in evaluating them.

 ■ Good enough as opposed to perfect. Many times, two possible alternatives do not differ
dramatically in their consequences. In such a case, it is more important to make a choice
and move on with the design process than it is to be absolutely certain that the best
choice is being made.

21.3 Who Can Perform the Evaluation?

Evaluators should be highly skilled in the domain and the various quality attributes for which
the system is to be evaluated. Excellent organizational and facilitation skills are also a must
for evaluators.

Evaluation by the Architect

Evaluation is done—implicitly or explicitly—every time the architect makes a key design
decision to address an ASR or completes a design milestone. This evaluation involves deciding
among the competing alternatives. Evaluation by the architect is an integral part of the process
of architecture design, as we discussed in Chapter 20.

Evaluation by Peer Review

Architectural designs to address ASRs can be peer reviewed, just as code can be peer reviewed.
There should be a fixed amount of time allocated for the peer review, typically several hours
to half a day.

312 Part IV Scalable Architecture Practices | Chapter 21 Evaluating an Architecture

If the designers are using the Attribute-Driven Design (ADD) process described in Chap-
terb20, then a peer review can be done at the end of step 7 of each ADD iteration. Reviewers
should also use the tactics-based questionnaires that we presented in Chapters 4–13.

Evaluation by Outsiders

Outside evaluators can cast a more objective eye on an architecture. “Outside” is relative; this
may mean outside the development project, outside the business unit where the project resides
but within the same company, or outside the company altogether. To the degree that evaluators
are “outside,” they are less likely to be afraid to bring up sensitive problems, or problems that
aren’t apparent because of organizational culture or because “we’ve always done it that way.”

Often, outsiders are chosen to participate in the evaluation because they possess special-
ized knowledge or experience, such as knowledge about a quality attribute that’s important to
the system being examined, skill with a particular technology being employed, or long experi-
ence in successfully evaluating architectures.

Also, whether justified or not, managers tend to be more inclined to listen to problems
uncovered by an outside team hired at considerable cost than by team members within the
organization. This can be understandably frustrating to project staff who may have been com-
plaining about the same problems, to no avail, for months.

In principle, an outside team may evaluate a completed architecture, an incomplete archi-
tecture, or a portion of an architecture. In practice, because engaging them is complicated and
often expensive, they tend to be used to evaluate complete architectures.

21.4 Contextual Factors

For peer reviews or outside analysis, a number of contextual factors must be considered when
setting up an evaluation:

 ■ What artifacts are available? To perform an architectural evaluation, there must be an
artifact that both describes the architecture and is readily available. Some evaluations may
take place after the system is operational. In this case, some architecture recovery and
analysis tools may be used to assist in discovering the architecture, to find architecture
design flaws, and to test that the as-built system conforms to the as-designed system.

 ■ Who sees the results? Some evaluations are performed with the full knowledge and par-
ticipation of all of the stakeholders. Others are performed more privately.

 ■ Which stakeholders will participate? The evaluation process should include a method to
elicit the important stakeholders’ goals and concerns regarding the system. At this stage,
it is critical to identify the individuals who are needed and ensure their participation in the
evaluation.

 ■ What are the business goals? The evaluation should answer whether the system will
satisfy the business goals. If the business goals are not explicitly captured and prioritized
prior to the evaluation, then a portion of the evaluation should be dedicated to this task.

21.5 The Architecture Tradeoff Analysis Method 313

Evaluations by peers and by outside evaluators are common enough that we have for-
malized processes to guide the evaluation. These processes define who should participate and
which activities should occur during the evaluation. Formalizing a process enables the orga-
nization to make the process more repeatable, help the stakeholders understand what will be
required and delivered by the evaluation, train new evaluators to use the process, and under-
stand the investment required to perform the evaluation.

We begin by describing a process for outside evaluators (Architecture Tradeoff Analysis
Method); we then describe a process for peer review (Lightweight Architecture Evaluation).

21.5 The Architecture Tradeoff Analysis Method

The Architecture Tradeoff Analysis Method (ATAM) is the process we have formalized to
perform architecture evaluations. The ATAM has been used for more than two decades to
evaluate software architectures of large systems in domains ranging from automotive to finan-
cial to defense. The ATAM is designed so that evaluators do not need prior familiarity with
the architecture or its business goals, and the system need not be constructed yet. An ATAM
exercise may be held either in person or remotely.

Participants in the ATAM

The ATAM requires the participation and mutual cooperation of three groups:

 ■ The evaluation team. This group is external to the project whose architecture is being
evaluated. It usually consists of three to five people. Each member of the team is
assigned a number of specific roles to play during the evaluation; a single person may
adopt several roles in an ATAM exercise. (See Table 21.1 for a description of these roles.)
The evaluation team may be a standing unit in which architecture evaluations are regu-
larly performed, or its members may be chosen from a pool of architecturally savvy indi-
viduals for the occasion. They may work for the same organization as the development
team whose architecture is on the table, or they may be outside consultants. In any case,
they need to be recognized as competent, unbiased outsiders with no hidden agendas or
axes to grind.

 ■ Project decision makers. These people are empowered to speak for the development
project or have the authority to mandate changes to it. They usually include the project
manager and, if an identifiable customer is footing the bill for the development, a repre-
sentative of that customer may be present as well. The architect is always included—a
cardinal rule of architecture evaluation is that the architect must willingly participate.

 ■ Architecture stakeholders. Stakeholders have a vested interest in the architecture per-
forming as advertised. They are the people whose ability to do their job hinges on the
architecture promoting modifiability, security, high reliability, or the like. Stakeholders
include developers, testers, integrators, maintainers, performance engineers, users, and

314 Part IV Scalable Architecture Practices | Chapter 21 Evaluating an Architecture

builders of systems interacting with the one under consideration. Their job during an
evaluation is to articulate the specific quality attribute goals that the architecture should
meet for the system to be considered a success. A rule of thumb—and that is all it is—
is that you should expect to enlist 10 to 25 stakeholders for the evaluation of a large
enterprise-critical architecture. Unlike the evaluation team and the project decision
 makers, stakeholders do not participate in the entire exercise.

TABLE 21.1 ATAM Evaluation Team Roles

Role Responsibilities

Team Leader Sets up the evaluation; coordinates with the client, making sure the client’s needs
are met; establishes the evaluation contract; forms the evaluation team; sees that
the final report is produced and delivered.

Evaluation
Leader

Runs the evaluation; facilitates elicitation of scenarios; administers the scenario
prioritization process; facilitates the evaluation of scenarios against the architecture.

Scenario
Scribe

Writes scenarios in a sharable, public form during scenario elicitation; captures the
agreed-on wording of each scenario, halting discussion until the exact wording is
captured.

E-Scribe Captures the proceedings in electronic form: raw scenarios, issue(s) that motivate
each scenario (often lost in the wording of the scenario itself), and the results
of each scenario’s analysis; also generates a list of adopted scenarios for
distribution to all participants.

Questioner Asks probing quality attribute–based questions.

Outputs of the ATAM

1. A concise presentation of the architecture. One requirement of the ATAM is that the
architecture be presented in one hour or less, which leads to an architectural presentation
that is both concise and, usually, understandable.

2. Articulation of the business goals. Frequently, the business goals presented in the
ATAM exercise are being seen by some of the assembled participants for the first time
and these are captured in the outputs. This description of the business goals survives the
evaluation and becomes part of the project’s legacy.

3. Prioritized quality attribute requirements expressed as quality attribute scenarios.
These quality attribute scenarios take the form described in Chapter 3. The ATAM uses
prioritized quality attribute scenarios as the basis for evaluating the architecture. Those
scenarios may already exist (perhaps as a result of a prior requirements-capture exercise
or ADD activity), but if not, they are generated by the participants as part of the ATAM
exercise.

4. A set of risks and non-risks. An architectural risk is a decision that may lead to unde-
sirable consequences in light of stated quality attribute requirements. Similarly, an
architectural non-risk is a decision that, upon analysis, is deemed safe. The identified

21.5 The Architecture Tradeoff Analysis Method 315

risks form the basis for an architectural risk mitigation plan. These risks are the primary
output of an ATAM exercise.

5. A set of risk themes. When the analysis is complete, the evaluation team examines the
full set of discovered risks to look for overarching themes that identify systemic weak-
nesses in the architecture or even in the architecture process and team. If left untreated,
these risk themes will threaten the project’s business goals.

6. Mapping of architectural decisions to quality requirements. Architectural decisions
can be interpreted in terms of the drivers that they support or hinder. For each quality
attribute scenario examined during an ATAM exercise, those architectural decisions
that help to achieve it are determined and captured. They can serve as a statement of the
rationales for those decisions.

7. A set of identified sensitivity points and tradeoff points. Sensitivity points are architec-
tural decisions that have a marked effect on a quality attribute response. Tradeoffs occur
when two or more quality attribute responses are sensitive to the same architectural deci-
sion, but one of them improves while the other degrades—hence the tradeoff.

The outputs of the ATAM exercise can be used to build a final report that recaps the method,
summarizes the proceedings, captures the scenarios and their analysis, and catalogs the
findings.

An ATAM-based evaluation also produces intangible results that should not be ignored.
These include a sense of community on the part of the stakeholders, open communication
channels between the architect and the stakeholders, and a better overall understanding among
all participants of the architecture and its strengths and weaknesses. While these results are
hard to measure, they are no less important than the others.

Phases of the ATAM

Activities in an ATAM-based evaluation are spread out over four phases:

 ■ In phase 0, “Partnership and Preparation,” the evaluation team leadership and the key
project decision makers work out the details of the exercise. The project representatives
brief the evaluators about the project so that the evaluation team can be supplemented by
people who possess the appropriate expertise. Together, the two groups agree on logis-
tics, such as the time when the evaluation will take place and technology used to support
the meetings. They also agree on a preliminary list of stakeholders (by name, not just
role), and negotiate when the final report will be delivered and to whom. They deal with
formalities such as a statement of work or nondisclosure agreements. The evaluation
team examines the architecture documentation to gain an understanding of the archi-
tecture and the major design approaches that it comprises. Finally, the evaluation team
leader explains what information the manager and architect will be expected to show
during phase 1, and helps them construct their presentations, if necessary.

 ■ During Phases 1 and 2, collectively known as “Evaluation,” everyone gets down to the
business of analysis. By now, the evaluation team will have studied the architecture doc-
umentation and will have a good idea of what the system is about, the major architectural

316 Part IV Scalable Architecture Practices | Chapter 21 Evaluating an Architecture

approaches taken, and the quality attributes that are of paramount importance. During
phase 1, the evaluation team meets with the project decision makers to begin information
gathering and analysis. In phase 2, the architecture’s stakeholders add their input to the
proceedings and analysis continues.

 ■ In Phase 3, “Follow-up,” the evaluation team produces and delivers its final report. This
report—which may be a formal document or simply a set of slides—is first circulated to
key stakeholders to ensure that it contains no errors of understanding. After this review
is complete, it is delivered to the client.

Table 21.2 shows the four phases of the ATAM, who participates in each phase, and the
typical cumulative time spent on the activity—possibly in several segments.

TABLE 21.2 ATAM Phases and Their Characteristics

Phase Activity Participants Typical Cumulative Time

0 Partnership and
preparation

Evaluation team leadership and
key project decision makers

Proceeds informally as required,
perhaps over a few weeks

1 Evaluation Evaluation team and project
decision makers

1–2 days

2 Evaluation
(continued)

Evaluation team, project decision
makers, and stakeholders

2 days

3 Follow-up Evaluation team and evaluation
client

1 week

Source: Adapted from [Clements 01b].

Steps of the Evaluation Phases

The ATAM analysis phases (phases 1 and 2) consist of nine steps. Steps 1–6 are carried out in
phase 1 with the evaluation team and the project’s decision makers—typically, the architec-
ture team, project manager, and client. In phase 2, with all stakeholders involved, steps 1–6 are
summarized and steps 7–9 are carried out.

Step 1: Present the ATAM

The first step calls for the evaluation leader to present the ATAM to the assembled project
representatives. This time is used to explain the process that everyone will be following, to
answer questions, and to set the context and expectations for the remainder of the activities.
Using a standard presentation, the leader describes the ATAM steps in brief and the outputs of
the evaluation.

Step 2: Present the Business Goals

Everyone involved in the evaluation—the project representatives as well as the evaluation team
members—needs to understand the context for the system and the primary business goals
motivating its development. In this step, a project decision maker (ideally the project manager

21.5 The Architecture Tradeoff Analysis Method 317

or customer representative) presents a system overview from a business perspective. This pre-
sentation should describe the following aspects of the project:

 ■ The system’s most important functions
 ■ Any relevant technical, managerial, economic, or political constraints
 ■ The business goals and context as they relate to the project
 ■ The major stakeholders
 ■ The architectural drivers (emphasizing architecturally significant requirements)

Step 3: Present the Architecture

The lead architect (or architecture team) makes a presentation describing the architecture at
an appropriate level of detail. The “appropriate level” depends on several factors: how much
of the architecture has been designed and documented, how much time is available, and the
nature of the behavioral and quality requirements.

In this presentation, the architect covers technical constraints such as the operating sys-
tem, platforms prescribed for use, and other systems with which this system must interact.
Most importantly, the architect describes the architectural approaches (or patterns, or tactics,
if the architect is fluent in that vocabulary) used to meet the requirements.

We expect architectural views, as introduced in Chapter 1 and described in detail in
Chapter 22, to be the primary vehicle by which the architect conveys the architecture. Context
diagrams, component-and-connector views, module decomposition or layered views, and
the deployment view are useful in almost every evaluation, and the architect should be pre-
pared to show them. Other views can be presented if they contain information relevant to the
architecture at hand, especially information relevant to satisfying important quality attribute
requirements.

Step 4: Identify the Architectural Approaches

The ATAM focuses on analyzing an architecture by understanding its architectural
approaches. Architectural patterns and tactics are useful for (among other reasons) the known
ways in which each one affects particular quality attributes. For example, a layered pattern
tends to bring portability and maintainability to a system, possibly at the expense of perfor-
mance. A publish-subscribe pattern is scalable in the number of producers and consumers of
data, whereas the active redundancy pattern promotes high availability.

Step 5: Generate a Quality Attribute Utility Tree

The quality attribute goals are articulated in detail via a quality attribute utility tree, which
we introduced in Section 19.4. Utility trees serve to make the requirements concrete by defin-
ing precisely the relevant quality attribute requirements that the architects were working to
provide.

The important quality attribute goals for the architecture under consideration were named
or implied in step 2, when the business goals were presented, but not with a degree of speci-
ficity that would permit analysis. Broad goals such as “modifiability” or “high throughput” or
“ability to be ported to a number of platforms” establish context and direction, and provide a

318 Part IV Scalable Architecture Practices | Chapter 21 Evaluating an Architecture

backdrop against which subsequent information is presented. However, they are not specific
enough to let us tell if the architecture suffices to achieve those aims. Modifiable in what way?
Throughput that is how high? Ported to what platforms and in how much time? The answers to
these kinds of questions are expressed as quality attribute scenarios representing architectur-
ally significant requirements.

Recall that the utility tree is constructed by the architect and the project decision makers.
Together, they determine the importance of each scenario: The architect rates the technical
difficulty or risk of the scenario (on a H, M, L scale), and the project decision makers rate its
business importance.

Step 6: Analyze the Architectural Approaches

The evaluation team examines the highest-ranked scenarios (as identified in the utility tree)
one at a time; the architect is asked to explain how the architecture supports each one. Evaluation
team members—especially the questioners—probe for the architectural approaches that the
architect used to carry out the scenario. Along the way, the evaluation team documents the rele-
vant architectural decisions and identifies and catalogs their risks, non-risks, and tradeoffs. For
well-known approaches, the evaluation team asks how the architect overcame known weak-
nesses in the approach or how the architect gained assurance that the approach sufficed. The
goal is for the evaluation team to be convinced that the instantiation of the approach is appropri-
ate for meeting the attribute-specific requirements for which it is intended.

Scenario walkthrough leads to a discussion of possible risks and non-risks. For example:

 ■ The frequency of heartbeats affects the time in which the system can detect a failed
component. Some assignments will result in unacceptable values of this response; these
are risks.

 ■ The frequency of heartbeats determines the time for detection of a fault.
 ■ Higher frequency leads to improved availability but also consumes more processing time

and communication bandwidth (potentially leading to reduced performance). This is a
tradeoff.

These issues, in turn, may catalyze a deeper analysis, depending on how the architect
responds. For example, if the architect cannot characterize the number of clients and cannot
say how load balancing will be achieved by allocating processes to hardware, there is little
point in proceeding to any performance analysis. If such questions can be answered, the eval-
uation team can perform at least a rudimentary, or back-of-the-envelope, analysis to determine
if these architectural decisions are problematic vis-à-vis the quality attribute requirements
they are meant to address.

The analysis during step 6 is not meant to be comprehensive. The key is to elicit sufficient
architectural information to establish some link between the architectural decisions that have
been made and the quality attribute requirements that need to be satisfied.

Figure 21.1 shows a template for capturing the analysis of an architectural approach for
a scenario. As shown in the figure, based on the results of this step, the evaluation team can
identify and record a set of risks and non-risks, sensitivity points, and tradeoffs.

21.5 The Architecture Tradeoff Analysis Method 319

Scenario #: A12 Scenario: Detect and recover from HW failure
of main switch.

Attribute(s) Availability

Environment Normal operations

Stimulus One of the CPUs fails

Response 0.999999 availability of switch

Architectural decisions Sensitivity Tradeoff Risk Nonrisk

Backup CPU(s) S2 R8

No backup data channel S3 T3 R9

Watchdog S4 N12

Heartbeat S5 N13

Failover routing S6 N14

Reasoning Ensures no common mode failure by using different hardware
and operating system (see Risk 8)

Worst-case rollover is accomplished in 4 seconds, as computing
state takes that long at worst

Guaranteed to detect failure within 2 seconds based on rates of
heartbeat and watchdog

Watchdog is simple and has proved reliable

Availability requirement might be at risk due to lack of backup
data channel . . . (see Risk 9)

Architecture
diagram

Backup

y

Switch
CPU

Heartbeat
(1 sec)

(OS1)

CPU with
Watchdog

(OS2)

Primarimaimary
CPU
(OS1)

FIGURE 21.1 Example of architecture approach analysis (adapted from [Clements 01b])

At the end of step 6, the evaluation team should have a clear picture of the most important
aspects of the entire architecture, the rationale for key design decisions, and a list of risks, non-
risks, sensitivity points, and tradeoff points.

At this point, phase 1 is concluded.

320 Part IV Scalable Architecture Practices | Chapter 21 Evaluating an Architecture

Hiatus and Start of Phase 2

The evaluation team summarizes what it has learned and interacts informally with the archi-
tect during a hiatus of a week or so. More scenarios might be analyzed during this period, if
desired, or answers to questions posed in phase 1 may be clarified.

Attendees at the phase 2 meeting include an expanded list of participants, with additional
stakeholders joining the discussion. To use an analogy from programming: Phase 1 is akin
to when you test your own program, using your own criteria. Phase 2 is when you give your
program to an independent quality assurance group, who will likely subject your program to a
wider variety of tests and environments.

In phase 2, step 1 is repeated so that the stakeholders understand the method and the roles
they are to play. Then the evaluation leader recaps the results of steps 2–6, and shares the cur-
rent list of risks, non-risks, sensitivity points, and tradeoffs. After bringing the stakeholders up
to speed with the evaluation results so far, the remaining three steps can be carried out.

Step 7: Brainstorm and Prioritize Scenarios

The evaluation team asks the stakeholders to brainstorm quality attribute scenarios that are
operationally meaningful with respect to the stakeholders’ individual roles. A maintainer will
likely propose a modifiability scenario, while a user will probably come up with a scenario
that expresses ease of operation, and a quality assurance person will propose a scenario about
testing the system or being able to replicate the state of the system leading up to a fault.

While utility tree generation (step 5) is used primarily to understand how the architect
perceived and handled quality attribute architectural drivers, the purpose of scenario brain-
storming is to take the pulse of the larger stakeholder community: to understand what sys-
tem success means for them. Scenario brainstorming works well in larger groups, creating an
atmosphere in which the ideas and thoughts of one person stimulate others’ ideas.

Once the scenarios have been collected, they must be prioritized, for the same reasons that
the scenarios in the utility tree needed to be prioritized: The evaluation team needs to know
where to devote its limited analysis time. First, stakeholders are asked to merge scenarios they
feel represent the same behavior or quality concern. Next, they vote for those scenarios they feel
are most important. Each stakeholder is allocated a number of votes equal to 30 percent of the
number of scenarios,1 rounded up. Thus, if 40 scenarios were collected, each stakeholder would
be given 12 votes. These votes can be allocated in any way that the stakeholder sees fit: all 12
votes for 1 scenario, 1 vote for each of 12 distinct scenarios, or anything in between.

The list of prioritized scenarios is compared with those from the utility tree exercise. If
they agree, it indicates good alignment between what the architect had in mind and what the
stakeholders actually wanted. If additional driving scenarios are discovered—and they usually
are—this may itself be a risk, if the discrepancy is large. Such discoveries indicate some level
of disagreement about the system’s important goals between the stakeholders and the architect.

1. This is a common facilitated brainstorming technique.

21.5 The Architecture Tradeoff Analysis Method 321

Step 8: Analyze the Architectural Approaches

After the scenarios have been collected and prioritized in step 7, the evaluation team guides
the architect in the process of analyzing the highest-ranked scenarios. The architect explains
how architectural decisions contribute to realizing each scenario. Ideally, this activity will be
dominated by the architect’s explanation of scenarios in terms of previously discussed archi-
tectural approaches.

In this step the evaluation team performs the same activities as in step 6, using the
 highest-ranked, newly generated scenarios. Typically, this step might cover the top five to ten
scenarios, as time permits.

Step 9: Present the Results

In step 9, the evaluation team convenes and groups risks into risk themes, based on some
common underlying concern or systemic deficiency. For example, a group of risks about inad-
equate or out-of-date documentation might be grouped into a risk theme stating that docu-
mentation is given insufficient consideration. A group of risks about the system’s inability to
function in the face of various hardware and/or software failures might lead to a risk theme
about insufficient attention to backup capability or providing high availability.

For each risk theme, the evaluation team identifies which of the business goals listed in
step 2 are affected. Identifying risk themes and then relating them to specific drivers brings
the evaluation full circle by relating the final results to the initial presentation, thereby pro-
viding a satisfying closure to the exercise. Equally important, it elevates the risks that were
uncovered to the attention of management. What might otherwise have seemed to a manager
like an esoteric technical issue is now identified unambiguously as a threat to something the
manager is on record as caring about.

The collected information from the evaluation is summarized and presented to stakehold-
ers. The following outputs are presented:

 ■ The architectural approaches documented
 ■ The set of scenarios and their prioritization from the brainstorming
 ■ The utility tree
 ■ The risks and non-risks discovered
 ■ The sensitivity points and tradeoffs found
 ■ Risk themes and the business goals threatened by each one

Going Off Script

Years of experience have taught us that no architecture evaluation exercise ever goes

completely by the book. And yet for all the ways that an exercise might go terribly

wrong, for all the details that can be overlooked, for all the fragile egos that can be

bruised, and for all the high stakes that are on the table, we have never had an architec-

ture evaluation exercise spiral out of control. Every single one has been a success, as

measured by the feedback we gather from clients.

While they all turned out successfully, there have been a few memorable cliffhangers.

322 Part IV Scalable Architecture Practices | Chapter 21 Evaluating an Architecture

More than once, we began an architecture evaluation, only to discover that the devel-

opment organization had no architecture to be evaluated. Sometimes there was a stack

of class diagrams or vague text descriptions masquerading as an architecture. Once we

were promised that the architecture would be ready by the time the exercise began, but

in spite of good intentions, it wasn’t. (We weren’t always so prudent about pre-exercise

preparation and qualification. Our current diligence is a result of experiences like these.)

But it was okay. In cases like these, the evaluation’s main results included the articu-

lated set of quality attributes, a “whiteboard” architecture sketched during the exercise,

plus a set of documentation obligations for the architect. In all cases, the client felt that

the detailed scenarios, the analysis we were able to perform on the elicited architecture,

and the recognition of what needed to be done more than justified the exercise.

A couple of times we began an evaluation, only to lose the architect in the middle of

the exercise. In one case, the architect resigned between preparation and execution

of the evaluation. This organization was in turmoil, and the architect simply got a better

offer in a calmer environment elsewhere. Usually, we don’t proceed without the archi-

tect, but it was okay, because the architect’s apprentice stepped in. A little additional

prework to prepare him, and we were all set. The evaluation went off as planned, and

the preparation that the apprentice did for the exercise helped mightily to prepare him to

step into the architect’s shoes.

Once we discovered halfway through an ATAM exercise that the architecture we had

prepared to evaluate was being jettisoned in favor of a new one that no one had bothered

to mention. During step 6 of phase 1, the architect responded to a problem raised by a

scenario by casually mentioning that “the new architecture” would not suffer from that

deficiency. Everyone in the room, stakeholders and evaluators alike, looked at each other

in the puzzled silence that followed. “What new architecture?” I asked blankly, and out

it came. The developing organization (a contractor for the U.S. military, which had com-

missioned the evaluation) had prepared a new architecture for the system to handle the

more stringent requirements they knew were coming in the future. We called a timeout,

conferred with the architect and the client, and decided to continue the exercise using the

new architecture as the subject instead of the old. We backed up to step 3 (the architecture

presentation), but everything else on the table—business goals, utility tree, scenarios—

remained completely valid. The evaluation proceeded as before, and at the conclusion of

the exercise, our military client was extremely pleased at the knowledge gained.

In perhaps the most bizarre evaluation in our experience, we lost the architect

midway through phase 2. The client for this exercise was the project manager in an

organization undergoing a massive restructuring. The manager was a pleasant gentle-

man with a quick sense of humor, but there was an undercurrent that said he was not to

be crossed. The architect was being reassigned to a different part of the organization

in the near future; this was tantamount to being fired from the project, and the manager

said he wanted to establish the quality of the architecture before his architect’s awkward

departure. (We didn’t find any of this out until after the evaluation.) When we set up the

ATAM exercise, the manager suggested that the junior designers attend. “They might

learn something,” he said. We agreed. As the exercise began, our schedule (which was

very tight to begin with) kept being disrupted. The manager wanted us to meet with his

company’s executives. Then he wanted us to have a long lunch with someone who he

said could give us more architectural insights. It turned out that the executives were

busy at the time of our scheduled meeting. So the manager asked if we could come

back and meet with them later on.

21.5 The Architecture Tradeoff Analysis Method 323

By now, phase 2 was thrown off schedule to such an extent that the architect, to our

horror, had to leave to fly back to his home in a distant city. He was none too happy that

his architecture was going to be evaluated without him. The junior designers, he said,

would never be able to answer our questions. Before his departure, our team huddled.

The exercise seemed to be teetering on the brink of disaster. We had an unhappy

departing architect, a blown schedule, and questionable expertise available. We decided

to split our evaluation team. One half of the team would continue with phase 2 using

the junior designers as our information resource. The second half of the team would

continue with phase 2 by telephone the next day with the architect. Somehow we would

make the best of a bad situation.

Surprisingly, the project manager seemed completely unperturbed by the turn of

events. “It will work out, I’m sure,” he said pleasantly, and then retreated to confer with

various vice presidents about the reorganization.

I led the team interviewing the junior designers. We had never gotten a completely sat-

isfactory architecture presentation from the architect. Discrepancies in the documentation

were met with a breezy “Oh, well, that’s not how it really works.” So I decided to start over

with ATAM step 3. We asked the half dozen or so designers what their view of the archi-

tecture was. “Could you draw it?” I asked them. They looked at each other nervously, but

one said, “I think I can draw part of it.” He took to the whiteboard and drew a very reason-

able component-and-connector view. Someone else volunteered to draw a process view.

A third person drew the architecture for an important offline part of the system. Others

jumped in to assist.

As we looked around the room, everyone was busy transcribing the whiteboard

pictures. None of the pictures corresponded to anything we had seen in the documenta-

tion so far. “Are these diagrams documented anywhere?” I asked. One of the designers

looked up from his busy scribbling for a moment to grin. “They are now,” he said.

As we proceeded to step 8, analyzing the architecture using the scenarios previously

captured, the designers did an astonishingly good job of working together to answer

our questions. Nobody knew everything, but everybody knew something. Together in a

half day, they produced a clear and consistent picture of the whole architecture that was

much more coherent and understandable than anything the architect had been willing

to produce in two whole days of pre-exercise discussion. And by the end of phase 2, the

design team was transformed. This erstwhile group of information-starved individuals

with limited compartmentalized knowledge became a true architecture team. The mem-

bers drew out and recognized each other’s expertise. This expertise was revealed and

validated in front of everyone—and most important, in front of their project manager,

who had slipped back into the room to observe. There was a look of supreme satisfac-

tion on his face. It began to dawn on me that—you guessed it—it was okay.

It turned out that this project manager knew how to manipulate events and people

in ways that would have impressed Machiavelli. The architect’s departure was not

because of the reorganization, but merely coincident with it. The project manager had

orchestrated it. The architect had, the manager felt, become too autocratic and dicta-

torial, and the manager wanted the junior design staff to be given the opportunity to

mature and contribute. The architect’s mid-exercise departure was exactly what the

project manager had wanted. And the design team’s emergence under fire had been

the primary purpose of the evaluation exercise all along. Although we found several

important issues related to the architecture, the project manager knew about every one

324 Part IV Scalable Architecture Practices | Chapter 21 Evaluating an Architecture

of them before we ever arrived. In fact, he made sure we uncovered some of them by

making a few discreet remarks during breaks or after a day’s session.

Was this exercise a success? The client could not have been more pleased. His

instincts about the architecture’s strengths and weaknesses were confirmed. We were

instrumental in helping his design team, which would guide the system through the

stormy seas of the company’s reorganization, come together as an effective and cohe-

sive unit at exactly the right time. And the client was so pleased with our final report that

he made sure the company’s board of directors saw it.

These cliffhangers certainly stand out in our memory. There was no architecture

documented. But it was okay. It wasn’t the right architecture. But it was okay. There was

no architect. But it was okay. The client really wanted to effect a team reorganization. In

every instance, we reacted as reasonably as we could, and each time it was okay.

Why? Why, time after time, does it turn out okay? I think there are three reasons.

First, the people who commission the architecture evaluation really want it to suc-

ceed. The architect, developers, and stakeholders assembled at the client’s behest also

want it to succeed. As a group, they help keep the exercise marching toward the goal of

architectural insight.

Second, we are always honest. If we feel that the exercise is derailing, we call a

timeout and confer among ourselves, and usually confer with the client. While a small

amount of bravado can come in handy during an exercise, we never, ever try to bluff our

way through an evaluation. Participants can detect that false note instinctively, and the

evaluation team must never lose the respect of the other participants.

Third, the methods are constructed to establish and maintain a steady consensus

throughout the exercise. There are no surprises at the end. The participants lay down

the ground rules for what constitutes a suitable architecture, and they contribute to the

risks uncovered at every step of the way.

So: Do the best job you can. Be honest. Trust the methods. Trust in the goodwill and

good intentions of the people you have assembled. And it will be okay.

—PCC (Adapted from [Clements 01b])

21.6 Lightweight Architecture Evaluation

The Lightweight Architecture Evaluation (LAE) method is intended to be used in a project-in-
ternal context where the reviewing is carried out by peers on a regular basis. It uses the same
concepts as the ATAM and is meant to be performed regularly. An LAE session may be con-
vened to focus on what has changed since the prior review—in the architecture or in the archi-
tecture drivers—or to examine a previously unexamined portion of the architecture. Because
of this limited scope, many of the ATAM’s steps can be omitted or shortened.

The duration of an LAE exercise depends on the number of quality attribute scenarios
generated and examined, which is in turn based on the scope of the review. The number of
scenarios examined depends on the importance of the system being reviewed. Thus an LAE
exercise can be as short as a couple of hours or as long as a full day. It is carried out entirely by
members internal to the organization.

21.6 Lightweight Architecture Evaluation 325

Because the participants are all internal to the organization and fewer in number than for
the ATAM, giving everyone their say and achieving a shared understanding takes much less
time. In addition, an LAE exercise, because it is a lightweight process, can be done regularly;
in turn, many of the steps of the method can be omitted or only briefly touched upon. The
potential steps in an LAE exercise, along with our experiences with how these play out in
practice, are shown in Table 21.3. The LAE exercise is typically convened by and led by the
project architect.

TABLE 21.3 A Typical Agenda for Lightweight Architecture Evaluation

Step Notes

1: Present the method steps Assuming the participants are familiar with the process, this step
may be omitted.

2: Review the business goals The participants are expected to understand the system and its
business goals and their priorities. A brief review may be done to
ensure that these are fresh in everyone’s mind and that there are no
surprises.

3: Review the architecture All participants are expected to be familiar with the system, so a
brief overview of the architecture is presented, using at least the
module and C&C views, highlighting any changes since the last
review, and one or two scenarios are traced through these views.

4: Review the architectural
approaches

The architect highlights the architectural approaches used for
specific quality attribute concerns. This is typically done as a portion
of step 3.

5: Review the quality attribute
utility tree

A utility tree should already exist; the team reviews the existing tree
and updates it, if needed, with new scenarios, new response goals,
or new scenario priorities and risk assessments.

6: Brainstorm and prioritize
scenarios

A brief brainstorming activity can occur at this time to establish
whether any new scenarios merit analysis.

7: Analyze the architectural
approaches

This step—mapping the highly ranked scenarios onto the
architecture—consumes the bulk of the time and should focus
on the most recent changes to the architecture, or on a part of
the architecture that the team has not previously analyzed. If the
architecture has changed, the high-priority scenarios should be
reanalyzed in light of these changes.

8: Capture the results At the end of an evaluation, the team reviews the existing and
newly discovered risks, non-risks, sensitivities, and tradeoffs, and
discusses whether any new risk themes have arisen.

There is no final report, but (as in the ATAM) a scribe is responsible for capturing results,
which can then be shared and serve as the basis for risk remediation.

An entire LAE can be prosecuted in less than a day—perhaps an afternoon. The results will
depend on how well the assembled team understands the goals of the method, the techniques of
the method, and the system itself. The evaluation team, being internal, is typically less objective
than an external evaluation team, and this may compromise the value of its results: One tends
to hear fewer new ideas and fewer dissenting opinions. Nevertheless, this version of evaluation
is inexpensive, is easy to convene, and involves relatively low ceremony, so it can be quickly
deployed whenever a project wants an architecture quality assurance sanity check.

326 Part IV Scalable Architecture Practices | Chapter 21 Evaluating an Architecture

Tactics-Based Questionnaires

Another (even lighter) lightweight evaluation method that we discussed in Chapter 3

is the tactics-based questionnaire. A tactics-based questionnaire focuses on a sin-

gle quality attribute at a time. It can be used by the architect to aid in reflection and

introspection, or it can be used to structure a question-and-answer session between

an evaluator (or evaluation team) and an architect (or group of designers). This kind

of session is typically short—around one hour per quality attribute—but can reveal a

great deal about the design decisions taken, and those not taken, in pursuit of control

of a quality attribute and the risks that are often buried within those decisions. We have

provided quality attribute–specific questionnaires in Chapters 4–13 to help guide you in

this process.

