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The main focus of this work is to prove the effectiveness of a fuzzy mathematical programming

approach to model a supply chain production planning problem with uncertainty in demand. A fuzzy

optimization model that takes into account the lack of knowledge in market demand is developed. This

work uses an approach of possibilistic programming. Such an approach makes it possible to model the

epistemic uncertainty in demand that could be present in the supply chain production planning

problems as triangular fuzzy numbers. The emphasis is on obtaining more knowledge about the impact

of fuzzy programming on supply chain planning problems with uncertain demand.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The concept of supply chain management (SCM), since their
appearance in 1982 (see Oliver and Weber, 1982), is associated with
a variety of meanings. In the eighties, SCM was originally used in the
logistical literature to describe a new integrated approach of logistics
management through different business functions (Houlihan, 1984).
Then, this integrated approach was extended outside of the
company limits to suppliers and customers (Christopher, 1992). In
accordance with the Global Supply Chain Forum (Lambert and
Cooper, 2000), the SCM is the integration of key business processes,
from final users to original suppliers providing products, services
and information which add value to clients, shareholders, etc. This
paper is related to one of these key business processes: the supply
chain production planning.

Supply chain production planning consists of the coordination
and the integration of key business activities carried out from the
procurement of raw materials to the distribution of finished
products to the customer (Gupta and Maranas, 2003). Here,
tactical models concerning mainly about inventory management
and resource limitations are the focus of our work. In this context,
with the objective of obtaining optimal solutions related to the
minimization of costs, several authors have studied the modelling
of supply chain planning processes through mathematical
programming models (see, for instance, Alemany et al. (2009)
and Mula et al. (2010)). However, the complex nature and
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dynamics of the relationships among the different actors of
supply chains imply an important grade of uncertainty in the
planning decisions (Bhatnagar and Sohal, 2005). Therefore,
uncertainty is a main factor that can influence the effectiveness
of the configuration and coordination of supply chains (Davis,
1993). One of the key sources of uncertainty in any production–
distribution system is the product demand. Thus, demand
uncertainty is propagated up and down along the supply chain
affecting sensibly to its performance (Mula et al., 2005).

Along the years many researches and applications aimed to model
the uncertainty in production planning problems (Mula et al., 2006a).
Different stochastic modelling techniques have been successfully
applied in supply chain production planning problems with random-
ness (Escudero, 1994; Gupta and Maranas, 2003; Sodhi and Tang,
2009). However, probability distributions derived from evidences
recorded in the past are not always available or reliable. In these
situations, the fuzzy set theory (Bellman and Zadeh, 1970) represents
an attractive tool to support the production planning research when
the dynamics of the manufacturing environment limit the specifica-
tion of the model objectives, constraints and parameters. Uncertainty
can be present as randomness, fuzziness and/or lack of knowledge or
epistemic uncertainty (Dubois et al., 2002). Randomness comes from
the random nature of events and deals with uncertainty regarding
membership or non-membership of an element in a set. Fuzziness is
related to flexible or fuzzy constraints modelled by fuzzy sets.
Epistemic uncertainty is concerned with ill-known parameters
modelled by fuzzy numbers in the setting of possibility theory
(Dubois and Prade, 1988).

In this paper, for the purpose of demonstrating the usefulness
and significance of the fuzzy mathematical programming for
production planning, a fuzzy approach is applied to a supply chain
production planning problem with lack of knowledge in demand
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Table 1
Decision variables and model parameters.

Sets of indices
T�{t} Set of time periods

I�{i} Set of products. This set can be classified in raw materials, IRM ,

intermediate products, IIP and finished products, IFP, so that

I¼ fIRM [ IIP [ IFPg. An intermediate product can also belong to the set

of finished products

F�{f} Set of product families

J�{j} Set of resources

S�{s} Set of facilities

C�{c} Set of customers

Decision variables
Pijst Quantity to produce product i A I\IRM on resource j at site s in time

period t

RLijst Production time of product i A I\IRM on resource j at site s in time

period t
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data. The main contribution of this paper is an application of
known possibilistic programming in a supply chain planning case
study. Other applications of possibilistic programming in produc-
tion planning problems can be found in Inuiguchi et al. (1994), Hsu
and Wang (2001), Wang and Fang (2001), Lodwick and Bachman
(2005), Wang and Liang (2005), Mula et al. (2008) and Vasant et al.
(2008). However, previous researches mentioned above did not
consider supply chain production planning problems.

