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a b s t r a c t

The main driver of longevity risk is uncertainty in old-age mortality, especially surrounding potential
dependence structures. We investigate a multivariate Pareto distribution that allows for the exploration
of a variety of applications, from portfolios of standard annuities to joint-life annuity products for
couples. Given the anticipated continued increase of supercentenarians, the heavy-tailed nature of the
Pareto distribution is appropriate for this application. In past work, it has been shown that even a little
dependence between lives can lead to much higher uncertainty. Therefore, the ability to assess and
incorporate the appropriate dependence structure,whilst allowing for extreme observations, significantly
improves the pricing and risk management of life-benefit products.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The study of lifetime dependence is highly important in actuar-
ial science. A positive pattern of dependencemay range from expo-
sure to similar risk-factors among a small group of individuals (say,
a couple) all the way to systematic mortality improvements expe-
rienced by a population, and hence, the link with longevity risk is
noteworthy. Rather thanmodelling mortality rates, we investigate
the lifetime (age at death) distribution directly. We consider a pool
of lives where the individual lifetimes follow a type II Pareto dis-
tribution, also known as the Lomax distribution, see Lomax (1954).
The dependence among the lives is determined by the nature of the
multivariate distribution. We consider a multivariate construction
of the type II Pareto distribution such that the correlation between
lives is governed by the Pareto shape parameter α. This particu-
lar construction of themultivariate distribution is analytically con-
venient, allowing us to derive closed-form expressions for various
quantities of interest. However, the parameter α is responsible for
both the shape of the marginal distribution as well as the depen-
dence structure, which imposes some restrictions on the model.

The nature of the problem is determined by the size of the
pool under consideration. For example, for a pool of size two, an
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application of this model is useful to assess the pricing and risk
management of joint-life annuity products, an extremely relevant
subset of insurance products. In fact, pools of arbitrary size could be
investigated so long as each pool contains roughly the same num-
ber of individuals. This restrictionmaymake practical applications
difficult for large n, but we hope, still of interest to both private
insurance and public policy. We believe the ability to investigate
joint-life behaviour is sufficient to justify the exploration of this
unique dependence structure.

In the work of Alai et al. (2013, 2015, 2016), lifetime
dependence modelling was considered for members of the expo-
nential dispersion family, specifically for the Tweedie subclass. De-
pendencewas induced via a common stochastic component, rather
than governed parametrically. Lifetime dependence has also been
studied in Denuit et al. (2001) and Denuit (2008) and within the
mortality rate modelling framework in Dhaene and Denuit (2007)
and D’Amato et al. (2012).

The Pareto distribution represents an interesting and relevant
distribution for modelling heavy-tailed data; for more about
Pareto distributions, see Arnold (1985) and for the modelling of
extreme events in insurance, Embrechts et al. (1997). The Pareto
is applied here to address the non-standard pattern of old-age
mortality; see e.g. Pitacco et al. (2009). The issues surrounding
old-age mortality are long-standing. With respect to the survival
curve, both compression and expansion have been postulated and
observed to varying degrees; see e.g. Myers and Manton (1984)
and Fries (1980) as well as Olivieri (2001) and Pitacco (2004). It
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is not our aim to make claims on old-age mortality, but to provide
a framework in which the matter may be further investigated.

Since the focus is on old-age mortality, lifetimes are necessarily
left-truncated. This represents a non-trivial issue with respect to
parameter calibration; one that we investigate on multiple fronts.
Not only arewe able to derive important characteristics of themul-
tivariate distribution, but we are also able to derive distributional
results on survivorship. The former is critical to model calibration
and the latter to the pricing and risk management of multi-life in-
surance products.
Organization of the paper: In Section 2 we introduce basic
notation and provide relevant results for the univariate Pareto
distribution. The multivariate Pareto distribution is introduced
in Section 3, where we derive results necessary to formulate
parameter estimators. In Section 4 we outline various parameter
estimation techniques, which we test via numerical analysis in
Section 5. In Section 6 we apply the model to price a bulk annuity
and contrast our results against the assumption of independent
lifetimes. Section 7 concludes the paper.

2. Notation and the type II Pareto distribution

In the following two sections, we derive some relevant prop-
erties of the truncated Pareto distribution; first, for the univariate
case, followed by a multivariate version. The results are required
to develop the parameter estimation procedures of Section 4.

2.1. Notation

Webegin by providing somenotation concerningmoments.We
denote with αk(X) and µk(X) the kth, k ∈ Z+, raw and central
(theoretical) moments of random variable X , respectively.

