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A B S T R A C T

This paper shows a novelty way to simulate the nonlinear behaviour of confined masonry walls subjected to in-
plane lateral loading by using a 3D macro-modelling approach. For this purpose, the finite elements method
implemented in ABAQUS software was used. All the 3D solid finite elements were modelled as a single part,
which allowed avoiding modelling the contact interfaces between concrete and masonry elements. The nonlinear
behaviour of the concrete and masonry were governed by two main types of failures: crushing and cracking,
which were properly represented by the Concrete Damage Plasticity (CDP) model. Steel rebars were modelled as
elastic–plastic with hardening and were assumed to have a perfect adhesion with the surrounding concrete by
means of the embedded constraint. Prior to the modelling process, experiments were carried out whose results
were used as patterns to validate the proposed model. A calibration process of the tensile properties of masonry
was conducted for properly fitting the experimental patterns. As a result, there were good agreements between
the numerical and experimental outcomes in terms of capacity curves and cracking patterns.

1. Introduction

Confined masonry buildings are the most common type of con-
struction for dwellings in Peru and other South American countries. The
major issue with many of these constructions is their informality:
According to [1], masonry dwellings constitute 84% of the total
buildings in Peru and 60% of them did not have any engineering par-
ticipation. Additionally, just in Lima, 9 out of 10 masonry dwellings
were built by using bricks with a percentage of voids between 40% and
50%, which mean bricks with a density lower than that required by the
Peruvian seismic code [2]. Fig. 1 shows a common case of masonry
dwellings in Lima of up to five stories.

Peruvian seismic events have revealed the poor quality of these
informal masonry dwellings, which has been responsible for human and
material losses. However, this is not only related to the informality of
the masonry constructions, but also to the lack of knowledge of the
nonlinear behaviour of the masonry. For this reason, much research
around the world has been devoted to experimental studies of the
nonlinear behaviour of masonry walls, either for in-plane or out-plane
loads [4–7]. However, such studies need economic resources, which are
often scarce. To overcome this issue, numerical modelling is an alter-
native way to study this topic, since it allows replacing economic re-
sources by computational resources.

In literature, many alternatives can be found for assessing the
seismic vulnerability of masonry constructions in terms of the seismic
hazard and the seismic response of the masonry walls during an
earthquake [8]. For instance, the simplified evaluation methods offer
different levels of evaluation which are related to a more refined
knowledge in terms of geometrical and constructions details, materials
characterization, surveys, visual inspections, among others. These le-
vels of evaluation range from a territorial scale evaluation up to the
location of specific damaged parts in a construction [9]. On the other
hand, the analytical methods offer a simple way of evaluating some
seismic parameters such as the maximum lateral load capacity and
lateral stiffness, both related to the response of the masonry walls
during a earthquake. In this sense, many analytical expressions have
been proposed by different authors after conducting a great quantity of
tests. As a result, these expressions have been adopted by different
design codes due to their ability to predict with a reasonable accuracy
the seismic parameters aforementioned [10]. Other analytical tool,
which can be found in the literature, is the well-known Strut and Tie
Method (STM) where the masonry is treated as an equivalent strut. This
method is a powerful tool since no sophisticated computations are
needed to evaluate the lateral load capacity of the masonry walls [11].
Finally, the Finite Element Method (FEM) appears as a more accurate
tool to evaluate completely the seismic response of masonry walls due
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to its potential of incorporating the nonlinear properties of all the
materials. Within this framework, the macro-modelling approach,
which means assuming all the materials as homogeneous, appears as a
good alternative in case of a high refinement level is not needed. On the
contrary, the micro-modelling approach, which means that all the
components are modelled separately, including contact interfaces, ap-
pears as a good alternative in case of a high refinement level is needed.
A third approach, known as simplified micro-modelling, results of
combining the first two approaches and appears as a good alternative in
case of an intermediate refinement level is needed [12].

Different numerical studies have been conducted to assess the be-
haviour of masonry walls subjected to in-plane lateral loads [13]. For
instance, [14–16] used the macro-modelling technique to perform
pushover analyses of confined masonry walls with different arrange-
ments. In this case, the contact surface between the masonry and the
concrete was considered as Hard-Contact for the normal direction and
frictional for the shear direction. [11] On the other hand, [15,17] used
the micro-modelling approach for masonry walls without confinement,
for which the bricks, mortar and contact surfaces were modelled se-
parately by taking into account their nonlinear behaviour. The non-
linear behaviour of the bricks and mortar were modelled by the well-
known Concrete Damage Plasticity (CDP), whereas the contact between
the blocks was modelled by cohesive elements with a thickness of
0mm. Basically, the behaviour of the cohesive elements is governed by
a linear-elastic behaviour until its maximum tensile or shear strength is
reached. Subsequently, its nonlinear behaviour is governed by a soft-
ening part characterized by progressive damage. Once the maximum
damage is reached, the cohesive elements are deleted and contact
properties begin to be dominant. For this purpose, hard-contact and
frictional properties were defined to be the normal and shear contact
properties, respectively. Finally, [18–20] used the simplified micro-
modelling approach for modelling the in-plane behaviour of in-fill
masonry walls, and diagonal compression tests, respectively. Like
micro-modelling, cohesive elements were used for contact between
blocks, and a frictional behaviour was defined to be activated once
cohesive elements exhausted their strength.