This paper is organized as follows. Firstly, in Section 2, the supply
chain production planning model, which has been the basis of this
work, is described. In Section 3, a fuzzy model is developed to
incorporate the demand uncertainty in the supply chain production
planning model. Then, Section 4 uses a supply chain case study
to illustrate the potential savings and other benefits that can be
attained by using fuzzy models in a fuzzy environment. In Section 5,
conclusions are given.
FRLfjst Production time of family f on resource j at site s in time period t

Cist Consumption of raw material or intermediate product i A I\IFP at site s

in time period t

Iist Inventory level of product iA I\IRM at site s at the end of time period t

Sisct Supply of finished product i A IFP from site s to customer c in time

period t

siss’t Intermediate product flow i A IIP from site s in time period t

I�ict Shortage of finished product i A IFP for customer c in time period t

I4ist Inventory deviation below safety stock target for product i A I at site s

in time period t

Yijst Binary variable which indicates if product I is produced on resource j at

site s in time period t

Objective function cost coefficients
mij Revenue per unit of product i A IFP sold to customer c.

hist Inventory cost of a unit of the product i at site s in time period t

pis Price of raw material i A IRM at site s

zis Penalty for dipping below safety stock target of product i at site s

vijs Variable cost of production of a unit of the product i on resource j at

site s

tss’9tsc Transportation cost to move a unit of product from site s to site s0 or to

customer c

ffjs Fixed cost of production for family f on resource j at site s

Technological coefficients
Rijst Effective rate for product i using resource j at site s in time period t (it

includes adjustment to the rate relating to efficiency, utility and/or

yield)

bi’is Quantity of raw material or intermediate product i A I\IFP that must be

consumed to produce a unit of i0 A I\IRM at site s

General data
kif 0–1 parameter, which indicates if product i belong to family f

Hjst Quantity of available time for production on resource j at site s in time

period t

MRLfjs Minimum required time for family s on resource j at site s
~dict

Fuzzy demand of finished product i for customer c in time period t

IL
ist

Safety stock target for product i at site s in time period t

Iis0 Inventory of product i at site s at start of planning horizon
2. Description of the problem formulation

The mixed integer linear programming (MILP) model for supply
chain production planning originally proposed by McDonald
and Karimi (1997) is adopted as the basis for this work.
The aim of this tactical model is to determine the sources of the
limited resources of a company and the optimal assignment to its
production resources to satisfy market demands at a minimum
cost. The considered supply chain consists of multiple production
facilities, globally located and producing multiple products. The
demand of those products exists for a set of customers. The midterm
planning horizon embraces from 1 to 2 years. Each production facility
is characterized by one or more resources of semi-continuous
production with limited capacity. The diverse products that are
grouped in product families, in order to reduce transition times
and costs between products of a family, compete for the limited
capacity of those resources. This decision making process can be
divided into two different phases: the production phase and the
distribution phase or logistics. The production phase is focused
on the efficient allocation of the production capacity in each one
of the production plants with the objective of determining the
optimal operative politics. In the distribution phase, they have
considered the post-production activities like the demand fulfilment
and the inventory management to satisfy the demand. Safety stock
is kept to provide a buffer against uncertainty in demand. Finally,
the structure of the supply chain can be classified as a network
(Huang et al., 2003). Two layers of the supply chain network are
considered: (1) manufacturing facilities and (2) customers. The
production facilities can manufacture both finished products and
intermediate from the raw materials. The intermediate products
can be shipped to other production facilities where they are
transformed into finished products which are subsequently shipped
to customers.

Let us consider the following fuzzy formulation of the McDonald
and Karimi’s (1997) model. Decision variables and parameters for the
mathematical programming model are defined in Table 1.