αk(X) = E[Xk
],

µk(X) = E[(X − α1(X))k].

The raw sample moments for random sample X = (X1, . . . , Xn)
′

are given by

ak(X) =
1
n

n
i=1

Xk
i , k ∈ Z+.

Finally, adjusted second central sample moments are denoted

m2(X) =
1

n − 1

n
i=1

(Xi − a1(X))2.

Note that the adjusted central sample moment of an independent
and identically distributed sample is an unbiased and consistent
estimator of the corresponding central moment of X1.

2.2. The type II Pareto distribution

We consider the type II Pareto distributionwith shape and scale
parameters α and σ > 0, respectively. The density function is
given by

f (y) =
α

σ


1 +

y
σ

−(α+1)
, y > 0.

The survival function is given by

F(y) =


1 +

y
σ

−α

, y > 0.

The raw moments of interest are given by

α1(Y ) =
σ

α − 1
, α > 1,

α2(Y ) =
2σ 2

(α − 1)(α − 2)
, α > 2
or, generally, for k ∈ Z+ and α > k,

αk(Y ) = Γ (k + 1)σ kΓ (α − k)
Γ (α)

.

The variance is given by

µ2(Y ) =
σ 2α

(α − 1)2(α − 2)
, α > 2.

2.3. Mean and variance for the truncated Pareto

Theorem 1. Consider Y distributed type II Pareto (α, σ ). Define the
associated truncated random variable τY = Y |Y > τ . The mean and
variance of τY are given by

α1(τY ) =
σ + τα

α − 1
,

µ2(τY ) =
(σ + τ)2α

(α − 1)2(α − 2)
.

Proof. F(y;α) denotes the survival function of a type II Pareto
distribution with shape parameter α.

α1(τY ) =
α

F(τ )


∞

τ

y
σ

1 +
y
σ

α+1 dy.

Applying partial fractions produces

α1(τY ) =
α

F(τ )


∞

τ


1

1 +
y
σ

α −
1

1 +
y
σ

α+1


dy

=
α

F(τ )

σ

α − 1


∞

τ

α−1
σ

1 +
y
σ

α dy
−

σ

F(τ )


∞

τ

α
σ

1 +
y
σ

α+1 dy

=
α

F(τ )

σ

α − 1
F(τ ;α − 1)−

σ

F(τ )
F(τ ;α)

=
σα

α − 1
F(τ ;α − 1)

F(τ )
− σ =

σα

α − 1


1 +

τ

σ


−
α − 1
α − 1

σ

=
σ + τα

α − 1
.

α2(τY ) =
α

F(τ )


∞

τ

y2

σ
1 +

y
σ

α+1 dy

=
σα

F(τ )


∞

τ


1

1 +
y
σ

α−1 −
2

1 +
y
σ

α +
1

1 +
y
σ

α+1


dy

=
σα

F(τ )

σ

α − 2


∞

τ

α−2
σ

1 +
y
σ

α−1 dy

−
2σα

F(τ )

σ

α − 1


∞

τ

α−1
σ

1 +
y
σ

α dy
+

σ 2

F(τ )


∞

τ

α
σ

1 +
y
σ

α+1 dy

=
σ 2α

α − 2
F(τ ;α − 2)

F(τ )
−

2σ 2α

α − 1
F(τ ;α − 1)

F(τ )
+ σ 2 F(τ )

F(τ )

=
σ 2α

α − 2


1 +

τ

σ

2
−

2σ 2α

α − 1


1 +

τ

σ


+ σ 2

=
α(α − 1)

(α − 1)(α − 2)


σ 2

+ 2τσ + τ 2

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−
2α(α − 2)

(α − 1)(α − 2)


σ 2

+ τσ


+
(α − 1)(α − 2)
(α − 1)(α − 2)

σ 2

= σ 2 (α
2
− α − 2α2

+ 4α + α2
− 3α + 2)

(α − 1)(α − 2)

+ τσ
(2α2

− 2α − 2α2
+ 4α)

(α − 1)(α − 2)
+ τ 2

α(α − 1)
(α − 1)(α − 2)

=
2σ 2

(α − 1)(α − 2)
+

2τσα
(α − 1)(α − 2)

+
τ 2α(α − 1)

(α − 1)(α − 2)
.

Here, we use the fact that µ2(τY ) = α2(τY )− α1(τY )2.