As the different studies have demonstrated, the nonlinear behaviour
of the masonry walls is of great interest mainly where they are part of
the building’s structural system. In the present paper, an easy way of
assessing structural parameters of masonry walls is presented by using
the macro-modelling approach. For this purpose, full-scale confined
masonry walls were modeled to be subjected under monotonic lateral
displacements. Finally, the proposed model was carefully calibrated by
comparing capacity curves and cracking patterns with those recorded in
a experimental campaign conducted by Manchego and Pari [21].

2. Previous work

The previous work was carried out by Manchego and Pari [21], with
colaboration of the current research group, and consisted in testing 6
full-scale confined masonry walls subjected to in-plane lateral cyclic
loading at the Pontifical Catholic University of Peru. Three of these
walls were subjected to a vertical load of 170 kN, which was intended
to represent the weight of a three-floor building over a wall located on

the first floor. This vertical load was applied prior to the application of
lateral loads. The other three walls were only subjected to lateral cyclic
loads. In addition, all of these walls were built by common workman-
ship in order to get the usual features of confined masonry walls in
Peruvian dwellings.

2.1. Geometry and steel reinforcement of the tested walls

Fig. 2 shows the typical assemblage of the tested walls. Note the
toothed connection between the confining columns and the masonry
panel. Different studies, such as the one conducted by Singhal and
Durgesh [10], have demonstrated the effectiveness of this type of
connection to significantly improve the post-peak behaviour of con-
fined masonry walls when are subjected to in-plane lateral loads. Re-
garding to the confining elements, since the main aim of them is to
avoid the quick disintegration of the masonry panel, as well as pro-
viding more ductility, typical practice is to provide corrugated steel
reinforcement with a diameter of ″ϕ1/2 as longitudinal reinforcement
and ″ϕ1/4 as transverse stirrups. It should be mentioned that in a real
confined masonry dwelling, beam foundations of reinforced concrete
are not built. In contrast, beams of cyclopean concrete are employed.
Nevertheless, due to the need of hoisting and fixing the walls prior
testing, reinforced concrete was essential. On the other hand, the
foundation is often assumed as rigid enough, so that it can also be
modeled as a fixed boundary condition without influencing the non-
linear response of the confined masonry walls.

2.2. Testing setup

Fig. 3 shows the typical assemblage that was used to carry out the
cyclic tests. The lateral displacements were imposed by means of a
dynamic actuator, which was controlled by displacements on a com-
puter. This actuator was intended to be fixed to a reaction frame rigid
enough to avoid distorted lateral displacements. On the other hand, one
hydraulic jack was located at each end of the foundation to prevent it
from being overturned. In addition, one hydraulic jack was located at
one of the ends of the foundation to prevent its sliding horizontally in
one direction. In the other direction, the foundation was intended to
react against the rigid reaction frame. The vertical load, where it was
applied, was imposed by an additional hydraulic jack, which in turn
was connected to two rigid steel beams, in order to distribute as much
as possible the vertical load over the wall’s confining beam.

2.3. Experimental results

In order to compare the pushover analysis conducted in this paper
with the cyclic experimental test conducted by [21], only the envelope

Fig. 1. Masonry dwellings in Lima [3].

Fig. 2. Geometry and details of reinforcement of the walls tested in the previous
work [21].

J. Yacila, et al. Engineering Structures 201 (2019) 109731

2



curve in the pushing direction was taken into account. Fig. 4 shows
these envelope curves for both walls with and without vertical load.
Note that the shear stresses shown on the secondary vertical axis do not
correspond to the real stresses, but to nominal stresses computed as the
ratio between the lateral forces and the cross-sectional area of the walls.