Minimize Z ¼
X
i,j,s,t

vijsPijstþ
X
i,s,t

pisCistþ
X
i,s,t

histIistþ
X
i,s,c,t

tscSisct

þ
X

i,s,su,t

tssusissutþ
X
i,s,t

zisI
4
istþ

X
i,c,t

micI�ictþ
X
f ,j,s,t

ffjsYfjst ð1Þ

Subject to

Pijst ¼ RijstRLijst 8iA I\IRM , 8jA J, 8sAS, 8tAT ð2Þ

FRLfjst rHjstYfjst 8f AF, 8jA J, 8sAS, 8tAT ð3Þ
FRLfjst ZMRLfjsYfjst 8f AF, 8jA J, 8sAS, 8tAT ð4Þ

FRLfjst ¼
X

kif ¼ 1

RLijst , 8f AF, 8jA J, 8sAS, 8tAT ð5Þ

X
f

FRLfjst rHjst 8jA J, 8sAS, 8tAT ð6Þ

Cist ¼
X

iu3biuisa0

biuis

X
j

Piujst 8iA I\IFP , 8jA J, 8sAS, 8tAT ð7Þ

Cist ¼
X

s0
sisust 8iA IIP , 8sAS, 8tAT ð8Þ

Iist ¼ Iisðt�1Þ þ
X

j

Pijst�
X

su

sissut�
X

c

Sisct 8iA I\IRM , 8tAT ð9Þ
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I�ict Z I�icðt�1Þ þ
~dict�

X
c

Sisct 8iA IFP , 8tAT ð10Þ

X
s,tur t

Sisctur
X
tur t

~dictu 8iA I, 8tAT ð11Þ

I�ict r
X
tur t

~dictu 8iA I, 8cAC ð12Þ

I4ist Z IL
ist�Iist 8iA I, 8sAS, 8tAT ð13Þ

I4ist r IL
ist 8iA I, 8sAS, 8tAT ð14Þ

Pijst,RLijst ,Cist, Iist, I
�
ict ,sissut ,I

4
ist Z0,

Yfjst Af0,1g 8iA I, 8jA J, 8cAC, 8f AF, 8sAS, 8tAT

ð15Þ

where d~ict ¼ ðdict1,dict2,dict3Þare positive triangular fuzzy numbers
(TFNs). The parameters of a triangular possibility distribution
represent the most pessimistic, the most possible and the most
optimist values (see Section 3 for TFNs explanation).

The objective function (1) minimizes the production costs, the
costs of raw materials or intermediate products consumption,
the inventory and shortage penalties, the transportation costs and
the fixed costs for product families. In Eq. (2), the production
quantity is related to the production time through the correspon-
dent production rate. Eqs. (3) and (4) provide the lower and upper
limits of the production times for each product family, respec-
tively. Eq. (5) establishes the relation of each product with its
product family. Eq. (6) models the production capacity con-
straints. This model considers that the minimum run length of a
product, MRLfjs, is much less than the length of the time period.
The cases in which this parameter is similar or much bigger than
the length of the time period can be consulted in McDonald and
Karimi (1997). Eq. (7) models the consumption of raw materials
or intermediate products through the bill of materials. The raw
materials come from an external supplier and it is assumed here
that they are available when required, although this could easily
be modified by including some lower and upper bound con-
straints. Intermediate products consumed at site s come from this
site or from another site s0. Eq. (8) implies that all materials sent to
site s will be consumed in the same time period. Thus, the
inventory will be kept where the products are produced avoiding
redundant material flows in the network. Eq. (9) represents the
inventory balance constraint. The finished products are only sent
between facilities if they are also intermediate products. Eq. (10)
indicates that shortfalls in supply carry from one period to
the next. Eq. (11) allows that demands of previous periods can
be satisfied in the current time period. Eq. (12) ensures that the
shortage of demand must be always inferior to the total
cumulated demand in this time period. Demand is considered
an uncertain data defined by a triangular fuzzy number in
Eqs. (10)–(12). Eq. (13) determines the excesses and deviations
of inventory with respect to the safety stock target established.
Eqs. (14) and (15) establish superior and inferior limits to the
different decision variables, respectively.
b1 b3b2 x
0

1

)(�~ x
b

Fig. 1. A TFN ~b .
3. Fuzzy mathematical programming approach

In this section, a fuzzy decision model is developed for supply
chain production planning where TFNs are used to model the lack
of knowledge or epistemic uncertainty in demand.