µ2(τY )(α − 1)2(α − 2)
= (2σ 2

+ 2τσα + τ 2α(α − 1))(α − 1)− (σ + τα)2(α − 2)
= σ 2(2α − 2 − α + 2)+ 2τσ (α2

− α − α2
+ 2α)

+ τ 2α(α2
− 2α + 1 − α2

+ 2α)
= (σ 2

+ 2τσ + τ 2)α = (σ + τ)2α. �

2.4. Quantiles for the truncated Pareto

Lemma 1. Consider Y distributed type II Pareto (α, σ ). Define the
associated truncated random variable τY = Y |Y > τ . The quantile of
level λ for τY , 0 < λ < 1, is given by

qτ Y (λ) =


1 − λ

−
1
α

1 +

τ

σ


− 1


σ .

Proof. Consider the distribution function of τY ,

Fτ Y (y) =
P(τ < Y ≤ y)

P(Y > τ)
=

P(Y > τ)− P(Y > y)
P(Y > τ)

= 1 −
P(Y > y)
P(Y > τ)

= 1 −


1 +

y
σ

1 +
τ
σ

−α

.

Inverting this function produces the desired result. �

3. A multivariate Pareto distribution

We now consider a multivariate construction of the type II
Pareto distribution. Shape and scale parameters are given by α and
σ > 0, respectively. Let Y = (Y1, . . . , Yn) be an n-dimensional
multivariate Pareto distribution; the survival function is given by

FY(y) =

1 +

n
i=1

yi

σ


−α

,

where y = (y1, . . . , yn). It is known that the marginal distribution
of Yi, i = 1, . . . , n follows a univariate type II Pareto distribution
with parameters α and σ . Furthermore, the dependence structure
of the marginals is characterized by the parameter α; that is, the
correlation between Yi and Yj, for i ≠ j is given by 1/α.

We provide some details: for Y = (Y1, . . . , Yn) multivariate
Pareto, the covariance of Y1 and Y2 is given by

Cov(Y1, Y2) = E[Y1Y2] − E[Y1]E[Y2]

=
σ 2

(α − 1)(α − 2)
−

σ 2

(α − 1)2

=
σ 2(α − 1)− σ 2(α − 2)

(α − 1)2(α − 2)
=

σ 2α

(α − 1)2(α − 2)
×

1
α
.

3.1. Mean, variance and covariance results

We consider mean, variance, and covariance results for the
marginal distributions after applying truncation to the multi-
variate distribution. Note that this is different from considering
truncation on a subset of the multivariate distribution only. For
example, one may consider mean and variance results on the
marginal distribution when it alone is truncated, or even covari-
ance results when the two marginals in question are truncated.
Incidentally, we achieve the latter results as a by-product of mul-
tivariate truncation by trivially allowing n = 1 and n = 2.

To avoid confusion, we introduce some further notation. Let
Y = (Y1, . . . , Yn) be the multivariate distribution of interest. Let
τ = τ · 1n be an n-dimensional vector where each entry takes
value τ . Then, let τYi = Yi|Y > τ.

Theorem 2. Consider Y = (Y1, . . . , Yn) ∼ Multivariate Pareto
(α, σ ) with survival function denoted FY(y;α, σ ). Define the
associated truncated multivariate distribution τY = {Y|Y > τ}. The
mean and variance of τYi are given by

α1(τYi) =
σ + τ(n + α − 1)

α − 1
,

µ2(τYi) =
(σ + τn)2α

(α − 1)2(α − 2)
.

The covariance between τYi and τYj, i ≠ j remains

Cov(τYi, τYj) =
σ 2

(α − 1)2(α − 2)
,

but the correlation between τYi and τYj, i ≠ j is now given by

Corr(τYi, τYj) =
σ 2

(σ + τn)2
1
α
.

Proof. The density of the multivariate distribution is found by
appropriately differentiating the joint survival function.

fY(y) = (−1)n
∂nFY(y)

∂y1∂y2∂y3 · · · ∂yn
.

The (truncated) marginal density is found by, first, integrating this
joint density; since we are dealing with a truncated multivariate
distribution, lower integration indices are set to τ . And second, by
normalizing with constant FY(τ).

Note that the survival function of then-dimensional joint Pareto
evaluated at point τ, FY(τ), is equivalent to the survival function of
a univariate Pareto evaluated at point τn, F(τn).

We consequently have that

α1(τY1) =
1

F(τn)


∞

τ

y1α
σ

dy1
1 +

y1+τ(n−1)
σ

α+1 .