Experimental tests on small samples were also carried out in order
to characterize the material properties involved in the confined ma-
sonry walls with and without vertical load. For instance, uniaxial
compressive tests of brick prisms were conducted to get the

compressive strength and Young’s modulus of the masonry. In addition,
uniaxial diagonal compressive tests were conducted over small square
masonry walls in order to get their tensile strength. Typical compressive
tests of cylindrical specimens were carried out for each concrete ele-
ment (foundation, column and beam), in order to get their compressive
strength. It should be noted that every small sample was taken from
each kind of tested wall (with and without vertical load) by considering
they were built on different dates. The experimental results of these
tests are shown in Table 1.

3. Finite element model

In this research, the macro-modelling approach has been adopted.
In this way, the bricks, mortar, concrete, and their contact interfaces
were not modelled separately. Rather, all components were treated as
homogeneous and isotropic materials. The modelling process was car-
ried out in the commercial software package ABAQUS. The foundation
and wall were intended to be a single part, which meant that each
contact between different materials was assumed to be monolithic. This
assumption was made because of the constructive typology of the
confined masonry. Namely, in this kind of constructions, the masonry
panel is built prior to the casting of the confining elements. This fact
added to the toothed connection often used between masonry and
columns make all the components work as monolithic.

Except for the steel reinforcement, all the components were mod-
elled as continuum three-dimensional elements with 8 nodes with re-
duced integration (C3D8R). The steel rebars were modelled as truss
three-dimensional elements with two nodes (T3D2). The interaction
between the steel rebars and the surrounding concrete was considered
as perfect adhesion, implemented by means of an embedded constraint.
This means that no slip was taken into account between these two

Fig. 3. Testing setup of the walls tested in the previous work [21].

Fig. 4. Experimental envelope curves of the walls.

Table 1
Mechanical properties of materials.

Material E0 ν ′fcm f f( )tm y Gch Gf

[MPa] [–] [MPa] [MPa] [N/mm] [N/mm]

Wall without vertical load
Foundation’s concrete 25,900 0.15 27.50 2.75 13.70 0.137
Column’s concrete 21,300 0.15 16.50 1.95 8.60 0.120
Beam’s concrete 27,500 0.15 31.50 3.00 14.90 0.136
Masonry 5700 0.15 10.00 1.40 – 0.12
Steel rebars 200,000 0.30 – (420) – –

Wall with vertical load
Foundation’s concrete 25,900 0.15 27.50 2.75 13.70 0.137
Column’s concrete 24,400 0.15 23.50 2.47 11.60 0.129
Beam’s concrete 27,100 0.15 30.50 2.94 14.50 0.135
Masonry 5700 0.15 10.00 1.40 – 0.12
Steel rebars 200,000 0.30 – (420) – –
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materials.
As boundary conditions, each wall was assumed to be over an

analytical rigid surface which represents the reaction slab shown in
Fig. 3. The hydraulic jack and reaction frame intended to prevent the
horizontal sliding of the foundation, as well as the dynamic actuator,
were also modelled as analytical rigid surfaces. The hydraulic jacks
which were intended to prevent the foundation from overturning were
modelled as pin supports where only the vertical component was re-
stricted. However, these hydraulic jacks had an unknown initial pres-
sure prior to the cyclic testing, which in turn was increasing while the
lateral displacements were increasing. This fact was intended to be
modelled by assuming that a certain area below the foundation did not
suffer vertical displacements like its corresponding restricted top area.
For this purpose, it was assumed that the transmission of pressure be-
tween these hydraulic jacks and the reaction slab had a slope of 1:2, as
shown in Fig. 5.

A variant of classical plasticity theory with the introduction of da-
mage concepts is commonly used with Concrete Damage Plasticity to
simulate the nonlinear behaviour of quasi-brittle materials. However,
its accuracy is questionable, due to its tensile behaviour formulation
[22]. Even when the tensile stiffness degradation is properly simulated,
as is shown by some experimental tensile cyclic tests [23], this may fail
when strong excursions between the tensile and compressive strains
take place. Since the main objective of the present work is to get the
capacity curve of the walls, pushover analyses were carried out. In this
way, severe changes between the tensile and compressive strains were
intended to be avoided.

3.1. Concrete Damage Plasticity

Concrete Damage Plasticity (CDP) is a continuum plasticity-based
damage model for concrete and other quasi-brittle materials in any type
of structure. It is assumed that the failure of a material is governed by
two main mechanisms: tensile cracking and compressive crushing. The
evolution of its yield surface, which is defined by Eq. (1), is controlled
by two hardening variables, ̃εt

pl and ̃εc
pl, which are the tensile and

compressive equivalent plastic strain, respectively.