In the context of possibility theory, there are different
approaches to model the coefficients of the objective function
and/or the constraints as fuzzy numbers (Tanaka and Asai, 1984;
Inuiguchi et al., 1994; Vasant, 2005; Mula et al., 2008). Gen et al.
(1992) propose a method to transform a fuzzy multiple objective
linear programming (MOLP) problem model to crisp MOLP model.
The authors consider fuzzy coefficients in the objective functions,
fuzzy technical coefficients and fuzzy right-hand side in less than
or equal, greater than or equal and equality type of constraints. All
these fuzzy parameters are represented by TFNs. Here, the
transformation method proposed by Gen et al. (1992) is adapted
to transform a fuzzy LP model with a crisp objective function
and fuzzy right-hand side numbers in less than or equal and
greater than or equal type constraints to crisp LP model.
The general model minimizing an objective function subject to
m1 less than or equal type constraints and m2 greater than or
equal type constraints with fuzzy right-hand side can be defined
as follows:

Minimize z¼
Xn

j ¼ 1

cjxj ð16Þ

Subject to

Xn

j ¼ 1

aijxjZ
~bi i¼ 1,2,:::,m1 ð17Þ

Xn

j ¼ 1

aijxjr ~bi i¼m1þ1,:::,m2 ð18Þ

xjZ0 j¼ 1,. . .,n ð19Þ

where xj is the j-th decision variable; cj is a crisp coefficient of the
objective function and j the decision variable; aij is the crisp
technical coefficient of the i-th constraint and the j-th decision
variable; and bi is the right-hand side term of the i-th constraint
that represents the maximum (r) or minimum (Z) requirement
and is represented as a TFN ~bi ¼ ðbi1,bi2,bi3Þ, which membership
function is defined in Gen et al. (1992) as

m ~b ðxÞ ¼

1

b2�b1
ðx�b2Þþ1 if ðb1rxrb2Þ

1

b2�b3
ðx�b2Þþ1 if ðb2rxrb3Þ

0 if ðxrb1,b3rxÞ

8>>>>><
>>>>>:

ð20Þ

This TFN ~b can be represented as ~b ¼ ðb1,b2,b3Þ (Fig. 1).
In this transformation method, the joint conditional possibility

distribution of the constraints with fuzzy right-hand side terms is
defined using the min-operator (Bellman and Zadeh, 1970), as the
minimum of the possibility of feasibility of the constraints.

The solution of the fuzzy problem may be achieved by solving
the following linear programming problem:

Minimize z¼
Xn

j ¼ 1

cjxj ð21Þ
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Subject to

Xn

j ¼ 1

aijxjZð1�aÞbi1þabi2 i¼ 1,. . .,m ð22Þ

Xn

j ¼ 1

aijxjrð1�aÞbi3þabi2 i¼ 1,. . .,m ð23Þ

xjZ0 j¼ 1,. . .,n ð24Þ

where 0rar1 is a cutoff value that must be established
parametrically.

Therefore, the transformation of the fuzzy model in Section 2
to an equivalent linear programming model is made by substitut-
ing Eqs. (10)–(12) for (25)–(27), respectively:

I�ict�I�icðt�1Þ þ
X

c

Sisct Zð1�aÞdict1þadict2 8iA IFP , 8tAT ð25Þ

X
s,tur t

Sisctur
X
tur t

ðð1�aÞdictu3þadictu2Þ 8iA I, 8tAT ð26Þ

I�ict r
X
tur t

ðð1�aÞdictu3þadictu2Þ 8iA I, 8cAC ð27Þ

In order to solve the problem a is settled down parametrically
to obtain the value of the objective function for each one of those
aA[0, 1]. The result is, however, a fuzzy set and the planner has to
decide which pair (a, z) considers optimal if he wants to obtain a
crisp solution.
4. Supply chain planning case study