Apply partial fractions to obtain

α1(τY1)

=
α

F(τn)


∞

τ


1

1 +
y1+τ(n−1)

σ

α −
1 +

τ
σ
(n − 1)

1 +
y1+τ(n−1)

σ

α+1


dy1.

Finally, apply substitution z = y1 + τ(n − 1) and recognize that
integrals are scaled survival functions of Pareto distributions.

α1(τY1) =
α

F(τn)


∞

τn


1

1 +
z
σ

α −
1 +

τ
σ
(n − 1)

1 +
z
σ

α+1


dz

=
α

F(τn)


σ

α − 1
F(τn;α − 1)−

σ

α


1 +

τ(n − 1)
σ


F(τn)


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=
σα

α − 1


1 +

τn
σ


− σ


1 +

τ(n − 1)
σ


=

σ

1 +

τn
σ


α − σ


1 +

τn
σ


(α − 1)+ τ(α − 1)

α − 1

=
σ + τ(n + α − 1)

α − 1
.

Apply a similar approach to obtain the second raw moment
α2(τY1).

α2(τY1) =
1

F(τn)


∞

τ

y21α
σ

dy1
1 +

y1+τ(n−1)
σ

α+1 .

Apply partial fractions and substitution z = y1 + τ(n − 1).

α2(τY1) =
σα

F(τn)


∞

τn


1

1 +
z
σ

α−1 −
2(1 +

τ
σ
(n − 1))

1 +
z
σ

α
+
(1 +

τ
σ
(n − 1))2

1 +
z
σ

α+1


dz

=
σα

F(τn)


σ

α − 2
F(τn;α − 2)

−
2σ
α − 1


1 +

τ(n − 1)
σ


F(τn;α − 1)

+
σ

α


1 +

τ(n − 1)
σ

2
F(τn)


.

This implies

α2(τY1)(α − 1)(α − 2)/σ 2
=


1 +

τn
σ

2
α(α − 1)

− 2

1 +

τn
σ

−
τ

σ


1 +

τn
σ


α(α − 2)

+


1 +

τn
σ

−
τ

σ

2
(α − 1)(α − 2)

=


1 +

τn
σ

2
α(α − 1)− 2α(α − 2)+ (α − 1)(α − 2)


+ 2


1 +

τn
σ

 τ
σ


α(α − 2)− (α − 1)(α − 2)


+
τ 2

σ 2


(α − 1)(α − 2)


= 2


1 +

τn
σ

2
+ 2


1 +

τn
σ

 τ
σ
(α − 2)+

τ 2

σ 2
(α − 1)(α − 2).

Rewrite the above as a quadratic of τ to obtain

α2(τY1)

=
2σ 2

+ 2τσ (2n + α − 2)+ τ 2(2n2
+ 2n(α − 2)+ (α − 1)(α − 2))

(α − 1)(α − 2)
.

To derive the variance, we use the fact that µ2(τY1) = α2(τY1) −

α1(τY1)
2. Applying a common denominator of (α−1)2(α−2), the

expression reduces very nicely to the one given above.
To derive the covariance, we require E[τY1τY2]. Again, we take

expectation with respect to the joint density. After integrating out
the remaining n − 2 variables, we have

E[τY1τY2] =
1

F(τn)


∞

τ


∞

τ

y1y2(α + 1)α
σ 2

×
dy1dy2

1 +
y1+y2+τ(n−2)

σ

α+2 .

Although finding an expression for this term is more complicated,
it is based on the same principles as before; we provide some de-
tails. Let z1 = y1 + y2 + τ(n − 2) and z2 = y2 + τ(n − 1).

E[τY1τY2] =
(α + 1)α

F(τn)


∞

τ

y2
σ


∞

τ

y1
σ

dy1
1 +

y1+y2+τ(n−2)
σ

α+2 dy2

=
(α + 1)α

F(τn)


∞

τ

y2
σ


∞

y2+τ(n−1)


1

1 +
z1
σ

α+1

−


1 +

y2+τ(n−2)
σ


1 +

z1
σ

α+2


dz1dy2

=
(α + 1)α

F(τn)


∞

τ

y2
σ


σ

α

1
1 +

y2+τ(n−1)
σ

α
−

σ

α + 1


1 +

y2+τ(n−2)
σ


1 +

y2+τ(n−1)
σ

α+1


dy2.

Having dealtwith y1, collect the y2 terms, noting the presence of y22.