̃ ̂ ̂ ̃=
−

− + 〈 〉 − 〈 − 〉 − ⩽F
α

q αp β ε σ γ σ σ ε1
1

( ¯ 3 ¯ ( ) ¯ ¯ ) ¯ ( ) 0pl
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pl
(1)

where p̄ is the effective hydrostatic pressure, q̄ is the von Mises
equivalent effective stress, ̂σ̄max is the maximum eigenvalue of σ̄ , and

̃β ε( )pl is the function defined by
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where σ̄t and σ̄c are the tensile and compression effective stress, re-
spectively. The parameter α can be obtained experimentally with the

following expression:

= −
−

α σ σ
σ σ2
b c

b c

0 0

0 0 (3)

where σb0 and σc0 are the failure stress for biaxial and uniaxial condi-
tions, respectively. The parameter γ is defined as

= −
−

γ K
K

3(1 )
2 1

c

c (4)

where Kc is a constant that can be obtained experimentally through
triaxial tests [24]. Finally, CDP uses a potential flow, G, which is gov-
erned by the Drucker–Prager hyperbolic function

= + −G eσ ψ q p ψ( tan ) ¯ ¯tant0
2 2 (5)

where ψ is the dilation angle measured in the −p q plane with a high
level of confinement pressure, σt0 is the uniaxial tensile strength, and e
is an eccentricity that defines the rate at which the function reaches the
asymptote. A typical yield surface for plane stress conditions is shown
in Fig. 5. The intersection between the yield boundary and principal
axes represents both the compressive and tensile uniaxial strength of
the material. As is characteristic of quasi-brittle materials, a reduced
biaxial tension and increased biaxial compression are also illustrated in
Fig. 6 [18].

All the parameters involved in CDP can be obtained from uniaxial,
biaxial and triaxial tests, as described by Jankowiak and Lodygowski
[24]. Regarding the dilation angle, ψ, values of °30 and °35 were used
for concrete and masonry, respectively, as were correctly used by [7].
Regarding the rest of parameters, in the absence of experimental data,
e σ σ, /b c0 0 and Kc were taken with their default values from ABAQUS to
be: 0.1, 1.16 and 0.667, respectively [25]. Regarding the parameter of
viscosity, it was taken to be 0.0001, following the recommendations of
[26]. For a better understanding of the CDP model, revise [25].

3.2. Material models

According to the configuration of the tested walls, 5 different ma-
terials were considered for modelling: (1) the foundation’s concrete, (2)
the column’s concrete, (3) the beam’s concrete, (4) the masonry, and (5)
the rebar’s steel. Table 1 shows their mechanical properties, which were
used for modelling purposes, where E is the Young’s modulus, ν is the
Poisson’s ratio, ′fc is the compressive strength, ft is the tensile strength,
fy is the yield strength, Gch is the crushing energy, and Gf is the fracture
energy of the materials.

Regarding the constitutive laws of concrete and masonry, it is

Fig. 5. Schematic of the numerical model.

Fig. 6. Yield surface of CDP for plane stress conditions [25].
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known that their behaviour lies between ideal brittle and ductile. In
fact, they are closer to a brittle behaviour than ductile, therefore, both
are considered as quasi-brittle materials [27]. In the following subsec-
tions, the constitutive models adopted for the concrete, masonry and
steel reinforcement will be discussed.

3.2.1. Concrete
The compressive behaviour of concrete was represented by three

main parts: (1) linear, (2) hardening and (3) softening. The linear part
was taken to last up to a compressive stress equivalent of ′f0.4 cm. The
second part was characterized by a parabolic hardening, in compliance
with CEB-FIP [28], up to the peak strength ′fcm and its associated strain
εcm. The last part was taken as a hyperbolic softening, according to the
recommendations of Krätzig and Pölling [29]. Eq. (6) represents this
formulation.

=σ E εc c(1) 0 (6a)
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−
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According to CEB-FIP [28], these parameters can be expressed as
= = +ε f f0.0022, 8cm cm ck , where fck is the characteristic compression

strength. =E f10000ci cm
1/3 and = +E f E(0.8 0.2 /88)cm ci0 , where E0 is the

modulus of the secant corresponding to a stress of f0.4 cm. The stresses
and modules of elasticity are expressed in [MPa]. Gch is the crushing
energy per unit area [Nmm/mm2]. leq is the characteristic length, which
depends on the mesh size, type of element, and cracking direction [30].
In this paper, leq is taken equal to the chosen mesh size. This is so as to
take into account the direction of the expected cracks on the concrete.
Finally, b results from averaging the ratio ε ε/c

pl
c
ch over the relevant strain

range. In this work, =b 0.70 was initially assumed, however, this value
was later iterated until convergence was reached. Fig. 7 shows the
stress–strain curves considered for concrete in compression.