A tactics-based analysis can lead to surprising results in a very short time. For

example, once I was analyzing a system that managed healthcare data. We had agreed

to analyze the quality attribute of security. During the session, I dutifully walked through

the security tactics–based questionnaire, asking each question in turn (as you may

recall, in these questionnaires each tactic is transformed into a question). For exam-

ple, I asked, “Does the system support the detection of intrusions?”, “Does the system

support the verification of message integrity?”, and so forth. When I got to the question

“Does the system support data encryption?”, the architect paused and smiled. Then he

(sheepishly) admitted that the system had a requirement that no data could be passed

over a network “in the clear”—that is, without encryption. So they XOR’ed all data

before sending it over the network.

This is a great example of the kind of risk that a tactics-based questionnaire can

uncover, very quickly and inexpensively. Yes, they had met the requirement in a strict

sense—they were not sending any data in the clear. But the encryption algorithm that

they chose could be cracked by a high school student with modest abilities!

—RK

21.7 Summary

If a system is important enough for you to explicitly design its architecture, then that architec-
ture should be evaluated.

The number of evaluations and the extent of each evaluation may vary from project to
project. A designer should perform an evaluation during the process of making an important
decision.

The ATAM is a comprehensive method for evaluating software architectures. It works
by having project decision makers and stakeholders articulate a precise list of quality attribute
requirements (in the form of scenarios) and by illuminating the architectural decisions rele-
vant to analyzing each high-priority scenario. The decisions can then be understood in terms
of risks or non-risks to find any trouble spots in the architecture.

21.9 Discussion Questions 327

Lightweight evaluations can be performed regularly as part of a project’s internal peer
review activities. Lightweight Architecture Evaluation, based on the ATAM, provides an inex-
pensive, low-ceremony architecture evaluation that can be carried out in less than a day.

21.8 For Further Reading

For a more comprehensive treatment of the ATAM, see [Clements 01b].
Multiple case studies of applying the ATAM are available. They can be found by going to

sei.cmu.edu/library and searching for “ATAM case study.”
Several lighter-weight architecture evaluation methods have been developed. They can be

found in [Bouwers 10], [Kanwal 10], and [Bachmann 11].
Analyses of the kinds of insights derived from an ATAM can be found in [Bass 07] and

[Bellomo 15].

21.9 Discussion Questions

1. Think of a software system that you’re working on. Prepare a 30-minute presentation on
the business goals for this system.

2. If you were going to evaluate the architecture for this system, who would you want to
participate? What would be the stakeholder roles, and who could you get to represent
those roles?

3. Calculate the cost of an ATAM-based evaluation for a large enterprise-scale system’s
architecture. Assume a fully burdened labor rate of $250,000 per year for the partici-
pants. Assuming that an evaluation uncovers an architectural risk and mitigating this
risk saves 10 percent of project costs, under what circumstances would this ATAM be a
sensible choice for a project?

4. Research a costly system failure that could be attributed to one or more poor architec-
tural decisions. Do you think an architecture evaluation might have caught the risks? If
so, compare the cost of the failure with the cost of the evaluation.

5. It is not uncommon for an organization to evaluate two competing architectures. How
would you modify the ATAM to produce a quantitative output that facilitates this
comparison?

6. Suppose you’ve been asked to evaluate the architecture for a system in confidence. The
architect isn’t available. You aren’t allowed to discuss the evaluation with any of the
system’s stakeholders. How would you proceed?

7. Under what circumstances would you want to employ a full-strength ATAM, and under
what circumstances would you want to employ an LAE?

http://sei.cmu.edu/library

This page intentionally left blank

329

22
Documenting an Architecture

Documentation is a love letter that you write to your future self.
—Damian Conway

Creating an architecture isn’t enough. It has to be communicated in a way to let its stakehold-
ers use it properly to do their jobs. If you go to the trouble of creating a strong architecture,
one that you expect to stand the test of time, then you must go to the trouble of describing it
in enough detail, without ambiguity, and organized so that others can quickly find and update
needed information.

Documentation speaks for the architect. It speaks for the architect today, when the architect
should be doing other things besides answering a hundred questions about the architecture. And
it speaks for the architect tomorrow, who has forgotten the details of what the architecture
includes, or when that person has left the project and someone else is now the architect.

The best architects produce good documentation not because it’s “required,” but because
they see that it is essential to the matter at hand—producing a high-quality product, predict-
ably and with as little rework as possible. They see their immediate stakeholders as the people
most intimately involved in this undertaking: developers, deployers, testers, analysts.

But architects also see documentation as delivering value to themselves. Documentation
serves as the receptacle to hold the results of major design decisions as they are confirmed.
A well-thought-out documentation scheme can make the process of design go much more
smoothly and systematically. Documentation helps the architect(s) reason about the architec-
ture design and communicate it while the architecting is in progress, whether in a six-month
design phase or a six-day Agile sprint.

Note that “documentation” doesn’t necessarily mean producing a physical, printed, book-
like artifact. Online documentation such as a wiki, hosted in ways that can engender discus-
sion, stakeholder feedback, and searching, is an ideal forum for architecture documentation.
Also, don’t think of documentation as a step that is distinct from and follows design. The
language you use to explain the architecture to others can be used by you as you carry out your
design work. Design and documentation are, ideally, the same piece of work.

330 Part IV Scalable Architecture Practices | Chapter 22 Documenting an Architecture

 22.1 Uses and Audiences for Architecture Documentation

Architecture documentation must serve varied purposes. It should be sufficiently transparent
and accessible to be quickly understood by new employees. It should be sufficiently concrete
to serve as a blueprint for construction or forensics. It should have enough information to serve
as a basis for analysis.

Architecture documentation can be seen as both prescriptive and descriptive. For some
audiences, it prescribes what should be true, placing constraints on decisions yet to be made.
For other audiences, it describes what is true, recounting decisions already made about a sys-
tem’s design.

Many different kinds of people will have an interest in architecture documentation. They
hope and expect that this documentation will help them do their respective jobs. Understanding
the uses of architecture documentation is essential, as those uses determine the important
information to capture.

Fundamentally, architecture documentation has four uses.

1. Architecture documentation serves as a means of education. The educational use
consists of introducing people to the system. The people may be new members of the
team, external analysts, or even a new architect. In many cases, the “new” person is the
customer to whom you’re showing your solution for the first time—a presentation you
hope will result in funding or go-ahead approval.

2. Architecture documentation serves as a primary vehicle for communication among
stakeholders. Its precise use as a communication vehicle depends on which stakeholders
are doing the communicating.

Perhaps one of the most avid consumers of architecture documentation is none other
than the project’s future architect. That may be the same person (as noted in the quo-
tation that opened this chapter) or it may be a replacement, but in either case the future
architect is guaranteed to have an enormous stake in the documentation. New archi-
tects are interested in learning how their predecessors tackled the difficult issues of the
system and why particular decisions were made. Even if the future architect is the same
person, he or she will use the documentation as a repository of thought, a storehouse of
design decisions too numerous and hopelessly intertwined to ever be reproducible from
memory alone.

We enumerate the stakeholders for architecture, and its documentation, in Section 22.8.
3. Architecture documentation serves as the basis for system analysis and construction.

Architecture tells implementers which modules to implement and how those modules are
wired together. These dependencies determine the other teams with which the develop-
ment team for the module must communicate.

For those interested in the design’s ability to meet the system’s quality objectives, the
architecture documentation serves as fodder for evaluation. It must contain the informa-
tion necessary to evaluate a variety of attributes, such as security, performance, usabil-
ity, availability, and modifiability.

 4. Architecture documentation serves as the basis for forensics when an incident occurs.
When an incident occurs, someone is responsible for tracking down both the immediate

22.2 Notations 331

cause of the incident and the underlying cause. Information about the flow of control
immediately prior to the incident will provide the “as executed” architecture. For exam-
ple, a database of interface specifications will provide context for the flow of control,
and component descriptions will indicate what should have happened in each component
on the trace of events.

For the documentation to continue to provide value over time, it needs to be kept up
to date.

 22.2 Notations

Notations for documenting views differ considerably in their degree of formality. Roughly
speaking, there are three main categories of notation:

 ■ Informal notations. Views may be depicted (often graphically) using general-purpose
diagramming and editing tools and visual conventions chosen for the system at hand. Most
box-and-line drawings you’ve probably seen fall into this category—think PowerPoint
or something similar, or hand-drawn sketches on a whiteboard. The semantics of the
description are characterized in natural language, and cannot be formally analyzed.

 ■ Semiformal notations. Views may be expressed in a standardized notation that pre-
scribes graphical elements and rules of construction, but does not provide a complete
semantic treatment of the meaning of those elements. Rudimentary analysis can be
applied to determine if a description satisfies syntactic properties. UML and its system-
engineering adjunct SysML are semiformal notations in this sense. Most widely used
commercially available modeling tools employ notations in this category.

 ■ Formal notations. Views may be described in a notation that has a precise (usually math-
ematically based) semantics. Formal analysis of both syntax and semantics is possible.
A variety of formal notations for software architecture are available. Generally referred
to as architecture description languages (ADLs), they typically provide both a graph-
ical vocabulary and an underlying semantics for architecture representation. In some
cases, these notations are specialized to particular architectural views. In other cases,
they allow many views, or even provide the ability to formally define new views. The
usefulness of ADLs lies in their ability to support automation through associated tools—
automation to provide useful analysis of the architecture, or assist in code generation. In
practice, the use of formal notations is rare.

Typically, more formal notations take more time and effort to create and understand,
but repay this effort with reduced ambiguity and more opportunities for analysis. Conversely,
more informal notations are easier to create, but provide fewer guarantees.

Regardless of the level of formality, always remember that different notations are bet-
ter (or worse) for expressing different kinds of information. Formality aside, no UML class
diagram will help you reason about schedulability, nor will a sequence diagram tell you
very much about the system’s likelihood of being delivered on time. You should choose your

332 Part IV Scalable Architecture Practices | Chapter 22 Documenting an Architecture

notations and representation languages while keeping in mind the important issues you need
to capture and reason about.

 22.3 Views

Perhaps the most important concept associated with software architecture documentation is
that of the view. A software architecture is a complex entity that cannot be described in a
simple one-dimensional fashion. A view is a representation of a set of system elements and
relations among them—not all system elements, but those of a particular type. For example, a
layered view of a system would show elements of type “layer”; that is, it would show the sys-
tem’s decomposition into layers, along with the relations among those layers. A pure layered
view would not, however, show the system’s services, or clients and servers, or data model, or
any other type of element.

Thus views let us divide the multidimensional entity that is a software architecture into a
number of (we hope) interesting and manageable representations of the system. The concept of
views leads to a basic principle of architecture documentation:

Documenting an architecture is a matter of documenting the relevant views and then
adding documentation that applies to more than one view.

What are the relevant views? This depends entirely on your goals. As we saw previously,
architecture documentation can serve many purposes: a mission statement for implementers, a
basis for analysis, the specification for automatic code generation, the starting point for system
understanding and reverse engineering, or the blueprint for project estimation and planning.

Different views also expose different quality attributes to different degrees. In turn, the
quality attributes that are of most concern to you and the other stakeholders in the system’s
development will affect which views you choose to document. For instance, a module view
will let you reason about your system’s maintainability, a deployment view will let you reason
about your system’s performance and reliability, and so forth.

Because different views support different goals and uses, we do not advocate using any
particular view or collection of views. The views you should document depend on the uses you
expect to make of the documentation. Different views will highlight different system elements
and relations. How many different views to represent is the result of a cost/benefit decision.
Each view has a cost and a benefit, and you should ensure that the expected benefits of creat-
ing and maintaining a particular view outweigh its costs.

The choice of views is driven by the need to document a particular pattern in your design.
Some patterns are composed of modules, others consist of components and connectors, and
still others have deployment considerations. Module views, component-and-connector (C&C)
views, and allocation views are the appropriate mechanism for representing these consider-
ations, respectively. These categories of views correspond, of course, to the three categories
of architectural structures described in Chapter 1. (Recall from Chapter 1 that a structure is a

22.3 Views 333

collection of elements, relations, and properties, whereas a view is a representation of one or
more architectural structures.)

In this section, we explore these three categories of structure-based views and then intro-
duce a new category: quality views.

 Module Views

A module is an implementation unit that provides a coherent set of responsibilities. A module
might take the form of a class, a collection of classes, a layer, an aspect, or any decomposition
of the implementation unit. Example module views are decomposition, uses, and layers. Every
module view has a collection of properties assigned to it. These properties express important
information associated with each module and the relationships among the modules, as well as
constraints on the module. Example properties include responsibilities, visibility information
(what other modules can use it), and revision history. The relations that modules have to one
another include is-part-of, depends-on, and is-a.

The way in which a system’s software is decomposed into manageable units remains
one of the important forms of system structure. At a minimum, it determines how a system’s
source code is decomposed into units, what kinds of assumptions each unit can make about
services provided by other units, and how those units are aggregated into larger ensembles. It
also includes shared data structures that impact, and are impacted by, multiple units. Module
structures often determine how changes to one part of a system might affect other parts and
hence the ability of a system to support modifiability, portability, and reuse.

The documentation of any software architecture is unlikely to be complete without at
least one module view. Table 22.1 summarizes the characteristics of module views.

 TABLE 22.1 Summary of Module Views

Elements Modules, which are implementation units of software that provide a coherent set of
responsibilities

Relations ■ Is-part-of, which defines a part/whole relationship between the submodule (the
part) and the aggregate module (the whole)

 ■ Depends-on, which defines a dependency relationship between two modules
 ■ Is-a, which defines a generalization/specialization relationship between a more

specific module (the child) and a more general module (the parent)

Constraints Different module views may impose topological constraints, such as limitations on
the visibility between modules.

Usage ■ Blueprint for construction of the code
 ■ Analysis of the impact of changes
 ■ Planning incremental development
 ■ Requirements traceability analysis
 ■ Communicating the functionality of a system and the structure of its code base
 ■ Supporting the definition of work assignments, implementation schedules, and

budget information
 ■ Showing the data model

334 Part IV Scalable Architecture Practices | Chapter 22 Documenting an Architecture

Properties of modules that help to guide implementation or are input into analysis should
be recorded as part of the supporting documentation for a module view. The list of properties
may vary but is likely to include the following:

 ■ Name. A module’s name is, of course, the primary means to refer to it. A module’s name
often suggests something about its role in the system. In addition, a module’s name may
reflect its position in a decomposition hierarchy; the name A.B.C, for example, refers to
a module C that is a submodule of a module B, which is itself a submodule of A.

 ■ Responsibilities. The responsibility property for a module is a way to identify its role in
the overall system and establishes an identity for it beyond the name. Whereas a mod-
ule’s name may suggest its role, a statement of responsibility establishes that role with
much more certainty. Responsibilities should be described in sufficient detail to make
clear to the reader what each module does. A module’s responsibilities are often captured
by tracing to a project’s requirements specification, if there is one.

 ■ Implementation information. Modules are units of implementation. It is therefore useful
to record information related to their implementation from the point of view of manag-
ing their development and building the system that contains them. This might include:

 ■ Mapping to source code units. This identifies the files that constitute the implemen-
tation of a module. For example, a module Account, if implemented in Java, might
have several files that constitute its implementation: IAccount.java (an interface),
AccountImpl.java (implementation of Account functionality), and perhaps even a
unit test AccountTest.java.

 ■ Test information. The module’s test plan, test cases, test harness, and test data are
important to document. This information may simply be a pointer to the location of
these artifacts.

 ■ Management information. A manager may need information about the module’s pre-
dicted schedule and budget. This information may simply be a pointer to the location
of these artifacts.

 ■ Implementation constraints. In many cases, the architect will have an implementation
strategy in mind for a module or may know of constraints that the implementation
must follow.

 ■ Revision history. Knowing the history of a module, including its authors and particular
changes, may help you when you’re performing maintenance activities.

A module view can be used to explain the system’s functionality to someone not familiar
with it. The various levels of granularity of the module decomposition provide a top-down pre-
sentation of the system’s responsibilities and, therefore, can guide the learning process. For a
system whose implementation is already in place, module views, if kept up-to-date, are helpful
because they explain the structure of the code base to a new developer on the team.

Conversely, it is difficult to use the module views to make inferences about runtime behav-
ior, because these views are just a static partition of the functions of the software. Thus a module
view is not typically used for analysis of performance, reliability, and many other runtime quali-
ties. For those purposes, we rely on component-and-connector and allocation views.

22.3 Views 335

 Component-and-Connector Views

C&C views show elements that have some runtime presence, such as processes, services,
objects, clients, servers, and data stores. These elements are termed components. Additionally,
C&C views include as elements the pathways of interaction, such as communication links and
protocols, information flows, and access to shared storage. Such interactions are represented
as connectors in C&C views. Example C&C views include client-server, microservice, and
communicating processes.

A component in a C&C view may represent a complex subsystem, which itself can be
described as a C&C subarchitecture. A component’s subarchitecture may employ a different
pattern than the one in which the component appears.

Simple examples of connectors include service invocation, asynchronous message queues,
event multicast supporting publish-subscribe interactions, and pipes that represent asynchro-
nous, order-preserving data streams. Connectors often represent much more complex forms of
interaction, such as a transaction-oriented communication channel between a database server
and a client, or an enterprise service bus that mediates interactions between collections of ser-
vice users and providers.

Connectors need not be binary; that is, they need not have exactly two components with
which they interact. For example, a publish-subscribe connector might have an arbitrary num-
ber of publishers and subscribers. Even if the connector is ultimately implemented using binary
connectors, such as a procedure call, it can be useful to adopt n-ary connector representations
in a C&C view. Connectors embody a protocol of interaction. When two or more components
interact, they must obey conventions about order of interactions, locus of control, and handling
of error conditions and timeouts. The protocol of interaction should be documented.

The primary relation within a C&C view is attachment. Attachments indicate which con-
nectors are attached to which components, thereby defining a system as a graph of components
and connectors. Compatibility often is defined in terms of information type and protocol. For
example, if a web server expects encrypted communication via HTTPS, then the client must
perform the encryption.

An element (component or connector) of a C&C view will have various properties associ-
ated with it. Specifically, every element should have a name and type, with its additional prop-
erties depending on the type of component or connector. As an architect, you should define
values for the properties that support the intended analyses for the particular C&C view. The
following are examples of some typical properties and their uses:

 ■ Reliability. What is the likelihood of failure for a given component or connector? This
property might be used to help determine overall system availability.

 ■ Performance. What kinds of response time will the component provide under what
loads? What kind of bandwidth, latency, or jitter can be expected for a given connec-
tor? This property can be used with others to determine system-wide properties such as
response times, throughput, and buffering needs.

 ■ Resource requirements. What are the processing and storage needs of a component or a
connector? If relevant, how much energy does it consume? This property can be used to
determine whether a proposed hardware configuration will be adequate.

336 Part IV Scalable Architecture Practices | Chapter 22 Documenting an Architecture

 ■ Functionality. What functions does an element perform? This property can be used to
reason about the end-to-end computation performed by a system.

 ■ Security. Does a component or a connector enforce or provide security features, such as
encryption, audit trails, or authentication? This property can be used to determine poten-
tial system security vulnerabilities.

 ■ Concurrency. Does this component execute as a separate process or thread? This
property can help to analyze or simulate the performance of concurrent components and
identify possible deadlocks and bottlenecks.

 ■ Runtime extensibility. Does the messaging structure support evolving data exchanges?
Can the connectors be adapted to process those new message types?

C&C views are commonly used to show developers and other stakeholders how the sys-
tem works: One can “animate” or trace through a C&C view, showing an end-to-end thread of
activity. C&C views are also used to reason about runtime system quality attributes, such as
performance and availability. In particular, a well-documented view allows architects to pre-
dict overall system properties such as latency or reliability, given estimates or measurements
of properties of the individual elements and their interactions.

Table 22.2 summarizes the characteristics of C&C views.

TABLE 22.2 Summary of C&C Views

Elements ■ Components: principal processing units and data stores.
 ■ Connectors: pathways of interaction between components.

Relations ■ Attachments: Components are associated with connectors to yield a graph.

Constraints Components can only be attached to connectors, and connectors can only be
attached to components.

 ■ Attachments can only be made between compatible components and
connectors.

 ■ Connectors cannot appear in isolation; a connector must be attached to a
component.

Usage Show how the system works.
 ■ Guide development by specifying the structure and behavior of runtime

elements.
 ■ Help reason about runtime system quality attributes, such as performance and

availability.

 Notations for C&C Views

As always, box-and-line drawings are available to represent C&C views. Although informal
notations are limited in terms of the semantics that they can convey, following some sim-
ple guidelines can lend rigor and depth to the descriptions. The primary guideline is simple:
Assign each component type and each connector type a separate symbol, and list each of the
types in a key.

UML components are a good semantic match to C&C components because they permit
intuitive documentation of important information such as interfaces, properties, and behavioral

22.3 Views 337

descriptions. UML components also distinguish between component types and component
instances, which is useful when defining view-specific component types.

 Allocation Views

Allocation views describe the mapping of software units to elements of an environment in
which the software is developed or in which it executes. The environment in such a view var-
ies; it might be the hardware, the operating environment in which the software is executed, the
file systems supporting development or deployment, or the development organization(s).

Table 22.3 summarizes the characteristics of allocation views. These views consist of
software elements and environmental elements. Examples of environmental elements are a
processor, a disk farm, a file or folder, or a group of developers. The software elements come
from a module or C&C view.

TABLE 22.3 Summary of Allocation Views

Elements Software element and environmental element. A software element has properties
that are required of the environment. An environmental element has properties that
are provided to the software.

Relations Allocated-to: A software element is mapped (allocated to) an environmental
element.

Constraints Varies by view.

Usage For reasoning about performance, availability, security, and safety. For reasoning
about distributed development and allocation of work to teams. For reasoning about
concurrent access to software versions. For reasoning about the form and
mechanisms of system installation.

 The relation in an allocation view is allocated-to. We usually talk about allocation views
in terms of a mapping from software elements to environmental elements, although the reverse
mapping would also be relevant and potentially interesting. A single software element can be
allocated to multiple environmental elements, and multiple software elements can be allocated
to a single environmental element. If these allocations change over time, during execution
of the system, then the architecture is said to be dynamic with respect to that allocation. For
example, processes might migrate from one processor or virtual machine to another.

Software elements and environmental elements have properties in allocation views. One
goal of an allocation view is to compare the properties required by the software element with
the properties provided by the environmental elements to determine whether the allocation
will be successful. For example, to ensure its required response time, a component has to
execute on (be allocated to) a processor that provides sufficiently fast processing power. As
another example, a computing platform might not allow a task to use more than 10 kilobytes
of virtual memory; an execution model of the software element in question can be used to
determine the required virtual memory usage. Similarly, if you are migrating a module from

338 Part IV Scalable Architecture Practices | Chapter 22 Documenting an Architecture

one team to another, you might want to ensure that the new team has the appropriate skills and
background knowledge to work with that module.

Allocation views can depict either static or dynamic views. A static view illustrates
a fixed allocation of resources in an environment. A dynamic view shows the conditions and
the triggers for which allocation of resources changes. For example, some systems provision
and utilize new resources as their loads increase. An example is a load-balancing system in
which new processes or threads are created on another machine. In this view, the conditions
under which the allocation view changes, the allocation of runtime software, and the dynamic
allocation mechanism need to be documented.

Recall from Chapter 1 that one of the allocation structures is the work assignment struc-
ture, which allocates modules to teams for development. That allocation can also be changed,
depending on the “load”—in this case, the load on development teams already at work.

Quality Views

Module, C&C, and allocation views are all structural views: They primarily show the structures
that the architect has designed into the architecture to satisfy functional and quality attribute
requirements.

These views are excellent choices for guiding and constraining downstream developers,
whose primary job is to implement those structures. However, in systems in which certain
quality attributes (or, for that matter, any stakeholder concerns) are particularly important and
pervasive, structural views may not be the best way to present the architectural solution to
those needs. The reason is that the solution may be spread across multiple structures that are
cumbersome to combine (e.g., because the element types shown in each structure are different).

Another kind of view, which we call a quality view, can be tailored for specific stakehold-
ers or to address specific concerns. Quality views are formed by extracting the relevant pieces
of structural views and packaging them together. Here are five examples:

 ■ A security view can show all of the architectural measures taken to provide security. It
would depict the components that have some security role or responsibility, how those
components communicate, any data repositories for security information, and reposi-
tories that are of security interest. The view’s properties would include other security
measures (e.g., physical security) in the system’s environment. The security view would
also show the operation of security protocols and where and how humans interact with
the security elements. Finally, it would capture how the system responds to specific
threats and vulnerabilities.

 ■ A communications view might be especially helpful for systems that are globally dis-
persed and heterogeneous. This view would show all of the component-to-component
channels, various network channels, quality-of-service parameter values, and areas
of concurrency. Such a view can be used to analyze certain kinds of performance and
reliability, such as deadlock or race condition detection. In addition, it could show (for
example) how network bandwidth is dynamically allocated.

22.4 Combining Views 339

 ■ An exception or error-handling view could help illuminate and draw attention to error
reporting and resolution mechanisms. Such a view would show how components detect,
report, and resolve faults or errors. It would help the architect identify the sources of
errors and specify appropriate corrective actions for each. Finally, it would facilitate
root-cause analysis in those cases.

 ■ A reliability view would model reliability mechanisms such as replication and switch-
over. It would also depict timing issues and transaction integrity.

 ■ A performance view would include those aspects of the architecture useful for inferring
the system’s performance. Such a view might show network traffic models, maximum
latencies for operations, and so forth.

These and other quality views reflect the documentation philosophy of ISO/IEC/IEEE
standard 42010:2011, which prescribes creating views driven by the concerns of the architec-
ture’s stakeholders.

 22.4 Combining Views

The basic principle of documenting an architecture as a set of separate views brings a divide-
and-conquer advantage to the task of documentation. Of course, if those views were irrevo-
cably different, with no association with one another, no one would be able to understand the
system as a whole. However, because all structures in an architecture are part of the same
architecture and exist to achieve a common purpose, many of them have strong associations
with each other. Managing how architectural structures are associated is an important part of
the architect’s job, independently of whether any documentation of those structures exists.

Sometimes the most convenient way to show a strong association between two views is to
collapse them into a single combined view. A combined view contains elements and relations
that come from two or more other views. Such views can be very useful as long as you do not
try to overload them with too many mappings.

The easiest way to merge views is to create an overlay that combines the information
that would otherwise have appeared in two separate views. This works well if the relationship
between the two views is tight—that is, if there are strong associations between elements in
one view and elements in the other view. In such a case, the structure described by the com-
bined view will be easier to understand than the two views seen separately. In an overlay, the
elements and the relations keep the types as defined in their constituent views.

The following combinations of views often occur quite naturally:

 ■ C&C views with each other. Because all C&C views show runtime relations among com-
ponents and connectors of various types, they tend to combine well. Different (separate)
C&C views tend to show different parts of the system, or tend to show decomposition
refinements of components in other views. The result is often a set of views that can be
combined easily.

340 Part IV Scalable Architecture Practices | Chapter 22 Documenting an Architecture

Account
Controller

Customer
Controller

Tx
Controller

* 1

1 1

1 1

Key

Admin
user PC

AppServer1 AppServer2 Database
server

Back-end tierComponent tierWeb tier

Client tier

Internet
user PC

Intranet

Internet

Bank
Admin

Web
browser

WebUI

Account

Customer

Tx

Bank
DB

Client-side
application

Web
component

Stateful
session
bean

Entity
bean

Relational
data source

Machine
node

Communication
channel with
multiplicity (1 or *)

TierCommentJDBC database
access

Remote
component
call

http/
https

 ■ Deployment view with any C&C view that shows processes. Processes are the compo-
nents that are deployed onto processors, virtual machines, or containers. Thus there is a
strong association between the elements in these views.

 ■ Decomposition view and any work assignment, implementation, uses, or layered views.
The decomposed modules form the units of work, development, and uses. In addition,
these modules populate layers.

Figure 22.1 shows an example of a combined view that is an overlay of client-server,
multi-tier, and deployment views.

FIGURE 22.1 A combined view

 22.5 Documenting Behavior

Documenting an architecture requires behavior documentation that complements the struc-
tural views by describing how architecture elements interact with each other. Reasoning about
characteristics such as a system’s potential to deadlock, a system’s ability to complete a task

22.5 Documenting Behavior 341

in the desired amount of time, or maximum memory consumption requires that the archi-
tecture description provide information about the characteristics of individual elements and
their resource consumption, as well as patterns of interaction among them—that is, how they
behave in relation to each other. In this section, we provide guidance as to what types of things
you will want to document to reap these benefits.

Two kinds of notations are available for documenting behavior: trace-oriented and
comprehensive.

Traces are sequences of activities or interactions that describe the system’s response to
a specific stimulus when the system is in a specific state. A trace describes a sequence of
activities or interactions between structural elements of the system. Although one might con-
ceivably describe all possible traces to generate the equivalent of a comprehensive behavioral
model, trace-oriented documentation does not really seek to do so. Here we describe four nota-
tions for documenting traces: use cases, sequence diagrams, communication diagrams, and
activity diagrams. Although other notations are available (such as message sequence charts,
timing diagrams, and the Business Process Execution Language), we have chosen these four as
a representative sample of trace-oriented notations.

 ■ Use cases describe how actors can use a system to accomplish their goals; they are
frequently used to capture the functional requirements for a system. UML provides a
graphical notation for use case diagrams but does not specify how the text of a use case
should be written. The UML use case diagram is a good way to provide an overview
of the actors and the behavior of a system. Its description, which is textual, should
include the following items: the use case name and a brief description, the actor or actors
who initiate the use case (primary actors), other actors who participate in the use case
(secondary actors), the flow of events, alternative flows, and non-success cases.

 ■ A UML sequence diagram shows a sequence of interactions among instances of ele-
ments pulled from the structural documentation. It is useful, when designing a system,
for identifying where interfaces need to be defined. The sequence diagram shows only
the instances participating in the scenario being documented. It has two dimensions:
vertical, representing time, and horizontal, representing the various instances. The inter-
actions are arranged in time sequence from top to bottom. Figure 22.2 is an example of
a sequence diagram that illustrates the basic UML notation. Sequence diagrams are not
explicit about showing concurrency. If that is your goal, use activity diagrams instead.

As shown in Figure 22.2, objects (i.e., element instances) have a lifeline, drawn as a
vertical dashed line down the time axis. The sequence is usually started by an actor on
the far left. The instances interact by sending messages, which are shown as horizontal
arrows. A message can be a message sent over a network, a function call, or an event
sent through a queue. The message usually maps to a resource (operation) in the inter-
face of the receiver instance. A filled arrowhead on a solid line represents a synchronous
message, whereas an open arrowhead represents an asynchronous message. The dashed
arrow is a return message. The execution occurrence bars along the lifeline indicate that
the instance is processing or blocked waiting for a return.

342 Part IV Scalable Architecture Practices | Chapter 22 Documenting an Architecture

Key (UML)

:Login
Page

:Login
Controller

:User Direct
Access Object

:Logger

:User

login
login(…)

checkPwd(…)

new :User
Session

Actor Object Lifeline
Execution
occurrence

Synchronous
message

Asynchronous
message

Return
message

register User Login(…)

 FIGURE 22.2 A simple example of a UML sequence diagram

 ■ A UML communication diagram shows a graph of interacting elements and annotates
each interaction with a number denoting its order. Similar to sequence diagrams, instances
shown in a communication diagram are elements described in the accompanying struc-
tural documentation. Communication diagrams are useful when the task is to verify that
an architecture can fulfill the functional requirements. Such diagrams are not useful when
understanding of concurrent actions is important, as when conducting a performance
analysis.

 ■ UML activity diagrams are similar to flowcharts. They show a business process as a
sequence of steps (called actions) and include notation to express conditional branch-
ing and concurrency, as well as to show sending and receiving events. Arrows between
actions indicate the flow of control. Optionally, activity diagrams can indicate the archi-
tecture element or actor performing the actions. Notably, activity diagrams can express
concurrency. A fork node (depicted as a thick bar orthogonal to the flow arrows) splits
the flow into two or more concurrent flows of actions. These concurrent flows may later
be synchronized into a single flow through a join node (also depicted as an orthogonal
bar). The join node waits for all incoming flows to complete before proceeding.

22.5 Documenting Behavior 343

Unlike sequence and communication diagrams, activity diagrams don’t show the
actual operations being performed on specific objects. Thus these diagrams are useful
to broadly describe the steps in a specific workflow. Conditional branching (shown by a
diamond symbol) allows a single diagram to represent multiple traces, although an activ-
ity diagram usually does not attempt to show all possible traces or the complete behavior
for the system (or part of it). Figure 22.3 shows an activity diagram.

read

pressure

[not

underwater]

enter

dive mode

[underwater]

check

depth
check

water

temperature
read

pressure

beep

alarm

[not ascending

too fast]

[ascending

too fast]

sleep

0.5 sec

[underwater]

exit dive

mode

[not

underwater]

finish

dive mode

read

water

temperature

sleep

30 sec

exit dive

mode

Depth Meter Dive Tracker Thermometer

FIGURE 22.3 Activity diagram

In contrast to trace notations, comprehensive notations show the complete behavior of
structural elements. Given this type of documentation, it is possible to infer all possible paths
from the initial state to the final state. State machines are a kind of formalism used by many

344 Part IV Scalable Architecture Practices | Chapter 22 Documenting an Architecture

on

Radio playing

FM tuner
playing

CD playing

AM tuner
playing

CD loading

off

H

H
FM/AM
button

FM/AM
button

CD button
[no CD in]

eject button
[CD in] /
ejectDisc()

eject button
[no CD in]

CD
inserted

FM/AM
button

[valid CD]

[invalid CD] /
ejectDisc()

eject button /
ejectDisc()

eject button /
ejectDisc()

FM/AM
button

CD button
[CD in]

power
button

power
button

comprehensive notations. This formalism represents the behavior of architecture elements
because each state is an abstraction of all possible histories that could lead to that state. State
machine languages allow you to complement a structural description of the elements of the
system with constraints on interactions and timed reactions to both internal and environmental
stimuli.

UML state machine diagrams allow you to trace the behavior of your system, given spe-
cific inputs. Such a diagram represents states using boxes and transitions between states using
arrows. Thus it models elements of the architecture and helps illustrate their runtime interac-
tions. Figure 22.4 is an example of a state machine diagram showing the states of a car stereo.

 FIGURE 22.4 UML state machine diagram for a car stereo system

22.6 Beyond Views 345

Each transition in a state machine diagram is labeled with the event causing the transi-
tion. For example, in Figure 22.4, the transitions correspond to the buttons the driver can press
or driving actions that affect the cruise control system. Optionally, the transition can specify a
guard condition, which is enclosed in brackets. When the event corresponding to the transition
occurs, the guard condition is evaluated and the transition is enabled only if the guard is true at
that time. Transitions can also have consequences, called actions or effects, which are indicated
by a slash. When an action is present, it indicates that the behavior following the slash will be
performed when the transition occurs. The states may also specify entry and exit actions.