E[τY1τY2] =
(α + 1)α

F(τn)


∞

τ


σ

α

y2
σ

1 +
y2+τ(n−1)

σ

α
−

σ

α + 1

y2
σ


1 +

τ(n−2)
σ


1 +

y2+τ(n−1)
σ

α+1

−
σ

α + 1

 y2
σ

2
1 +

y2+τ(n−1)
σ

α+1


dy2.

Apply partial fractions and pull out scaled Pareto survival func-
tions.

E[τY1τY2] = σ
(α + 1)α

F(τn)


∞

τn


1
α


1

1 +
z2
σ

α−1 −
1 +

τ(n−1)
σ

1 +
z2
σ

α 

−


1 +

τ(n−2)
σ


α + 1


1

1 +
z2
σ

α −


1 +

τ(n−1)
σ


1 +

z2
σ

α+1



−
1

α + 1


1

1 +
z2
σ

α−1 −
2

1 +

τ(n−1)
σ


1 +

z2
σ

α
+


1 +

τ(n−1)
σ

2
1 +

z2
σ

α+1


dz2

= σ 2 (α + 1)α

F(τn)


1
α


1

α − 2
F(τn;α − 2)

−
1 +

τ(n−1)
σ

α − 1
F(τn;α − 1)


−


1 +

τ(n−2)
σ


α + 1


1

α − 1
F(τn;α − 1)−


1 +

τ(n−1)
σ


α

F(τn)


−
1

α + 1


1

α − 2
F(τn;α − 2)−

2

1 +

τ(n−1)
σ


α − 1

F(τn;α − 1)

+


1 +

τ(n−1)
σ

2
α

F(τn)

.

The ratio of two Pareto survival functions reduces depending on
the difference in shape parameters. Collect terms based on these
ratios, using common denominator (α − 1)(α − 2).

E[τY1τY2] = σ 2(α + 1)α


1 +
τn
σ

2
α − 2


1
α

−
1

α + 1


−


1 +

τn
σ


α − 1


1 +

τ(n−1)
σ


α

+


1 +

τ(n−2)
σ


α + 1

−
2

1 +

τ(n−1)
σ


α + 1


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+


1 +

τ(n−1)
σ


1 +

τ(n−2)
σ


−


1 +

τ(n−1)
σ

2
(α + 1)α


.

=
σ 2

(α − 1)(α − 2)


1 +

τn
σ

2
+ 2


1 +

τn
σ

 τ
σ
(α − 2)

+
τ 2

σ 2
(α − 1)(α − 2)


.

Rewrite as a quadratic in τ to obtain

E[τY1τY2]

=
σ 2

+ 2τσ (n + α − 2)+ τ 2(n2
+ 2n(α − 2)+ (α − 1)(α − 2))

(α − 1)(α − 2)
.

Notice the similarity of this expression with that of α2(τY1). In or-
der to derive the covariance, we now take E[τY1τY2], rather than
α2(τY1), and subtract α1(τY1)

2.

Cov(τY1, τY2) = E[τY1τY2] − α1(τY1)
2

=
σ 2

(α − 1)2(α − 2)
= Cov(Y1, Y2).

Clearly the variance of the marginal from the truncated multivari-
ate distribution differs from the variance of the marginal from the
un-truncated distribution. Hence, we obtain a different correlation
coefficient, one that goes to zero as τn increases.

Corr(τY1, τY2) =
σ 2

(σ + τn)2
1
α
. �

Remark 1. It is convenient to note that

α2(τY1)− E[τY1τY2] =
(σ + τn)2

(α − 1)(α − 2)
,

which is used to derive E[m2(τY)] in Section 4.1.

3.2. Minimum and maximum results

We consider the minimum and maximum element of our
n-dimensional truncated multivariate Pareto distribution with
shape and scale parameters α and σ .

Theorem 3. Consider Y = (Y1, . . . , Yn) ∼ Multivariate Pareto
(α, σ ) with survival function denoted FY(y;α, σ ). Define the
associated truncated multivariate distribution τY = {Y|Y > τ}. Let
τY(1) = min(τY) and τY(n) = max(τY).

α1(τY(1)) =
σ/n + τα

α − 1
,

µ2(τY(1)) =
(σ/n + τ)2α

(α − 1)2(α − 2)
.

Furthermore,

α1(τY(n)) =

n
i=1

(−1)i+1

n
i


σ + τ(n + i(α − 1))

i(α − 1)


,

µ2(τY(n)) =

n
i=1

(−1)i+1

n
i


1
i2

×
2(σ + τ(n − i))2 + 2α(σ + τn)τ i + τ 2i2α(α − 3)

(α − 1)(α − 2)

−

 n
i=1

(−1)i+1

n
i


σ + τ(n + i(α − 1))

i(α − 1)

2

.