Regarding the tensile behaviour, it was assumed to be governed by a
first linear elastic part up to its tensile strength, at which point tensile
failure begins. Thereafter, a post-failure behaviour of cracked concrete
was intended to be defined in strain-softening terms. For this purpose,
the formulation given by Hordijk [31] was selected. It is given by

=σ E εt t(1) 0 (7a)

⎜ ⎟= ⎡

⎣
⎢ + ⎛

⎝
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⎠

⎤

⎦
⎥ − +− −σ
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c w
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e w

w
c e1 (1 )t

tm c

c w
w

c

c(2)
1

3

1
3c2 2

(7b)

where = =c c3, 6.931 2 [31], wc is a critical crack opening, for which
σt (2) becomes zero, which can be calculated as =w G f5.14 /c f tm. In ad-
dition, in the absence of experimental data, Gf may be estimated as

=G f0.073f cm
0.18 [28]. Likewise, Gch may be estimated as =G f f G( / )ch cm tm f

2

[32]. It should be noted that Eq. (7b) defines the post-failure tensile
behaviour in terms of the crack opening w [mm]. However, in the case
of reinforced concrete, the post-failure relation is usually expressed in
terms of strains. In this way, it is intended to avoid any dependence of
the results on the mesh size. For this purpose, the cracking strain was
expressed as =ε w l/ck eq. Fig. 8 shows the adopted post-failure stress–-
strain curves for the tensile behaviour of the concrete. It should be
noted that a residual stress =σ f /50r tm was used to avoid kinetic in-
stabilities.

3.2.2. Masonry
The compressive behaviour of the masonry was represented by

three main parts: (1) parabolic hardening, (2) linear softening and (3)
residual, according to the constitutive model proposed by [33], as is
shown in Fig. 9. It is worth highlighting that, a residual stress of f0.1 cm,
unlike Fig. 9, was taken into account to avoid kinetic instabilities [12].

As with the concrete, the tensile behaviour was assumed to be
governed at first by a linear-elastic part followed by nonlinear beha-
viour. In this case, a post-failure exponential softening was assumed
[12]. However, it is worth noting that, unlike the reinforced concrete,
the masonry panel does not have reinforcement, which would introduce
an unreasonable mesh sensitivity into the results when a post-failure
stress–strain curve is defined [25]. To address this problem, Hillerborg’s
fracture energy proposal was employed to define a post-failure
stress–displacement curve (Eq. (8)) [35]. Fig. 10 shows the adopted
curves for the masonry.

=σ E εt t(1) 0 (8a)

⎜ ⎟= ⎛
⎝

− ⎞
⎠

σ f
f w
G

expt tm
tm

f
(2)

(8b)

Fig. 7. Stress–strain relations for concrete in compression.
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3.2.3. Steel reinforcement
In cases where the behaviour of the reinforced concrete is what

dominates, it is important to consider the bond slip effect between the
steel reinforcement and the concrete. This effect is related to the fact
that given a particular deformation of an RC element, the steel

reinforcement and the concrete have different strains due to the dif-
ference in their material properties (e.g. the Young and Poisson mod-
ules). This effect can be taken into account by modifying the con-
stitutive law of the steel reinforcement [36]. Nevertheless, in the case of
confined masonry walls, where the behaviour of the masonry is what
dominates, no considerable differences result from considering the bond
slip effect. For this reason, this paper does not take this effect into
consideration. Anyway, in case the bond slip effects are needed to be
considered for other considerations, the following literature could also
be helpful [37–40].

On the other hand, the steel reinforcement was modelled as elas-
tic–plastic with a hardening of E2% slope between the strains related to
the yield and ultimate stresses, εy and εu, respectively. The proposed
constitutive law that takes into account the effect of bond-slip [36],
considers a reduction of real yielding stress and young modulus of the
steel bar. In this line, a resultant hardening slope of E3% is derived from
joining the points related to the fictitious elastic limit state and the
ultimate limit state. In this case, such as no mechanical properties were
modified, the considered hardening slope turned out from joining the
points related to the well-known elastic limit state (ε F,y y), and the ul-
timate limit state (ε F,u u). Fig. 11 compares a typical experimental curve

Fig. 8. Stress–strain relations for concrete in traction.

Fig. 9. Stress–strain formulation for masonry in compression [34].

Fig. 10. Constitutive laws for masonry.
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for the steel reinforcement and the numerical curve adopted as the
constitutive law.

3.3. Damage models

The damage parameters for both the compressive and tensile be-
haviour of the concrete were computed by following the formulation
proposed by Alfarah et al. [30], which is an update of the formulation
of Lee and Fenves [23]. On the other hand, the pivot rule formulation

proposed by Park et al. [41] was used for both the compressive and the
tensile behaviour of the masonry.