22.6 Beyond Views

 In addition to views and behavior, comprehensive information about an architecture will
include the following items:

 ■ Mapping between views. Because all the views of an architecture describe the same
system, it stands to reason that any two views will have much in common. Combining
views (as described in Section 22.4) produces a set of views. Illuminating the associa-
tions among those views can then help that reader gain a powerful insight into how the
architecture works as a unified conceptual whole.

The associations between elements across views in an architecture are, in general,
many-to-many. For instance, each module may map to multiple runtime elements, and
each runtime element may map to multiple modules.

View-to-view associations can be conveniently captured as tables. To create such a
table list the elements of the first view in some convenient lookup order. The table itself
should be annotated or introduced with an explanation of the association that it depicts—
that is, the correspondence between the elements across the two views. Examples include
“is implemented by” for mapping from a component-and-connector view to a module
view, “implements” for mapping from a module view to a component-and-connector view,
“included in” for mapping from a decomposition view to a layered view, and many others.

 ■ Documenting patterns. If you employ patterns in your design, as recommended in
Chapter 20, these patterns should be identified in the documentation. First, record
the fact that the given pattern is being used. Then say why this solution approach was
chosen—why the pattern is appropriate for the problem at hand. Using a pattern involves
making successive design decisions that eventually result in that pattern’s instantiation.
These design decisions may manifest themselves as newly instantiated elements and the
relations among them, which in turn should be documented in structural views.

 ■ One or more context diagrams. A context diagram shows how the system or portion of
the system relates to its environment. The purpose of this diagram is to depict the scope
of a view. Here “context” means an environment with which the (part of the) system
interacts. Entities in the environment may be humans, other computer systems, or physi-
cal objects, such as sensors or controlled devices. A context diagram may be created for
each view, with each diagram showing how different types of elements interact with the

346 Part IV Scalable Architecture Practices | Chapter 22 Documenting an Architecture

system’s environment. Context diagrams are useful for presenting an initial picture of
how a system or subsystem interacts with its environment.

 ■ Variability guide. A variability guide shows how to exercise any variation points that are
part of the architecture shown in this view.

 ■ Rationale. The rationale explains why the design reflected in the view came to be. The
goal of this section is to explain why the design has its present form and to provide a
convincing argument that it is sound. Documenting the rationale is described in more
detail in Section 22.7.

 ■ Glossary and acronym list. Likely your architecture will contain many specialized terms
and acronyms. Decoding these for your readers will ensure that all your stakeholders are
speaking the same language, as it were.

 ■ Document control information. List the issuing organization, the current version number,
the date of issue and status, a change history, and the procedure for submitting change
requests to the document. Usually this information is captured in the front matter.
Change control tools can provide much of this information.

 22.7 Documenting the Rationale

When designing, you make important design decisions to achieve the goals of each iteration.
These design decisions include:

 ■ Selecting a design concept from several alternatives
 ■ Creating structures by instantiating the selected design concept
 ■ Establishing relationships between elements and defining interfaces
 ■ Allocating resources (e.g., people, hardware, computation)

When you study a diagram that represents an architecture, you see the end product of a
thought process but can’t always easily understand the decisions that were made to achieve this
result. Recording design decisions beyond the representation of the chosen elements, relation-
ships, and properties is fundamental to help in understanding how you arrived at the result; in
other words, it lays out the design rationale.

When your iteration goal involves satisfying an important quality attribute scenario, some
of the decisions that you make will play a significant role in achieving the scenario response
measure. Consequently, you should take the greatest care in recording these decisions: They
are essential to facilitate analysis of the design you created, to facilitate implementation, and,
still later, to aid in understanding the architecture (e.g., during maintenance). Given that most
design decisions are “good enough,” and seldom optimal, you also need to justify the decisions
made, and to record the risks associated with your decisions so that they may be reviewed and
possibly revisited.

You may perceive recording design decisions as a tedious task. However, depending on
the criticality of the system being developed, you can adjust the amount of information that is
recorded. For example, to record a minimum of information, you can use a simple table such

22.8 Architecture Stakeholders 347

as Table 22.4. If you decide to record more than this minimum, the following information
might prove useful:

 ■ What evidence was produced to justify decisions?
 ■ Who did what?
 ■ Why were shortcuts taken?
 ■ Why were tradeoffs made?
 ■ What assumptions did you make?

In the same way that we suggest that you record responsibilities as you identify elements, you
should record the design decisions as you make them. If you leave it until later, you will not
remember why you did things.

TABLE 22.4 Example Table to Document Design Decisions

Design Decisions and Location Rationale and Assumptions (Include Discarded
Alternatives)

Introduce concurrency (tactic)
in the TimeServerConnector and
FaultDetectionService

Concurrency should be introduced to be able to receive
and process several events (traps) simultaneously.

Use of the messaging pattern through the
introduction of a message queue in
the communications layer

Although the use of a message queue imposes
a performance penalty, a message queue was
chosen because some implementations have high
performance and, furthermore, this will be helpful to
support quality attribute scenario QA-3.

.

 22.8 Architecture Stakeholders

In Chapter 2, we said that one of the key purposes of architecture was to enable communi-
cation among stakeholders. In this chapter, we have said that architecture documentation is
produced in service of architecture stakeholders. So who are they?

The set of stakeholders will vary, depending on the organization and the project. The list
of stakeholders in this section is suggestive but is not intended to be complete. As an architect,
one of your primary obligations is to identify the real stakeholders for your project. Similarly,
the documentation needs we lay out here for each stakeholder are typical but not definitive.
You’ll need to take the following discussion as a starting point and adapt it according to the
needs of your project.

Key stakeholders of an architecture include the following:

 ■ Project managers care about schedule, resource assignments, and perhaps contingency
plans to release a subset of the system for business reasons. To create a schedule, the

348 Part IV Scalable Architecture Practices | Chapter 22 Documenting an Architecture

project manager needs information about the modules to be implemented and in what
sequence, with some information about their complexity, such as the list of responsi-
bilities, as well as their dependencies on other modules. The dependencies may suggest
a certain sequence in the implementation. The project manager is not interested in the
design specifics of any element or the exact interface beyond knowing whether those
tasks have been completed. However, this person is interested in the system’s over-
all purpose and constraints; its interaction with other systems, which may suggest an
organization-to-organization interface that the manager will have to establish; and the
hardware environment, which the manager may have to procure. The project manager
might create or help create the work assignment view, in which case he or she will need
a decomposition view to do it. A project manager, then, will likely be interested in the
following views:

 ■ Module views. Decomposition and uses and/or layered.
 ■ Allocation views. Deployment and work assignment.
 ■ Other. Top-level context diagrams showing interacting systems and system overview

and purpose.

 ■ Members of the development team, for whom the architecture provides marching orders,
are given constraints on how they do their job. Sometimes developers are given responsi-
bility for an element they did not implement, such as a commercial off-the-shelf product
or a legacy element. Someone still has to be responsible for that element, to make sure
that it performs as advertised and to tailor it as necessary. This person will want to know
the following information:

 ■ The general idea behind the system. Although that information lies in the realm of
requirements rather than architecture, a top-level context diagram or system overview
can go a long way toward providing the necessary information.

 ■ Which elements the developer has been assigned for implementation—that is, where
functionality should be implemented.

 ■ The details of the assigned element, including the data model with which it must
operate.

 ■ The elements with which the assigned part interfaces and what those interfaces are.
 ■ The code assets that the developer can utilize.
 ■ The constraints, such as quality attributes, legacy system interfaces, and budget

(resource or fiscal), that must be met.

A developer, then, is likely to want to see

 ■ Module views. Decomposition, uses and/or layered, and generalization.
 ■ Component-and-connector (C&C) views. Various, showing the component(s) the

developer was assigned and the components they interact with.
 ■ Allocation views. Deployment, implementation, and installation.
 ■ Other. System overview; a context diagram containing the module(s) the developer

has been assigned; the interface documentation of the developer’s element(s) and the

22.8 Architecture Stakeholders 349

interface documentation of those elements with which they interact; a variability guide
to implement required variability; and rationale and constraints.

 ■ Testers and integrators are stakeholders for whom the architecture specifies the correct
black-box behavior of the pieces that must fit together. A black-box tester will need to
access the interface documentation for the element. Integrators and system testers need
to see collections of interfaces, behavior specifications, and a uses view so they can
work with incremental subsets. Testers and integrators, then, are likely to want to see the
following views:

 ■ Module views. Decomposition, uses, and data model.
 ■ C&C views. All.
 ■ Allocation views. Deployment; install; and implementation, to find out where the

assets to build the module are.
 ■ Other. Context diagrams showing the module(s) to be tested or integrated; the interface

documentation and behavior specification(s) of the module(s) and the interface docu-
mentation of those elements with which they interact.

Testers and integrators deserve special attention because it is not unusual for a project
to spend roughly half of its overall effort in testing. Ensuring a smooth, automated, and
error-free testing process will have a major positive effect on the project’s overall cost.

 ■ Designers of other systems with which this one must interoperate are also stakeholders.
For these people, the architecture defines the set of operations provided and required, as
well as the protocols for their operation. These stakeholders will likely want to see the
following artifacts:

 ■ Interface documentations for those elements with which their system will interact, as
found in module and/or C&C views

 ■ The data model for the system with which their system will interact
 ■ Top-level context diagrams from various views showing the interactions

 ■ Maintainers use architecture as a starting point for maintenance activities, revealing the
areas a prospective change will affect. Maintainers will want to see the same informa-
tion as developers, as both must make their changes within the same constraints. But
maintainers will also want to see a decomposition view that allows them to pinpoint the
locations where a change will need to be carried out, and perhaps a uses view to help
them build an impact analysis to fully scope out the effects of the change. In addition,
they will want to see the design rationale, which will allow them to benefit from the
architect’s original thinking and save them time by identifying already discarded design
alternatives. A maintainer, then, is likely to want to see the same views as the developers
of a system do.

 ■ End users do not need to see the architecture, which is, after all, largely invisible to
them. Nevertheless, they can often gain useful insights into the system, what it does, and
how they can use it effectively by examining the architecture. If end users or their repre-
sentatives review your architecture, you may be able to uncover design discrepancies that

350 Part IV Scalable Architecture Practices | Chapter 22 Documenting an Architecture

would otherwise have gone unnoticed until deployment. To serve this purpose, an end
user is likely to be interested in the following views:

 ■ C&C views. Views emphasizing flow of control and transformation of data, to see how
inputs are transformed into outputs; analysis results dealing with properties of interest,
such as performance or reliability.

 ■ Allocation views. A deployment view to understand how functionality is allocated to
the platforms with which the users interact.

 ■ Other. Context diagrams.

 ■ Analysts are interested in whether the design meets the system’s quality objectives. The
architecture serves as fodder for architecture evaluation methods and must provide the
information necessary to evaluate quality attributes. For example, architecture includes
the model that drives such analytical tools as rate-monotonic real-time schedulability
analysis, reliability block diagrams, simulations and simulation generators, theorem
provers, and model checkers. These tools require information about resource consump-
tion, scheduling policies, dependencies, component failure rates, and so forth. Because
analysis can encompass almost any subject matter area, analysts may need access to
information documented in any part of the architecture documentation.

 ■ Infrastructure support personnel set up and maintain the infrastructure that supports the
development, integration, staging, and production environments of the system. A vari-
ability guide is particularly useful to help set up the software configuration management
environment. Infrastructure support people likely want to see the following views:

 ■ Module views. Decomposition and uses.
 ■ C&C views. Various, to see what will run on the infrastructure.
 ■ Allocation views. Deployment and install, to see where the software (including the

infrastructure) will run; implementation.
 ■ Other. Variability guides.

 ■ Future architects are the most avid readers of architecture documentation, with a vested
interest in everything. You, after a period of time, or your replacement (when you
get promoted and assigned to a more complex project) will want to know all the key
design decisions and why they were made. Future architects are interested in it all, but
they will be especially keen to have access to comprehensive and candid rationale and
design information. And, remember, that future architect might be you! Do not expect
to remember all of these minute design decisions that you’re making now. Remember,
architecture documentation is a love letter you write to your future self.

 22.9 Practical Considerations

Up to now, this chapter has been concerned with the information that architecture documenta-
tion should contain. Over and above the contents of architecture documentation, however, are

22.9 Practical Considerations 351

issues dealing with its form, distribution, and evolution. In this section, we discuss some of
these concerns.

Modeling Tools

Many commercially available modeling tools are available that support the specification of
architectural constructs in a defined notation; SysML is a widely used choice. Many of these
tools offer features aimed at practical large-scale use in industrial settings: interfaces that sup-
port multiple users, version control, syntactic and semantic consistency checking of the mod-
els, support for trace links between models and requirements or models and tests, and, in some
cases, automatic generation of executable source code that implements the models. In many
projects, these are must-have capabilities, so the purchase price of the tool—which is not insig-
nificant in some cases—should be evaluated against what it would cost the project to achieve
these capabilities on its own.

Online Documentation, Hypertext, and Wikis

Documentation for a system can be structured as linked web pages. Web-oriented documents
typically consist of short pages (created to fit on one screen) with a deeper structure. One page
usually provides some overview information and has links to more detailed information.

 Using tools such as wikis, it’s possible to create a shared document to which many stake-
holders can contribute. The hosting organization needs to decide what permissions it wants
to give to various stakeholders; the tool used has to support the chosen permissions policy. In
the case of architecture documentation, we want selected stakeholders to comment on and add
clarifying information to the architecture, but we would want only selected team personnel to
be able to actually change it.

Follow a Release Strategy

Your project’s development plan should specify the process for keeping the important docu-
mentation, including the architecture documentation, current. Document artifacts should be
subject to version control, as with any other important project artifact. The architect should
plan to issue releases of the documentation to support major project milestones, which usually
means far enough ahead of the milestone to give developers time to put the architecture to
work. For example, revised documentation could be provided to the development team at the
end of each iteration or sprint or with each incremental release.

 Documenting Architectures That Change Dynamically

When your web browser encounters a file type it’s never seen before, odds are that it will go
to the Internet, search for and download the appropriate plug-in to handle the file, install it,
and reconfigure itself to use it. Without even needing to shut down, let alone go through the

352 Part IV Scalable Architecture Practices | Chapter 22 Documenting an Architecture

code–integrate–test development cycle, the browser is able to change its own architecture by
adding a new component.

Service-oriented systems that utilize dynamic service discovery and binding also exhibit
these properties. More challenging systems that are highly dynamic, self-organizing, and
reflective (meaning self-aware) already exist. In these cases, the identities of the components
interacting with each other cannot be pinned down, let alone their interactions, in any static
architecture document.

Another kind of architectural dynamism, equally challenging from a documentation per-
spective, is found in systems that are rebuilt and redeployed with great rapidity. Some develop-
ment shops, such as those responsible for commercial websites, build and “go live” with their
system many times every day.

Whether they change at runtime or as a result of high-frequency release-and-deploy
cycles, all dynamic architectures share something in common with respect to documentation:
They change much faster than the documentation cycle. In either case, no one is going to hold
up things until a new architecture document is produced, reviewed, and released.

Even so, knowing the architecture of these ever-changing systems is every bit as import-
ant, and arguably more so, than for systems that follow more traditional life cycles. Here’s
what you can do if you’re an architect in a highly dynamic environment:

 ■ Document what is true about all versions of your system. Your web browser doesn’t go
out and grab just any piece of software when it needs a new plug-in; a plug-in must have
specific properties and a specific interface. And that new piece of software doesn’t just
plug in anywhere, but rather in a predetermined location in the architecture. Record
those invariants. This process may make your documented architecture more a descrip-
tion of constraints or guidelines that any compliant version of the system must follow.
That’s fine.

 ■ Document the ways the architecture is allowed to change. In the examples mentioned
earlier, this will usually mean adding new components and replacing components with
new implementations. The place to do this is the variability guide discussed in Section 22.6

 ■ Generate interface documentation automatically. If you use explicit interface mech-
anisms such as protocol buffers (described in Chapter 15), then there are always
up-to-date definitions of component interfaces; otherwise, the system would not work.
Incorporate those interface definitions into a database so that revision histories are avail-
able and the interfaces can be searched to determine what information is used in which
components.

 Traceability

Architecture, of course, does not live in a bubble, but in a milieu of information about the
system under development that includes requirements, code, tests, budgets and schedules, and
more. The purveyors of each of these areas must ask themselves, “Is my part right? How do I
know?” This question takes on different specific forms in different areas; for example, the tes-
ter asks, “Am I testing the right things?” As we saw in Chapter 19, architecture is a response to
requirements and business goals, and its version of the “Is my part right?” question is to ensure

22.11 For Further Reading 353

that those have been satisfied. Traceability means linking specific design decisions to the spe-
cific requirements or business goals that led to them, and those links should be captured in
the documentation. If, at the end of the day, all ASRs are accounted for (“covered”) in the
architecture’s trace links, then we have assurance that the architecture part is right. Trace links
may be represented informally—a table, for instance—or may be supported technologically
in the project’s tool environment. In either case, trace links should be part of the architecture
documentation.

22.10 Summary

Writing architectural documentation is much like other types of writing. The golden rule is:
Know your reader. You must understand the uses to which the writing will be put and the
audience for the writing. Architectural documentation serves as a means for communication
among various stakeholders: up the management chain, down into the developers, and across
to peers.

An architecture is a complicated artifact, best expressed by focusing on particular per-
spectives, called views, which depend on the message to be communicated. You must choose
the views to document and choose the notation to document these views. This may involve
combining various views that have a large overlap. You must not only document the structure
of the architecture but also the behavior.

In addition, you should document the relations among the views in your documentation,
the patterns you use, the system’s context, any variability mechanisms built into the architec-
ture, and the rationale for your major design decisions.

There are other practical considerations for creating, maintaining, and distributing the
documentation, such as choosing a release strategy, choosing a dissemination tool such as a
wiki, and creating documentation for architectures that change dynamically.

22.11 For Further Reading

 Documenting Software Architectures: Views and Beyond [Clements 10a] is a comprehensive
treatment of the architecture documentation approach described in this chapter. It details a
multitude of different views and notations for them. It also describes how to package the doc-
umentation into a coherent whole. Appendix A covers using the Unified Modeling Language
(UML) to document architecture and architectural information.

ISO/IEC/IEEE 42010:2011 (“eye-so-forty-two-oh-ten” for short) is the ISO (and IEEE)
standard, Systems and Software Engineering: Architecture Description. This standard cen-
ters on two key ideas: a conceptual framework for architecture description and a statement
of which information must be found in any ISO/IEC/IEEE 42010-compliant architecture
description, using multiple viewpoints driven by stakeholders’ concerns.

354 Part IV Scalable Architecture Practices | Chapter 22 Documenting an Architecture

AADL (addl.info) is an architecture description language that has become an SAE stan-
dard for documenting architectures. The SAE is an organization for engineering professionals
in the aerospace, automotive, and commercial vehicle industries.

SysML is a general-purpose systems modeling language intended to support a broad
range of analysis and design activities for systems engineering applications. It is defined so that
sufficient detail can be specified to support a variety of automated analysis and design tools.
The SysML standard is maintained by the Object Management Group (OMG); this language
was developed by OMG in cooperation with the International Council on Systems Engineering
(INCOSE). SysML was developed as a profile of UML, which means that it reuses much of
UML, but also provides the extensions necessary to meet the needs of systems engineers.
Copious information about SysML is available online, but Appendix C of [Clements 10a]
discusses how SysML can be used to document architectures. As this book went to press,
SysML 2.0 was under development.

An extended example of documenting architectural decisions while designing can be
found in [Cervantes 16].

22.12 Discussion Questions

1. Go to the website of your favorite open source system and look for its architectural
documentation. What is there? What is missing? How would this affect your ability to
contribute code to this project?

2. Banks are justifiably cautious about security. Sketch the documentation you would need
for an ATM to reason about its security architecture.

3. If you are designing a microservice-based architecture, what elements, relations, and
properties would you need to document to be able to reason about end-to-end latency or
throughput?

4. Suppose your company has just purchased another company and you have been given the
task of merging a system in your company with a similar system in the other company.
What views of the other system’s architecture would you like to see and why? Would you
ask for the same views of both systems?

5. When would you choose to document behavior using trace notations and when would
you use a comprehensive notation? What value do you get and what effort is required for
each of them?

6. How much of a project’s budget would you devote to software architecture documenta-
tion? Why? How would you measure the cost and the benefit? How would this change if
your project was a safety-critical system or a high-security system?

http://addl.info

355

23
 Managing Architecture Debt
With Yuanfang Cai

Some debts are fun when you are acquiring them, but none are fun
when you set about retiring them.

—Ogden Nash

Without careful attention and the input of effort, designs become harder to maintain and evolve
over time. We call this form of entropy “architecture debt,” and it is an important and highly
costly form of technical debt. The broad field of technical debt has been intensively studied for
more than a decade—primarily focusing on code debt. Architecture debt is typically more dif-
ficult to detect and more difficult to eradicate than code debt because it involves nonlocal con-
cerns. The tools and methods that work well for discovering code debt—code inspections, code
quality checkers, and so forth—typically do not work well for detecting architecture debt.

 Of course, not all debt is burdensome and not all debt is bad debt. Sometimes a principle
is violated when there is a worthy tradeoff—for example, sacrificing low coupling or high
cohesion to improve runtime performance or time to market.

This chapter introduces a process to analyze existing systems for architecture debt. This
process gives the architect both the knowledge and the tools to identify and manage such debt. It
works by identifying architecturally connected elements—with problematic design relations—
and analyzing a model of their maintenance costs. If that model indicates the existence of a
problem, typically signaled by an unusually high amount of changes and bugs, this signifies an
area of architecture debt.

Once architecture debt has been identified, if it is bad enough, it should be removed
through refactoring. Without quantitative evidence of payoff, typically it is difficult to get proj-
ect stakeholders to agree to this step. The business case (without architecture debt analysis)
goes like this: “I will take three months to refactor this system and give you no new func-
tionality.” What manager would agree to that? However, armed with the kinds of analyses we
present here, you can make a very different pitch to your manager, one couched in terms of
ROI and increased productivity that pays the refactoring effort back, and more, in a short time.

356 Part IV Scalable Architecture Practices | Chapter 23 Managing Architecture Debt

The process that we advocate requires three types of information:

 ■ Source code. This is used to determine structural dependencies.
 ■ Revision history, as extracted from a project’s version control system. This is used to

determine the co-evolution of code units.
 ■ Issue information, as extracted from an issue control system. This is used to determine

the reason for changes.

The model for analyzing debt identifies areas of the architecture that are experiencing
unusually high rates of bugs and churn (committed lines of code) and attempts to associate
these symptoms with design flaws.

23.1 Determining Whether You Have an Architecture Debt
Problem

 In our process for managing architecture debt, we will focus on the physical manifestation of
architectural elements, which means the files in which their source code is stored. How do
we determine if a group of files is architecturally connected? One way is to identify the static
dependencies between the files in your project—this method calls that method, for example.
You can find these by employing a static code analysis tool. A second approach is to capture
the evolutionary dependencies between files in a project. An evolutionary dependency occurs
when two files change together, and you can extract this information from your revision con-
trol system.

We can represent the file dependencies using a special kind of adjacency matrix called
a design structure matrix (DSM). While other representations are certainly possible, DSMs
have been used in engineering design for decades and are currently supported by a number of
industrial tools. In a DSM, entities of interest (in our case, files) are placed both on the rows
of the matrix and, in the same order, on the columns. The cells of the matrix are annotated to
indicate the type of dependency.

We can annotate a DSM cell with information showing that the file on the row inherits
from the file on the column, or that it calls the file on the column, or that it co-changes with
the file on the column. The first two annotations are structural, whereas the third is an evolu-
tionary (or history) dependency.

To repeat: Each row in the DSM represents a file. Entries on a row show the dependencies
that this file has on other files in the system. If the system has low coupling, you would expect
the DSM to be sparse; that is, any given file will be dependent on a small number of other files.
Furthermore, you would hope that the DSM is lower diagonal; that is, all entries appear below
the diagonal. This means that a file depends only on lower-level files, not on higher-level ones,
and that you have no cyclic dependencies in your system.

Figure 23.1 shows 11 of the files from the Apache Camel project—an open source integra-
tion framework—and their structural dependencies (indicated by the labels “dp,” “im,” and “ex”
for dependency, implementation, and extension, respectively). For example, the file on rowb9
of Figure 23.1, MethodCallExpression.java, depends on and extends the file on column 1,

F
IG

U
R

E
 2

3
.1

A

 D
S

M
 o

f
A

p
a

c
h

e
 C

a
m

e
l
s
h

o
w

in
g

 s
tr

u
c
tu

ra
l
d

e
p

e
n

d
e

n
c
ie

s

358 Part IV Scalable Architecture Practices | Chapter 23 Managing Architecture Debt

ExpressionDefinition.java, and the file on row 11, AssertionClause.java, depends
on the file on column 10, MockEndpoint.java. These static dependencies are extracted by
reverse-engineering the source code.

The matrix shown in Figure 23.1 is quite sparse. It means that these files are not heav-
ily structurally coupled to each other and, as a consequence, you might expect that it would
be relatively easy to change these files independently. In other words, this system seems to
have relatively little architecture debt.

Now consider Figure 23.2, which overlays historical co-change information on Figureb23.1.
Historical co-change information is extracted from the version control system. This indicates
how often two files change together in commits.

Figure 23.2 shows a very different picture of the Camel project. For example, the
cell at row 8, column 3 is marked with “4”: This means that there is no structural rela-
tion between BeanExpression.java and MethodNotFoundException.java, but they were
found to have changed together four times in the revision history. A cell with both a number
and text indicates that this pair of files has both structural and evolutionary coupling rela-
tions. For example, the cell at row 22, column 1 is marked with “dp, 3”: This means that
XMLTokenizerExpression.java depends on ExpressionDefinition.java, and they
were changed together three times.

The matrix in Figure 23.2 is rather dense. Although these files are generally not struc-
turally coupled to each other, they are strongly evolutionarily coupled. Furthermore, we see
many annotations in cells above the diagonal in the matrix. Thus the coupling is not just from
higher-level to lower-level files, but rather goes in all directions.

This project, in fact, suffers from high architecture debt. The architects confirm this.
They report that almost every change in the project is costly and complex, and predicting when
new features will be ready or when bugs will be fixed is challenging.

While this kind of qualitative analysis can, by itself, be of value to an architect or ana-
lyst, we can do better: We can actually quantify the costs and impact of the debt that our code
base is already carrying, and we can do this fully automatically. To do so, we use the con-
cept of “hotspots”—areas of the architecture with design flaws, sometimes called architecture
anti-patterns or architecture flaws.

23.2 Discovering Hotspots

If you suspect that your code base has architecture debt—perhaps bug rates are going up and
feature velocity is going down—you need to identify the specific files and their flawed rela-
tionships that are creating that debt.

Compared to code-based technical debt, architecture debt is often harder to identify
because its root causes are distributed among several files and their interrelationships. If
you have a cyclic dependency where the cycle of dependencies passes through six files, it is
unlikely that anyone in your organization completely understands this cycle and it is not easily
observable. For these kinds of complex cases, we need help, in the form of automation, to iden-
tify the architecture debt.

F
IG

U
R

E
 2

3
.2

A

 D
S

M
 A

p
a

c
h

e
 C

a
m

e
l
o

v
e

rl
a
y
in

g
 e

v
o

lu
ti
o

n
a
ry

 d
e

p
e

n
d

e
n

c
ie

s

360 Part IV Scalable Architecture Practices | Chapter 23 Managing Architecture Debt

We call the sets of elements that make outsized contributions to the maintenance costs
of a system hotspots. Architecture debt leads to high maintenance costs due to high coupling
and low cohesion. So, to identify hotspots, we look for anti-patterns that contribute to high
coupling and low cohesion. Six common anti-patterns—which occur in virtually every sys-
tem—are highlighted here:

 ■ Unstable interface. An influential file—one representing an important service, resource,
or abstraction in the system—changes frequently with its dependents, as recorded in the
revision history. The “interface” file is the entry point for other system elements to use
the service or resource. It is frequently modified due to internal reasons, changes to its
API, or both. To identify this anti-pattern, search for a file with a large number of depen-
dents that is modified frequently with other files.

 ■ Modularity violation. Structurally decoupled modules frequently change together. To
identify this anti-pattern, search for two or more structurally independent files—that is,
files that have no structural dependency on each other—that change together frequently.

 ■ Unhealthy inheritance. A base class depends on its subclasses or a client class depends
on both the base class and one or more of its subclasses. To determine unhealthy inheri-
tance instances, search for either of the following two sets of relationships in a DSM:

 ■ In an inheritance hierarchy, a parent depends on its child class.
 ■ In an inheritance hierarchy, a client of the class hierarchy depends on both the parent

and one or more of its children.

 ■ Cyclic dependency or clique. A group of files is tightly connected. To identify this
anti-pattern, search for sets of files that form a strongly connected graph, where there is
a structural dependency path between any two elements of the graph.

 ■ Package cycle. Two or more packages depend on each other, rather than forming a
hierarchical structure, as they should. Detecting this anti-pattern is similar to detecting
a clique: A package cycle is determined by discovering packages that form a strongly
connected graph.

 ■ Crossing. A file has both a high number of dependent files and a high number of files on
which it depends, and it changes frequently with its dependents and the files it depends
on. To determine the file at the center of a crossing, search for a file that has both high
fan-in and fan-out with other files and that has substantial co-change relations with these
other files.

Not every file in a hotspot will be tightly coupled to every other file. Instead, a collection
of files may be tightly coupled to each other and decoupled from other files. Each such collec-
tion is a potential hotspot and is a potential candidate for debt removal, through refactoring.

Figure 23.3 is a DSM based on files in Apache Cassandra—a widely used NoSQL
database. It shows an example of a clique (a cycle of dependencies). In this DSM, you can
see that the file on row 8 (locator.AbstractReplicationStrategy) depends on file 4
(service.WriteResponseHandler) and aggregates file 5 (locator.TokenMetadata).
Files 4 and 5, in turn, depend on file 8, thus forming a clique.

23.2 Discovering Hotspots 361

A second example from Cassandra demonstrates the unhealthy inheritance anti-pattern.
The DSM in Figure 23.4 shows the io.sstable.SSTableReader class (row 14) inheriting
from io.sstable.SSTable (row 12). The inheritance relationship is indicated in the DSM
by the “ih” notation. Note, however, that io.sstable.SSTable depends on io.sstable
.SSTableReader, as indicated by the “dp” annotation in cell (12, 14). This dependency is a
calling relation, which means that the parent class calls the child class. Note that the cells (12, 14)
and (14, 12) are both annotated with the number 68. This represents the number of times that
io.sstable.SSTable and io.sstable.SSTableReader were co-committed in changes,
according to the project’s revision history. This excessively high number of co-changes is a
form of debt. This debt can be removed by refactoring—that is, by moving some functionality
from the child class to the parent.

FIGURE 23.4 Architecture anti-patterns in Apache Cassandra

FIGURE 23.3 An example of a clique

362 Part IV Scalable Architecture Practices | Chapter 23 Managing Architecture Debt

The majority of issues in an issue tracking system can be divided into two broad catego-
ries: bug fixes and feature enhancements. Bug fixes and both bug-related and change- related
churn are highly correlated with anti-patterns and hotspots. In other words, those files that par-
ticipate in anti-patterns and require frequent bug fixes or frequent changes are likely hotspots.

For each file, we determine the total number of bug fixes and changes, as well as the total
amount of churn that file has experienced. Next, we sum the bug fixes, changes, and churn
experienced by the files in each anti-pattern. This gives us a weighting for each anti-pattern in
terms of its contribution to architecture debt. In this way, all of the debt-laden files, along with
all of their relationships, can be identified and their debt quantified.

Based on this process, a debt-reduction strategy (typically achieved through refactoring)
is straightforward. Knowing the files implicated in the debt, along with their flawed relation-
ships (as determined by the identified anti-patterns), allows the architect to fashion and jus-
tify a refactoring plan. If a clique exists, for example, a dependency needs to be removed or
reversed, so as to break the cycle of dependencies. If unhealthy inheritance is present, some
functionality needs to be moved, typically from a child class to a parent class. If a modularity
violation is identified, the unencapsulated “secret” shared among files needs to be encapsu-
lated as its own abstraction. And so forth.

23.3 Example

We illustrate this process with a case study, which we call SS1, done with SoftServe, a multi-
national software outsourcing company. At the time of the analysis, the SS1 system contained
797 source files, and we captured its revision history and issues over a two-year period. SS1
was maintained by six full-time developers and many more occasional contributors.

Identifying Hotspots

During the period that we studied SS1, 2,756 issues were recorded in its Jira issue-tracker
(1,079 of which were bugs) and 3,262 commits were recorded in the Git version control
repository.

We identified hotspots using the process just described. In the end, three clusters of archi-
tecturally related files were identified as containing the most harmful anti-patterns and hence
the most debt in the project. The debt from these three clusters represented a total of 291 files,
out of 797 files in the entire project, or a bit more than one-third of the project’s files. The
number of defects associated with these three clusters covered 89 percent of the project’s total
defects (265).

The chief architect of the project agreed that these clusters were problematic but had dif-
ficulty explaining why. When presented with this analysis, he acknowledged that these were
true design problems, violating multiple design rules. The architect then crafted a number
of refactorings, focusing on remedying the flawed relations among the files identified in the

23.4 Automation 363

hotspots. These refactorings were based on removing the anti-patterns in the hotspots, so the
architect had a great deal of guidance in how to do this.

But does it pay to do these kinds of refactorings? After all, not all debts are worth paying
off. This is the topic of the next section.

Quantifying Architecture Debt

Because the remediations suggested by the analysis are very specific, the architect can easily
estimate the number of person-months required for each of the refactorings identified on the
basis of the anti-patterns in the hotspots. The other side of the cost/benefit equation is the ben-
efit from the refactorings. To estimate the savings, we make one assumption: The refactored
files will have roughly the same number of bug fixes in the future as the average file had in the
past. This is actually a very conservative assumption since the average number of bug fixes in
the past was inflated by those files in the identified hotspots. Moreover, this calculation does
not consider other significant costs of bugs, such as lost reputation, lost sales, and additional
quality assurance and debugging effort.

We calculate the cost of these debts in terms of the lines of code committed for bug fixes.
This information can be retrieved from a project’s revision control and issue-tracking systems.

For SS1, the debt calculations we made were as follows:

1. The architect estimated the effort required to refactor the three hotspots as 14
person-months.

2. We calculated the average bug fixes per file annually for the total project as 0.33.
3. We calculated the average number of annual bug fixes for files in hotspots as 237.8.
4. Based on these results, we estimated that the annual number of bug fixes for the files in

the hotspots, after refactoring, would be 96.
5. The difference between the actual churn associated with the hotspot files and the

expected amount of churn after refactoring is the expected savings.