This section uses the Example 1 provided by McDonald and
Karimi (1997) to illustrate the potential savings, which can be
attained by using fuzzy models in a fuzzy environment. It is a
representative supply chain of the chemical sector. There are two
sites, s1 and s2, which produce 34 products. Each site contains
only a resource or processor, so the J set is superfluous. The first
site produces 23 products and there are 11 product families which
rates minimum run lengths and fixed costs are provided. The
second site, s2, depends on s1 and produces 11 products, which
require a unit of the first product of each family of s1. It is assumed
that s2 does not have capacity constraints. They have considered
12 monthly periods in the planning horizon with a required
demand at the end of each time period. The demand for the 11
products at s2 is derived as 50% of the demand for the products
they consume from s1. The target safety stock levels for s2 are
assumed equal to the average monthly demand. Also, they have
provided the following information: bill of materials, transporta-
tion costs, fixed costs for family product, initial inventory,
available capacity, raw material costs, safety stock penalties,
inventory costs, production costs, production run times and
demand.

4.1. Assumptions

In order to take into account the uncertainty in demand, we
have assumed as the most possible value, dict2, a foreseen demand
equal to the average real monthly demand. Therefore, the fuzzy
model, dubbed FMILP, will generate results equivalent to the
deterministic model, dubbed MILP, when a is established to 1.
The most pessimistic value, dict1, is obtained by decreasing 20%
the value of dict2 and the most optimist value, dict3, is obtained by
increasing 20% the value of dict2. Also, it is considered the demand
is firm and known for period t at the beginning of this period t, i.e.
dict1, dict2 and dict3 are equal for t at the beginning of t.

4.2. Implementation and resolution

The dynamic character of the supply chain planning problem and
the integrity requirements on some variables are taken into
consideration through the architecture used for the implementation
and resolution of the model described before as illustrated in Fig. 2.

The model has been generated with the modelling language
MPL. The problem is then solved by the CPLEX solver. CPLEX is
capable to solve LP, integer programming and MILP problems. The
input data and solutions of the model have been managed
through the Microsoft Access database. The experiment has been
carried out on a PC with Intel Pentium M processor at 1400 MHz
and with 512 MB of RAM memory in the following way (Fig. 3).

It considers the technical and economic information of the
products. Moreover, the demand information for a rolling horizon of
12 months. Models are executed for each one of the 12 months
updating the demand values, the inventory and the delayed demand,
which come from the planned launchings of the calculated periods.

The detailed data of this computational experiment can be
found in McDonald and Karimi (1997).

4.3. Quantitative analysis of results

Next, we will validate if the fuzzy model for supply chain
production planning, proposed in this paper, can be a useful tool
for the decision making process of the production planners under
demand uncertainty. Thus, we investigate the impact of demand
uncertainty on the different supply chain decisions. To this end,
the optimal decisions obtained by solving the fuzzy model, FMILP,
are compared with those obtained by solving the deterministic
model proposed by McDonald and Karimi (1997), MILP.

Table 2 reports the evaluation results according to a group of
parameters defined originally in Mula et al. (2006b): (i) the
service level; (ii) the levels of inventory; (iii) the planning
nervousness respect to the planned period and the planned
quantity; and (iv) the total costs.

In the case of the fuzzy model that provides a fuzzy solution,
the fuzzy set of the decision has been obtained. Thus, FMILP, has
been tested varying the a value from 0 to 1 in steps of 0.1. This
fact allows the production planners to foresee the consequences
of a sudden variation of the demands. Also, a defuzzification
method must be used to get a compromise solution. The reader is
referred to Lee (1990), Mendel (1995) and Jiménez et al. (2007).
Table 2 presents the quantitative results of our experiment in
terms of the following parameters:
(i)
 The average service level for finished products:

Average service level ð%Þ ¼
XT

t ¼ 1

1�
I�
ictPt

tu ¼ 1

dictu

0
B@

1
CA� 100

T

8iA I, 8cAC ð28Þ
(ii)
 The minimum and maximum inventory levels: for each
model and item, if it presents the minimum inventory level,
it is assigned the value of 1, to the rest we assign a null value.
The model that obtains the highest number will have the
minimum levels of inventory. The maximum inventory levels
can be determined in a similar way but assigning the value of
1 to the maximum inventory level for item and model.



t = 1
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execution

t = t + 1

t > 12 ?