It is worth mentioning that even when a unit value of a damage
parameter means a total failure of the material, which in turn means
that the material can not carry more stress, this could not be applied to
the model. This is related to the formulation of CDP [25], which states
that a unit value of damage parameter would lead to an infinite value of
the plastic strain. For this reason, in the present paper, all the damage
parameters were fixed to have a maximum value of 0.98.

3.4. Quasi-static modelling

Experimentally, the cyclic tests of the walls were carried out slowly,
as a quasi-static event, in order to avoid kinematic effects. For model-
ling quasi-static phenomena, ABAQUS offers two powerful solvers:
implicit and explicit. The implicit solver involves the solution of static
equilibrium equations by enforcing an equilibrium between the internal
and external forces. If the implicit solver does not find a convergence
between these forces in a specific time increment, it adds certain cor-
rections through the Newton–Raphson method. The process continues
until the difference between the internal and external forces is less than
a small value, called the convergence criterion. However, to solve the
equilibrium equations, the implicit solver needs to invert the stiffness
matrix, which involves a high computational cost, depending on the
number of degrees of freedom.

On the other hand, the explicit solver involves the solution of dy-
namic equilibrium equations. Unlike the implicit solver, the explicit
solver does not enforce an equilibrium between the internal and ex-
ternal forces, which means that there is no convergence criterion.
Moreover, the explicit solver needs to invert the mass matrix instead of
the stiffness matrix, which turns out to be much cheaper computa-
tionally. Indeed, inverting an uncoupled diagonal mass matrix is less
expensive than inverting a fully coupled stiffness matrix. Once the mass
matrix has been inverted, the acceleration in a specific time increment
is calculated. Thereupon, the velocity and displacements are calculated
by means of the central difference method.

In general terms, an explicit solution moves away from the real
solution if each time step is divided into only a few time increments.
That is why the ABAQUS Explicit Solver efficiently implements a large
number of time increments in order to obtain reliable results [25]. In
this work, the explicit solver was used to model the quasi-static phe-
nomena involved in the pushover analysis. Nevertheless, to avoid
considerable kinematic effects, the kinetic energy was intended to kept
less than 1% of the internal energy during the largest part of the test
[42–44].

Fig. 11. Stress–strain curve for the steel reinforcement.

Fig. 12. Numerical responses to changes in the Young’s modulus of masonry
( =G 0.12f =tN/mm , 1.40f

2 MPa).

Fig. 13. Numerical responses to changes in the tensile strength of masonry
( =∗E 3705 MPa, =G 0.12f N/mm).

Fig. 14. Numerical responses to changes in the fracture energy of masonry
( =∗E 3705 MPa, =t 1.20f MPa).
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Fig. 15. Experimental and numerical cracking patterns for walls without vertical load ( =∗E 3705 MPa, =t 1.20f MPa, =G 0.10f N/mm).
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4. Validation of the proposed model

4.1. Walls without vertical load

Taking into account that each wall was assumed to be a single part,
a single mesh size would affect the entire part. Therefore, in order to
find an appropriate mesh size, one that would require less computa-
tional cost without losing accuracy, a sensitivity analysis was carried
out.

The Young’s modulus of the masonry shown in Table 1 was com-
puted experimentally by uniaxial compressive tests conducted perpen-
dicularly to the bed joints. However, this value can not be used directly
for modelling since it would lead to stiffer responses, as has also been
observed by others [45]. This is related to the fact that the macro-
modelling approach tries to simulate even totally anisotropic materials
as isotropic. As with Young’s modulus, all the material properties ob-
tained experimentally from small specimen tests were expected to be
calibrated for the macro-modelling. For this reason, many iterations
were carried out by varying the material properties of the masonry and
the concrete. For instance, the compressive strength of the column’s
concrete was varied and its influence was analyzed in terms of cracking
pattern and capacity curve of the overall response of the wall and so on.
As a result, it was noted that the properties related to the tensile be-
haviour of the masonry controlled the overall response of the confined
masonry wall. Therefore, a subsequent parametric study was conducted
by varying three main parameters of masonry: Young’s modulus, tensile
strength, and fracture energy. This had the aim of getting average va-
lues that would allow properly fitting the experimental curves and the
visual cracking patterns. The parametric study began considering the
material properties shown in Table 1.