The estimated annual savings for the refactored files (using company average productivity
numbers) was 41.35 person-months. Considering the calculations in steps 1–5, we see that for a
cost of 14 person-months, the project can expect to save more than 41 person-months annually.

In case after case, we have seen these kinds of returns on investment. Once the architec-
ture debts have been identified, they can be paid down and life becomes measurably better for
the project, in terms of its feature velocity and bug-fixing time, in a way that more than pays
for the effort involved.

23.4 Automation

This form of architectural analysis can be fully automated. Each of the anti-patterns intro-
duced in Section 23.2 can be identified in an automated fashion and the tooling can be built

364 Part IV Scalable Architecture Practices | Chapter 23 Managing Architecture Debt

into a continuous integration tool suite so that architecture debt is continuously monitored.
This analysis process requires the following tools:

 ■ A tool to extract a set of issues from an issue tracker
 ■ A tool to extract a log from a revision control system
 ■ A tool to reverse-engineer the code base, to determine the syntactic dependencies among

files
 ■ A tool to build DSMs from the extracted information and walk through the DSM look-

ing for the anti-patterns
 ■ A tool that calculates the debt associated with each hotspot

The only specialized tools needed for this process are the ones to build the DSM and ana-
lyze the DSM. Projects likely already have issue tracking systems and revision histories, and
plenty of reverse-engineering tools are available, including open source options.

 23.5 Summary

This chapter has presented a process for identifying and quantifying architecture debt in a
project. Architecture debt is an important and highly costly form of technical debt. Compared
to code-based technical debt, architecture debt is often harder to identify because its root
causes are distributed among several files and their interrelationships.

The process outlined in this chapter involves gathering information from the project’s
issue tracker, its revision control system, and the source code itself. Using this information,
architecture anti-patterns can be identified and grouped into hotspots, and the impact of these
hotspots can be quantified.

This architecture debt monitoring process can be automated and built into a system’s con-
tinuous integration tool suite. Once architecture debt has been identified, if it is bad enough,
it should be removed through refactoring. The output of this process provides the quantitative
data necessary to make the business case for refactoring to project management.

 23.6 For Further Reading

The field of technical debt has, at this point, a rich research literature. The term technical
debt was coined by Ward Cunningham in 1992 (although, at the time, he simply called it
“debt” [Cunningham 92]). This idea was refined and elaborated by many others, most prom-
inent among them Martin Fowler [Fowler 09] and Steve McConnell [McConnell 07]. George
Fairbanks describes the iterative nature of debt in his IEEE Software article, “Ur-Technical
Debt” [Fairbanks 20]. A comprehensive look at the problem of managing technical debt can be
found in [Kruchten 19].

23.7 Discussion Questions 365

The definition of architecture debt used in this chapter was borrowed from [Xiao 16]. The
SoftServe case study was published in [Kazman 15].

Some of the tools used to create and analyze DSMs are described in [Xiao 14]. The tools
to detect architectural flaws are introduced in [Mo 15].

The impacts of architecture flaws have been discussed and empirically investigated in
several papers, including [Feng 16] and [Mo 18].

 23.7 Discussion Questions

1. How would you distinguish a project with architecture debt from a “busy” project where
lots of features are being implemented?

2. Find examples of projects that have undergone major refactorings. What evidence was
used to motivate or justify these refactorings?

3. Under what circumstances is accumulating debt a reasonable strategy? How would you
know that you had reached the point of too much debt?

4. Is architecture debt more or less detrimental than other kinds of debt, such as code debt,
documentation debt, or testing debt?

5. Discuss the strengths and weaknesses of doing this kind of architecture analysis as com-
pared with the methods discussed in Chapter 21.

This page intentionally left blank

367

24
 The Role of Architects in

Projects

I don’t know why people hire architects and then tell them what to do.
—Frank Gehry

Any practice of architecture performed outside of a classroom takes place in the larger context
of a development project, which is planned and carried out by people working in one or more
organizations. Architecture, for all its importance, is only the means toward a larger end. In
this chapter, we deal with the aspects of architecture and the architect’s responsibilities that
derive from the realities of development projects.

We begin by discussing a key project role with whom you as an architect are likely to
have a close working relationship: the project manager.

24.1 The Architect and the Project Manager

One of the most important relations within a team is between the software architect and the
project manager. The project manager is responsible for the overall performance of the project—
typically for keeping it on budget, on schedule, and staffed with the right people doing the
right jobs. To carry out these responsibilities, the project manager will often turn to the project
architect for support.

Think of the project manager as primarily responsible for the external-facing aspects of
the project and the software architect as responsible for the internal technical aspects of the
project. The external view needs to accurately reflect the internal situation, and the internal
activities need to accurately reflect the expectations of the external stakeholders. That is, the
project manager should know, and reflect to upper management, the progress and the risks
within the project, whereas the software architect should know, and reflect to developers,
external stakeholder concerns. The relationship between the project manager and the software
architect can have a large impact on the success of a project. They should have a good working
relationship and be mindful of the roles they are filling and the boundaries of those roles.

PART V Architecture and the Organization

368 Part V Architecture and the Organization | Chapter 24 The Role of Architects in Projects

The Project Management Body of Knowledge (PMBOK) lists a number of knowledge
areas for project managers. These are the areas for which the project manager will likely turn
to the architect for input. Table 24.1 identifies the knowledge area described by the PMBOK
and the software architect’s role in that area.

TABLE 24.1 Architect’s Role in Supporting Project Management Knowledge Areas

PMBOK
Knowledge
Area

Description Software Architect Role

Project
Integration
Management

Ensuring that the various elements of
the project are properly coordinated

Create design and organize team
around design; manage dependencies.
Implement the capture of metrics.
Orchestrate requests for changes.

Project Scope
Management

Ensuring that the project includes all
of the work required and only the work
required

Elicit, negotiate, and review runtime
requirements and generate development
requirements. Estimate cost, schedule,
and risk associated with meeting
requirements.

Project Time
Management

Ensuring that the project completes in
a timely fashion

Help define the work breakdown
structure. Define tracking measures.
Recommend assignment of resources to
software development teams.

Project Cost
Management

Ensuring that the project is completed
within the required budget

Gather costs from individual teams; make
recommendations regarding build/buy
and resource allocations.

Project Quality
Management

Ensuring that the project will satisfy
the needs for which it was undertaken

Design for quality and track the system
against the design. Define quality
metrics.

Project Human
Resource
Management

Ensuring that the project makes the
most effective use of the people
involved with the project

Define the required technical skill
sets. Mentor developers about career
paths. Recommend training. Interview
candidates.

Project
Communications
Management

Ensuring timely and appropriate
generation, collection, dissemination,
storage, and disposition of project
information

Ensure communication and coordination
among developers. Solicit feedback as to
progress, problems, and risks. Oversee
documentation.

Project Risk
Management

Identifying, analyzing, and responding
to project risk

Identify and quantify risks; adjust the
architecture and processes to mitigate
risk.

Project
Procurement
Management

Acquiring goods and services from
outside the organization

Determine technology requirements;
recommend technology, training, and
tools.

Recommendations to the Architect

Maintain a good working relationship with the project manager. Be aware of the project man-
ager’s tasks and concerns, and how you as an architect may be asked to support those tasks
and concerns.

24.2 Incremental Architecture and Stakeholders 369

24.2 Incremental Architecture and Stakeholders

Agile methodologies are built on the pillar of incremental development, with each increment
delivering value to the customer or user. We’ll discuss Agile and architecture in its own sec-
tion, but even if your project is not an Agile one, you should still expect to develop and release
your architecture in increments following a tempo that supports the project’s own test and
release schedule.

Incremental architecture, then, is about releasing the architecture in increments. Specifically,
this means releasing architecture documentation (as described in Chapter 22) in increments.
This, in turn, entails deciding which views to release (out of your planned set) and at which
depth. Using the structures we outlined in Chapter 1, consider these as candidates for your first
increment:

 ■ A module decomposition structure. This will inform the team structure for the devel-
opment project, allowing the project organization to emerge. Teams can be defined,
staffed, budgeted, and trained. The team structure will be the basis of project planning
and budgeting, so this technical structure defines the project’s management structure.

 ■ A module “uses” structure. This will allow increments to be planned, which is critical
in any project that hopes to release its software incrementally. As we said in Chapter 1,
the uses structure is used to engineer systems that can be extended to add functionality,
or from which useful functional subsets can be extracted. Trying to create a system that
purposefully supports incremental development is problematic if you don’t plan what
exactly the increments will be.

 ■ Whichever component-and-connector (C&C) structure(s) best convey the overall solution
approach.

 ■ A broad-brush deployment structure that at least addresses major questions such as
whether the system will be deployed on mobile devices, on a cloud infrastructure, and
so forth.

After that, use the needs of the architecture’s stakeholders as a guide when crafting the con-
tents of subsequent releases.

Recommendations to the Architect

First and foremost, make sure you know who your stakeholders are and what their needs are,
so that you can design appropriate solutions and documentation. Moreover:

 ■ Work with the project’s stakeholders to determine the release tempo and the contents of
each project increment.

 ■ Your first architectural increment should include module decomposition and uses views,
as well as a preliminary C&C view.

 ■ Use your influence to ensure that early releases deal with the system’s most challenging
quality attribute requirements, thereby ensuring that no unpleasant architectural sur-
prises appear late in the development cycle.

370 Part V Architecture and the Organization | Chapter 24 The Role of Architects in Projects

 ■ Stage your architecture releases to support those project increments and to support the
needs of the development stakeholders as they work on each increment.

24.3 Architecture and Agile Development

Agile development began as a rebellion against—among other things—development approaches
that were rigid and heavyweight with respect to process, overbearing with respect to required
documentation, focused on up-front planning and design, and culminating in a single delivery
that everyone hoped would resemble what it was that the customer wanted in the first place.
Agilistas advocate allocating resources that might otherwise be spent on process and docu-
mentation to figuring out what the customer really wants and providing it in small, testable
delivery increments, starting very early on.

The key question is this: How much up-front work, in terms of requirements analysis,
risk mitigation, and architecture design, should a project undertake? There is no single right
answer to this question, but you can find a “sweet spot” for any given project. The “right”
amount of project work depends on several factors, with the most dominant being project size,
but other important factors include complex functional requirements, highly demanding qual-
ity attribute requirements, volatile requirements (related to the “precedentedness” or novelty
of the domain), and degree of distribution of development.

So how do architects achieve the right amount of agility? Figure 24.1 shows your options.
You can opt for waterfall-style “Big Design Up Front” (BDUF), shown in Figure 24.1(a). Or you
can throw architectural caution to the wind and trust in what Agilistas call the “emergent”
approach, wherein the final architecture emerges as coders deliver their increments, shown in
Figure 24.1(b). That approach may work for small, simple projects that can turn on a dime and
simply refactor on demand, but we have never seen it work for large, complex projects.

Not surprisingly, the approach we recommend lies in between these two extremes: It’s
the “Iteration 0” approach, shown in Figure 24.1(c). In projects where you have some under-
standing of the requirements, you should consider beginning by performing a few iterations of
attribute-driven design (ADD; described in Chapter 20). These design iterations can focus on
choosing the major architectural patterns (including a reference architecture, if one is appro-
priate), frameworks, and components. Aim for support of the project’s increments in a way that
helps the architecture’s stakeholders, as recommended in Section 24.2. Early on, this will help
you structure the project, define work assignments and team formation, and address the most
critical quality attributes. If and when requirements change—particularly if these are driving
quality attribute requirements—adopt a practice of Agile experimentation, where spikes are
used to address new requirements. A spike is a time-boxed task that is created to answer a
technical question or gather information; it is not intended to lead to a finished product. Spikes
are developed in a separate code branch and, if successful, merged into the main branch of the
code. In this way, emerging requirements can be taken in stride and managed without being
too disruptive to the overall process of development.

24.3 Architecture and Agile Development 371

(a) BDUF Approach

Design Effort

(b) Emergent Approach

Design Effort
Development

Cycles

(c) Iteration 0 Approach

Design Effort
Development

Cycles

FIGURE 24.1 Three approaches to architectural design

Agile programming and architecture have not always been on the best of terms. The
Agile Manifesto of 2001, the “Prime Directive” of the Agile movement, implies that architec-
ture is emergent and does not need to be planned or designed up-front.

It was (and still is) easy to find published treatments of Agile that declare that if you
aren’t delivering working software, then you aren’t doing anything of value. It follows that if
you’re working on an architecture, then you’re taking resources away from programming and,
therefore, you’re doing nothing of value—architecture, schmarchitecture! Write the code, and
the architecture will emerge organically.

For medium to large systems, this view has inevitably collapsed under the harsh weight of
experience. Solutions to quality attribute requirements cannot simply be “bolted on” to an exist-
ing system in an arbitrarily late stage of development. Solutions for security, high performance,
safety, and many more concerns must be designed into the system’s architecture from the begin-
ning, even if the first 20 planned incremental deliveries don’t exercise those capabilities. Yes, you
can begin coding and yes, the architecture will emerge—but it will be the wrong one.

In short, the Agile Manifesto makes a pretty lousy prenup agreement for any marriage
between Agile and architecture. However, accompanying the Manifesto are 12 Agile principles

372 Part V Architecture and the Organization | Chapter 24 The Role of Architects in Projects

that, if read charitably, hint at a middle ground between the two camps. Table 24.2 lists these
principles and provides architecture-centric commentary on each one.

TABLE 24.2 Agile Principles and Architecture-centric Perspective

Agile Principle Architecture-centric View

Our highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.

Absolutely.

Welcome changing requirements, even late
in development. Agile processes harness
change for the customer’s competitive
advantage.

Absolutely. This principle is served by architectures
that provide high degrees of modifiability (Chapter 8)
and deployability (Chapter 5).

Deliver working software frequently, from a
couple of weeks to a couple of months, with
a preference for the shorter time scale.

Absolutely, as long as this principle is not seen as
precluding a thoughtful architecture. DevOps has
a large role to play here, and we have seen, in
Chapter 5, how architectures can support DevOps.

Business people and developers must
work together daily throughout the project.

Business goals lead to quality attribute
requirements, which the architecture’s primary duty
is to fulfill, as we discussed in Chapter 19.

Build projects around motivated
individuals. Give them the environment and
support they need, and trust them to get the
job done.

While we agree in principle, many developers are
inexperienced. So make sure to include a skilled,
experienced, and motivated architect to help guide
these individuals.

The most efficient and effective method
of conveying information to and within
a development team is face-to-face
conversation.

This is nonsense for nontrivial systems. Humans
invented writing because our brains can’t remember
everything we need to remember. Interfaces,
protocols, architectural structures, and more need
to be written down, and the inefficiencies and
ineffectiveness of repeated instruction and resulting
errors from misunderstanding belie this principle.
According to this argument, nobody should produce
user manuals, but should just publish the developers’
phone numbers with an open invitation to call them
anytime. This is also nonsense for any system that
has a maintenance phase (that’s pretty much every
system) in which the original team is nowhere to be
found. With whom are you going to have that face-
to-face conversation to learn important details? See
Chapter 22 for our guidance in this matter.

Working software is the primary measure of
progress.

Yes, as long as “primary” is not taken to mean
“only,” and as long as this principle is not used as an
excuse to eliminate all work except coding.

Agile processes promote sustainable
development. The sponsors, developers,
and users should be able to maintain a
constant pace indefinitely.

Absolutely.

Continuous attention to technical excellence
and good design enhances agility.

Absolutely.

Simplicity—the art of maximizing the
amount of work not done—is essential.

Yes, of course, as long as it is understood that the
work we are not doing can actually be jettisoned
safely without detriment to the system being
delivered.

24.4 Architecture and Distributed Development 373

Agile Principle Architecture-centric View

The best architectures, requirements, and
designs emerge from self-organizing teams.

No, they don’t. The best architectures are consciously
designed by skilled, talented, trained, and experi-
enced architects, as we describe in Chapter 20

At regular intervals, the team reflects on
how to become more effective, and then
tunes and adjusts its behavior accordingly.

Absolutely.

So that’s six “Absolutely” agreements, four general agreements, and two strong disagreements.
Agile, as it was first codified, seemed to work best in small organizations building small

products. Organizations of medium to large size wishing to apply Agile to large projects
quickly found that coordinating the large number of small Agile teams was a formidable chal-
lenge. In Agile, small teams do small pieces of work over small intervals. One challenge is
ensuring that these many (dozens to hundreds) small teams have divided the work suitably so
that no work is overlooked and no work is done twice. Another challenge is sequencing the
teams’ many tasks so that their results can be amalgamated, frequently and quickly, to pro-
duce the next small increment of a sensibly working system.

One example of an approach to apply Agile at enterprise scale is the Scaled Agile
Framework (SAFe), which emerged around 2007 and has been refined continuously since then.
SAFe provides a reference model of workflows, roles, and processes under which large organi-
zations can coordinate the activities of many teams, each operating in classic Agile fashion, to
systematically and successfully produce a large-scale system.

SAFe acknowledges the role of architecture. It admits “intentional architecture,” the defi-
nition of which will strike a chord with readers of this book. Intentional architecture “defines
a set of purposeful, planned architectural strategies and initiatives, which enhance solution
design, performance, and usability and provide guidance for inter-team design and imple-
mentation synchronization.” But SAFe also strongly counsels a counterbalancing force called
“emergent design,” which “provides the technical basis for a fully evolutionary and incremen-
tal implementation approach ” (scaledagileframework.com). We would argue that those qual-
ities would emerge from an intentional architecture as well, since the ability to rapidly evolve
and the ability to support incremental implementations do not happen without careful up-front
thought. Ways to achieve these are, in fact, covered throughout this book.

24.4 Architecture and Distributed Development

Most substantial projects today are developed by distributed teams, where “distributed” may
mean spread across floors in a building, across buildings on an industrial campus, across cam-
puses in one or two different time zones, or among different divisions or subcontractors scat-
tered around the globe.

http://scaledagileframework.com

374 Part V Architecture and the Organization | Chapter 24 The Role of Architects in Projects

Distributed development comes with both benefits and challenges:

 ■ Cost. Labor costs vary depending on location, and there is a perception that moving
some development to a low-cost venue will inevitably decrease the overall cost of the
project. Indeed, experience has shown that, for software development, savings may be
reaped in the long term. However, until the developers in the low-cost venue have a
sufficient level of domain expertise and until the management practices are adapted to
compensate for the difficulties of distributed development, a large amount of rework
must be done, thereby cutting into and perhaps overwhelming any savings from wages.

 ■ Skill sets and labor availability. Organizations may not be able to hire developers at
a single location: Relocation costs may be high, the size of the developer pool may be
small, or the skill sets needed may be specialized and unavailable in a single location.
Developing a system in a distributed fashion allows for the work to move to where the
workers are rather than forcing the workers to move to the work location, albeit at the
cost of additional communication and coordination.

 ■ Local knowledge of markets. Developers who are developing variants of a system to be
sold in their market have more knowledge about the types of features that are appropri-
ate and the types of cultural issues that may arise.

How does distributed development play out on a project? Assume Module A uses an
interface from Module B. In time, as circumstances change, this interface may need to be
modified. In consequence, the team responsible for Module B must coordinate with the team
responsible for Module A, as indicated in Figure 24.2. This kind of coordination is easy if it
involves a short conversation at the shared vending machines, but it’s not so easy if it involves
a preplanned web conference at a time when it is the middle of the night for one of the teams.

Coordination

Team A Team B

Dependency

Module A Module B

FIGURE 24.2 Coordination between teams and modules

24.4 Architecture and Distributed Development 375

More broadly, methods for coordination include the following options:

 ■ Informal contacts. Informal contacts, such as meeting at the coffee room or in the hall-
way, are possible only if the teams are co-located.

 ■ Documentation. Documentation, if it is well written, well organized, and properly dis-
seminated, can be used as a means to coordinate the teams, whether they are co-located
or at a distance.

 ■ Meetings. Teams can hold meetings, either scheduled or ad hoc, and either face to face or
remote, to help bring the team together and raise awareness of issues.

 ■ Asynchronous electronic communication. Various forms of asynchronous electronic
communication can be used as a coordination mechanism, such as email, news groups,
blogs, and wikis.

The choice of coordination method depends on many factors, including the organization’s
infrastructure, corporate culture, language skills, time zones involved, and number of teams
dependent on a particular module. Until an organization has established a working method for
coordinating among distributed teams, misunderstandings among the teams will likely cause
delays and, in some cases, serious defects in a project.

What does this mean for architecture and the architect? It means that allocation of respon-
sibilities to teams is more important in distributed development than in co-located develop-
ment, where all of the developers are in a single office, or at least in close proximity. It also
means that attention to module dependencies takes on added importance over and above their
usual role in quality attributes such as modifiability and performance: Dependencies among
modules owned by globally distributed teams are more likely to be problematic and should be
minimized to the extent possible.

In addition, documentation is especially important in distributed development. Co-located
teams have a variety of informal coordination possibilities such as going to the next office or
meeting in the coffee room or the hall. Remote teams do not have these informal mechanisms
available, so they must rely on more formal mechanisms such as documentation, and team
members must take the initiative to talk to each other when doubts arise.

As this book was being prepared for publication, companies around the world were learn-
ing to cope with remote participation and work-from-home practices due to the COVID-19
crisis. It is too soon to definitively state the long-term effects of this pandemic on the business
world, but it seems likely to lead to distributed development becoming the norm. People work-
ing together are now all doing so via teleconference; there are no more hallway conversations
or meetings at the vending machines. For work to continue at all, everyone is learning to adapt
to the distributed development paradigm. It will be fascinating to see if this leads to any new
architectural trends.

376 Part V Architecture and the Organization | Chapter 24 The Role of Architects in Projects

24.5 Summary

Software architects do their work in the context of a development project of some sort. As
such, they need to understand their role and responsibilities from that perspective.

The project manager and the software architect may be seen as occupying complemen-
tary roles: The manager runs the project from an administrative perspective, and the architect
runs the project from a technical solution perspective. These two roles intersect in various
ways, and the architect can support the manager to enhance the project’s chance of success.

In a project, architectures do not spring fully formed from Zeus’s forehead, but rather are
released in increments that are useful to stakeholders. Thus the architect needs to have a good
understanding of the architecture’s stakeholders and their information needs.

Agile methodologies focus on incremental development. Over time, architecture and
Agile (although they got off to a rough start together) have become indispensable partners.

Global development creates a need for an explicit coordination strategy that is based on
more formal strategies than are needed for co-located development.

24.6 For Further Reading

Dan Paulish has written an excellent book on managing in an architecture-centric environment—
Architecture-centric Software Project Management: A Practical Guide—and the material in
this chapter about distributed development is adapted from his book [Paulish 02].

You can read about SAFe at scaledagileframework.com. Before SAFe, some members of
the Agile community had independently arrived at a medium-weight management process that
advocates up-front architecture. See [Coplein 10] for a description of the role of architecture in
agile projects.

Basic concepts of project management are covered in thebIEEE Guide, Adoption of the
Project Management Institute (PMI) Standard: A Guide to the Project Management Body of
Knowledge, sixth edition [IEEE 17].

Software architecture metrics often fall within an architect’s purview on a project. A
paper by Coulin et al. provides a helpful overview of the literature on this subject and, along
the way, categorizes the metrics themselves [Coulin 19].

Architects occupy a unique position within an organization. They are expected to be flu-
ent in all phases of the system’s life cycle, from the cradle to the grave. Of all the members of
a project, they are the ones most sensitive to the needs of all of the project’s and the system’s
stakeholders. They usually are chosen to be architects in part because of their above-average
communication skills. The Software Architect Elevator: Redefining the Architect’s Role in the
Digital Enterprise [Hohpe 20] describes this unique ability of architects to interact with peo-
ple at all levels inside and outside an organization.

http://scaledagileframework.com

24.7 Discussion Questions 377

24.7 Discussion Questions

1. Consider “amenable to globally distributed development” as a quality attribute that can
be increased or decreased by architectural design decisions, just like the other quality
attributes we outlined in Part II of this book. Construct a general scenario for it, and a
list of tactics to help achieve it. Oh, and figure out a good name for it.

2. Generic project management practices often advocate creating a work breakdown struc-
ture as the first artifact produced by a project. What is wrong with this practice from an
architectural perspective?

3. If you were managing a globally distributed team, which architectural documentation
artifacts would you want to create first?

4. If you were managing a globally distributed team, which aspects of project management
would have to change to account for cultural differences?

5. How could architectural evaluation be used to help guide and manage the project?

6. In Chapter 1, we described a work assignment structure for software architecture, which
can be documented as a work assignment view. Discuss how documenting a work assign-
ment view for your architecture provides a vehicle for software architects and managers
to work together to staff a project. Where is the dividing line between the part of the
work assignment view that the architect should provide and the part that the manager
should provide?

This page intentionally left blank

379

25
Architecture Competence

The lyf so short, the craft so long to lerne.
—Geoffrey Chaucer

If software architecture is worth doing, then surely it’s worth doing well. Most of the literature
about architecture concentrates on the technical aspects. This is not surprising; it is a deeply
technical discipline. But architectures are created by architects working in organizations that
are full of actual human beings. Dealing with these humans is a decidedly nontechnical under-
taking. What can be done to help architects, especially architects-in-training, be better at this
important dimension of their job? And what can be done to help organizations do a better job
of encouraging their architects to produce their best work?

This chapter is about the competence of individual architects and the organizations that
wish to produce high-quality architectures.

Since the architecture competence of an organization depends, in part, on the compe-
tence of architects, we begin by asking what it is that architects are expected to do, know, and
be skilled at. Then we’ll look at what organizations can and should do to help their architects
produce better architectures. Individual and organizational competencies are intertwined.
Understanding only one or the other won’t do.

 25.1 Competence of Individuals: Duties, Skills, and Knowledge of
Architects

 Architects perform many activities beyond directly producing an architecture. These activ-
ities, which we call duties, form the backbone of an individual’s architecture competence.
Writers about architects also speak of skills and knowledge. For example, the ability to com-
municate ideas clearly and to negotiate effectively are skills often ascribed to competent archi-
tects. In addition, architects need to have up-to-date knowledge about patterns, technologies,
standards, quality attributes, and a host of other topics.

Duties, skills, and knowledge form a triad upon which architecture competence for indi-
viduals rests. The relationship among these three is shown in Figure 25.1—namely, skills and

380 Part V Architecture and the Organization | Chapter 25 Architecture Competence

knowledge support the ability to perform the required duties. Infinitely talented architects are
of no use if they cannot (for whatever reason) perform the duties required of the position; we
would not say they were competent.

KnowledSkills

Duties

Support

kills and knowledge support the execution of duties

ge

FIGURE 25.1 S .

To give examples of these concepts:

 ■ “Design the architecture” is a duty.
 ■ “Ability to think abstractly” is a skill.
 ■ “Patterns and tactics” constitute knowledge.

These examples purposely illustrate that skills and knowledge are important (only) for support-
ing the ability to carry out duties effectively. As another example, “documenting the architec-
ture” is a duty, “ability to write clearly” is a skill, and “ISO Standard 42010” is part of the related
body of knowledge. Of course, a skill or knowledge area can support more than one duty.

 Knowing the duties, skills, and knowledge of architects (or, more precisely, the duties,
skills, and knowledge that are needed of architects in a particular organizational setting) can
help establish measurement and improvement strategies for individual architects. If you want
to improve your individual architectural competence, you should take the following steps:

1. Gain experience carrying out the duties. Apprenticeship is a productive path to achiev-
ing experience. Education alone is not enough, because education without on-the-job
application merely enhances knowledge.

2. Improve your nontechnical skills. This dimension of improvement involves taking
professional development courses, for example, in leadership or time management. Some
people will never become truly great leaders or communicators, but we can all improve
on these skills.

3. Master the body of knowledge. One of the most important things a competent architect
must do is master the body of knowledge and remain up-to-date on it. To emphasize
the importance of keeping current with the field, consider the advances in knowledge
required for architects that have emerged in just the last few years. For example, archi-
tectures to support computing in the cloud (Chapter 17) were not important several years

25.1 Competence of Individuals: Duties, Skills, and Knowledge of Architects 381

ago. Taking courses, becoming certified, reading books and journals, visiting websites,
reading blogs, attending architecture-oriented conferences, joining professional societ-
ies, and meeting with other architects are all useful ways to improve knowledge.

Duties

This section summarizes a wide variety of architects’ duties. Not every architect in every organ-
ization will perform every one of these duties on every project. However, competent architects
should not be surprised to find themselves engaged in any of the activities listed here. We
divide these duties into technical duties (Table 25.1) and nontechnical duties (Table 25.2). One
immediate observation you should make is the large number of many nontechnical duties. An
obvious implication, for those of you who wish to be architects, is that you must pay adequate
attention to the nontechnical aspects of your education and your professional activities.

 TABLE 25.1 Technical Duties of a Software Architect

General Duty
Area

Specific Duty
Area

Example Duties

Architecting Creating an
architecture

Design or select an architecture. Create a software
architecture design plan. Build a product line or product
architecture. Make design decisions. Expand details and refine
the design to converge on a final design. Identify the patterns
and tactics, and articulate the principles and key mechanisms
of the architecture. Partition the system. Define how the
components fit together and interact. Create prototypes.

Evaluating and
analyzing an
architecture

Evaluate an architecture (for your current system or for other
systems) to determine the satisfaction of use cases and
quality attribute scenarios. Create prototypes. Participate
in design reviews. Review the designs of the components
designed by junior engineers. Review designs for compliance
with the architecture. Compare software architecture
evaluation techniques. Model alternatives. Perform tradeoff
analysis.

Documenting an
architecture

Prepare architectural documents and presentations useful
to stakeholders. Document or automate the documentation
of software interfaces. Produce documentation standards or
guidelines. Document variability and dynamic behavior.

Working with
and transforming
existing system(s)

Maintain and evolve an existing system and its architecture.
Measure architecture debt. Migrate existing system to new
technology and platforms. Refactor existing architectures
to mitigate risks. Examine bugs, incident reports, and other
issues to determine revisions to existing architecture.

Performing other
architecting duties

Sell the vision. Keep the vision alive. Participate in product
design meetings. Give technical advice on architecture,
design, and development. Provide architectural guidelines
for software design activities. Lead architecture improvement
activities. Participate in software process definition and
improvement. Provide architecture oversight of software
development activities.

continues

382 Part V Architecture and the Organization | Chapter 25 Architecture Competence

General Duty
Area

Specific Duty
Area

Example Duties

Duties
concerned
with life-cycle
activities
other than
architecting

Managing the
requirements

Analyze functional and quality attribute software
requirements. Understand business, organizational, and
customer needs, and ensure that the requirements meet
these needs. Listen to and understand the scope of the
project. Understand the client’s key design needs and
expectations. Advise on the tradeoffs between software
design choices and requirements choices.

Evaluating future
technologies

Analyze the current IT environment and recommend
solutions for deficiencies. Work with vendors to represent the
organization’s requirements and influence future products.
Develop and present technical white papers.

Selecting tools
and technology

Manage the introduction of new software solutions.
Perform technical feasibility studies of new technologies
and architectures. Evaluate commercial tools and
software components from an architectural perspective.
Develop internal technical standards and contribute to the
development of external technical standards.

TABLE 25.2 Nontechnical Duties of a Software Architect

 General Duty
Area

Specific Duty
Area

Example Duties

Management Supporting project
management

Provide feedback on the appropriateness and difficulty
of the project. Help with budgeting and planning. Follow
budgetary constraints. Manage resources. Perform sizing
and estimation. Perform migration planning and risk
assessment. Take care of or oversee configuration control.
Create development schedules. Measure results using
metrics and improve both personal results and teams’
productivity. Identify and schedule architectural releases.
Serve as a “bridge” between the technical team and the
project manager.

Managing the
people on the
architect’s team

Build “trusted advisor” relationships. Coordinate.
Motivate. Advocate. Train. Act as a supervisor. Allocate
responsibilities.

Organization-
and business-
related duties

Supporting the
organization

Grow an architecture evaluation capability in the organization.
Review and contribute to research and development efforts.
Participate in the hiring process for the team. Help with
product marketing. Institute cost-effective and appropriate
software architecture design reviews. Help develop
intellectual property.

Supporting the
business

Understand and evaluate business processes.
Translate business strategy into technical strategy.
Influence the business strategy. Understand and
communicate the business value of software architecture.
Help the organization meet its business goals. Understand
customer and market trends.

 TABLE 25.1 Technical Duties of a Software Architect continued

25.1 Competence of Individuals: Duties, Skills, and Knowledge of Architects 383

 General Duty
Area

Specific Duty
Area

Example Duties

Leadership and
team building

Providing technical
leadership

Be a thought leader. Produce technology trend analysis or
roadmaps. Mentor other architects.

Building a team Build the development team and align them with the
architecture vision. Mentor developers and junior architects.
Educate the team on the use of the architecture. Foster
the professional development of team members. Coach
teams of software design engineers for planning, tracking,
and completion of work within the agreed plan. Mentor and
coach staff in the use of software technologies. Maintain
morale, both within and outside the architecture group.
Monitor and manage team dynamics.

Architects also routinely perform many other duties, such as leading code reviews or
getting involved in test planning. In many projects, architects pitch in to help with the actual
implementation and testing, in critical areas. While important, these are not strictly speaking
architectural duties.

Skills

Given the wide range of duties enumerated in the previous section, which skills does an architect
need to possess? Much has been written about the architect’s special role of leadership in a proj-
ect; the ideal architect is an effective communicator, manager, team builder, visionary, and mentor.
Some certificate or certification programs emphasize nontechnical skills. Common to these certi-
fication programs are assessment areas of leadership, organization dynamics, and communication.

Table 25.3 enumerates the set of skills most useful to an architect.

 TABLE 25.3 Skills of a Software Architect

General Skill
Area

Specific Skill
Area

Example Skills

Communication
skills

Outward
communication
(beyond the team)

Ability to make oral and written communications and
presentations. Ability to present and explain technical
information to diverse audiences. Ability to transfer
knowledge. Ability to persuade. Ability to see from and sell
to multiple viewpoints.

Inward
communication
(within the team)

Ability to listen, interview, consult, and negotiate. Ability to
understand and express complex topics.

Interpersonal
skills

Team
relationships

Ability to be a team player. Ability to work effectively with
superiors, subordinates, colleagues, and customers.
Ability to maintain constructive working relationships. Ability
to work in a diverse team environment. Ability to inspire
creative collaboration. Ability to build consensus. Ability to
be diplomatic and respect others. Ability to mentor others.
Ability to handle and resolve conflict.

continues

384 Part V Architecture and the Organization | Chapter 25 Architecture Competence

General Skill
Area

Specific Skill
Area

Example Skills

Work skills Leadership Ability to make decisions. Ability to take initiative and be
innovative. Ability to demonstrate independent judgment,
be influential, and command respect.

Workload
management

Ability to work well under pressure, plan, manage time, and
estimate. Ability to support a wide range of issues and work
on multiple complex tasks concurrently. Ability to effectively
prioritize and execute tasks in a high-pressure environment.