END

Demand
BOM
Costs
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Inventory
Delayed demand
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Fig. 3. Computational experiment.

Fig. 2. Model architecture.
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(iii)
 The planning nervousness with respect to the planned
period: a ‘‘nervous’’ or unstable planning is referred to a
plan that suffers important variations when incorporating
the demand changes between what is foreseen and observed
in successive plans as defined by Sridharan et al. (1987). The
planning nervousness can be measured according to the
demand changes with respect to the planned period or with
respect to the planned quantity. The demand changes in the
planned period measure the number of times that a planned
order is rescheduled independently of the planned quantity
Heisig (1998). The next rule proposed by Donselaar et al.
(2000) is summarized as follows:
At time t we check for each period t+x (x¼0, 1, 2,y,T�1):

� If there is a planned order in t+x and this order is not
planned in the next planning run, we increase the number
of reschedules by 1.
� If there was no planned order in t+x and there is one in

the next planning run, we increase the number of
reschedules by 1.
(iv)
 The planning nervousness with respect to the planned
quantity measures the demand changes in the planned
quantity as the number of times that the quantity of a
planned order is modified (De Kok and Inderfurth, 1997). The
rule is described as follows:
In the period t¼1,y,T, where T is the number of periods that
forms the planning horizon, it is checked for every period t+x

(x¼0, 1, 2,y, T�1):

� If a planned order exists in the period t+x, then if the
quantity of the planned order is not the same as in the
next planning run, we increase the number of reschedules

by 1.

In the computation of planning nervousness, we are
measuring the number of change. Another way to compute
it would be taking into account the rate of the changes.
(v)
 Total costs are the sum of all the costs that are generated in
every period of the considered planning horizon, derived
from the production plans provided by the model.
Models present an average service level above 98%. MILP

provides a 100% service level but a higher number of maximum
inventory levels. FMILP model has presented less or equal
nervousness with respect to the planned time period than the MILP

model. On the other hand, the fuzzy model presents similar values
of nervousness with respect to the planned quantity. Also, the fuzzy
model generates lower total costs than the crisp model. These
differences in the total costs are, mainly, due to the consideration of



Table 2
Evaluation of the results.

Model Average service
level (%)

Number of minimum
inventory levels

Number of maximum
inventory levels

Planning nervousness
(period)

Planning nervousness
(quantity)

Total
costs (h)

FMILP (a¼0) 99.71 23 1 2.64 2.45 2972.46

FMILP (a¼0.1) 100.00 16 3 1.82 2.55 2542.38

FMILP (a¼0.2) 99.34 9 5 1.82 2.27 2786.86

FMILP (a¼0.3) 99.50 9 4 2.09 2.36 2595.64

FMILP (a¼0.4) 99.51 9 4 2.00 2.55 2680.35

FMILP (a¼0.5) 99.39 7 6 1.82 2.36 2848.75

FMILP (a¼0.6) 99.95 6 4 1.64 2.09 2708.92

FMILP (a¼0.7) 99.71 6 6 1.27 1.73 2856.40

FMILP (a¼0.8) 98.79 7 7 2.00 2.45 2972.46

FMILP (a¼0.9) 99.46 6 8 2.00 2.73 2751.67

FMILP (a¼1)

¼MILP

100.00 5 18 2.00 2.64 3001.42

Fig. 4. Variation of total costs for each a.

Table 3
Average capacity utilization.

Model Average capacity
utilization s1 (%)

Average capacity
utilization s2 (time)

FMILP (a¼0) 71.86 62.78

FMILP (a¼0.1) 76.32 61.40

FMILP (a¼0.2) 72.45 63.08

FMILP (a¼0.3) 63.61 62.77

FMILP (a¼0.4) 65.98 61.05

FMILP (a¼0.5) 75.42 63.46

FMILP (a¼0.6) 67.30 63.44

FMILP (a¼0.7) 75.49 64.24

FMILP (a¼0.8) 75.18 59.48

FMILP (a¼0.9) 64.34 64.92

FMILP (a¼1)¼MILP 72.44 62.78
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possible future variations of the demand that originates larger
production and inventories with the objective of avoiding the
penalized demand backlogs, which suggests that cost savings can be
obtained through the incorporation of demand uncertainty in supply
chain production planning processes. In order to make the model
better understandable, the variation of total costs for each step of a
in the form of graph is depicted in Fig. 4.