Fig. 12 shows the numerical curves obtained from iterating the
Young’s modulus, where it is possible to note that an equivalent
Young’s modulus =∗E E65% 0 allowed to properly fit the initial stiffness
of the experimental results. It has to be noted that regardless the per-
centage of the experimental Young’s modulus, the variation of the in-
itial stiffness of the entire wall is not quite and it also does not affect too
much the nonlinear behaviour of the wall. For instance, whether a
value =∗E E100% 0 had been used instead of =∗E E65% 0, only a mistake
of 14% would have been committed when capturing the initial experi-
mental stiffness of the entire wall. Nevertheless, it must be taken into
account that the initial stiffness of the entire walls is due to the con-
tribution of both concrete frames and masonry panel, therefore, the
small variation of 14% is due to the fact that only one source of stiffness
is being affected. On the other hand, it is worth mentioning that the
experimental area showed in Figs. 12–16, turned out from the area
enclosed by the experimental curves showed in Fig. 4. Once calibrated

the Young’s modulus, masonry’s tensile strength was the next para-
meter to be iterated, as is shown in Fig. 13.

In terms of fitting the nonlinear part of the experimental capacity
zone (Fig. 13), it has to be noted the effect of decreasing the tensile
strength of masonry, which is related to an earlier cracking of the
masonry panel which in turns results in a quicker decreasing of the wall
elastic modulus. According to Fig. 13, a value of =t 1.20f MPa was
taken into account for the iteration of the next parameter. Regarding
the fracture energy, Fig. 14 shows the numerical curves obtained from
iterating this parameter. Like tensile strength, the effect of decreasing
this parameter is associated to a quicker cracking process and indeed to
a quicker stiffness degradation. These results allowed to conclude that
both parameters are linked and govern the nonlinear behaviour of the
wall. According to the experimental zone, the value =G 0.10 N/mmf

was chosen for showing the best fitting.
Once calibrated all the material parameters, it turned out important

to compare the cracking pattern of both experimental cyclic test and
numerical pushover analysis. Fig. 15 shows the cracking pattern for
both experimental and numerical tests, according to different perfor-
mance levels related to: (1) end of linear behaviour, (2) yielding be-
ginning and (3) maximum load capacity.

It has to be noted that there was a good agreement in terms of
cracking pattern between half an experimental wall and numerical re-
sults by showing bending cracks which occurred first on the confine-
ment column and grew up to the bottom center of the wall. According
to the evolution of cracks, in both cases it can be seen how horizontal
cracks are propagated in the height of the confinement column whereas
the lateral displacement increase. Regarding the beam foundation, it
was possible to capture an unexpected bending failure which shows the
potential of the proposed model for reproducing all the experimental
effects. As it was aforementioned, the foundation could be assumed to
be rigid enough in comparison with masonry wall, which implies that
all the failure should be concentrated in the wall. However, the lack of
bending stiffness of the RC beam foundation led to its unexpected
failure which could be properly captured by the proposed model. In
addition, it should be noted that the experimental cracking pattern
shows additional cracks that can not be captured by a pushover analysis
since they are related to the cyclic behaviour of materials. Namely,
additional cracks are intended to appear when there are excursions
among compressive and tensile states.

4.2. Walls with vertical load

The calibrated material properties for the case of walls without
vertical load, were intended to be used for showing the reliability of the
proposed model for fitting the experimental results of another testing
setup, which corresponded to consider a vertical load prior the appli-
cation of lateral loading. This vertical load had a value of 170 kN which
tried to represent the weight of 3 stories over a wall located at the first
floor. It is worth mentioning that this vertical load was controlled
manually by an operator who noted an oscillating variation of the
vertical load conforming the lateral displacements were increasing. In
fact, this variation became significant from a displacement level of 7.70
mm onwards. That was why the first test with vertical load was stopped
for this displacement level (Fig. 4). For the next tests, this vertical load
was intended to keep close to the 170 kN as much as possible. However,
it was not possible to control which meant a complication for the
modelling process to capture the nonlinear behaviour of the walls from
the displacement level aforementioned. This oscillating effect of the
vertical load caused an increment in the load capacity of the walls
which was considered as unreal because it was caused by an un-
controllable boundary condition during their tests.

As it was mentioned before, the calibrated material properties from
walls without vertical load were used here. However, it was noted that
an equivalent Young’s modulus of =∗E E65% 0 did not capture the initial
stiffness showed by the experimental results. On contrary, it had to be

Fig. 16. Young’s modulus calibration for the effect of the vertical load ( =t 1.20f

MPa, =G 0.10f N/mm).
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Fig. 17. Experimental and numerical cracking patterns for walls with vertical load ( =∗E 5700 MPa, =t 1.20f MPa, =G 0.10f N/mm).
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used a value of =∗E E100% 0 to properly fit the initial stiffness of the
experimental results (Fig. 16). This variation in percentage is attributed
to the fact that each wall, from its construction up to its test, has enough
time to develop some micro-cracks which are related to the shrinkage of
concrete and mortar, or to the fact that some high stresses can take
place during the lifting of the walls. It is known that the presence of
cracks is linked to the reduction of the Young’s modulus of the mate-
rials. However, the presence of vertical load helps to the closing of these
cracks which is related to a recovery of this parameter. Anyway, within
the showed range 65–100%, it can be highlighted that the variation of
Young’s modulus does not affect too much the nonlinear response of the
wall, as it was noted in Fig. 12 and can also be seen in Fig. 16.