Skills to excel
in the corporate
environment

Ability to think strategically. Ability to work under general
supervision and under constraints. Ability to organize
workflow. Ability to detect where the power is and how it
flows in an organization. Ability to do what it takes to get
the job done. Ability to be entrepreneurial, to be assertive
without being aggressive, and to receive constructive
criticism.

Skills for handling
information

Ability to be detail-oriented while maintaining overall vision
and focus. Ability to see the big picture.

Skills for handling
the unexpected

Ability to tolerate ambiguity. Ability to take and manage
risks. Ability to solve problems. Ability to be adaptable,
flexible, open-minded, and resilient.

Ability to think
abstractly

Ability to look at different things and find a way to see how
they are, in fact, just different instances of the same thing.
This may be one of the most important skills for an architect
to have.

 Knowledge

A competent architect has an intimate familiarity with an architectural body of knowledge.
Table 25.4 gives a set of knowledge areas for an architect.

 TABLE 25.4 Knowledge Areas of a Software Architect

 General
Knowledge
Area

Specific
Knowledge
Area

Specific Knowledge Examples

Computer
science
knowledge

Knowledge of
architecture
concepts

Knowledge of architecture frameworks, architectural patterns,
tactics, structures and views, reference architectures,
relationships to system and enterprise architecture, emerging
technologies, architecture evaluation models and methods, and
quality attributes.

Knowledge
of software
engineering

Knowledge of software development knowledge areas,
including requirements, design, construction, maintenance,
configuration management, engineering management,
and software engineering process. Knowledge of systems
engineering.

 TABLE 25.3 Skills of a Software Architect continued

25.1 Competence of Individuals: Duties, Skills, and Knowledge of Architects 385

 General
Knowledge
Area

Specific
Knowledge
Area

Specific Knowledge Examples

Computer
science
knowledge

Design
knowledge

Knowledge of tools and design and analysis techniques. Know-
ledge of how to design complex multi-product systems. Knowledge
of object-oriented analysis and design, and UML and SysML
diagrams.

Programming
knowledge

Knowledge of programming languages and programming lang-
uage models. Knowledge of specialized programming tech-
niques for security, real time, safety, etc.

Knowledge of
technologies
and platforms

Specific
technologies and
platforms

Knowledge of hardware/software interfaces, web-based
applications, and Internet technologies. Knowledge of specific
software/operating systems.

General
knowledge of
technologies and
platforms

Knowledge of the IT industry’s future directions and the ways in
which infrastructure impacts an application.

Knowledge
about the
organization’s
context and
management

Domain
knowledge

Knowledge of the most relevant domains and domain-specific
technologies.

Industry
knowledge

Knowledge of the industry’s best practices and Industry
standards. Knowledge of how to work in onshore/offshore team
environments.

Business
knowledge

Knowledge of the company’s business practices, and its
competition’s products, strategies, and processes. Knowledge
of business and technical strategy, and business reengineering
principles and processes. Knowledge of strategic planning,
financial models, and budgeting.

Leadership and
management
techniques

Knowledge of how to coach, mentor, and train software team
members. Knowledge of project management. Knowledge of
project engineering.

What about Experience?

Albert Einstein said, “The only source of knowledge is experience,” and just about every-
body says that experience is the best teacher. We agree. However, experience is not the only
teacher—you can also acquire knowledge from real teachers. How lucky we are that we need
not all burn ourselves to acquire the knowledge that touching a hot stove is a bad idea.

We consider experience as something that adds to an architect’s store of knowledge,
which is why we don’t treat it separately. As your career advances, you’ll accumulate your own
wealth of experience, which you’ll store as knowledge.

As the old joke goes, a pedestrian in New York stopped a passerby and asked, “Excuse
me. Could you tell me how to get to Carnegie Hall?” The passerby, who happened to be a
musician, replied with a heavy sigh, “Practice, practice, practice.”

Exactly.

386 Part V Architecture and the Organization | Chapter 25 Architecture Competence

 25.2 Competence of a Software Architecture Organization

Organizations, by their practices and structure, can either help or hinder architects in perform-
ing their duties. For example, if an organization has a career path for architects, that will moti-
vate employees to become architects. If an organization has a standing architecture review
board, then the project architect will know how and with whom to schedule a review. The
absence of these practices and structures will mean that an architect has to fight battles with
the organization or determine how to carry out a review without internal guidance. It makes
sense, therefore, to ask whether a particular organization is architecturally competent and to
develop instruments whose goal is measuring the architectural competence of an organiza-
tion. The architectural competence of organizations is the topic of this section. Here is our
definition:

The architectural competence of an organization is the ability of that organization
to grow, use, and sustain the skills and knowledge necessary to effectively carry out
architecture-centric practices at the individual, team, and organizational levels to
produce architectures with acceptable cost that lead to systems aligned with the orga-
nization’s business goals.

Organizations have duties, skills, and knowledge for architecture, just like individual
architects. For example, adequately funding the architecture effort is an organizational duty,
as is effectively using the available architecture workforce (by appropriate teaming and other
means). These are organizational duties because they are outside the control of individual
architects. An organization-level skill might be effective knowledge management or human
resource management as applied to architects. An example of organizational knowledge is the
composition of an architecture-based life-cycle model that software projects may employ.

Here are some things—duties—that an organization could perform to help improve the
success of its architecture efforts:

 ■ Personnel-related:

 ■ Hire talented architects.
 ■ Establish a career track for architects.
 ■ Make the position of architect highly regarded through visibility, rewards, and

prestige.
 ■ Have architects join professional organizations.
 ■ Establish an architect certification program.
 ■ Establish a mentoring program for architects.
 ■ Establish an architecture training and education program.
 ■ Measure architects’ performance.
 ■ Have architects receive external architect certifications.
 ■ Reward or penalize architects based on project success or failure.

25.3 Become a Better Architect 387

 ■ Process-related:

 ■ Establish organization-wide architecture practices.
 ■ Establish a clear statement of responsibilities and authority for architects.
 ■ Establish a forum for architects to communicate and share information and experience.
 ■ Establish an architecture review board.
 ■ Include architecture milestones in project plans.
 ■ Have architects provide input into product definition.
 ■ Hold an organization-wide architecture conference.
 ■ Measure and track the quality of architectures produced.
 ■ Bring in outside expert consultants on architecture.
 ■ Have architects advise on the development team structure.
 ■ Give architects influence throughout the entire project life cycle.

 ■ Technology-related:

 ■ Establish and maintain a repository of reusable architectures and architecture-based
artifacts.

 ■ Create and maintain a repository of design concepts.
 ■ Provide a centralized resource to analyze and help with architecture tools.

If you are interviewing for the position of architect in an organization, you’ll probably
have a list of questions to determine if you want to work there. To that list, you can add ques-
tions drawn from the preceding list to help you ascertain the organization’s level of architec-
ture competence.

25.3 Become a Better Architect

How do architects become good architects, and how do good architects become great archi-
tects? We close this chapter with a proposal, which is this: Be mentored, and mentor others.

Be Mentored

While experience may be the best teacher, most of us will not have the luxury, in a single life-
time, to gain firsthand all the experience needed to make us great architects. But we can gain
experience secondhand. Find a skilled architect whom you respect, and attach yourself to that
person. Find out if your organization has a mentoring program that you can join. Or establish
an informal mentoring relationship—find excuses to interact, ask questions, or offer to help
(for instance, offer to be a reviewer).

Your mentor doesn’t have to be a colleague. You can also join professional societies where
you can establish mentor relationships with other members. There are meetups. There are pro-
fessional social networks. Don’t limit yourself to just your organization.

388 Part V Architecture and the Organization | Chapter 25 Architecture Competence

Mentor Others

You should also be willing to mentor others as a way of giving back or paying forward the
kindnesses that have enriched your career. But there is a selfish reason to mentor as well: We
find that teaching a concept is the litmus test of whether we deeply understand that concept.
If we can’t teach it, it’s likely we don’t really understand it—so that can be part of your goal
in teaching and mentoring others in the profession. Good teachers almost always report their
delight in how much they learn from their students, and how much their students’ probing
questions and surprising insights add to the teachers’ deeper understanding of the subject.

25.4 Summary

When we think of software architects, we usually first think of the technical work that they
produce. But, in the same way that an architecture is much more than a technical “blueprint”
for a system, an architect is much more than a designer of an architecture. This has led us to
try to understand, in a more holistic way, what an architect and an architecture-centric organi-
zation must do to succeed. An architect must carry out the duties, hone the skills, and continu-
ously acquire the knowledge necessary to be successful.

The key to becoming a good and then a better architect is continuous learning, mentor-
ing, and being mentored.

25.5 For Further Reading

Questions to probe an organization’s competence can be found in the Technical Note, “Models
for Evaluating and Improving Architecture Competence,” sei.cmu.edu/library/abstracts/reports/
08tr006.cfm.

The Open Group has a certification program for qualifying the skills, knowledge, and
experience of IT, business, and enterprise architects, which is related to measuring and certi-
fying an individual architect’s competence.

The Information Technology Architecture Body of Knowledge (ITABoK) is a “free public
archive of IT architecture best practices, skills, and knowledge developed from the experience
of individual and corporate members of Iasa, the world’s largest IT architecture professional
organization” (https://itabok.iasaglobal.org/itabok/).

Bredemeyer Consulting (bredemeyer.com) provides copious materials about IT, software,
and enterprise architects and their role.

 Joseph Ingeno, in Software Architect’s Handbook, devotes a chapter to “The Soft Skills of
Software Architects” and another one to “Becoming a Better Software Architect” [Ingeno 18].

http://sei.cmu.edu/library/abstracts/reports/08tr006.cfm
https://itabok.iasaglobal.org/itabok/
http://bredemeyer.com
http://sei.cmu.edu/library/abstracts/reports/08tr006.cfm

25.6 Discussion Questions 389

25.6 Discussion Questions

1. In which skills and knowledge discussed in this chapter do you think you might be most
deficient? How would you reduce these deficiencies?

2. Which duties, skills, or knowledge do you think are the most important or cost-effective
to improve in an individual architect? Justify your answer.

3. Add three duties, three skills, and three knowledge areas that were not on our lists.

4. How would you measure the value of specific architecture duties in a project? How
would you distinguish the value added by these duties from the value added by other
activities such as quality assurance or configuration management?

5. How would you measure someone’s communication skills?

6. This chapter listed a number of practices of an architecturally competent organization.
Prioritize that list based on expected benefit over expected cost.

7. Suppose you are in charge of hiring an architect for an important system in your com-
pany. How would you go about it? What would you ask the candidates in an interview?
Would you ask them to produce anything? If so, what? Would you have them take a test
of some kind? If so, what? Who in your company would you have interview them? Why?

8. Suppose you are the architect being hired. What questions would you ask about the com-
pany with which you’re interviewing, related to the areas listed in Section 25.2? Try to
answer this question from the point of view of an architect early in their career, and then
from the point of view of a highly skilled architect with many years of experience.

9. Search for certification programs for architects. For each one, try to characterize how
much it deals (respectively) with duties, skills, and knowledge.

This page intentionally left blank

391

26
 A Glimpse of the Future:

Quantum Computing

[A quantum computer can be compared] to the airplane the Wright
brothers flew at Kitty Hawk in 1903. The Wright Flyer barely got off

the ground, but it foretold a revolution.
—wired.com/2015/12/for-google-quantum-computing-is-like-learning-to-fly/

What will the future bring in terms of developments that affect the practice of software archi-
tecture? Humans are notoriously bad at predicting the long-term future, but we keep trying
because, well, it’s fun. To close our book, we have chosen to focus on one particular aspect
that is firmly rooted in the future but seems tantalizingly close to reality: quantum computing.

Quantum computers will likely become practical over the next five to ten years. Consider
that the system you are currently working on may have a lifetime on the order of tens—plural—
of years. Code written in the 1960s and 1970s is still being used today on a daily basis. If the
systems you are working on have lifetimes on that order, you may need to convert them to take
advantage of quantum computer capabilities when quantum computers become practical.

Quantum computers are generating high interest because of their potential to perform
calculations at speeds that far outpace the most capable and powerful of their classical counter-
parts. In 2019, Google announced that its quantum computer completed a complex computation
in 200 seconds. That same calculation, claimed Google, would take even the most powerful
supercomputers approximately 10,000 years to finish. It isn’t that quantum computers do what
classical computers do, only extraordinarily faster; rather, they do what classical computers
can’t do using the otherworldly properties of quantum physics.

Quantum computers won’t be better than classical computers at solving every problem.
For example, for many of the most common transaction-oriented data-processing tasks, they
are likely irrelevant. They will be good at problems that involve combinatorics and are compu-
tationally difficult for classic computers. However, it is unlikely that a quantum computer will
ever power your phone or watch or sit on your office desk.

Understanding the theoretical basis of a quantum computer involves deep understanding
of physics, including quantum physics, and that is far outside our scope. For context, the same
was also true of classical computers when they were invented in the 1940s. Over time, the

PART VI Conclusions

http://�wired.com/2015/12/for-google-quantum-computing-is-like-learning-to-fly/

392 Part VI Conclusions | Chapter 26 A Glimpse of the Future: Quantum Computing

requirement for understanding how CPUs and memory work has disappeared due to the intro-
duction of useful abstractions, such as high-level programming languages. The same thing
will happen in quantum computers. In this chapter, we introduce the essential concepts of
quantum computing without reference to the underlying physics (which has been known to
make heads actually explode).

26.1 Single Qubit

The fundamental unit of calculation in a quantum computer is a unit of quantum information
called a qubit (more on that shortly). The simple definition of a quantum computer is a proces-
sor that manipulates qubits. At the time of this book’s publication, the best quantum computer
in existence contained several hundred qubits.

A “QPU” will interact with a classic CPU in the same fashion that a graphic processing
unit interacts with a CPU today. In other words, the CPU will view the QPU as a service to be
provided with some input and that will produce some output. The communications between
the CPU and the QPU will be in terms of classic bits. What the QPU does with the input to
produce the output is outside of the scope of the CPU.

A bit in a classic computer has a value of either 0 or 1 and, when functioning properly,
there is no ambiguity about which value it assumes. Also, a bit in a classic computer has a non-
destructive readout. That is, measuring the value will give you a 0 or a 1, and the bit will retain
the value that it had when the read operation began.

A qubit differs in both characteristics. A qubit is characterized by three numbers. Two
of these numbers are probabilities: the probability that a measurement will deliver 1 and the
probability that a measurement will deliver 0. The third number, called the phase, describes a
rotation of the qubit. A measurement of a qubit will return either a 0 or a 1 (with probabilities
as designated) and will destroy the current value of the qubit and replace it with the value that
it returned. A qubit with non-zero probabilities for both 0 and 1 is said to be in superposition.

Phases are managed by making the probabilities complex numbers. The amplitudes
(probabilities) are designated as |α|2 and |β|2. If |α|2 is 40 percent and |β|2 is 60 percent, then 4
out of 10 measurements will be 0, and 6 out of those 10 measurements will be 1. These ampli-
tudes are subject to some probability of measurement error, and reducing this error probability
is one of the engineering challenges of building quantum computers.

There are two consequences of this definition:

1. |α|2 + |β|2 = 1. Because |α|2 and |β|2 are probabilities of a measurement delivering 0 or 1,
respectively, and because a measurement will deliver one or the other, the sum of the
probabilities must be 1.

2. There is no copying of a qubit. A copy from classical bit A to classical bit B is a read of
bit A followed by a store of that value into B. The measurement (i.e., read) of qubit A
will destroy A and deliver either a value of 0 or a value of 1. The store into qubit B will
thus be either a 0 or a 1 and will not encompass the probabilities or phases that were
embedded into A.

26.1 Single Qubit 393

The phase value is an angle between 0 and 2∏ radians. It does not affect the probabilities
of the superposition, but gives another lever to manipulate qubits. Some quantum algorithms
mark certain qubits by manipulating their phase.

Operations on Qubits

Some single qubit operations are analogs of classical bit operations, whereas others are spe-
cific to qubits. One characteristic of most quantum operations is that they are invertible;
that is, given the result of an operation, it is possible to recover the input into that operation.
Invertibility is another distinction between classical bit operations and qubit operations. The one
exception to invertibility is the READ operation: Since measurement is destructive, the result
of a READ operation does not allow the recovery of the original qubit. Examples of qubit
operations include the following:

1. A READ operation takes as input a single qubit and produces as output either a 0 or a 1
with probabilities determined by the amplitudes of the input qubit. The value of the input
qubit collapses to either a 0 or a 1.

2. A NOT operation takes a qubit in superposition and flips the amplitudes. That is, the
probability of the resulting qubit being 0 is the original probability of it being 1, and
vice versa.

3. A Z operation adds ∏ to the phase of the qubit (modulo 2∏).
4. A HAD (short for Hadamard) operation creates an equal superposition, which means the

amplitudes of qubits with value 0 and 1, respectively, are equal. A 0 input value gener-
ates a phase of 0 radians, and a 1 input value generates a phase of ∏ radians.

It is possible to chain multiple operations together to produce more sophisticated units of
functionality.

Some operators work on more than one qubit. The primary two-qubit operator is CNOT—
a controlled not. The first qubit is the control bit. If it is 1, then the operation performs a NOT
on the second qubit. If the first qubit is 0, then the second qubit remains unchanged.

Entanglement

Entanglement is one of the key elements of quantum computing. It has no analog in classical
computing, and gives quantum computing some of its very strange and wondrous properties,
allowing it to do what classical computers cannot.

Two qubits are said to be “entangled” if, when measured, the second qubit measurement
matches the measurement of the first. Entanglement can occur no matter the amount of time
between the two measurements, or the physical distance between the qubits. This leads us to
what is called quantum teleportation. Buckle up.

394 Part VI Conclusions | Chapter 26 A Glimpse of the Future: Quantum Computing

26.2 Quantum Teleportation

Recall that it is not possible to copy one qubit to another directly. Thus, if we want to copy one
qubit to another, we must use indirect means. Furthermore, we must accept the destruction
of the state of the original qubit. The recipient qubit will have the same state as the original,
destroyed qubit. Quantum teleportation is the name given to this copying of the state. There
is no requirement that the original qubit and the recipient qubit have any physical relationship,
nor are there constraints on the distance that separates them. In consequence, it is possible to
transfer information over great distances, even hundreds or thousands of kilometers, between
qubits that have been physically implemented.

The teleportation of the state of a qubit depends on entanglement. Recall that entangle-
ment means that a measurement of one entangled qubit will guarantee that a measurement of
the second qubit will have the same value. Teleportation utilizes three qubits. Qubit A and Β
are entangled, and then qubit ψ is entangled with qubit A. Qubit ψ is teleported to the location
of qubit Β, and its state becomes the state of qubit Β. Roughly speaking, teleportation proceeds
through these four steps:

1. Entangle qubits A and Β. We discussed what this means in the prior section. The loca-
tions of A and Β can be physically separate.

2. Prepare the “payload.” The payload qubit will have the state to be teleported. The pay-
load, which is the qubit ψ, is prepared at the location of A.

3. Propagate the payload. The propagation involves two classical bits that are transferred to
the location of Β. The propagation also involves measuring A and ψ, which destroys the
state of both of these qubits.

4. Re-create the state of ψ in Β.

We have omitted many key details, but the point is this: Quantum teleportation is an
essential ingredient of quantum communication. It relies on transmitting two bits over con-
ventional communication channels. It is inherently secure, since all that an eavesdropper
can determine are the two bits sent over conventional channels. Because A and Β commu-
nicate through entanglement, they are not physically sent over a communication line. The
U.S. National Institute of Science and Technology (NIST) is considering a variety of differ-
ent quantum-based communication protocols to be the basis of a transport protocol called
HTTPQ, which is intended to be a replacement for HTTPS. Given that it takes decades to
replace one communication protocol with another, the goal is for HTTPQ to be adopted prior
to the availability of quantum computers that can break HTTPS.

26.3 Quantum Computing and Encryption

Quantum computers are extremely proficient at calculating the inverse of a function—in par-
ticular, the inverse of a hash function. There are many cases where this kind of calculation

26.4 Other Algorithms 395

would be extremely useful, but particularly so in decrypting passwords. Passwords are almost
never directly stored; instead, the hash of them is stored. The assumption behind storing only
the hash is that computing the inverse of the hash function is computationally difficult and
would take hundreds, if not thousands, of years to do—using conventional computers, that is.
Quantum computers, however, change this calculation.

Grover’s algorithm is an example of a probabilistic algorithm that computes the inverse
of a function. It takes on the order of 2128 iterations to calculate the inverse of a hash based
on 256 bits. This represents a quadratic speedup over conventional computational algorithms,
meaning that the quantum algorithm time is approximately the square root of the conventional
algorithm time. This makes an enormous amount of password-protected material, previously
thought to be secure, quite vulnerable.

Modern secure encryption algorithms are based on the difficulty of factoring the product
of two large prime numbers. Let p and q be two distinct primes each greater than 128 bits in
magnitude. The product of these two primes pq is roughly 256 bits in magnitude. This product
is relatively easy to compute given p and q. However, factoring the product, pq, and recovering
p and q is computationally very difficult on a classical computer: It is in the category NP-hard.

What this means is that given a message encrypted based on the primes p and q, decrypt-
ing this message is relatively easy if you know p and q but practically impossible if you
don’t—at least on a classical computer. Quantum computers, however, can factor pq much
more efficiently than classical computers. Shor’s algorithm is a quantum algorithm that can
factor pq with running time on the order of log (number of bits in p and q).

26.4 Other Algorithms

Quantum computing holds similar game-changing potential for many applications. Here,
we begin our discussion by introducing a necessary but currently nonexistent piece of
hardware—QRAM.

QRAM

Quantum random access memory (QRAM) is a critical element for implementing and apply-
ing many quantum algorithms. QRAM, or something similar, will be necessary to provide
efficient access to large amounts of data such as that used in machine learning applications.
Currently, no implementation of QRAM exists, but several research groups are exploring how
such an implementation could work.

Conventional RAM comprises a hardware device that takes as input a memory location
and returns as output the contents of that memory location. QRAM is conceptually similar: It
takes as input a memory location (likely a superposition of memory locations) and returns as
output the superpositioned contents of those memory locations. The memory locations whose
contents are returned were written conventionally—that is, each bit has one value. The values
are returned in superposition, and the amplitudes are determined by the specification of the

396 Part VI Conclusions | Chapter 26 A Glimpse of the Future: Quantum Computing

memory locations to be returned. Because the original values were conventionally written,
they can be copied in a nondestructive fashion.

A problem with the proposed QRAM is that the number of physical resources required
scales linearly with the number of bits retrieved. Thus it may not be practical to construct
QRAM for very large retrievals. As with much of the discussion of quantum computers, QRAM
is in the theoretical discussion stage rather than the engineering phase. Stay tuned.

The remaining algorithms we discuss assume the existence of a mechanism for efficiently
accessing the data manipulated by an algorithm, such as with QRAM.

Matrix Inversion

Matrix inversion underlies many problems in science. Machine learning, for example, requires
the ability to invert large matrices. Quantum computers hold promise to speed up matrix inver-
sion in this context. The HHL algorithm by Harrow, Hassidim, and Lloyd will invert a linear
matrix, subject to some constraints. The general problem is to solve the equation Ax = b, where
A is an N × N matrix, x is a set of N unknowns, and b is a set of N known values. You learned
about the simplest case (N = 2) in elementary algebra. As N grows, however, matrix inversion
becomes the standard technique to solve the set of equations.

The following constraints apply when solving this problem with quantum computers:

1. The b’s must be quickly accessible. This is the problem that QRAM is supposed to solve.
2. The matrix A must satisfy certain conditions. If it is a sparse matrix, then it likely can be

processed efficiently on a quantum computer. The matrix must also be well conditioned;
that is, the determinant of the matrix must be non-zero or close to zero. A small deter-
minant causes issues when inverting a matrix on a classical computer, so this is not a
quantum unique problem.

3. The result of applying the HHL algorithm is that the x values appear in superposition.
Thus a mechanism is needed for efficiently isolating the actual values from the
superposition.

The actual algorithm is too complicated for us to present here. One noteworthy element,
however, is that it relies on an amplitude magnification technique based on using phases.

26.5 Potential Applications

Quantum computers are expected to have an impact on a wide variety of application areas.
IBM, for example, is focusing on cybersecurity, drug development, financial modeling, better
batteries, cleaner fertilization, traffic optimization, weather forecasting and climate change,
and artificial intelligence and machine learning, to name just a few.

To date, except for cybersecurity, this list of potential quantum computing applications
remains mostly speculation. Several cybersecurity algorithms have been proven to provide

26.6 Final Thoughts 397

substantial improvements over classical algorithms, but the remainder of the application areas
are, thus far, the subject of much and feverish research. As yet, however, none of these efforts
has generated public results.

As the chapter-opening quotation suggested, quantum computers are at the stage that air-
planes were at the time of the Wright brothers. The promise is great but a tremendous amount
of work must be done to turn the promise into reality.

26.6 Final Thoughts

Quantum computers are currently in their infancy. Applications for such computers are pri-
marily speculation at this point, especially applications that require large amounts of data.
Nonetheless, progress is happening rapidly in terms of the number of qubits in actual physical
existence. It seems reasonable that Moore’s law will apply to quantum computers, much as it
has in conventional computing. If so, then the number of qubits available will grow exponen-
tially over time.

The qubit operations discussed in Section 26.2 lend themselves to a programming style
where operations are chained together to perform useful functionality. This will likely follow
the same arc as machine languages for classical computers. Machine languages still exist but
have become a realm consigned to only a handful of programmers. Most programmers use
a wide variety of higher-level languages. We should expect to see the same evolution in pro-
gramming quantum computers. Efforts at quantum computing language design are under way
but remain in a nascent state.

Programming languages are only the tip of the iceberg. What about the other topics we
have covered in this book? Are there new quality attributes relevant to quantum computers,
new architectural patterns, an additional architecture view? Almost certainly.

What will a network of quantum computers look like? Will hybrid networks of quantum
and classical computers become widespread? All of these are potential areas into which quan-
tum computing will almost certainly evolve—eventually.

What can architects do in the meantime? First, pay attention to breaking developments.
If the systems you are working on today involve areas that quantum computing is likely to
affect (or, more likely, completely turn on its head), isolate those parts of the system to mini-
mize the disruption when quantum computing finally shows up. Especially for secure systems,
follow the field to find out what to do when your conventional encryption algorithms become
worthless.

But your preparation need not all be defensive. Imagine what you could do with a com-
munication network that is able to transfer information instantly, no matter the physical dis-
tance between the nodes. If this sounds far-fetched—well, so did flying machines once upon
a time.

As always, we await the future with eagerness.

398 Part VI Conclusions | Chapter 26 A Glimpse of the Future: Quantum Computing

26.7 For Further Reading

General overview:

 ■ Programming Quantum Computers by Eric Johnston, Nic Harrigan, and Mercedes
Gimeno-Segovia discusses quantum computing without reference to physics or linear
algebra [Johnston 19].

 ■ Quantum Computing: Progress and Prospects [NASEM 19] provides an overview of
the current state of quantum computing and the challenges to be overcome to make real
quantum computers.

 ■ Quantum computers not only provide faster solutions compared to classical computers,
but also address some problems that can only be solved with quantum computers. This
powerful theoretical result emerged in May 2018: quantamagazine.org/finally-a-problem-
that-only-quantum-computers-will-ever-be-able-to-solve-20180621/.

http://quantamagazine.org/finally-a-problem-that-only-quantum-computers-will-ever-be-able-to-solve-20180621/
http://quantamagazine.org/finally-a-problem-that-only-quantum-computers-will-ever-be-able-to-solve-20180621/

399

References

 [Abrahamsson 10] P. Abrahamsson, M. A. Babar, and P. Kruchten. “Agility and Architecture:
Can They Coexist?” IEEE Software 27, no. 2 (March–April 2010): 16–22.

[AdvBuilder 10] Java Adventure Builder Reference Application. https://adventurebuilder.dev
.java.net

[Anastasopoulos 00] M. Anastasopoulos and C. Gacek. “Implementing Product Line Variabil-
ities” (IESE-Report no. 089.00/E, V1.0). Kaiserslautern, Germany: Fraunhofer Institut
Experimentelles Software Engineering, 2000.

 [Anderson 20] Ross Anderson. Security Engineering: A Guide to Building Dependable
Distributed Systems, 3rd ed. Wiley, 2020.

[Argote 07] L. Argote and G. Todorova. International Review of Industrial and Organizational
Psychology. John Wiley & Sons, 2007.

[Avižienis 04] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
“Basic Concepts and Taxonomy of Dependable and Secure Computing,” IEEE Trans-
actions on Dependable and Secure Computing 1, no. 1 (January 2004): 11–33.

[Bachmann 00a] Felix Bachmann, Len Bass, Jeromy Carriere, Paul Clements, David Garlan,
James Ivers, Robert Nord, and Reed Little. “Software Architecture Documentation in
Practice: Documenting Architectural Layers,” CMU/SEI-2000-SR-004, 2000.

[Bachmann 00b] F. Bachmann, L. Bass, G. Chastek, P. Donohoe, and F. Peruzzi. “The Archit ecture-
Based Design Method,” CMU/SEI-2000-TR-001, 2000.

[Bachmann 05] F. Bachmann and P. Clements. “Variability in Software Product Lines,” CMU/
SEI-2005-TR-012, 2005.

[Bachmann 07] Felix Bachmann, Len Bass, and Robert Nord. “Modifiability Tactics,” CMU/
SEI-2007-TR-002, September 2007.

[Bachmann 11] F. Bachmann. “Give the Stakeholders What They Want: Design Peer Reviews
the ATAM Style,” Crosstalk (November/December 2011): 8–10, crosstalkonline.org/
storage/issue-archives/2011/201111/201111-Bachmann.pdf.

[Barba cci 03] M. Barbacci, R. Ellison, A. Lattanze, J. Stafford, C. Weinstock, and W. Wood.
“Quality Attribute Workshops (QAWs), Third Edition,” CMU/SEI-2003-TR-016, sei.cmu
.edu/reports/03tr016.pdf.

[Bass 03] L. Bass and B. E. John. “Linking Usability to Software Architecture Patterns
through General Scenarios,” Journal of Systems and Software 66, no. 3 (2003): 187–197.

[Bass 07] Len Bass, Robert Nord, William G. Wood, and David Zubrow. “Risk Themes
Discovered through Architecture Evaluations,” in Proceedings of WICSA 07, 2007.

https://adventurebuilder.dev.java.net
https://adventurebuilder.dev.java.net
http://crosstalkonline.org/storage/issue-archives/2011/201111/201111-Bachmann.pdf
http://sei.cmu.edu/reports/03tr016.pdf
http://crosstalkonline.org/storage/issue-archives/2011/201111/201111-Bachmann.pdf
http://sei.cmu.edu/reports/03tr016.pdf

400 References

[Bass 08] Len Bass, Paul Clements, Rick Kazman, and Mark Klein. “Models for Evaluating
and Improving Architecture Competence,” CMU/SEI-2008-TR-006, March 2008,
sei.cmu.edu/library/abstracts/reports/08tr006.cfm.

[Bass 15] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A Software Architect’s Perspective.
Addison-Wesley, 2015.

[Bass 19] Len Bass and John Klein. Deployment and Operations for Software Engineers.
Amazon, 2019.

[Baudry 03] B. Baudry, Yves Le Traon, Gerson Sunyé, and Jean-Marc Jézéquel. “Measuring
and Improving Design Patterns Testability,” Proceedings of the Ninth International
Software Metrics Symposium (METRICS ’03), 2003.

[Baudry 05] B. Baudry and Y. Le Traon. “Measuring Design Testability of a UML Class
Diagram,” Information & Software Technology 47, no. 13 (October 2005): 859–879.

[Beck 02] Kent Beck. Test-Driven Development by Example. Addison-Wesley, 2002.
[Beck 04] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace

Change, 2nd ed. Addison-Wesley, 2004.
[Beizer 90] B. Beizer. Software Testing Techniques, 2nd ed. International Thomson Computer

Press, 1990.
[Bellcore 98] Bell Communications Research. GR-1230-CORE, SONET Bidirectional Line-

Switched Ring Equipment Generic Criteria. 1998.
[Bellcore 99] Bell Communications Research. GR-1400-CORE, SONET Dual-Fed

Unidirectional Path Switched Ring (UPSR) Equipment Generic Criteria. 1999.
[Bellomo 15] S. Bellomo, I. Gorton, and R. Kazman. “Insights from 15 Years of ATAM Data:

Towards Agile Architecture,” IEEE Software 32, no. 5 (September/October 2015): 38–45.
[Benkler 07] Y. Benkler. The Wealth of Networks: How Social Production Transforms Markets

and Freedom. Yale University Press, 2007.
[Bertolino 96a] Antonia Bertolino and Lorenzo Strigini. “On the Use of Testability Measures

for Dependability Assessment,” IEEE Transactions on Software Engineering 22, no. 2
(February 1996): 97–108.

[Bertolino 96b] A. Bertolino and P. Inverardi. “Architecture-Based Software Testing,” in
Proceedings of the Second International Software Architecture Workshop (ISAW-2),
L. Vidal, A. Finkelstain, G. Spanoudakis, and A. L. Wolf, eds. Joint Proceedings of the
SIGSOFT ’96 Workshops, San Francisco, October 1996. ACM Press.

[Biffl 10] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grunbacher, eds. Value-Based
Software Engineering. Springer, 2010.

[Binder 94] R. V. Binder. “Design for Testability in Object-Oriented Systems,” CACM 37, no. 9
(1994): 87–101.

[Binder 00] R. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley, 2000.

[Boehm 78] B. W. Boehm, J. R. Brown, J. R. Kaspar, M. L. Lipow, and G. MacCleod.
Characteristics of Software Quality. American Elsevier, 1978.

[Boehm 81] B. Boehm. Software Engineering Economics. Prentice Hall, 1981.
[Boehm 91] Barry Boehm. “Software Risk Management: Principles and Practices,” IEEE

Software 8, no. 1 (January 1991): 32–41.

http://sei.cmu.edu/library/abstracts/reports/08tr006.cfm

References 401

[Boehm 04] B. Boehm and R. Turner. Balancing Agility and Discipline: A Guide for the
Perplexed. Addison-Wesley, 2004.

[Boehm 07] B. Boehm, R. Valerdi, and E. Honour. “The ROI of Systems Engineering: Some
Quantitative Results for Software Intensive Systems,” Systems Engineering 11, no. 3
(2007): 221–234.

[Boehm 10] B. Boehm, J. Lane, S. Koolmanojwong, and R. Turner. “Architected Agile
Solutions for Software-Reliant Systems,” Technical Report USC-CSSE-2010-516, 2010.

[Bondi 14] A. B. Bondi. Foundations of Software and System Performance Engineering:
Process, Performance Modeling, Requirements, Testing, Scalability, and Practice.
Addison-Wesley, 2014.

[Booch 11] Grady Booch. “An Architectural Oxymoron,” podcast available at computer.org/
portal/web/computingnow/onarchitecture. Retrieved January 21, 2011.

[Bosch 00] J. Bosch. “Organizing for Software Product Lines,” Proceedings of the 3rd
International Workshop on Software Architectures for Product Families (IWSAPF-3),
pp. 117–134. Las Palmas de Gran Canaria, Spain, March 15–17, 2000. Springer, 2000.