Proof. It is easy to demonstrate that Y(1) follows a Pareto distri-
bution with shape α and scale σ/n, and hence that τY(1) follows a
truncated Pareto distribution with the same parameters. In some
detail, we have

P(Y(1) > y) = P(Y1 > y, . . . , Yn > y) = FY(y, . . . , y)

= F(ny) =
1

1 +
ny
σ

α .
Therefore, adjusting the scale parameter by 1/n results in a Pareto
survival function. Furthermore, it is irrelevant whether you either:
find the minimum of a truncated multivariate Pareto, or truncate
the minimum of an un-truncated multivariate Pareto. Both lead to
the same result, the latter being more convenient.

We may apply Theorem 1 to obtain the mean and variance of
τY(1).

α1(τY(1)) =
σ/n + τα

α − 1
,

µ2(τY(1)) =
(σ/n + τ)2α

(α − 1)2(α − 2)
.

For the maximum, we have a less straight-forward result. We
start with the distribution function of the maximum of the trun-
cated multivariate Pareto.

P(τY(n) ≤ y) = P(Y(n) ≤ y|Y > τ) =
P(τ < Y ≤ y)

P(Y > τ)

=

n
i=0
(−1)i

n
i


F(yi + τ(n − i))

F(τn)

=

n
i=0

(−1)i

n
i


F(yi + τ(n − i))

F(τn)
.

Differentiate to find the density.

fτY(n)(y) =
1

F(τn)

n
i=1

(−1)i

n
i


−αi
σ

1
1 +

yi+τ(n−i)
σ

α+1 ,

y > τ.

The expectation is given by

α1(τY(n)) =
α

F(τn)

n
i=1

(−1)i+1

n
i

 
∞

τ

yi
σ

dy
1 +

yi+τ(n−i)
σ

α+1

=
α

F(τn)

n
i=1

(−1)i+1

n
i


×


∞

τ


1

1 +
yi+τ(n−i)

σ

α −
1 +

τ
σ
(n − i)

1 +
yi+τ(n−i)

σ

α+1


dy.

We now apply the substitution z = yi + τ(n − i). We obtain

α1(τY(n)) =
α

F(τn)

n
i=1

(−1)i+1

n
i


×


∞

τn


1

1 +
z
σ

α −
1 +

τ
σ
(n − i)

1 +
z
σ

α+1


dz
i

=
α

F(τn)

n
i=1

(−1)i+1

n
i


σ

i

×


F(τn;α − 1)

α − 1
−


1 +

τ
σ
(n − i)


F(τn)

α


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=

n
i=1

(−1)i+1

n
i


σ

i


α


1 +

τn
σ


α − 1

−
(α − 1)


1 +

τ
σ
(n − i)


α − 1


=

n
i=1

(−1)i+1

n
i


σ + τ(n + i(α − 1))

i(α − 1)


.

In order to determine the variance of the truncated maximum we
begin with the second raw moment.

α2(τY(n)) =
α

F(τn)

n
i=1

(−1)i+1

n
i

 
∞

τ

y2i
σ

dy
1 +

yi+τ(n−i)
σ

α+1

=
α

F(τn)

n
i=1

(−1)i+1

n
i


σ

i


∞

τn


1

1 +
z
σ

α−1

−
2


1 +

τ
σ
(n − i)


1 +

z
σ

α +


1 +

τ
σ
(n − i)

2
1 +

z
σ

α+1


dz
i

=
α

F(τn)

n
i=1

(−1)i+1

n
i


σ 2

i2

×


F(τn;α − 2)

α − 2
−

2

1 +

τ
σ
(n − i)


F(τn;α − 1)

α − 1

+


1 +

τ
σ
(n − i)

2 F(τn)
α


=

n
i=1

(−1)i+1

n
i


σ 2

i2


1 +

τn
σ

2
α(α − 1)

(α − 1)(α − 2)

−
2


1 +

τn
σ

 
1 +

τ
σ
(n − i)


α(α − 2)

(α − 1)(α − 2)

+


1 +

τ
σ
(n − i)

2
(α − 1)(α − 2)

(α − 1)(α − 2)


=

n
i=1

(−1)i+1

n
i


1
i2

×
2(σ + τn)2 + 2(σ + τn)τ i(α − 2)+ τ 2i2(α − 1)(α − 2)

(α − 1)(α − 2)

=

n
i=1

(−1)i+1

n
i


1
i2

×
2(σ + τ(n − i))2 + 2α(σ + τn)τ i + τ 2i2α(α − 3)

(α − 1)(α − 2)
.