It is important to mention that a proper application of the vertical
load should have lead to a behaviour more close to the numerical curve.
In fact, a constant vertical load would be more appropriate to represent
the load condition of a wall located on the first floor in a real building.
To support this idea, it can be seen the results of the experimental tests
conducted by Perez et al. [46], where it can clearly seen the tendency of
the capacity curves.

Fig. 17 shows the cracking pattern for both experimental and nu-
merical tests, according to different performance levels related to: (1)
end of linear behaviour, (2) maximum load capacity and (3) ultimate
state. It should be noted there was a good agreement between experi-
mental and numerical cracking pattern until the second analyzed per-
formance level. In the ultimate state, differences are evidenced by the
presence of additional cracks, which in fact were produced by the effect
of the experimental cyclic loading and the uncontrollable vertical load
from second point onwards. Regarding the beam foundation, numerical
results showed also a bending failure of the beam foundation, which
was not observed experimentally. This effect is entirely attributed to the
uncontrollable increment of the applied vertical load which offered a
major restriction to the beam foundation against bending.

4.3. Control of dynamic effects

As mentioned before, the quasi-static problem was intended to be
solved by means of a purely dynamic explicit solver. For this purpose,
the loads were applied by defining smooth step amplitudes, which has
the advantage of having zero velocity in the application of the loading
at the beginning and ending of the load step. In addition, these smooth
steps allow gradually increasing the application of the loading, which
helps to minimize kinematic effects. Subsequently, in order to be sure
that the numerical results resulted mainly from quasi-static effects, i.e.
that kinematic effects were not dominant, the kinetic and internal en-
ergy of the whole model (ALLKE and ALLIE, respectively) were com-
pared over the entire time step (Fig. 18). Note that the kinetic energy
curves are very close to the axle time. In fact, they were less than 1% of

the internal energy over the largest part of the time step, which allowed
being sure that the numerical results were not influenced by kinetic
effects.

5. Conclusion

A 3D finite element model based on the macro-modelling technique
was presented to simulate the nonlinear behaviour of confined masonry
walls subjected to in-plane lateral loading. For this purpose, all the solid
elements were modelled as single parts, which means that no contact
surfaces between the different materials were physically modelled. In
addition, due to the assumptions made by Concrete Damage Plasticity
(CDP) of treating quasi-brittle materials as isotropic, it was not possible
to use the material properties directly obtained from small sample tests.
On the contrary, these materials properties needed to be calibrated.
After many iterations, varying the material properties of the concrete
and masonry, it was concluded that the main parameters that controlled
the nonlinear behaviour of the walls were the Young’s modulus, tensile
strength and fracture energy of the masonry. Therefore, in a parametric
study, these parameters were iteratively varied until reaching a good fit
of the experimental results.

1. Recalling that Young’s modulus, E0, of masonry was obtained ex-
perimentally by means of the well-known compressive tests of brick
prisms, it could be seen that values of E65% 0 and E100% 0 properly fit
the initial stiffness of walls without and with vertical load, respec-
tively. In fact, Young’s modulus is related to the presence of cracks
prior to testing, but anyway the impact of fitting the initial stiffness
with a more or a little less precision does not affect too much the
nonlinear response of the confined masonry walls.

2. Regarding the tensile strength and fracture energy of the masonry, it
is worth mentioning that both parameters controlled the cracking
pattern and the nonlinear behaviour of the confined masonry walls.
Therefore, they were iterated together so as to obtain a reduced
value of =t 1.20f MPa, instead of the =t 1.40f MPa obtained from
the well-known diagonal compressive test of square masonry sam-
ples, and a fracture energy of =G 0.10f N/mm, which allowed
properly fitting both the cracking pattern and the nonlinear part of
the capacity curves.

3. Finally, the proposed model achieved good precision in capturing
the nonlinear response of confined masonry walls as well as their
cracking pattern. Therefore, taking into account the efficiency and
the simplicity of the application of the model herein proposed, it can
be concluded that it can be used to help laboratory tests and de-
signing codes in case it is important to predict the cracking patterns,
maximum load capacity, and the ultimate displacements of confined
masonry walls.
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