[Bouwers 10] E. Bouwers and A. van Deursen. “A Lightweight Sanity Check for Implemented
Architectures,” IEEE Software 27, no. 4 (July/August 2010): 44–50.

[Bredemeyer 11] D. Bredemeyer and R. Malan. “Architect Competencies: What You Know, What
You Do and What You Are,” http://www.bredemeyer.com/Architect/ArchitectSkillsLinks.htm.

[Brewer 12] E. Brewer. “CAP Twelve Years Later: How the ‘Rules’ Have Changed,” IEEE
Computer (February 2012): 23–29.

[Brown 10] N. Brown, R. Nord, and I. Ozkaya. “Enabling Agility through Architecture,”
Crosstalk (November/December 2010): 12–17.

[Brownsword 96] Lisa Brownsword and Paul Clements. “A Case Study in Successful Product
Line Development,” Technical Report CMU/SEI-96-TR-016, October 1996.

[Brownsword 04] Lisa Brownsword, David Carney, David Fisher, Grace Lewis, Craig Meterys,
Edwin Morris, Patrick Place, James Smith, and Lutz Wrage. “Current Perspectives on
Interoperability,” CMU/SEI-2004-TR-009, sei.cmu.edu/reports/04tr009.pdf.

[Bruntink 06] Magiel Bruntink and Arie van Deursen. “An Empirical Study into Class
Testability,” Journal of Systems and Software 79, no. 9 (2006): 1219–1232.

[Buschmann 96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture Volume 1: A System of Patterns.
Wiley, 1996.

[Cai 11] Yuanfang Cai, Daniel Iannuzzi, and Sunny Wong. “Leveraging Design Structure
Matrices in Software Design Education,” Conference on Software Engineering Education
and Training 2011, pp. 179–188.

[Cappelli 12] Dawn M. Cappelli, Andrew P. Moore, and Randall F. Trzeciak. The CERT Guide
to Insider Threats: How to Prevent, Detect, and Respond to Information Technology
Crimes (Theft, Sabotage, Fraud). Addison-Wesley, 2012.

[Carriere 10] J. Carriere, R. Kazman, and I. Ozkaya. “A Cost-Benefit Framework for Making
Architectural Decisions in a Business Context,” Proceedings of 32nd International
Conference on Software Engineering (ICSE 32), Capetown, South Africa, May 2010.

http://computer.org/portal/web/computingnow/onarchitecture
http://computer.org/portal/web/computingnow/onarchitecture
http://www.bredemeyer.com/Architect/ArchitectSkillsLinks.htm
http://sei.cmu.edu/reports/04tr009.pdf

402 References

[Cataldo 07] M. Cataldo, M. Bass, J. Herbsleb, and L. Bass. “On Coordination Mechanisms in
Global Software Development,” Proceedings Second IEEE International Conference on
Global Software Development, 2007.

[Cervantes 13] H. Cervantes, P. Velasco, and R. Kazman. “A Principled Way of Using
Frameworks in Architectural Design,” IEEE Software (March/April 2013): 46–53.

[Cervantes 16] H. Cervantes and R. Kazman. Designing Software Architectures: A Practical
Approach. Addison-Wesley, 2016.

[Chandran 10] S. Chandran, A. Dimov, and S. Punnekkat. “Modeling Uncertainties in the
Estimation of Software Reliability: A Pragmatic Approach,” Fourth IEEE International
Conference on Secure Software Integration and Reliability Improvement, 2010.

[Chang 06] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, et al. “Bigtable: A Distributed
Storage System for Structured Data,” Proceedings of Operating Systems Design and
Implementation, 2006, http://research.google.com/archive/ bigtable.html.

[Chen 10] H.-M. Chen, R. Kazman, and O. Perry. “From Software Architecture Analysis to
Service Engineering: An Empirical Study of Enterprise SOA Implementation,” IEEE
Transactions on Services Computing 3, no. 2 (April–June 2010): 145–160.

[Chidamber 94] S. Chidamber and C. Kemerer. “A Metrics Suite for Object Oriented Design,”
IEEE Transactions on Software Engineering20, no. 6 (June 1994).

[Chowdury 19] S. Chowdhury, A. Hindle, R. Kazman, T. Shuto, K. Matsui, and Y. Kamei.
“GreenBundle: An Empirical Study on the Energy Impact of Bundled Processing,”
Proceedings of the International Conference on Software Engineering, May 2019.

[Clements 01a] P. Clements and L. Northrop. Software Product Lines. Addison-Wesley, 2001.
[Clements 01b] P. Clements, R. Kazman, and M. Klein. Evaluating Software Architectures.

Addison-Wesley, 2001.
[Clements 07] P. Clements, R. Kazman, M. Klein, D. Devesh, S. Reddy, and P. Verma. “The

Duties, Skills, and Knowledge of Software Architects,” Proceedings of the Working
IEEE/IFIP Conference on Software Architecture, 2007.

[Clements 10a] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Paulo Merson, Robert Nord, and Judith Stafford. Documenting Software
Architectures: Views and Beyond, 2nd ed. Addison-Wesley, 2010.

[Clements 10b] Paul Clements and Len Bass. “Relating Business Goals to Architecturally
Significant Requirements for Software Systems,” CMU/SEI-2010-TN-018, May 2010.

[Clements 10c] P. Clements and L. Bass. “The Business Goals Viewpoint,” IEEE Software 27,
no. 6 (November–December 2010): 38–45.

[Clements 16] Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2016.

[Cockburn 04] Alistair Cockburn. Crystal Clear: A Human-Powered Methodology for Small
Teams. Addison-Wesley, 2004.

[Cockburn 06] Alistair Cockburn. Agile Software Development: The Cooperative Game.
Addison-Wesley, 2006.

[Conway 68] Melvin E. Conway. “How Do Committees Invent?” Datamation 14, no. 4 (1968):
28–31.

http://research.google.com/archive/bigtable.html

References 403

[Coplein 10] J. Coplein and G. Bjornvig. Lean Architecture for Agile Software Development.
Wiley, 2010.

[Coulin 19] T. Coulin, M. Detante, W. Mouchère, F. Petrillo. et al. “Software Architecture
Metrics: A Literature Review,” January 25, 2019, https://arxiv.org/abs/1901.09050.

[Cruz 19] L. Cruz and R. Abreu. “Catalog of Energy Patterns for Mobile Applications,”
Empirical Software Engineering 24 (2019): 2209–2235.

[Cunningham 92] W. Cunningham. “The Wycash Portfolio Management System,” in
Addendum to the Proceedings of Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pp. 29–30. ACM Press, 1992.

[CWE 12] The Common Weakness Enumeration. http://cwe.mitre.org/.
[Dean 04] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing

on Large Clusters,” Proceedings Operating System Design and Implementation, 1994,
http://research.google.com/archive/mapreduce.html.

[Dean 13] Jeffrey Dean and Luiz André Barroso. “The Tail at Scale,” Communications of the
ACM 56, no. 2 (February 2013): 74–80.

[Dijkstra 68] E. W. Dijkstra. “The Structure of the ‘THE’-Multiprogramming System,”
Communications of the ACM 11, no. 5 (1968): 341–346.

[Dijkstra 72] Edsger W. Dijkstra, Ole-Johan Dahl, and Tony Hoare, Structured Programming.
Academic Press, 1972: 175–220.

[Dix 04] Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. Human–Computer
Interaction, 3rd ed. Prentice Hall, 2004.

[Douglass 99] Bruce Douglass. Real-Time Design Patterns: Robust Scalable Architecture for
Real-Time Systems. Addison-Wesley, 1999.

[Dutton 84] J. M. Dutton and A. Thomas. “Treating Progress Functions as a Managerial
Opportunity,” Academy of Management Review 9 (1984): 235–247.

[Eickelman 96] N. Eickelman and D. Richardson. “What Makes One Software Architecture
More Testable Than Another?” in Proceedings of the Second International Software
Architecture Workshop (ISAW-2), L. Vidal, A. Finkelstein, G. Spanoudakis, and A. L.
Wolf, eds., Joint Proceedings of the SIGSOFT ’96 Workshops, San Francisco, October
1996. ACM Press.

[EOSAN 07] “WP 8.1.4—Define Methodology for Validation within OATA: Architecture
Tactics Assessment Process,” eurocontrol.int/valfor/ gallery/content/public/OATA-
P2-D8.1.4-01%20DMVO%20Architecture%20 Tactics%20Assessment%20Process.pdf.

[FAA 00] “System Safety Handbook,” faa.gov/library/manuals/aviation/risk_management/
ss_handbook/.

[Fairbanks 10] G. Fairbanks. Just Enough Software Architecture: A Risk-Driven Approach.
Marshall & Brainerd, 2010.

[Fairbanks 20] George Fairbanks. “Ur-Technical Debt,” IEEE Software 37, no. 4 (April 2020):
95–98.

[Feiler 06] P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger, T. Longstaff, R. Kazman, M.
Klein, L. Northrop, D. Schmidt, K. Sullivan, and K. Wallnau. Ultra-Large-Scale Systems:
The Software Challenge of the Future. sei.cmu.edu/library/assets/ULS_Book20062.pdf.

https://arxiv.org/abs/1901.09050
http://cwe.mitre.org/
http://research.google.com/archive/mapreduce.html
http://faa.gov/library/manuals/aviation/risk_management/ss_handbook/
http://faa.gov/library/manuals/aviation/risk_management/ss_handbook/
http://sei.cmu.edu/library/assets/ULS_Book20062.pdf

404 References

[Feng 16] Q. Feng, R. Kazman, Y. Cai, R. Mo, and L. Xiao. “An Architecture-centric Approach
to Security Analysis,” in Proceedings of the 13th Working IEEE/IFIP Conference on
Software Architecture (WICSA 2016), 2016.

[Fiol 85] C. M. Fiol and M. A. Lyles. “Organizational Learning,” Academy of Management
Review 10, no. 4 (1985):. 803.

[Fonseca 19] A. Fonseca, R. Kazman, and P. Lago. “A Manifesto for Energy-Aware Software,”
IEEE Software 36 (November/December 2019): 79–82.

[Fowler 09] Martin Fowler. “TechnicalDebtQuadrant,” https://martinfowler.com/bliki/
TechnicalDebtQuadrant.html, 2009.

[Fowler 10] Martin Fowler. “Blue Green Deployment,” https://martinfowler.com/bliki/
BlueGreenDeployment.html, 2010.

[Freeman 09] Steve Freeman and Nat Pryce. Growing Object-Oriented Software, Guided by
Tests. Addison-Wesley, 2009.

[Gacek 95] Cristina Gacek, Ahmed Abd-Allah, Bradford Clark, and Barry Boehm. “On the
Definition of Software System Architecture,” USC/CSE-95-TR-500, April 1995.

[Gagliardi 09] M. Gagliardi, W. Wood, J. Klein, and J. Morley. “A Uniform Approach for
System of Systems Architecture Evaluation,” Crosstalk 22, no. 3 (March/April 2009):
12–15.

[Gajjarby 17] Manish J. Gajjarby. Mobile Sensors and Context-Aware Computing. Morgan
Kaufman, 2017.

[Gamma 94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[Garlan 93] D. Garlan and M. Shaw. “An Introduction to Software Architecture,” in Ambriola
and Tortola, eds., Advances in Software Engineering & Knowledge Engineering, Vol. II.
World Scientific Pub., 1993, pp. 1–39.

[Garlan 95] David Garlan, Robert Allen, and John Ockerbloom. “Architectural Mismatch or
Why It’s Hard to Build Systems out of Existing Parts,” 17th International Conference on
Software Engineering, April 1995.

[Gilbert 07] T. Gilbert. Human Competence: Engineering Worthy Performance. Pfeiffer,
Tribute Edition, 2007.

[Gokhale 05] S. Gokhale, J. Crigler, W. Farr, and D. Wallace. “System Availability Analysis
Considering Hardware/Software Failure Severities,” Proceedings of the 29th Annual
IEEE/NASA Software Engineering Workshop (SEW ’05), Greenbelt, MD, April 2005.
IEEE, 2005.

[Gorton 10] Ian Gorton. Essential Software Architecture, 2nd ed. Springer, 2010.
[Graham 07] T. C. N. Graham, R. Kazman, and C. Walmsley. “Agility and Experimentation:

Practical Techniques for Resolving Architectural Tradeoffs,” Proceedings of the 29th
International Conference on Software Engineering (ICSE 29), Minneapolis, MN, May
2007.

[Gray 93] Jim Gray and Andreas Reuter. Distributed Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[Grinter 99] Rebecca E. Grinter. “Systems Architecture: Product Designing and Social
Engineering,” in Proceedings of the International Joint Conference on Work Activities

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html

References 405

Coordination and Collaboration (WACC ’99), Dimitrios Georgakopoulos, Wolfgang
Prinz, and Alexander L. Wolf, eds. ACM, 1999, pp. 11–18.

[Hamm 04] “Linus Torvalds’ Benevolent Dictatorship,” BusinessWeek, August 18, 2004, busi-
nessweek.com/technology/content/aug2004/tc20040818_1593.htm.

[Hamming 80] R. W. Hamming. Coding and Information Theory. Prentice Hall, 1980.
[Hanmer 13] Robert S. Hanmer. Patterns for Fault Tolerant Software, Wiley Software Patterns

Series, 2013.
[Harms 10] R. Harms and M. Yamartino. “The Economics of the Cloud,” http://economics.

uchicago.edu/pdf/Harms_110111.pdf.
[Hartman 10] Gregory Hartman. “Attentiveness: Reactivity at Scale,” CMU-ISR-10-111, 2010.
[Hiltzik 00] M. Hiltzik. Dealers of Lightning: Xerox PARC and the Dawn of the Computer

Age. Harper Business, 2000.
[Hoare 85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International

Series in Computer Science, 1985.
[Hoffman 00] Daniel M. Hoffman and David M. Weiss. Software Fundamentals: Collected

Papers by David L. Parnas. Addison-Wesley, 2000.
[Hofmeister 00] Christine Hofmeister, Robert Nord, and Dilip Soni. Applied Software

Architecture. Addison-Wesley, 2000.
[Hofmeister 07] Christine Hofmeister, Philippe Kruchten, Robert L. Nord, Henk Obbink,

Alexander Ran, and Pierre America. “A General Model of Software Architecture Design
Derived from Five Industrial Approaches,” Journal of Systems and Software 80, no. 1
(January 2007): 106–126.

[Hohpe 20] Gregor Hohpe. The Software Architect Elevator: Redefining the Architect’s Role
in the Digital Enterprise. O’Reilly, 2020.

[Howard 04] Michael Howard. “Mitigate Security Risks by Minimizing the Code You Expose
to Untrusted Users,” MSDN Magazine, http://msdn.microsoft.com/en-us/magazine/
cc163882.aspx.

[Hubbard 14] D. Hubbard. How to Measure Anything: Finding the Value of Intangibles in
Business. Wiley, 2014.

[Humble 10] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation, Addison-Wesley, 2010.

[IEEE 94] “IEEE Standard for Software Safety Plans,” STD-1228-1994, http://standards.ieee
.org/findstds/standard/1228-1994.html.

[IEEE 17] “IEEE Guide: Adoption of the Project Management Institute (PMI) Standard: A
Guide to the Project Management Body of Knowledge (PMBOK Guide), Sixth Edition,”
projectsmart.co.uk/pmbok.html.

[IETF 04] Internet Engineering Task Force. “RFC 3746, Forwarding and Control Element
Separation (ForCES) Framework,” 2004.

[IETF 05] Internet Engineering Task Force. “RFC 4090, Fast Reroute Extensions to RSVP-TE
for LSP Tunnels,” 2005.

[IETF 06a] Internet Engineering Task Force. “RFC 4443, Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification,” 2006.

http://businessweek.com/technology/content/aug2004/tc20040818__1593.htm
http://businessweek.com/technology/content/aug2004/tc20040818__1593.htm
http://economics.uchicago.edu/pdf/Harms_110111.pdf
http://economics.uchicago.edu/pdf/Harms_110111.pdf
http://msdn.microsoft.com/en-us/magazine/cc163882.aspx
http://msdn.microsoft.com/en-us/magazine/cc163882.aspx
http://standards.ieee.org/findstds/standard/1228-1994.html
http://standards.ieee.org/findstds/standard/1228-1994.html
http://projectsmart.co.uk/pmbok.html

406 References

[IETF 06b] Internet Engineering Task Force. “RFC 4379, Detecting Multi-Protocol Label
Switched (MPLS) Data Plane Failures,” 2006.

[INCOSE 05] International Council on Systems Engineering. “System Engineering
Competency Framework 2010–0205,” incose.org/ProductsPubs/products/competencies-
framework.aspx.

[INCOSE 19] International Council on Systems Engineering, “Feature-Based Systems and
Software Product Line Engineering: A Primer,” Technical Product INCOSE-TP-2019-
002-03-0404, https://connect.incose.org/Pages/Product-Details.aspx?ProductCode=PLE_
Primer_2019.

[Ingeno 18] Joseph Ingeno. Software Architect’s Handbook. Packt Publishing, 2018.
[ISO 11] International Organization for Standardization. “ISO/IEC 25010: 2011 Systems and

Software Engineering—Systems and Software Quality Requirements and Evaluation
(SQuaRE)—System and Software Quality Models.”

[Jacobson 97] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture, Process,
and Organization for Business Success. Addison-Wesley, 1997.

[Johnston 19] Eric Johnston, Nic Harrigan, and Mercedes Gimeno-Segovia, Programming
Quantum Computers. O’Reilly, 2019.

[Kanwal 10] F. Kanwal, K. Junaid, and M.A. Fahiem. “A Hybrid Software Architecture
Evaluation Method for FDD: An Agile Process Mode,” 2010 International Conference on
Computational Intelligence and Software Engineering (CiSE), December 2010, pp. 1–5.

[Kaplan 92] R. Kaplan and D. Norton. “The Balanced Scorecard: Measures That Drive
Performance,” Harvard Business Review (January/February 1992): 71–79.

[Karat 94] Claire Marie Karat. “A Business Case Approach to Usability Cost Justification,” in
Cost-Justifying Usability, R. Bias and D. Mayhew, eds. Academic Press, 1994.

[Kazman 94] Rick Kazman, Len Bass, Mike Webb, and Gregory Abowd. “SAAM: A Method
for Analyzing the Properties of Software Architectures,” in Proceedings of the 16th
International Conference on Software Engineering (ICSE ’94). Los Alamitos, CA. IEEE
Computer Society Press, 1994, pp. 81–90.

[Kazman 99] R. Kazman and S. J. Carriere. “Playing Detective: Reconstructing Software
Architecture from Available Evidence,” Automated Software Engineering 6, no 2 (April
1999): 107–138.

[Kazman 01] R. Kazman, J. Asundi, and M. Klein. “Quantifying the Costs and Benefits of
Architectural Decisions,” Proceedings of the 23rd International Conference on Software
Engineering (ICSE 23), Toronto, Canada, May 2001, pp. 297–306.

[Kazman 02] R. Kazman, L. O’Brien, and C. Verhoef. “Architecture Reconstruction
Guidelines, Third Edition,” CMU/SEI Technical Report, CMU/SEI-2002-TR-034, 2002.

[Kazman 04] R. Kazman, P. Kruchten, R. Nord, and J. Tomayko. “Integrating Software-
Architecture-Centric Methods into the Rational Unified Process,” Technical Report
CMU/SEI-2004-TR-011, July 2004, sei.cmu.edu/library/abstracts/reports/04tr011.cfm.

[Kazman 05] Rick Kazman and Len Bass. “Categorizing Business Goals for Software
Architectures,” CMU/SEI-2005-TR-021, December 2005.

http://incose.org/ProductsPubs/products/competencies-framework.aspx
http://incose.org/ProductsPubs/products/competencies-framework.aspx
https://connect.incose.org/Pages/Product-Details.aspx?ProductCode=PLE_Primer_2019
https://connect.incose.org/Pages/Product-Details.aspx?ProductCode=PLE_Primer_2019
http://sei.cmu.edu/library/abstracts/reports/04tr011.cfm

References 407

[Kazman 09] R. Kazman and H.-M. Chen. “The Metropolis Model: A New Logic for the
Development of Crowdsourced Systems,” Communications of the ACM (July 2009):
76–84.

[Kazman 15] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, and A.
Shapochka. “A Case Study in Locating the Architectural Roots of Technical Debt,” in
Proceedings of the International Conference on Software Engineering (ICSE) 2015,
2015.

[Kazman 18] R. Kazman, S. Haziyev, A. Yakuba, and D. Tamburri. “Managing Energy
Consumption as an Architectural Quality Attribute,” IEEE Software 35, no. 5 (2018).

[Kazman 20a] R. Kazman, P. Bianco, J. Ivers, and J. Klein. “Integrability,” CMU/SEI-
2020-TR-001, 2020.

[Kazman 20b] R. Kazman, P. Bianco, J. Ivers, and J. Klein. “Maintainability,” CMU/SEI-
2020-TR-006, 2020.

[Kircher 03] Michael Kircher and Prashant Jain. Pattern-Oriented Software Architecture
Volume 3: Patterns for Resource Management. Wiley, 2003.

[Klein 10] J. Klein and M. Gagliardi. “A Workshop on Analysis and Evaluation of Enterprise
Architectures,” CMU/SEI-2010-TN-023, sei.cmu.edu/reports/10tn023.pdf.

[Klein 93] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. Gonzalez Harbour. A
Practitioner’s Handbook for Real-Time Systems Analysis. Kluwer Academic, 1993.

[Koopman 10] Phil Koopman. Better Embedded System Software. Drumnadrochit Education,
2010.

[Koziolet 10] H. Koziolek. “Performance Evaluation of Component-Based Software Systems:
A Survey,” Performance Evaluation 67, no. 8 (August 2010).

[Kruchten 95] P. B. Kruchten. “The 4+1 View Model of Architecture,” IEEE Software 12,
no. 6 (November 1995): 42–50.

[Kruchten 03] Philippe Kruchten. The Rational Unified Process: An Introduction, 3rd ed.
Addison-Wesley, 2003.

[Kruchten 04] Philippe Kruchten. “An Ontology of Architectural Design Decisions,” in Jan
Bosch, ed., Proceedings of the 2nd Workshop on Software Variability Management,
Groningen, Netherlands, December 3–4, 2004.

[Kruchten 19] P. Kruchten, R. Nord, and I. Ozkaya. Managing Technical Debt: Reducing
Friction in Software Development. Addison-Wesley, 2019.

[Kumar 10a] K. Kumar and T. V. Prabhakar. “Pattern-Oriented Knowledge Model for
Architecture Design,” in Pattern Languages of Programs Conference 2010, Reno/Tahoe,
NV: October 15–18, 2010.

[Kumar 10b] Kiran Kumar and T. V. Prabhakar. “Design Decision Topology Model for Pattern
Relationship Analysis,” Asian Conference on Pattern Languages of Programs 2010,
Tokyo, Japan, March 15–17, 2010.

[Ladas 09] Corey Ladas. Scrumban: Essays on Kanban Systems for Lean Software
Development. Modus Cooperandi Press, 2009.

[Lamport 98] Leslie Lamport. “The Part-Time Parliament,” ACM Transactions on Computer
Systems 16, no. 2 (May 1998): 133–169.

http://sei.cmu.edu/reports/10tn023.pdf

408 References

[Lampson 11] Butler Lampson, “Hints and Principles for Computer System Design,” https://
arxiv.org/pdf/2011.02455.pdf.

[Lattanze 08] Tony Lattanze. Architecting Software Intensive Systems: A Practitioner’s Guide.
Auerbach Publications, 2008.

[Le Traon 97] Y. Le Traon and C. Robach. “Testability Measurements for Data Flow Designs,”
Proceedings of the 4th International Symposium on Software Metrics (METRICS ’97).
Washington, DC: November 1997, pp. 91–98.

[Leveson 04] Nancy G. Leveson. “The Role of Software in Spacecraft Accidents,” Journal of
Spacecraft and Rockets 41, no. 4 (July 2004): 564–575.

[Leveson 11] Nancy G. Leveson. Engineering a Safer World: Systems Thinking Applied to
Safety. MIT Press, 2011.

[Levitt 88] B. Levitt and J. March. “Organizational Learning,” Annual Review of Sociology 14
(1988): 319–340.

[Lewis 14] J. Lewis and M. Fowler. “Microservices,” https://martinfowler.com/articles/
microservices.html, 2014.

[Liu 00] Jane Liu. Real-Time Systems. Prentice Hall, 2000.
[Liu 09] Henry Liu. Software Performance and Scalability: A Quantitative Approach. Wiley,

2009.
[Luftman 00] J. Luftman. “Assessing Business Alignment Maturity,” Communications of AIS

4, no. 14 (2000).
[Lyons 62] R. E. Lyons and W. Vanderkulk. “The Use of Triple-Modular Redundancy to

Improve Computer Reliability,” IBM Journal of Research and Development 6, no. 2
(April 1962): 200–209.

[MacCormack 06] A. MacCormack, J. Rusnak, and C. Baldwin. “Exploring the Structure of
Complex Software Designs: An Empirical Study of Open Source and Proprietary Code,”
Management Science 52, no 7 (July 2006): 1015–1030.

[MacCormack 10] A. MacCormack, C. Baldwin, and J. Rusnak. “The Architecture of Complex
Systems: Do Core-Periphery Structures Dominate?” MIT Sloan Research Paper no. 4770-
10, hbs.edu/research/pdf/10-059.pdf.

[Malan 00] Ruth Malan and Dana Bredemeyer. “Creating an Architectural Vision: Collecting
Input,” July 25, 2000, bredemeyer.com/pdf_files/vision_input.pdf.

[Maranzano 05] Joseph F. Maranzano, Sandra A. Rozsypal, Gus H. Zimmerman, Guy W.
Warnken, Patricia E. Wirth, and David M. Weiss. “Architecture Reviews: Practice and
Experience,” IEEE Software (March/April 2005): 34–43.

[Martin 17] Robert C. Martin. Clean Architecture: A Craftsman’s Guide to Software Structure
and Design. Pearson, 2017.

[Mavis 02] D. G. Mavis. “Soft Error Rate Mitigation Techniques for Modern Microcircuits,” in
40th Annual Reliability Physics Symposium Proceedings, April 2002, Dallas, TX. IEEE,
2002.

[McCall 77] J. A. McCall, P. K. Richards, and G. F. Walters. Factors in Software Quality.
Griffiths Air Force Base, NY: Rome Air Development Center Air Force Systems
Command.

https://arxiv.org/pdf/2011.02455.pdf
https://arxiv.org/pdf/2011.02455.pdf
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://hbs.edu/research/pdf/10-059.pdf
http://bredemeyer.com/pdf_files/vision_input.pdf

References 409

[McConnell 07] Steve McConnell. “Technical Debt,” construx.com/10x_Software_
Development/Technical_Debt/, 2007.

[McGregor 11] John D. McGregor, J. Yates Monteith, and Jie Zhang. “Quantifying Value
in Software Product Line Design,” in Proceedings of the 15th International Software
Product Line Conference, Volume 2 (SPLC ’11), Ina Schaefer, Isabel John, and Klaus
Schmid, eds.

[Mettler 91] R. Mettler. “Frederick C. Lindvall,” in Memorial Tributes: National Academy of
Engineering, Volume 4. National Academy of Engineering, 1991, pp. 213–216.

[Mo 15] R. Mo, Y. Cai, R. Kazman, and L. Xiao. “Hotspot Patterns: The Formal Definition
and Automatic Detection of Architecture Smells,” in Proceedings of the 12th Working
IEEE/IFIP Conference on Software Architecture (WICSA 2015), 2015.

[Mo 16] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng. “Decoupling Level: A New Metric
for Architectural Maintenance Complexity,” Proceedings of the International Conference
on Software Engineering (ICSE) 2016, Austin, TX, May 2016.

[Mo 18] R. Mo, W. Snipes, Y. Cai, S. Ramaswamy, R. Kazman, and M. Naedele. “Experiences
Applying Automated Architecture Analysis Tool Suites,” in Proceedings of Automated
Software Engineering (ASE) 2018, 2018.

[Moore 03] M. Moore, R. Kazman, M. Klein, and J. Asundi. “Quantifying the Value of
Architecture Design Decisions: Lessons from the Field,” Proceedings of the 25th
International Conference on Software Engineering (ICSE 25), Portland, OR, May 2003,
pp. 557–562.

[Morelos-Zaragoza 06] R. H. Morelos-Zaragoza. The Art of Error Correcting Coding, 2nd ed.
Wiley, 2006.

[Muccini 03] H. Muccini, A. Bertolino, and P. Inverardi. “Using Software Architecture for
Code Testing,” IEEE Transactions on Software Engineering 30, no. 3 (2003): 160–171.

[Muccini 07] H. Muccini. “What Makes Software Architecture-Based Testing Distinguishable,”
in Proceedings of the Sixth Working IEEE/IFIP Conference on Software Architecture,
WICSA 2007, Mumbai, India, January 2007.

[Murphy 01] G. Murphy, D. Notkin, and K. Sullivan. “Software Reflexion Models: Bridging
the Gap between Design and Implementation,” IEEE Transactions on Software
Engineering 27 (2001): 364–380.

[NASEM 19] National Academies of Sciences, Engineering, and Medicine. Quantum Computing:
Progress and Prospects. National Academies Press, 2019. https://doi.org/10.17226/25196.

[Newman 15] Sam Newman. Building Microservices: Designing Fine-Grained Systems.
O’Reilly, 2015.

[Nielsen 08] Jakob Nielsen. “Usability ROI Declining, But Still Strong,” useit.com/alertbox/
roi.html.

[NIST 02] National Institute of Standards and Technology. “Security Requirements for Cryptographic
Modules,” FIPS Pub. 140-2, http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf.

[NIST 04] National Institute of Standards and Technology. “Standards for Security Categor-
ization of Federal Information Systems,” FIPS Pub. 199, http://csrc.nist.gov/publications/
fips/fips199/FIPS-PUB-199-final.pdf.

http://construx.com/10x_Software_Development/Technical_Debt/
https://doi.org/10.17226/25196
http://useit.com/alertbox/roi.html
http://useit.com/alertbox/roi.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf
http://construx.com/10x_Software_Development/Technical_Debt/

410 References

[NIST 06] National Institute of Standards and Technology. “Minimum Security Requirements
for Federal Information and Information Systems,” FIPS Pub. 200, http://csrc.nist.gov/
publications/fips/fips200/FIPS-200-final-march.pdf.

[NIST 09] National Institute of Standards and Technology. “800-53 v3 Recommended
Security Controls for Federal Information Systems and Organizations,” August 2009,
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final.pdf.

[Nord 04] R. Nord, J. Tomayko, and R. Wojcik. “Integrating Software Architecture-Centric
Methods into Extreme Programming (XP),” CMU/SEI-2004-TN-036. Software Engineer-
ing Institute, Carnegie Mellon University, 2004.

[Nygard 18] Michael T. Nygard. Release It!: Design and Deploy Production-Ready Software,
2nd ed. Pragmatic Programmers, 2018.

[Obbink 02] H. Obbink, P. Kruchten, W. Kozaczynski, H. Postema, A. Ran, L. Dominic,
R. Kazman, R. Hilliard, W. Tracz, and E. Kahane. “Software Architecture Review
and Assessment (SARA) Report, Version 1.0,” 2002, http://pkruchten.wordpress.com/
architecture/SARAv1.pdf/.

[O’Brien 03] L. O’Brien and C. Stoermer. “Architecture Reconstruction Case Study,” CMU/
SEI Technical Note, CMU/SEI-2003-TN-008, 2003.

[ODUSD 08] Office of the Deputy Under Secretary of Defense for Acquisition and Technology.
“Systems Engineering Guide for Systems of Systems, Version 1.0,” 2008, acq.osd.mil/se/
docs/SE-Guide-for-SoS.pdf.

[Oki 88] Brian Oki and Barbara Liskov. “Viewstamped Replication: A New Primary Copy
Method to Support Highly-Available Distributed Systems,” PODC ‘88: Proceedings of
the Seventh Annual ACM Symposium on Principles of Distributed Computing, January
1988, pp. 8–17, https://doi.org/10.1145/62546.62549.

[Palmer 02] Stephen Palmer and John Felsing. A Practical Guide to Feature-Driven
Development. Prentice Hall, 2002.

[Pang 16] C. Pang, A. Hindle, B. Adams, and A. Hassan. “What Do Programmers Know about
Software Energy Consumption?,” IEEE Software 33, no. 3 (2016): 83–89.

[Paradis 21] C. Paradis, R. Kazman, and D. Tamburri. “Architectural Tactics for Energy
Efficiency: Review of the Literature and Research Roadmap,” Proceedings of the Hawaii
International Conference on System Sciences (HICSS) 54 (2021).

[Parnas 72] D. L. Parnas. “On the Criteria to Be Used in Decomposing Systems into Modules,”
Communications of the ACM 15, no. 12 (December 1972).

[Parnas 74] D. Parnas. “On a ‘Buzzword’: Hierarchical Structure,” in Proceedings of IFIP
Congress 74, pp. 336–339. North Holland Publishing Company, 1974.

[Parnas 76] D. L. Parnas. “On the Design and Development of Program Families,” IEEE
Transactions on Software Engineering, SE-2, 1 (March 1976): 1–9.

[Parnas 79] D. Parnas. “Designing Software for Ease of Extension and Contraction,” IEEE
Transactions on Software Engineering, SE-5, 2 (1979): 128–137.

[Parnas 95] David Parnas and Jan Madey. “Functional Documents for Computer Systems,” in
Science of Computer Programming. Elsevier, 1995.

[Paulish 02] Daniel J. Paulish. Architecture-Centric Software Project Management: A Practical
Guide. Addison-Wesley, 2002.

http://csrc.nist.gov/publications/fips/fips200/FIPS-200-final-march.pdf
http://csrc.nist.gov/publications/fips/fips200/FIPS-200-final-march.pdf
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final.pdf
http://pkruchten.wordpress.com/architecture/SARAv1.pdf/
http://pkruchten.wordpress.com/architecture/SARAv1.pdf/
https://doi.org/10.1145/62546.62549

References 411

[Pena 87] William Pena. Problem Seeking: An Architectural Programming Primer. AIA
Press, 1987.

[Perry 92] Dewayne E. Perry and Alexander L. Wolf. “Foundations for the Study of Software
Architecture,” SIGSOFT Software Engineering Notes 17, no. 4 (October 1992): 40–52.

[Pettichord 02] B. Pettichord. “Design for Testability,” Pacific Northwest Software Quality
Conference, Portland, Oregon, October 2002.

[Procaccianti 14] G. Procaccianti, P. Lago, and G. Lewis. “A Catalogue of Green Architectural
Tactics for the Cloud,” in IEEE 8th International Symposium on the Maintenance and
Evolution of Service-Oriented and Cloud-Based Systems, 2014, pp. 29–36.

[Powel Douglass 99] B. Powel Douglass. Doing Hard Time: Developing Real-Time Systems
with UML, Objects, Frameworks, and Patterns. Addison-Wesley, 1999.