Furthermore, we define a new parameter: the average capacity
utilization. This parameter is calculated in two different ways
depending on the available capacity in each site. If the site has a
limited capacity, we use the following formula:

Average capacity utilization ð%Þ

¼
XT

t ¼ 1

RLijst

Hjst

� �
� 100

T
8iA I, 8jA J, 8sAS ð29Þ

If the site has not a limited capacity, we use the following
formula:

Average capacity utilization ðtimeÞ

¼
XT

t ¼ 1

RLijst

T
8iA I, 8jA J, 8sAS ð30Þ

The average capacity utilization for each site provided by the
two models, MILP and FMILP, is shown in Table 3; s1 has a limited
available capacity while s2 does not have a specified limited
available capacity. The foreseen capacity utilization is also
different if the model considers the uncertainty in demand,
which suggests different available capacity decisions if planners
can take into account demand uncertainty in the planning
process.

Table 4 shows the computational efficiency of the crisp model
proposed by McDonald and Karimi (1997) and the fuzzy model
proposed in this work. Both of the models can obtain the optimal
solution of the MILP with a similar number of iterations in the first
execution (planning period¼1). Obviously, the number of



Table 4
Efficiency of computational experiments for the first MRP execution.

Model Iterations Decision variables Integer Constraints Elements non zero Array density (%) CPU time (s)

MILP 27,6428 5118 528 9474 77,742 0.16 100

FMILP (a¼0.8) 27,8017 5118 528 9474 77,742 0.16 100
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iterations can change in the rest of executions depending on the
input data. On the other hand, the fuzzy model has the same
number of constrains, variables and integer variables, which is not
implying greater requirements of information storage. With
respect to the CPU time in both models, deterministic and
fuzzy, a limit of 100 CPU seconds was set.

On the other hand, Gupta and Maranas (2003) propose a
stochastic programming based approach to manage the demand
uncertainty in supply chain planning using the same representa-
tive supply chain planning formulation given by McDonald and
Karimi (1997) as the basis of their work. The demand is assumed
to be normally distributed with a coefficient of variation of 20%.
The stochastic approach generates a total of 500 scenarios by
sampling the normal distributions and the resulting MILP has
136,000 constraints and 156,000 variables. When this stochastic
approach is solved using the CPLEX solver, it fails to converge with
a limit of 10,000 CPU seconds.
5. Conclusion

Supply chain environments imply the production planning
decisions have to be made under conditions of uncertainty in
parameters as important as demand. In this paper, a supply chain
planning problem has been presented as a fuzzy MILP model with
fuzzy demand. The proposed fuzzy mathematical programming
approach extends the formulation originally presented by McDonald
and Karimi (1997) considering uncertain demand. This approach is
based on the method for solving multi-objective linear programming
problems with fuzzy parameters represented by triangular fuzzy
numbers proposed by Gen et al. (1992). We have adapted this
approach for solving fuzzy linear programming problems with a
crisp objective function and fuzzy right-hand side numbers in less
than or equal and greater than or equal type constraints. This fuzzy
mathematical approach has provided freedom of action with regard
to supply chain production planning problems where epistemic
uncertainty appears in demand with no increment of the require-
ments of information storage and the same specified resource limit
of 100 CPU seconds as used by the deterministic formulation. Also,
compared with the stochastic programming approach, a solution can
be obtained in an easier manner.

Finally, as a result of the research carried out here, some
circumstances have arisen that may open up possibilities for
further research: (i) to adapt another fuzzy mathematical
programming based approaches in order to prove their effective-
ness to solve supply chain production planning problems; (ii) to
use evolutionary computation with fuzzy optimization in order to
solve more efficiently fuzzy supply chain production planning
problems; and (iii) to integrate simulation models with fuzzy
optimization and evolutionary computation models to better
understand the behaviour and the results of the fuzzy supply
chain production planning models.
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