Consequently, we have that

µ2(τY(n)) =

n
i=1

(−1)i+1

n
i


1
i2

×
2(σ + τ(n − i))2 + 2α(σ + τn)τ i + τ 2i2α(α − 3)

(α − 1)(α − 2)

−

 n
i=1

(−1)i+1

n
i


σ + τ(n + i(α − 1))

i(α − 1)

2

. �

Remark 2. From a purely theoretical standpoint, it is interesting
to note that when τ = 0, we obtain the following

α1(Y(n)) =

n
i=1

(−1)i+1

n
i


σ/i
α − 1

=
σ

α − 1

n
i=1

(−1)i+1

n
i


i−1

=
σ

α − 1
(ψ(n + 1)+ γ ),

where ψ is the digamma function and γ is Euler’s constant.
3.3. Relationship between minimum and maximum

A direct consequence of Theorem 3 yields an interesting
relationship, in expectation, between theminimum andmaximum
observations of a multivariate Pareto distribution. Recall that

α1(τY(1)) =
σ/n + τα

α − 1
,

α1(τY(n)) =

n
i=1

(−1)i+1

n
i


σ + τ(n + i(α − 1))

i(α − 1)


.

We solve for σ using the first equation, which, when substituted
into the second results in a cancellation of α.

α1(τY(n)) =

n
i=1

(−1)i+1

n
i


×


{α1(τY(1))(α − 1)− τα}n + τ(n + i(α − 1))

i(α − 1)


=

n
i=1

(−1)i+1

n
i


α1(τY(1))n − τ(n − i)

i


.

In other words, the expected maximum is a function of the
expectedminimum and the truncation point τ . For the special case
of n = 2 and τ = 0 we obtain

α1(Y(2)) = 3α1(Y(1)).

4. Estimators

We now apply the results of the previous section in order to fa-
cilitate estimation using sample statistics. We consider a situation
in which we have multiple, say m, realizations of pools of size n,
each with truncation point τ . As the results of the previous section
have shown, both τ and n play prominent roles in determining var-
ious theoretical quantities of interest. It is for this reason that es-
timation requires each pool to have not only the same truncation
point, but also be of similar size. As alluded to in the Introduction,
this may make practical use of the model difficult for large n.

4.1. Mean–variance estimator

Consider, again, Y = (Y1, . . . , Yn) ∼ Multivariate Pareto(α, σ )
with survival function denoted FY(y;α, σ ). Define the associated
truncated multivariate distribution τY = {Y|Y > τ}. Denote with
a1(τY) andm2(τY) the sample (or pool) mean and variance. That is,

a1(τY) =
1
n

n
i=1

τYi,

m2(τY) =
1

n − 1

n
i=1

(τYi − a1(τY))2.

Trivially, the expectation of a1(τY) is given by α1(τY1). The
expectation of m2(τY)may easily be determined.

E[a1(τY)] = α1(τY1) =
σ + τ(n + α − 1)

α − 1
,

E[m2(τY)] =
1

n − 1
E
 n

i=1
τY 2

i − na1(τY)2


=
1

n − 1


(n − 1)E[τY 2

1 ] − (n − 1)E[τY1τY2]


= α2(τY1)− E[τY1τY2] =

(σ + τn)2

(α − 1)(α − 2)
.
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Solving this system for α and σ yields the following:

α =
2E[m2(τY)] − (E[a1(τY)] − τ)2

E[m2(τY)] − (E[a1(τY)] − τ)2
,

σ =
E[m2(τY)](E[a1(τY)] − τ)

E[m2(τY)] − (E[a1(τY)] − τ)2
− τn.

Parameter estimatesα and σ are obtained by replacing E[a1(τY)]
and E[m2(τY)] with the average a1(τY) and m2(τY) over the pools,
respectively.

4.2. Minimum-mean–variance estimator

We develop an estimation technique based solely on the mini-
mum. Recall from Theorem 3

α1(τY(1)) =
σ/n + τα

α − 1
,

µ2(τY(1)) =
(σ/n + τ)2α

(α − 1)2(α − 2)
.