[Raiffa 00] H. Raiffa & R. Schlaifer. Applied Statistical Decision Theory. Wiley, 2000.
[SAE 96] SAE International, “ARP-4761: Guidelines and Methods for Conducting the Safety

Assessment Process on Civil Airborne Systems and Equipment,” December 1, 1996,
sae.org/standards/content/arp4761/.

[Sangwan 08] Raghvinder Sangwan, Colin Neill, Matthew Bass, and Zakaria El Houda.
“Integrating a Software Architecture-Centric Method into Object-Oriented Analysis and
Design,” Journal of Systems and Software 81, no. 5 (May 2008): 727–746.

[Sato 14] D. Sato. “Canary Deployment,” https://martinfowler.com/bliki/CanaryRelease.html,
2014.

[Schaarschmidt 20] M. Schaarschmidt, M. Uelschen, E. Pulvermuellerm, and C. Westerkamp.
“Framework of Software Design Patterns for Energy-Aware Embedded Systems,”
Proceedings of the 15th International Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE 2020), 2020.

[Schmerl 06] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H. Yan. “Discovering
Architectures from Running Systems,” IEEE Transactions on Software Engineering 32,
no. 7 (July 2006): 454–466.

[Schmidt 00] Douglas Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects. Wiley, 2000.

[Schmidt 10] Klaus Schmidt. High Availability and Disaster Recovery: Concepts, Design,
Implementation. Springer, 2010.

[Schneier 96] B. Schneier. Applied Cryptography. Wiley, 1996.
[Schneier 08] Bruce Schneier. Schneier on Security. Wiley, 2008.
[Schwaber 04] Ken Schwaber. Agile Project Management with Scrum. Microsoft Press, 2004.
[Scott 09] James Scott and Rick Kazman. “Realizing and Refining Architectural Tactics:

Availability,” Technical Report CMU/SEI-2009-TR-006, August 2009.
[Seacord 13] Robert Seacord. Secure Coding in C and C++. Addison-Wesley, 2013.
[SEI 12] Software Engineering Institute. “A Framework for Software Product Line Practice,

Version 5.0,” sei.cmu.edu/productlines/frame_report/ PL.essential.act.htm.
[Shaw 94] Mary Shaw. “Procedure Calls Are the Assembly Language of Software Interconnections:

Connectors Deserve First-Class Status,” Carnegie Mellon University Technical Report,
1994, http://repository.cmu.edu/cgi/viewcontent.cgi?article=1234&context=sei.

http://sae.org/standards/content/arp4761/
https://martinfowler.com/bliki/CanaryRelease.html
http://sei.cmu.edu/productlines/frame_report/
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1234&context=sei

412 References

[Shaw 95] Mary Shaw. “Beyond Objects: A Software Design Paradigm Based on Process
Control,” ACM Software Engineering Notes 20, no. 1 (January 1995): 27–38.

[Smith 01] Connie U. Smith and Lloyd G. Williams. Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software. Addison-Wesley, 2001.

[Soni 95] Dilip Soni, Robert L. Nord, and Christine Hofmeister. “Software Architecture in
Industrial Applications,” International Conference on Software Engineering 1995, April
1995, pp. 196–207.

[Stonebraker 09] M. Stonebraker. “The ‘NoSQL’ Discussion Has Nothing to Do with SQL,”
http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-
with-sql/fulltext.

[Stonebraker 10a] M. Stonebraker. “SQL Databases v. NoSQL Databases,” Communications
of the ACM 53, no 4 (2010): 10.

[Stonebraker 10b] M. Stonebraker, D. Abadi, D. J. Dewitt, S. Madden, E. Paulson, A. Pavlo,
and A. Rasin. “MapReduce and Parallel DBMSs,” Communications of the ACM 53
(2010): 6.

[Stonebraker 11] M. Stonebraker. “Stonebraker on NoSQL and Enterprises,” Communications
of the ACM 54, no. 8 (2011): 10.

[Storey 97] M.-A. Storey, K. Wong, and H. Müller. “Rigi: A Visualization Environment for
Reverse Engineering (Research Demonstration Summary),” 19th International Conference
on Software Engineering (ICSE 97), May 1997, pp. 606–607. IEEE Computer Society
Press.

[Svahnberg 00] M. Svahnberg and J. Bosch. “Issues Concerning Variability in Software Product
Lines,” in Proceedings of the Third International Workshop on Software Architectures for
Product Families, Las Palmas de Gran Canaria, Spain, March 15–17, 2000, pp. 50–60.
Springer, 2000.

[Taylor 09] R. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture: Foundations,
Theory, and Practice. Wiley, 2009.

[Telcordia 00] Telcordia. “GR-253-CORE, Synchronous Optical Network (SONET) Transport
Systems: Common Generic Criteria.” 2000.

[Urdangarin 08] R. Urdangarin, P. Fernandes, A. Avritzer, and D. Paulish. “Experiences with
Agile Practices in the Global Studio Project,” Proceedings of the IEEE International
Conference on Global Software Engineering, 2008.

[USDOD 12] U.S. Department of Defense, “ Standard Practice: System Safety, MIL-STD-
882E,” May 11, 2012, dau.edu/cop/armyesoh/DAU%20Sponsored%20Documents/MIL-
STD-882E.pdf.

[Utas 05] G. Utas. Robust Communications Software: Extreme Availability, Reliability, and
Scalability for Carrier-Grade Systems. Wiley, 2005.

[van der Linden 07] F. van der Linden, K. Schmid, and E. Rommes. Software Product Lines in
Action. Springer, 2007.

[van Deursen 04] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and C. Riva.
“Symphony: View-Driven Software Architecture Reconstruction,” Proceedings of the
4th Working IEEE/IFIP Conference on Software Architecture (WICSA 2004), June 2004,
Oslo, Norway. IEEE Computer Society.

http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext
http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext
http://dau.edu/cop/armyesoh/DAU%20Sponsored%20Documents/MILSTD-882E.pdf
http://dau.edu/cop/armyesoh/DAU%20Sponsored%20Documents/MILSTD-882E.pdf

References 413

[van Vliet 05] H. van Vliet. “The GRIFFIN Project: A GRId For inFormatIoN about
Architectural Knowledge,” http://griffin.cs.vu.nl/, Vrije Universiteit, Amsterdam, April
16, 2005.

[Verizon 12] “Verizon 2012 Data Breach Investigations Report,” verizonbusiness.com/
resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf.

[Vesely 81] W.E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. “Fault Tree Handbook,”
nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/ sr0492.pdf.

[Vesely 02] William Vesely, Michael Stamatelatos, Joanne Dugan, Joseph Fragola, Joseph
Minarick III, and Jan Railsback. “Fault Tree Handbook with Aerospace Applications,”
hq.nasa.gov/office/codeq/doctree/fthb.pdf.

[Viega 01] John Viega and Gary McGraw. Building Secure Software: How to Avoid Security
Problems the Right Way. Addison-Wesley, 2001.

[Voas 95] Jeffrey M. Voas and Keith W. Miller. “Software Testability: the New Verification,”
IEEE Software 12, no. 3 (May 1995): 17–28.

[Von Neumann 56] J. Von Neumann. “Probabilistic Logics and the Synthesis of Reliable
Organisms from Unreliable Components,” in Automata Studies, C. E. Shannon and
J. McCarthy, eds. Princeton University Press, 1956.

[Wojcik 06] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and W.
Wood. “Attribute-Driven Design (ADD), Version 2.0,” Technical Report CMU/SEI-
2006-TR-023, November 2006, sei.cmu.edu/library/abstracts/reports/06tr023.cfm.

[Wood 07] W. Wood. “A Practical Example of Applying Attribute-Driven Design (ADD),
Version 2.0,” Technical Report CMU/SEI-2007-TR-005, February 2007, sei.cmu.edu/
library/abstracts/reports/07tr005.cfm.

[Woods 11] E. Woods and N. Rozanski. Software Systems Architecture: Working with Stake-
holders Using Viewpoints and Perspectives, 2nd ed. Addison-Wesley, 2011.

[Wozniak 07] J. Wozniak, V. Baggiolini, D. Garcia Quintas, and J. Wenninger. “Software Inter-
locks System,” Proceedings of ICALEPCS07, http://ics-web4.sns.ornl.gov/icalepcs07/
WPPB03/WPPB03.PDF.

[Wu 04] W. Wu and T. Kelly, “Safety Tactics for Software Architecture Design,” Proceedings
of the 28th Annual International Computer Software and Applications Conference
(COMPSAC), 2004.

[Wu 06] W. Wu and T. Kelly. “Deriving Safety Requirements as Part of System Architecture
Definition,” in Proceedings of 24th International System Safety Conference. Albuquerque,
NM: System Safety Society, August 2006.

[Xiao 14] L. Xiao, Y. Cai, and R. Kazman. “Titan: A Toolset That Connects Software
Architecture with Quality Analysis,” Proceedings of the 22nd ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (FSE 2014), 2014.

[Xiao 16] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng. “Identifying and Quantifying
Architectural Debts,” Proceedings of the International Conference on Software
Engineering (ICSE) 2016, 2016.

[Yacoub 02] S. Yacoub and H. Ammar. “A Methodology for Architecture-Level Reliability
Risk Analysis,” IEEE Transactions on Software Engineering 28, no. 6 (June 2002).

[Yin 94] James Bieman and Hwei Yin. “Designing for Software Testability Using Automated
Oracles,” Proceedings International Test Conference, September 1992, pp. 900–907.

http://griffin.cs.vu.nl/
http://verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf
http://hq.nasa.gov/office/codeq/doctree/fthb.pdf
http://sei.cmu.edu/library/abstracts/reports/06tr023.cfm
http://sei.cmu.edu/library/abstracts/reports/07tr005.cfm
http://sei.cmu.edu/library/abstracts/reports/07tr005.cfm
http://ics-web4.sns.ornl.gov/icalepcs07/WPPB03/WPPB03.PDF
http://ics-web4.sns.ornl.gov/icalepcs07/WPPB03/WPPB03.PDF

This page intentionally left blank

415

About the Authors

Len Bass is an award-winning author who has lectured widely around the world. His books
on software architecture are standards. In addition to his books on software architecture, Len
has also written books on User Interface Software and DevOps. Len has over 50 years’ expe-
rience in software development, 25 of those at the Software Engineering Institute of Carnegie
Mellon. He also worked for three years at NICTA in Australia and is currently an adjunct fac-
ulty member at Carnegie Mellon University, where he teaches DevOps.

Dr. Paul Clements is the Vice President of Customer Success at BigLever Software, Inc.,
where he works to spread the adoption of systems and software product line engineering. Prior
to this, he was a senior member of the technical staff at Carnegie Mellon University’s Software
Engineering Institute, where for 17 years he worked leading or co-leading projects in soft-
ware product line engineering and software architecture design, documentation, and analysis.
Prior to the SEI, he was a computer scientist with the U.S. Naval Research Laboratory in
Washington, DC, where his work involved applying advanced software engineering principles
to real-time embedded systems.

In addition to this book, Clements is the co-author of two other practitioner-oriented
books about software architecture: Documenting Software Architectures: Views and Beyond
and Evaluating Software Architectures: Methods and Case Studies.bHe also co-wrote Software
Product Lines: Practices and Patterns and was co-author and editor of Constructing Superior
Software. In addition, Clements has authored about a hundred papers in software engineering,
reflecting his long-standing interest in the design and specification of challenging software
systems.

Rick Kazman is a Professor at the University of Hawaii and a Visiting Researcher at the
Software Engineering Institute of Carnegie Mellon University. His primary research inter-
ests are software architecture, design and analysis tools, software visualization, and software
engineering economics. Kazman has been involved in the creation of several highly influen-
tial methods and tools for architecture analysis, including the ATAM (Architecture Tradeoff
Analysis Method), the CBAM (Cost-Benefit Analysis Method), and the Dali and Titan tools.bIn
addition to this book, he is the author of over 200 publications and is co-author of three patents
and eight books, including Technical Debt: How to Find It and Fix It, Designing Software
Architectures: A Practical Approach, Evaluating Software Architectures: Methods and Case

416 About the Authors

Studies, and Ultra-Large-Scale Systems: The Software Challenge of the Future. His research
has been cited over 25,000 times, according to Google Scholar. He is currently thebchair of
the IEEE TAC (Technical Activities Committee), Associate Editor for IEEE Transactions on
Software Engineering, and a member of the ICSE Steering Committee.

417

Index
A/B testing, 86
Abort tactic, 159
Abstract common services, 108
Abstract data sources for testability, 189
Abstraction, architecture as, 3
ACID (atomic, consistent, isolated, and durable)

properties, 61
Acronym lists in documentation, 346
Active redundancy, 66
Activity diagrams for traces, 342–343
Actors

attack, 174
elements, 217

Actuators
mobile systems, 263, 267–268
safety concerns, 151–152

Adapt tactic for integrability, 108–109, 111
ADD method. See Attribute-Driven Design

(ADD) method
ADLs (architecture description languages), 331
Aggregation for usability, 201
Agile development, 370–373
Agile Manifesto, 371–372
Air France flight 447, 152
Allocated-to relation

allocation views, 337
deployment structure, 15

Allocation structures, 10, 15–16
Allocation views

documentation, 348–350
overview, 337–338

Allowed-to-use relationship, 128–129
Alternative requests in long tail latency, 252
Amazon service-level agreements, 53
Analysis

ADD method, 295, 304–305
ATAM, 318–319, 321
automated, 363–364

Analysts
documentation, 350
software interface documentation for, 229

Analytic redundancy tactic
availability, 58
safety, 159

Apache Camel project, 356–359
Apache Cassandra database, 360–361
Applications for quantum computing, 396–397
Approaches

ATAM, 317–319, 321
CIA, 169
Lightweight Architecture Evaluation, 325

Architects
communication with, 29
competence, 379–385
duties, 379–383
evaluation by, 311
knowledge, 384–385
mentoring, 387–388
mobile system concerns, 264–273
role. See Role of architects
skills, 383–384

Architectural debt
automation, 363–364
determining, 356–358
example, 362–363
hotspots, 358–362
introduction, 355–356
quantifying, 363
summary, 364

Architectural structures, 7–10
allocation, 15–16
C&C, 14–16
limiting, 18
module, 10–14
relating to each other, 15–18
selecting, 18
table of, 17
views, 5–6

Architecturally significant requirements (ASRs)
ADD method, 289–290
from business goals, 282–284
change, 286

418 Index

introduction, 277–278
from requirements documents, 278–279
stakeholder interviews, 279–282
summary, 286–287
utility trees for, 284–286

Architecture
changes, 27
cloud. See Cloud and distributed computing
competence. See Competence
debt. See Architectural debt
design. See Design and design strategy
documentation. See Documentation
evaluating. See Evaluating architecture
integrability, 102–103
modifiability. See Modifiability
patterns. See Patterns
performance. See Performance
QAW drivers, 281
QAW plan presentation, 280
quality attributes. See Quality attributes
requirements. See Architecturally significant

requirements (ASRs); Requirements
security. See Security
structures. See Architectural structures
tactics. See Tactics
testability. See Testability
usability. See Usability

Architecture description languages (ADLs), 331
Architecture Tradeoff Analysis Method

(ATAM), 313
approaches, 317–319, 321
example exercise, 321–324
outputs, 314–315
participants, 313–314
phases, 315–316
presentation, 316–317
results, 321
scenarios, 318
steps, 316–321

Ariane 5 explosion, 151
Artifacts

ADD method, 291
availability, 53
continuous deployment, 74
deployability, 76
energy efficiency, 91
in evaluation, 312

integrability, 104
modifiability, 120–121
performance, 136
quality attributes expressions, 43–44
safety, 154
security, 171
testability, 186
usability, 198

Aspects for testability, 190
ASRs. See Architecturally significant

requirements (ASRs)
Assertions for system state, 190
Assurance levels in design, 164
Asynchronous electronic communication, 375
ATAM. See Architecture Tradeoff Analysis

Method (ATAM)
Atomic, consistent, isolated, and durable (ACID)

properties, 61
Attachment relation for C&C structures, 14–16
Attachments in C&C views, 335
Attribute-Driven Design (ADD) method

analysis, 295, 304–305
design concepts, 295–298
design decisions, 294
documentation, 301–303
drivers, 292–294
element choice, 293–294
element instantiation, 299–300
inputs, 292
overview, 289–291
prototypes, 297–298
responsibilities, 299–300
steps, 292–295
structures, 298–301
summary, 306
views, 294, 301–302

Attributes. See Quality attributes
Audiences for documentation, 330–331
Audits, 176
Authenticate actors tactic, 174
Authorize actors tactic, 174
Automation, 363–364
Autoscaling in distributed computing, 258–261
Availability

CIA approach, 169
cloud, 253–261
detect faults tactic, 56–59

Index 419

general scenario, 53–55
introduction, 51–52
patterns, 66–69
prevent faults tactic, 61–62
questionnaires, 62–65
recover from faults tactics, 59–61
tactics overview, 55–56

Availability of resources tactic, 139
Availability quality attribute, 285
Availability zones, 248

Backlogs in ADD method, 304
Bandwidth in mobile systems, 267
Bare-metal hypervisors, 235
Barrier tactic, 159–160, 162
Battery management systems (BMSs), 264
BDUF (Big Design Up Front), 370–371
Behavior

documenting, 340–345
in software architecture, 4

Behavioral semantic distance in architecture
integrability, 103

Bell, Alexander Graham, 263–264
Best practices in design concepts, 296
Big Design Up Front (BDUF), 370–371
Binding

dynamic discovery services, 114
integrability, 109
modifiability, 122, 124–125

Blocked time performance effects, 138–139
Blue/green deployment pattern, 83
BMSs (battery management systems), 264
Bound execution times tactic, 141
Bound queue sizes tactic, 142
Box-and-line drawings in C&C views, 336
Brainstorming

ATAM, 320
Lightweight Architecture Evaluation, 325
QAW, 281
scenarios, 281, 320

Bridges pattern, 112
Bugs, 355, 356, 362
Buildability architecture category, 208
Business goals

ASRs from, 282–284
ATAM, 314, 316–317
categorization, 283–284

evaluation process, 312
views for, 332

Business/mission presentation in QAW, 280
Business support, architect duties for, 382

C&C structures. See Component-and-connector
(C&C) patterns and structures

Caching
performance, 142
REST, 224

Camel project, 356–359
Canary testing pattern, 85
Cancel command, 200
Capturing ASRs in utility trees, 284–286
Car stereo systems, 344
Cassandra database, 360–361
Categorization of business goals, 283–284
Central processor unit (CPU) in virtualization,

234
Change

ASRs, 286
modifiability. See Modifiability
reasoning and managing, 27

Change credential settings tactic, 175
Chaos Monkey, 184–185
Chaucer, Geoffrey, 379
Chimero, Frank, 197
CIA (confidentiality, integrity, and availability)

approach, 169
Circuit breaker tactic, 67–68
Classes

energy efficiency, 93–94
patches, 60
structure, 13
testability, 191

Client/server constraints in REST, 224
Client-server pattern, 126–127
Cliques, 361–362
Cloud and distributed computing

autoscaling, 258–261
basics, 248–250
data coordination, 258
failures, 251–253
introduction, 247
load balancers, 253–256
long tail latency, 252–253
mobile systems, 270

420 Index

performance, 253–261
state management, 256–257
summary, 261
time coordination, 257
timeouts, 251–252

CNOT operations for qubits, 393
Co-locate communicating resources tactic,

140–141
Code, mapping to, 334
Code on demand in REST, 225
Cohesion

in modifiability, 122–123
in testability, 191

Cold spare tactic, 66
Combining views, 339–340
Commission issues in safety, 153
Common services in integrability, 108
Communication

architect role in, 368
architect skills, 383
distributed development, 375
documentation for, 330
stakeholder, 28–30

Communication diagrams for traces, 342
Communication path restrictions, 107
Communications views, 338
Comparison tactic for safety, 158
Compatibility

C&C views, 335
quality attributes, 211

Competence
architects, 379–385
introduction, 379
mentoring, 387–388
program state sets, 62
software architecture organizations, 386–387
summary, 388

Complex numbers in quantum computing, 392
Complexity

quality attributes, 45–46
in testability, 190–191

Component-and-connector (C&C) patterns and
structures, 7–8

incremental architecture, 369
types, 14–16
views, combining, 339–340
views, documentation, 348–350

views, notations, 336–339
views, overview, 335–337

Components, 4
independently developed, 34–35
replacing for testability, 190

Comprehensive models for behavior
documentation, 341

Comprehensive notations for state machine
diagrams, 343–344

Computer science knowledge of architects,
384–385

Conceptual integrity of architecture, 208
Concrete quality attribute scenarios, 43–44
Concurrency

C&C views, 14, 336
handling, 135
resource management, 141

Condition monitoring tactic
availability, 57
safety, 158

Confidentiality, integrity, and availability (CIA)
approach, 169

Configurability quality attribute, 285
Configuring behavior for integrability, 109
Conformity Monkey, 184
Connectivity in mobile systems, 263, 266–267
Connectors in C&C views, 335–337
Consistency

mobile system data, 272
software interface design, 222

Consolidation in QAW, 281
Constraints

allocation views, 337
C&C views, 336
on implementation, 31–32
modular views, 333

Contacts in distributed development, 375
Containers

autoscaling, 260–261
virtual machines, 239–242

Containment tactics, 158–159, 161–162
Contention for resources tactic, 138–139
Context diagrams, 345–346
Contextual factors in evaluation, 312–313
Continuous deployment, 72–75
Control information in documentation, 346
Control resource demand tactic, 139–141, 145

Index 421

Control tactics for testability, 188–190, 192
Controllable deployments, 76
Converting data for mobile system sensors, 268
Conway, Damian, 329
Conway’s law, 37
Coordinate tactic in integrability, 109–110, 112
Copying qubits, 394
Costs

architect role in, 368
of change, 118
distributed development, 374
estimates, 33–34
independently developed elements for, 35
mobile systems, 270

Coupling
exchanged data representation, 226
in modifiability, 122–126
in testability, 190–191

Cousins, Norman, 101
CPU (central processor unit) in virtualization, 234
Criticality in mobile systems, 270
Crossing anti-patterns, 360
CRUD operations in REST, 225
Customers, communication with, 28
Customization of user interface, 201
Cybersecurity, quantum computing for, 396–397
Cycle time in continuous deployment, 73–74
Cyclic dependency, 360, 362

DAL (Design Assurance Level), 164
Darwin, Charles, 117
Data coordination in distributed computing, 258
Data model category, 13–14
Data replication, 142
Data semantic distance in architecture

integrability, 103
de Saint-Exupéry, Antoine, 289
Deadline monotonic prioritization strategy, 143
Debt. See Architectural debt
Decision makers on ATAM teams, 313
Decisions

documenting, 347
mapping to quality requirements, 315
quality design, 48–49

Decomposition
module, 10, 16
views, 16, 18, 340

Defer binding tactic, 124–126
Degradation tactic

availability, 60
safety, 159

Demand reduction for energy efficiency, 95, 97
Demilitarized zones (DMZs), 174
Denial-of-service attacks, 51
Dependencies

anti-patterns, 360
architectural debt, 356
architecture integrability, 102
on computations, 139
deployment, 79
limiting, 106–107, 111
modifiability, 119, 124

Dependency injection pattern, 193
Depends-on relation for modules, 333
Deployability, 71

continuous deployment, 72–75
general scenarios, 76–77
overview, 75–76
patterns, 81–86
questionnaires, 80–81
tactics, 78–80

Deployment pipelines, 72, 79–80
Deployment structure, 15
Deployment views

combining, 340
purpose, 332

Deprecation of software interfaces, 220
Design and design strategy, 289

ADD. See Attribute-Driven Design (ADD)
method

assurance levels, 164
early decisions, 31
quality attributes, 214
software interfaces, 222–228

Design Assurance Level (DAL), 164
Design structure matrices (DSMs), 356–358
Designers, documentation for, 349
Detect attacks tactics, 172–174, 177
Detect faults tactic, 56–59, 63
Detect intrusion tactic, 172
Detect message deliveries anomalies tactic, 174
Detect service denial tactic, 172
Developers, documentation for, 229, 348
Development, incremental, 33

422 Index

Development distributability attribute, 208–209
Development environments, 72
Deviation, failure from, 51
Devices in mobile systems, 272
DevOps, 74–75
Discovery

energy efficiency, 94
integrability, 108–109

Disk storage in virtualization, 234
Displaying information in mobile systems,

270–271
Distances

architecture integrability, 102–103
mobile system connectivity, 266

Distributed computing. See Cloud and
distributed computing

Distributed development, 373–375
DMZs (demilitarized zones), 174
DO-178C document, 164
Doctor Monkey, 185
Documentation

ADD decisions, 294
ADD method, 301–303
architect duties, 381
behavior, 340–345
contents, 345–346
distributed development, 375
introduction, 329
notations, 331–332
practical considerations, 350–353
rationale, 346–347
software interfaces, 228–229
stakeholders, 347–350
summary, 353
traceability, 352–353
uses and audiences for, 330–331
views. See Views

Domain knowledge of architects, 385
Don’t repeat yourself principle, 222
Drivers

ADD method, 292–294
QAW, 281

Duties, 379–383
Dynamic allocation views, 338
Dynamic classification in energy efficiency, 94
Dynamic discovery pattern, 114
Dynamic environments, documenting, 352
Dynamic priority scheduling strategies, 143–144

E-scribes, 314
Earliest-deadline-first scheduling strategy, 143
Early design decisions, 31
EC2 cloud service, 53, 184
ECUs (electronic control units) in mobile

systems, 269–270
Edge cases in mobile systems, 271
Education, documentation as, 330
Efficiency, energy. See Energy efficiency
Efficient deployments, 76
Einstein, Albert, 385
Electric power for cloud centers, 248
Electronic control units (ECUs) in mobile

systems, 269–270
Elements

ADD method, 293–294, 299–300
allocation views, 337
C&C views, 336
defined, 4
modular views, 333
software interfaces, 217–218

Emergent approach, 370–371
Emulators for virtual machines, 236
Enabling quality attributes, 26
Encapsulation in integrability, 106
Encrypt data tactic, 175
Encryption in quantum computing, 394–395
End users, documentation for, 349–350
Energy efficiency, 89–90

general scenario, 90–91
patterns, 97–98
questionnaire, 95–97
tactics, 92–95

Energy for mobile systems, 263–265
Entanglement in quantum computing, 393–394
Enterprise architecture vs. system architecture,

4–5
Environment

allocation views, 337–338
availability, 54
continuous deployment, 72
deployability, 76
energy efficiency, 91
integrability, 104
modifiability, 120–121
performance, 136
quality attributes expressions, 43–44
safety, 154

Index 423

security, 171
software interfaces, 217
testability, 186
usability, 198
virtualization effects, 73

Environmental concerns with mobile systems,
269

Errors
description, 51
error-handling views, 339
software interface handling of, 227–228
in usability, 197

Escalating restart tactic, 60–61
Estimates, cost and schedule, 33–34
Evaluating architecture

architect duties, 311, 381
ATAM. See Architecture Tradeoff Analysis

Method (ATAM)
contextual factors, 312–313
key activities, 310–311
Lightweight Architecture Evaluation,

324–325
outsider analysis, 312
peer review, 311–312
questionnaires, 326
risk reduction, 309–310
summary, 326–327

Events
performance, 133
software interfaces, 219–220

Evolution of software interfaces, 220–221
Evolutionary dependencies in architectural debt,

356
Exception detection tactic, 58–59
Exception handling tactic, 59
Exception prevention tactic, 62
Exception views, 339
Exchanged data in software interfaces, 225–227
Executable assertions for system state, 190
Experience in design, 296
Expressiveness concern for exchanged data

representation, 225
Extendability in mobile systems, 273
EXtensible Markup Language (XML), 226
Extensions for software interfaces, 220
External interfaces, 300–301
Externalizing change, 125

Failures
availability. See Availability
cloud, 251–253
description, 51

Fault tree analysis (FTA), 153
Faults

description, 51–52
detection, 55
prevention, 61–62
recovery from, 59–61

Feature toggle in deployment, 80
FIFO (first-in/first-out) queues, 143
Firewall tactic, 159
First-in/first-out (FIFO) queues, 143
First principles from tactics, 47
Fixed-priority scheduling, 143
Flexibility

defer binding tactic, 124
independently developed elements for, 35

Follow-up phase in ATAM, 316
Forensics, documentation for, 330
Formal documentation notations, 331
Forward error recovery pattern, 68
Foster, William A., 39
FTA (fault tree analysis), 153
Fuller, R. Buckminster, 1
Function patches, 59
Function testing in mobile systems, 272
Functional redundancy

availability, 58
containment, 159

Functional requirements, 40–41
Functional suitability of quality attributes, 211
Functionality

C&C views, 336
description, 40

Fusion of mobile system sensors, 268
Future computing. See Quantum computing

Gateway elements in software interfaces, 223
Gehry, Frank, 367
General Data Protection Regulation (GDPR)

cloud, 248
privacy concerns, 170

Generalization structure, 13
Get method for system state, 188
Gibran, Kahlil, 169

424 Index

Glossaries in documentation, 346
Goals. See Business goals
Good architecture, 19–20
Graceful degradation, 60
Granular deployments, 75
Granularity of gateway resources, 223
Grover’s algorithm, 395

HAD operations for qubits, 393
Hardware in mobile systems, 271
Harrow, Aram W., 396
Hashes in quantum computing, 395
Hassidim, Avinatan, 396
Hawking, Stephen, 89
Health checks for load balancers, 255–256
Heartbeats for fault detection, 57, 318
Hedged requests in long tail latency, 252
HHL algorithm, 396
Hiatus stage in ATAM, 320
High availability. See Availability
Highway systems, 144
Hosted hypervisors, 235–236
Hot spare tactic, 66
Hotspots

architectural debt, 358–362
identifying, 362–363

Hotz, Robert Lee, 217
HTTP commands for REST, 225
Hubs for mobile system sensors, 267
Human body structure, 5–6
Human resource management, architect role for,

368
Hybrid clouds, 248
Hypertext for documentation, 351
Hypervisors for virtual machines, 235–237
Hyrum’s law, 229

Identify actors tactic, 174
IEEE standards for mobile system connectivity,

266
Ignore faulty behavior tactic, 60
Images for virtual machines, 238, 260
Implementation

constraints, 31–32
modules, 334
structure, 15

Implicit coupling, 226

In-service software upgrade (ISSU), 60
Increase cohesion tactic, 125
Increase competence set tactic, 62
Increase efficiency tactic, 144
Increase efficiency of resource usage tactic, 141
Increase resources tactic, 141, 144
Increase semantic coherence tactic, 122–123
Incremental architecture, 369–370
Incremental development, 33
Inform actors tactic, 176
Informal contacts in distributed development,

375
Informal notations for documentation, 331
Infrastructure support personnel, documentation

for, 350
Inheritance anti-pattern, 360
Inherits-from relation, 13
Inhibiting quality attributes, 26
Inputs in ADD method, 292
Instances in cloud, 253–261
Integrability

architecture, 102–103
general scenario, 104–105
introduction, 101–102
patterns, 112–114
questionnaires, 110–112
tactics, 105–110

Integration environments, 72
Integration management, architect role in, 368
Integrators, documentation for, 349
Integrity in CIA approach, 169
Intercepting filter pattern, 194
Intercepting validator pattern, 179
Interfaces

ADD method, 300–301
anti-patterns, 360
mismatch in deployability, 85
mobile system connectivity, 266
software. See Software interfaces

Interlock tactic, 160
Intermediaries in integrability, 107
Intermediate states in failures, 51
Intermittent mobile system connectivity, 267
Internal interfaces, 301
Internet Protocol (IP) addresses

cloud, 260
virtualization, 234

Index 425

Interoperability in exchanged data
representation, 225

Interpersonal skills, 383
Interviewing stakeholders, 279–282
Introduce concurrency tactic, 141
Intrusion prevention system (IPS) pattern,

179–180
Iowability, 212
IP (Internet Protocol) addresses

cloud, 260
virtualization, 234

Is-a relation, 333
Is-a-submodule-of relation, 10
Is-an-instance-of relation, 13
Is-part-of relation, 333
ISO 25010 standard, 40, 209–212
ISSU (in-service software upgrade), 60
Issue information in architectural debt, 356
Iterations

ADD method, 295, 304
agile development, 370–371

Janitor Monkey, 185
Jarre, Jean-Michel, 51
JavaScript Object Notation (JSON), 226–227

Kanban boards, 304–305
Kill abnormal tasks pattern, 97–98
Knowledge

architects, 379–381, 384–385
design concepts, 296

Labor availability and costs in distributed
development, 374

LAE (Lightweight Architecture Evaluation)
method, 324–325

LAMP stacks, 240
Lamport, Leslie, 247, 258
Latency in cloud, 252–253
Latency Monkey, 184
Lawrence Livermore National Laboratory, 45
Layer structures, 11–12
Layered views, 332
Layers pattern, 128–129
Leaders on ATAM teams, 314
Learning issues in usability, 197
Least-slack-first scheduling strategy, 143

Levels, restart, 60–61
Life cycle in mobile systems, 263, 270–273
Lightweight Architecture Evaluation (LAE)

method, 324–325
Likelihood of change, 117
Limit access tactic, 174
Limit complexity tactic, 190–192
Limit consequences tactic, 159, 162
Limit dependencies tactic, 106–107, 111
Limit event response tactic, 140
Limit exposure tactic, 175
Limit nondeterminism tactic, 191
Limit structural complexity tactic, 190–191
Lloyd, Seth, 396
Load balancer pattern for performance, 147
Load balancers

description, 141
distributed computing, 253–256

Local changes, 27
Localize state storage for testability, 189
Location factors in mobile systems, 270
Location independence in modifiability, 119
Locks in data coordination, 258
Logical threads in concurrency, 14
Logs for mobile systems, 273
Long tail latency in cloud, 252–253
Longfellow, Henry Wadsworth, 25
Loss of mobile system power, 265

Macros for testability, 190
Maintain multiple copies tactic, 144
Maintain multiple copies of computations tactic,

141
Maintain multiple copies of data tactic, 142
Maintain system model tactic, 201
Maintain task model tactic, 201
Maintain user model tactic, 201
Maintainability quality attribute, 211, 285
Maintainers, documentation for, 229, 349
Manage deployed system tactic, 79–80
Manage event rate tactic, 144
Manage resources tactic, 141–142, 145–146
Manage sampling rate tactic

performance, 139–140
quality attributes, 47

Manage service interactions tactic, 79
Manage work requests tactic, 139–140

426 Index

Management information in modules, 334
Managers, communication with, 29
Map function, 148–149
Map-reduce pattern, 148–149
Mapping

to requirements, 315
to source code units, 334
between views, 345

Market knowledge in distributed development,
374

Marketability category for quality, 208
“Mars Probe Lost Due to Simple Math Error,”

217
Masking tactic, 159
Matrix inversion in quantum computing, 396
MCAS software, 152–153
Mean time between failures (MTBF), 52
Mean time to repair (MTTR), 52
Mediators pattern, 113
Meetings in distributed development, 375
Memento pattern, 205
Memory

quantum computing, 395–396
virtualization, 234

Mentoring and architects, 387–388
Metering in energy efficiency, 93
Microkernel pattern, 127–128
Microservice architecture pattern, 81–82
Migrates-to relation, 15
Missile launch incident, 152
Mixed initiative in usability, 197
Mobile systems

energy usage, 263–265
introduction, 263–264
life cycle, 270–273
network connectivity, 266–267
resources, 268–270
sensors and actuators, 267–268
summary, 273–274

Model-View-Controller (MVC) pattern, 203–204
Modeling tools, documentation for, 351
Models

quality attributes, 213–214
transferable and reusable, 34

Modifiability
general scenario, 120–121
introduction, 117–119

managing, 27
mobile system connectivity, 266
patterns, 126–130
questionnaires, 125–126
tactics, 121–126
in usability, 201

Modularity violations, 360
Modules and module patterns, 7, 9

coupling, 122
description, 2–3
documentation, 348–350
incremental architecture, 369
types, 10–14
views, 333–334

Monitor-actuator pattern, 163
Monitor tactic, 56–57
Monitoring mobile system power, 264–265
MTBF (mean time between failures), 52
MTTR (mean time to repair), 52
Multiple instances in cloud, 253–261
Multiple software interfaces, 218
Multitasking, 135
MVC (Model-View-Controller) pattern, 203–204

Names for modules, 334
Nash, Ogden, 355
National Institute of Standards and Technology

(NIST)
PII, 170
quantum computing, 394

Near Field Communication (NFC), 266
Netflix

map-reduce, 148
Simian Army, 184–185

Network connectivity
mobile systems, 263, 266–267
virtualization, 234

Network Time Protocol (NTP) for time
coordination, 257

Network transitions in mobile systems, 271
Networked services, 35
NFC (Near Field Communication), 266
NIST (National Institute of Standards and

Technology)
PII, 170
quantum computing, 394

Nondeterminism in testability, 191

Index 427

Nonlocal changes, 27
Nonrepudiation tactic, 176
Nonrisks in ATAM, 314–315
Nonstop forwarding tactic, 61
NOT operations for qubits, 393
Notations

C&C views, 336–339
documentation, 331–332

Notifications for failures, 51
NTP (Network Time Protocol) for time

coordination, 257

Object-oriented systems in testability, 190
Objects in sequence diagrams, 341
Observability of failures, 52
Observe system state tactics, 188–190, 192
Observer pattern, 204
Off-the-shelf components, 35
Omissions as safety factor, 153
Open system software, 35
Operating systems with containers, 241–242
Operations in software interfaces, 219–220
Orchestrate tactic, 109–110
Organizations, architecture influence on, 32
Out of sequence events as safety factor, 153
Outages. See Availability
Outputs in ATAM, 314–315
Outsider evaluation, 312
Overlay views, 339

Package cycles anti-pattern, 360
Package dependencies in deployment, 79
PALM method, 283
Parameter fence tactic, 58
Parameter typing tactic, 58
Parity, environment, 73
Partial replacement of services patterns, 85–86
Partial system deployment in mobile systems,

273
Partnership and preparation phase in ATAM, 315
Passive redundancy, 66
Patches, 59–60
Patterns

ADD method, 299
architectural, 18
availability, 66–69

C&C. See Component-and-connector (C&C)
patterns and structures

deployability, 81–86
documenting, 345
energy efficiency, 97–98
integrability, 112–114
modifiability, 126–130
partial replacement of services, 85–86
performance, 146–149
quality attributes tactics, 46–47
safety, 163–164
security, 179–180
testability, 192–194
usability, 203–205

Pause/resume command, 201
Peer review, 311–312
People management, architect duties for, 382
Performance

C&C views, 335
cloud, 253–261
control resource demand tactics, 139–141
efficiency, 211
exchanged data representation, 225
general scenario, 134–137
introduction, 133–134
manage resources tactics, 141–142
patterns, 146–149
quality attribute, 47, 211, 285
questionnaires, 145–146
tactics overview, 137–139
views, 339
virtual machines, 237

Periodic cleaning tactic, 141
Personally identifiable information (PII), 170
Personnel-related competence, 386
Petrov, Stanislav Yevgrafovich, 152
Phases

ATAM, 315–316
quantum computing, 392–393

PII (personally identifiable information), 170
Ping/echo tactic, 57
Pipelines, deployment, 72, 79–80
Platforms, architect knowledge about, 385
Plug-in pattern, 127–128
PMBOK (Project Management Body of

Knowledge), 368

428 Index

Pods in virtualization, 242–243
Pointers, smart, 62
Policies, scheduling, 143–144
Portability

containers, 242
modifiability, 119
quality attributes, 42, 211

Power for mobile systems, 264–265
Power monitor pattern, 98
Power station catastrophe, 151
Predicting system qualities, 28
Predictive model tactic

availability, 62
safety, 157

Preemptible processes, 143
Preparation-and-repair tactic, 59–60
Preprocessor macros, 190
Presentation

ATAM, 314–317
Lightweight Architecture Evaluation, 325
QAW, 280

Prevent faults
questionnaire, 65
tactics, 61–62

Principle of least surprise, 222
Principles, design fragments from, 47
Prioritize events tactic, 140, 144
Prioritizing

ATAM scenarios, 320
Lightweight Architecture Evaluation

scenarios, 325
QAW, 281
schedules, 143–144

Privacy issues, 170
Private clouds, 248
Probabilities in quantum computing, 392–393
Process pairs pattern, 68
Process recommendations, 19
Process-related competence, 387
Processing time in performance, 138
Procurement management, architect role in, 368
Production environments, 72
Programming knowledge of architects, 384
Project management, architect duties for, 382
Project Management Body of Knowledge

(PMBOK), 368

Project managers
documentation for, 347–348
working with, 367–368

Project roles. See Role of architects
Properties

ADD method, 300
software interfaces, 219–220

Protocol Buffer technology, 227
Protocols for mobile system connectivity, 266
Prototypes in ADD method, 297–298
Public clouds, 248
Publicly available apps, 35
Publish-subscribe connectors, 335
Publish-subscribe pattern, 129–130
Publisher role, 335

QAW (Quality Attribute Workshop), 280–281
QPUs, 392–393
QRAM (quantum random access memory),

395–396
Quality Attribute Workshop (QAW), 280–281
Quality attributes, 207

architecture, 208
ASRs, 280–281
ATAM, 317–318
capture scenarios, 213
considerations, 41–42
design approaches, 214
development distributability, 208–209
inhibiting and enabling, 26
introduction, 39
Lightweight Architecture Evaluation, 325
models, 213–214
quality design decisions, 48–49
requirements, 42–45
standard lists, 209–212
summary, 49
system, 209
tactics, 45–46
X-ability, 212–214

Quality design decisions, 48–49
Quality management, architect role for, 368
Quality of products as business goal, 283
Quality requirements, mapping decisions to, 315
Quality views, 338–339
Quantifying architectural debt, 363

Index 429

Quantum computing
algorithms, 395–396
applications, 396–397
encryption, 394–395
future of, 397
introduction, 391–392
matrix inversion, 396
qubits, 392–393
teleportation, 394

Quantum random access memory (QRAM),
395–396

Qubits
description, 392–393
teleportation, 394

Questioners on ATAM teams, 314
Questionnaires

architecture evaluation, 326
availability, 62–65
deployability, 80–81
energy efficiency, 95–97
integrability, 110–112
modifiability, 125–126
performance, 145–146
quality attributes, 48–49
safety, 160–162
security, 176–178
testability, 192
usability, 202–203

Bound queue sizes tactic, 142

Race conditions, 135
Rate monotonic prioritization strategy, 143
Rationale

documentation, 346–347
views, 346

Raw data with mobile system sensors, 268
React to attacks tactics, 175–176, 178
READ operations for qubits, 393
Reconfiguration tactic, 60
Record/playback method for system state, 189
Recover from attacks tactics, 176, 178
Recover from faults tactics, 59–61, 64–65
Recovery tactic, 160, 162
Redistribute responsibilities tactic, 122–123
Reduce computational overhead tactic, 140, 144
Reduce coupling tactic, 123–126
Reduce function in performance, 148–149

Reduce indirection tactic, 140
Redundancy tactics

availability, 58–59, 66–67
safety, 158–159, 161–162

Redundant sensors pattern, 163
Reference architectures in ADD method, 299
Refined scenarios in QAW, 281
Refinement in ADD method, 293
Regions in cloud, 248
Reintroduction tactics, 60–61
Rejuvenation tactic, 61
Relations

ADD elements, 294, 300
allocation views, 337
architectural structures, 16–18
C&C views, 336
modular views, 333

Release strategy, documenting, 351
Reliability

C&C views, 335
independently developed elements for, 35
quality attributes, 211
quality views, 339

Remote Procedure Call (RPC), 224
Removal from service tactic, 61
Repair tactic, 160
Repeatability in continuous deployment, 74
Replacement of services patterns, 82–85
Replication tactic

availability, 58
safety, 159

Report method for system state, 188
Representation and structure of exchanged data,

225–227
Representation of architecture, 3
Representational State Transfer (REST)

protocol, 224–225
Requirements

architect duties, 382
ASRs. See Architecturally significant

requirements (ASRs)
functional, 40–41
mapping to, 315
quality attributes, 42–45
system availability, 53

Reset method for system state, 188
Resist attacks tactics, 174–175, 177–178

430 Index

Resource distance in architecture integrability,
103

Resources
C&C views, 335
contention for, 138
integrability management of, 110
mobile systems, 263, 268–271
monitoring in energy efficiency, 93–96
in performance, 138
sandboxing, 189
software interfaces, 217, 219
virtualization, 234

Response
availability, 54
deployability, 76
energy efficiency, 91
integrability, 104
modifiability, 120–121
performance, 136
quality attribute expressions, 43–44
safety, 154
security, 171
testability, 186
usability, 199

Response measure
availability, 54
deployability, 77
energy efficiency, 91
integrability, 104
modifiability, 120–121
performance, 137
quality attribute expressions, 43–44
safety, 155
security, 171
testability, 187
usability, 199

Responsibilities
ADD method, 300
modules, 334

REST (Representational State Transfer) protocol,
224–225

Restart tactic, 60–61
Restrict dependencies tactic, 124
Restrict login tactic, 175–176
Restrictions on vocabulary, 35–36
Results

ATAM, 321

evaluation, 312
Lightweight Architecture Evaluation, 325

Retry tactic, 60
Reusable models, 34
Reviews, peer, 311–312
Revision history

architectural debt, 356
modules, 334

Revoke access tactic, 175
Risk

architect role in managing, 368
ATAM, 314–315
evaluation process, 309–310

Role of architects, 367
agile development, 370–373
distributed development, 373–375
incremental architecture, 369–370
project manager interaction, 367–368
summary, 376

Rollback tactic
deployment, 79
fault recovery, 59
safety, 160

Rolling upgrade deployment pattern, 83–84
Round-robin scheduling strategy, 143
Rounds in ADD method, 291
RPC (Remote Procedure Call), 224
Runtime engines in containers, 239
Runtime extensibility in C&C views, 336
Rutan, Burt, 183

SAFe (Scaled Agile Framework), 373
Safety

general scenario, 154–155
introduction, 151–153
mobile systems, 269, 272–273
patterns, 163–164
questionnaires, 160–162
tactics, 156–160

Sampling rate tactic, 139–140
Sandbox tactic, 189
Sanity checking tactic

availability, 57
safety, 158

Satisfaction in usability, 197
Scalability in modifiability, 119
Scale rollouts, 79

Index 431

Scaled Agile Framework (SAFe), 373
Scaling in distributed computing, 258–261
Scenario scribes, 314
Scenarios

ATAM, 318–320
availability, 53–55
deployability, 76–77
energy efficiency, 90–91
integrability, 104–105
Lightweight Architecture Evaluation, 325
modifiability, 120–121
performance, 134–137
QAW, 281
quality attributes, 42–45, 213
safety, 154–155
security, 170–172
testability, 186–187
usability, 198–199

Schedule resources tactic
performance, 142
quality attributes, 47

Scheduled downtimes, 52
Schedules

estimates, 33–34
policies, 143–144
of resources for energy efficiency, 94

Scope
architect management role in, 368
software interfaces, 223

Script deployment commands, 79
Security

C&C views, 336
general scenario, 170–172
introduction, 169
mobile system connectivity, 267
patterns, 179–180
privacy issues, 170
quality attributes, 211
questionnaires, 176–178
tactics, 172–176
views, 338

Security Monkey, 185
Security quality attribute, 285
Selection

design concepts, 296–297
tools and technology, 382

Self-test tactic, 59

Semantic importance strategy, 143
Semantics, resource, 219
Semiformal documentation notations, 331
Sensitivity points in ATAM, 315
Sensor fusion pattern, 97
Sensors in mobile systems, 263, 267–268
Separate entities tactic, 175
Separated safety pattern, 163–164
Separation of concerns

testability, 191
virtual machines, 238

Sequence diagrams for traces, 341–342
Sequence omission and commission as safety

factor, 153
Serverless architecture in virtualization, 243–244
Service impact of faults, 52
Service-level agreements (SLAs)

Amazon, 53
availability in, 52–53

Service mesh pattern, 146–147
Service-oriented architecture (SOA) pattern,

113–114
Service structure, 14
Set method for system state, 188
737 MAX aircraft, 152–153
Shadow tactic, 60
Shared resources in virtualization, 234
Shushenskaya hydroelectric power station, 151
Simian Army, 184–185
Size

modules, 122
queue, 142

Skeletal systems, 33
Sketches in ADD method, 301–302
Skills

architects, 379–381, 383–384
distributed development, 374

SLAs (service-level agreements)
Amazon, 53
availability in, 52–53

Small interfaces principle, 222
Smart pointers, 62
Smoothing data for mobile system sensors, 268
SOA (service-oriented architecture) pattern,

113–114
Software architecture importance, 25–26

change management, 27

432 Index

constraints, 31–32
cost and schedule estimates, 33–34
design decisions, 31
incremental development, 33
independently developed elements, 34–35
organizational structure, 32
quality attributes, 26
stakeholder communication, 28–30
summary, 36–37
system qualities prediction, 28
training basis, 36
transferable, reusable models, 34
vocabulary restrictions, 35–36

Software architecture overview, 1. See also
Architecture

as abstraction, 3
behavior in, 4
competence, 386–387
definitions, 2
good and bad, 19–20
patterns, 18
as set of software structures, 2–3
structures and views, 5–18
summary, 21
system architecture vs. enterprise, 4–5

Software Engineering Body of Knowledge
(SWEBOK), 278

Software for mobile systems, 272
Software interfaces

designing, 222–228
documentation, 228–229
error handling, 227–228
evolution, 220–221
introduction, 217–218
multiple, 218
operations, events, and properties, 219–220
representation and structure of exchanged

data, 225–227
resources, 219
scope, 223
styles, 224–225
summary, 230

Software rejuvenation tactic, 61
Software upgrade tactic, 59–60
Source

architectural debt, 356

deployability, 76
energy efficiency, 91
integrability, 104
modifiability, 120–121
performance, 136
safety, 154
security, 170
testability, 186
usability, 198

Source code, mapping to, 334
Spare tactic, 66
Specialized interfaces tactic, 188–189
Spikes in agile development, 370
Split module tactic, 122
Staging environments, 72
Stakeholders

on ATAM teams, 313–314
communication among, 28–30, 330
documentation, 347–350
evaluation process, 312
incremental architecture, 369–370
interviewing, 279–282

Standards in integrability, 107–108
State, system, 188–190, 192
State machine diagrams, 343–345
State management in distributed computing,

256–257
State resynchronization tactic, 60
Stateless interactions in REST, 224
Static allocation views, 338
Static classification for energy efficiency,

93–94
Static scheduling, 144
Stein, Gertrude, 144
Stimulus

availability, 53
deployability, 76
energy efficiency, 91
integrability, 104
modifiability, 120–121
performance, 136
quality attributes expressions, 42–44
safety, 154
security, 171
testability, 186
usability, 198

Index 433

Storage
for testability, 189
virtualization, 234

Strategy pattern for testability, 193–194
Stroustrup, Bjarne, 277
Structural complexity in testability, 190–191
Structures in ADD method, 298–301
Stuxnet virus, 151
Styles for software interfaces, 224–225
Submodules, 334
Subscriber role, 335
Substitution tactic, 156–157
Subsystems, 6
Super-tactics, 47
Superposition in quantum computing, 392
Support system initiative tactic, 201–203
SWEBOK (Software Engineering Body of

Knowledge), 278
Syntactic distance in architecture integrability,

102–103
Syntax for resources, 219
System analysis and construction, documentation

for, 330
System architecture vs. enterprise architecture,

4–5
System availability requirements, 53
System efficiency in usability, 197
System exceptions tactic, 58
System initiative in usability, 197
System qualities, predicting, 28
System quality attributes, 209
System values as safety factor, 153
Systems integrators and testers, software

interface documentation for, 229

Tactics
ADD method, 299–300
architecture evaluation, 326
availability, 55–65
deployability, 78–81
energy efficiency, 92–97
integrability, 105–112
modifiability, 121–125
performance, 137–146
quality attributes, 45–46, 48–49
safety, 156–162

security, 172–178
testability, 187–192
usability, 200–203

Tailor interface tactic, 109
Team building skills, 383
Teams in ATAM, 313–314
Technical debt. See Architecture debt
Technology knowledge of architects, 385
Technology-related competence, 387
Teleportation in quantum computing, 394
Temporal distance in architecture integrability,

103
Temporal inconsistency in deployability, 85
10-18 Monkey, 185
Test harnesses, 184
Testability

general scenario, 186–187
introduction, 183–185
patterns, 192–194
questionnaires, 192
tactics, 187–191

Testable requirements, 278
Testers, documentation for, 349
Tests and testing

continuous deployment, 72–73
mobile systems, 271–272
modules, 334

Therac 25 radiation overdose, 151
Therapeutic reboot tactic, 61
Thermal limits in mobile systems, 269
Threads

concurrency, 135
virtualization, 234

Throttling mobile system power, 265
Throttling pattern for performance, 148
Throughput of systems, 137
Tiered system architectures in REST, 225
Time and time management

architect role, 368
performance, 133

Time coordination in distributed computing, 257
Time to market, independently developed

elements for, 35
Timeout tactic

availability, 58–59
safety, 157–158

434 Index

Timeouts in cloud, 251–252
Timestamp tactic

availability, 57
safety, 158

Timing as safety factor, 153
TMR (triple modular redundancy), 67
Traceability

continuous deployment, 74
documentation, 352–353

Traces for behavior documentation, 341–342
Tradeoffs in ATAM, 315
Traffic systems, 144
Training, architecture for, 36
Transactions in availability, 61
Transducers in mobile systems, 267
Transferable models, 34
Transforming existing systems, 381
Transparency in exchanged data representation,

226
Triple modular redundancy (TMR), 67
Two-phase commits, 61
Type 1 hypervisors, 235
Type 2 hypervisors, 235

UML. See Unified Modeling Language (UML)
Unambiguous requirements, 278
Undo command, 200–201
Unified Modeling Language (UML)

activity diagrams, 342–343
C&C views, 336–337
communication diagrams, 342
sequence diagrams, 341–342
state machine diagrams, 343–345

Uniform access principle, 222
Uniform interface in REST, 224
Unity of purpose in modules, 122
Unsafe state avoidance tactic, 156–157, 161
Unsafe state detection tactic, 157–158, 161
Unstable interfaces anti-pattern, 360
Updates for mobile systems, 272–273
Usability

general scenario, 198–199
introduction, 197–198
patterns, 203–205
quality attributes, 211
questionnaires, 202–203
tactics, 200–202

Usability quality attribute, 285
Usage

allocation views, 337
C&C views, 336
modular views, 333
reducing in energy efficiency, 94

Use an intermediary tactic, 47
Use cases for traces, 341
User initiative in usability, 197
User interface customization, 201
User needs in usability, 197
Users, communication with, 28
Uses

for documentation, 330–331
views for, 332

Uses structure in decomposition, 10–12
Utility trees

ASRs, 284–286
ATAM, 317–318, 320
Lightweight Architecture Evaluation, 325

Validate input tactic, 175
Variability guides for views, 346
Variability in modifiability, 119
Vector clocks for time coordination, 257
Verify message integrity tactic, 174
Versioning in software interfaces, 220
Views, 332–333

ADD method, 294, 301–302
allocation, 337–338
architectural structures, 5–6
C&C overview, 335–337
combining, 339–340
documentation, 348–350
mapping between, 345
module, 333–334
notations, 336–339
quality, 338–339

Virtualization and virtual machines
autoscaling, 259–260
cloud, 249–250
containers, 239–242
environment effects from, 73
images, 238
introduction, 233
layers as, 11
Pods, 242–243

Index 435

in sandboxing, 189
serverless architecture, 243–244
shared resources, 234
summary, 244
virtual machine overview, 235–238

Vocabulary
quality attributes, 42
restrictions, 35–36

Voting tactic, 57–58
Vulnerabilities in security views, 338

Warm spare tactic, 66
Watchdogs, 57
Waterfall model, 370

Web-based system events, 133
West, Mae, 133
Wikis for documentation, 351
WiMAX standards, 266
Work assignment structures, 15–16
Work-breakdown structures, 32
Work skills of architect, 384
Wrappers pattern, 112
Wright, Frank Lloyd, 309

X-ability, 212–214
XML (EXtensible Markup Language), 226

Z operations for qubits, 393

This page intentionally left blank

437

Special permission to reproduce portions of the following works copyright by Carnegie Mellon
University is granted by the Software Engineering Institute:

Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, Reed Little, Robert
Nord, and Judith A. Stafford. “Software Architecture Documentation in Practice: Documenting
Architectural Layers,” CMU/SEI-2000-SR-004, March 2000.

Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, Reed Little, Robert Nord,
and Judith A. Stafford. “Documenting Software Architectures: Organization of Documentation
Package,” CMU/SEI-2001-TN-010, August 2001.

Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, Reed Little, Robert
Nord, and Judith A. Stafford. “Documenting Software Architecture: Documenting Behavior,”
CMU/SEI-2002-TN-001, January 2002.

Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, Reed Little, Robert
Nord, and Judith A. Stafford. “Documenting Software Architecture: Documenting Interfaces,”
CMU/SEI-2002-TN-015, June 2002.

Felix Bachmann and Paul Clements. “Variability in Product Lines,” CMU/SEI-2005-TR-012,
September 2005.

Felix Bachmann, Len Bass, and Robert Nord. “Modifiability Tactics,” CMU/SEI-2007-TR-
002, September 2007.

Mario R. Barbacci, Robert Ellison, Anthony J. Lattanze, Judith A. Stafford, Charles B.
Weinstock, and William G. Wood. “Quality Attribute Workshops (QAWs), Third Edition,”
CMU/SEI-2003-TR-016, August 2003.

Len Bass, Paul Clements, Rick Kazman, and Mark Klein. “Models for Evaluating and
Improving Architecture Competence,” CMU/SEI-2008-TR-006, March 2008.

Len Bass, Paul Clements, Rick Kazman, John Klein, Mark Klein, and Jeannine Siviy. “A
Workshop on Architecture Competence,” CMU/SEI-2009-TN-005, April 2009.

Lisa Brownsword, David Carney, David Fisher, Grace Lewis, Craig Meyers, Edwin Morris,
Patrick Place, James Smith, and Lutz Wrage. “Current Perspectives on Interoperability,”
CMU/SEI-2004-TR-009, March 2004.

Paul Clements and Len Bass. “Relating Business Goals to Architecturally Significant
Requirements for Software Systems,” CMU/SEI-2010-TN-018, May 2010.

438

Rick Kazman and Jeromy Carriere, “Playing Detective: Reconstructing Software Architecture
from Available Evidence,” CMU/SEI-97-TR-010, October 1997.

Rick Kazman, Mark Klein, and Paul Clements. “ATAM: Method for Architecture Evaluation,”
CMU/SEI-2000-TR-004, August 2000.

Rick Kazman, Jai Asundi, and Mark Klein, “Making Architecture Design Decisions, An
Economic Approach,” CMU/SEI-2002-TR-035, September 2002.

Rick Kazman, Liam O’Brien, and Chris Verhoef, “Architecture Reconstruction Guidelines,
Third Edition,” CMU/SEI-2002-TR-034, November 2003.

Robert L. Nord, Paul C. Clements, David Emery, and Rich Hilliard. “A Structured Approach
for Reviewing Architecture Documentation,” CMU/SEI-2009-TN-030, December 2009.

James Scott and Rick Kazman. “Realizing and Refining Architectural Tactics: Availability,”
CMU/SEI-2009-TR-006 and ESC-TR-2009-006, August 2009.

Much of the material in Chapter 5 is adapted from Deployment and Operations for Software
Engineers by Len Bass and John Klein [Bass 19] and from R. Kazman, P. Bianco, J. Ivers, J.
Klein, “Maintainability”, CMU/SEI-2020-TR-006, 2020.

Much of the material for Chapter 7 was inspired by and drawn from R. Kazman, P. Bianco, J.
Ivers, J. Klein, "Integrability", CMU/SEI-2020-TR-001, 2020.

This page intentionally left blank

The Leader in Software Engineering and Cybersecurity
Operated by Carnegie Mellon University, the Software Engineering Institute has been a

Learn more at sei.cmu.edu

http://sei.cmu.edu

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certif ication • Que • Sams • Peachpit Press

Register Your Product at informit.com/register
save 35% on your next purchase

• Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

• Download available product updates.
• Access bonus material if available.*

• Check the box to hear from us and receive exclusive offers on new
editions and related products.

*Registration benefits vary by product. Benefits will be listed on your account page under
Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s
foremost education company. At InformIT.com, you can:

• Shop our books, eBooks, software, and video training
• Take advantage of our special offers and promotions (informit.com/promotions)
• Sign up for special offers and content newsletter (informit.com/newsletters)
• Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

Photo by izusek/gettyimages

http://informit.com/register
http://InformIT.com
http://InformIT.com
http://informit.com/promotions
http://informit.com/newsletters
http://informit.com/community

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	PART I: INTRODUCTION
	CHAPTER 1 What Is Software Architecture?
	1.1 What Software Architecture Is and What It Isn’t
	1.2 Architectural Structures and Views
	1.3 What Makes a “Good” Architecture?
	1.4 Summary
	1.5 For Further Reading
	1.6 Discussion Questions

	CHAPTER 2 Why Is Software Architecture Important?
	2.1 Inhibiting or Enabling a System’s Quality Attributes
	2.2 Reasoning about and Managing Change
	2.3 Predicting System Qualities
	2.4 Communication among Stakeholders
	2.5 Early Design Decisions
	2.6 Constraints on Implementation
	2.7 Influences on Organizational Structure
	2.8 Enabling Incremental Development
	2.9 Cost and Schedule Estimates
	2.10 Transferable, Reusable Model
	2.11 Architecture Allows Incorporation of Independently Developed Elements
	2.12 Restricting the Vocabulary of Design Alternatives
	2.13 A Basis for Training
	2.14 Summary
	2.15 For Further Reading
	2.16 Discussion Questions

	PART II: QUALITY ATTRIBUTES
	CHAPTER 3 Understanding Quality Attributes
	3.1 Functionality
	3.2 Quality Attribute Considerations
	3.3 Specifying Quality Attribute Requirements: Quality Attribute Scenarios
	3.4 Achieving Quality Attributes through Architectural Patterns and Tactics
	3.5 Designing with Tactics
	3.6 Analyzing Quality Attribute Design Decisions: Tactics-Based Questionnaires
	3.7 Summary
	3.8 For Further Reading
	3.9 Discussion Questions

	CHAPTER 4 Availability
	4.1 Availability General Scenario
	4.2 Tactics for Availability
	4.3 Tactics-Based Questionnaire for Availability
	4.4 Patterns for Availability
	4.5 For Further Reading
	4.6 Discussion Questions

	CHAPTER 5 Deployability
	5.1 Continuous Deployment
	5.2 Deployability
	5.3 Deployability General Scenario
	5.4 Tactics for Deployability
	5.5 Tactics-Based Questionnaire for Deployability
	5.6 Patterns for Deployability
	5.7 For Further Reading
	5.8 Discussion Questions

	CHAPTER 6 Energy Efficiency
	6.1 Energy Efficiency General Scenario
	6.2 Tactics for Energy Efficiency
	6.3 Tactics-Based Questionnaire for Energy Efficiency
	6.4 Patterns
	6.5 For Further Reading
	6.6 Discussion Questions

	CHAPTER 7 Integrability
	7.1 Evaluating the Integrability of an Architecture
	7.2 General Scenario for Integrability
	7.3 Integrability Tactics
	7.4 Tactics-Based Questionnaire for Integrability
	7.5 Patterns
	7.6 For Further Reading
	7.7 Discussion Questions

	CHAPTER 8 Modifiability
	8.1 Modifiability General Scenario
	8.2 Tactics for Modifiability
	8.3 Tactics-Based Questionnaire for Modifiability
	8.4 Patterns
	8.5 For Further Reading
	8.6 Discussion Questions

	CHAPTER 9 Performance
	9.1 Performance General Scenario
	9.2 Tactics for Performance
	9.3 Tactics-Based Questionnaire for Performance
	9.4 Patterns for Performance
	9.5 For Further Reading
	9.6 Discussion Questions

	CHAPTER 10 Safety
	10.1 Safety General Scenario
	10.2 Tactics for Safety
	10.3 Tactics-Based Questionnaire for Safety
	10.4 Patterns for Safety
	10.5 For Further Reading
	10.6 Discussion Questions

	CHAPTER 11 Security
	11.1 Security General Scenario
	11.2 Tactics for Security
	11.3 Tactics-Based Questionnaire for Security
	11.4 Patterns for Security
	11.5 For Further Reading
	11.6 Discussion Questions

	CHAPTER 12 Testability
	12.1 Testability General Scenario
	12.2 Tactics for Testability
	12.3 Tactics-Based Questionnaire for Testability
	12.4 Patterns for Testability
	12.5 For Further Reading
	12.6 Discussion Questions

	CHAPTER 13 Usability
	13.1 Usability General Scenario
	13.2 Tactics for Usability
	13.3 Tactics-Based Questionnaire for Usability
	13.4 Patterns for Usability
	13.5 For Further Reading
	13.6 Discussion Questions

	CHAPTER 14 Working with Other Quality Attributes
	14.1 Other Kinds of Quality Attributes
	14.2 Using Standard Lists of Quality Attributes—Or Not
	14.3 Dealing with “X-Ability”: Bringing a New QA into the Fold
	14.4 For Further Reading
	14.5 Discussion Questions

	PART III: ARCHITECTURAL SOLUTIONS
	CHAPTER 15 Software Interfaces
	15.1 Interface Concepts
	15.2 Designing an Interface
	15.3 Documenting the Interface
	15.4 Summary
	15.5 For Further Reading
	15.6 Discussion Questions

	CHAPTER 16 Virtualization
	16.1 Shared Resources
	16.2 Virtual Machines
	16.3 VM Images
	16.4 Containers
	16.5 Containers and VMs
	16.6 Container Portability
	16.7 Pods
	16.8 Serverless Architecture
	16.9 Summary
	16.10 For Further Reading
	16.11 Discussion Questions

	CHAPTER 17 The Cloud and Distributed Computing
	17.1 Cloud Basics
	17.2 Failure in the Cloud
	17.3 Using Multiple Instances to Improve Performance and Availability
	17.4 Summary
	17.5 For Further Reading
	17.6 Discussion Questions

	CHAPTER 18 Mobile Systems
	18.1 Energy
	18.2 Network Connectivity
	18.3 Sensors and Actuators
	18.4 Resources
	18.5 Life Cycle
	18.6 Summary
	18.7 For Further Reading
	18.8 Discussion Questions

	PART IV: SCALABLE ARCHITECTURE PRACTICES
	CHAPTER 19 Architecturally Significant Requirements
	19.1 Gathering ASRs from Requirements Documents
	19.2 Gathering ASRs by Interviewing Stakeholders
	19.3 Gathering ASRs by Understanding the Business Goals
	19.4 Capturing ASRs in a Utility Tree
	19.5 Change Happens
	19.6 Summary
	19.7 For Further Reading
	19.8 Discussion Questions

	CHAPTER 20 Designing an Architecture
	20.1 Attribute-Driven Design
	20.2 The Steps of ADD
	20.3 More on ADD Step 4: Choose One or More Design Concepts
	20.4 More on ADD Step 5: Producing Structures
	20.5 More on ADD Step 6: Creating Preliminary Documentation during the Design
	20.6 More on ADD Step 7: Perform Analysis of the Current Design and Review the Iteration Goal and Achievement of the Design Purpose
	20.7 Summary
	20.8 For Further Reading
	20.9 Discussion Questions

	CHAPTER 21 Evaluating an Architecture
	21.1 Evaluation as a Risk Reduction Activity
	21.2 What Are the Key Evaluation Activities?
	21.3 Who Can Perform the Evaluation?
	21.4 Contextual Factors
	21.5 The Architecture Tradeoff Analysis Method
	21.6 Lightweight Architecture Evaluation
	21.7 Summary
	21.8 For Further Reading
	21.9 Discussion Questions

	CHAPTER 22 Documenting an Architecture
	22.1 Uses and Audiences for Architecture Documentation
	22.2 Notations
	22.3 Views
	22.4 Combining Views
	22.5 Documenting Behavior
	22.6 Beyond Views
	22.7 Documenting the Rationale
	22.8 Architecture Stakeholders
	22.9 Practical Considerations
	22.10 Summary
	22.11 For Further Reading
	22.12 Discussion Questions

	CHAPTER 23 Managing Architecture Debt
	23.1 Determining Whether You Have an Architecture Debt Problem
	23.2 Discovering Hotspots
	23.3 Example
	23.4 Automation
	23.5 Summary
	23.6 For Further Reading
	23.7 Discussion Questions

	PART V: ARCHITECTURE AND THE ORGANIZATION
	CHAPTER 24 The Role of Architects in Projects
	24.1 The Architect and the Project Manager
	24.2 Incremental Architecture and Stakeholders
	24.3 Architecture and Agile Development
	24.4 Architecture and Distributed Development
	24.5 Summary
	24.6 For Further Reading
	24.7 Discussion Questions

	CHAPTER 25 Architecture Competence
	25.1 Competence of Individuals: Duties, Skills, and Knowledge of Architects
	25.2 Competence of a Software Architecture Organization
	25.3 Become a Better Architect
	25.4 Summary
	25.5 For Further Reading
	25.6 Discussion Questions

	PART VI: CONCLUSIONS
	CHAPTER 26 A Glimpse of the Future: Quantum Computing
	26.1 Single Qubit
	26.2 Quantum Teleportation
	26.3 Quantum Computing and Encryption
	26.4 Other Algorithms
	26.5 Potential Applications
	26.6 Final Thoughts
	26.7 For Further Reading

	References
	About the Authors
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'PDFX-1a2001_LSC'] [Based on 'PDFX-1a2001'])
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