Let τY(1) be the collection ofminima fromeach pool. Since pools are
independent, a1(τY(1)) and m2(τY(1)) are unbiased estimators of
α1(τY(1)) and µ2(τY(1)), respectively. Consequently, we have that

α =
2E[m2(τY(1))]

E[m2(τY(1))] − (E[a1(τY(1))] − τ)2
,

σ =
E[m2(τY(1))](E[a1(τY(1))] − 2τ)+ E[a1(τY(1))](E[a1(τY(1))] − τ)2

E[m2(τY(1))] − (E[a1(τY(1))] − τ)2
n.

Parameter estimatesα andσ are obtained by replacing E[a1(τY(1))]
and E[m2(τY(1))]with the average a1(τY(1)) andm2(τY(1)) over the
pools, respectively.

4.3. Minimum-quantile estimator

The estimation procedures of the above two subsections make
use of mean and variance results. This implies α must be greater
than two. In order to provide a calibration procedure for any α, we
consider using quantiles of the pool minima.

Recall that τY(1) is the collection of minima from each pool.
Consider two quantiles λ1 and λ2. Using Lemma 1 we formulate
the following system of equations

qλ1 = qλ1(α, σ
⋆) =


1 − λ1

−
1
α

1 +

τ

σ ⋆


− 1


σ ⋆,

qλ2 = qλ2(α, σ
⋆) =


1 − λ2

−
1
α

1 +

τ

σ ⋆


− 1


σ ⋆.

Noting that the scale parameter of the minimum is σ ⋆ = σ/n.
Solving for σ ⋆ yields

σ ⋆ =
qλi − (1 − λi)

−
1
α τ

(1 − λi)
−

1
α − 1

, i = 1, 2.

This produces the following equation

qλ1 − (1 − λ1)
−

1
α τ

(1 − λ1)
−

1
α − 1

=
qλ2 − (1 − λ2)

−
1
α τ

(1 − λ2)
−

1
α − 1

. (1)

The estimate α is obtained by replacing theoretical quantiles, qλi ,
with sample quantiles, q̂λi , and solving numerically. Finally, σ ⋆ is
estimated usingα and a third quantile λ3 as follows:

σ ⋆ =
q̂λ3 − (1 − λ3)

−
1α τ

(1 − λ3)
−

1α − 1
. (2)

This estimation procedure requires three quantiles λ1, λ2 and λ3.
A natural question is how they can be selected optimally.
Optimal quantile level selection
We briefly recall some knowledge from statistical estimation

theory; please see Landsman (1996) for more details. We present
some important statistical objects necessary for our further
investigation. Let X1, . . . , Xn be a sample of independent and
identically distributed random variables with density function
f (x, θ), depending on some unknown parameter θ ∈ Θ ⊂ R.
Let density f (x, θ) be differentiable with respect to θ for almost all
x ∈ R. An important role in statistical estimation is played by the
Fisher information about parameter θ contained in observation X1;
it is defined as

IX1(θ) =


R


∂ ln f (x, θ)

∂θ

2

f (x, θ)dx. (3)

The importance of the Fisher information can be explained by the
fact that it represents themain part in thewell-knownRao–Cramér
lower bound. In fact, for any unbiased statistic θn = θn(X1, . . . , Xn)
and under some regularity conditions, we have

E(θn − θ)2 ≥
1

nIX1(θ)
. (4)

A higher Fisher information corresponds to a lower bound, and
consequently, more precise estimation. The same happens if we
estimate the parameter θ using some statistic Tn(X1, . . . , Xn). Then,
the lower bound is defined by Eq. (4), where instead of IX1(θ), one
should take the Fisher information ITn(θ) contained in statistic Tn.
The latter is defined by Eq. (3), where instead of density f (x, θ), one
should take fTn(x, θ), the density of statistic Tn.

Suppose q̂λ1 , . . . , q̂λk are sample quantiles corresponding to
levels 0 < λ1 ≤ · · · ≤ λk < 1. In Landsman (1996, Theorem 1),
it was shown that the Fisher information contained in the sample
quantiles, Iq̂λ1 ,...,q̂λk (θ), is asymptotically equal to nIk(λ1, . . . , λk),
where

Ik(λ1, . . . , λk) =

k
i=0

(βi+1 − βi)
2

λi+1 − λi
, (5)

0 < λ1 ≤ · · · ≤ λk < 1, λ0 = 0, λk+1 = 1, βi =

f (qλi , θ)∂qλi(θ)/∂θ , for i = 1, . . . , k and β0 = βk+1 = 0. Then
it is natural to find λ⋆1, . . . , λ

⋆
k , such that

Ik(λ1, . . . , λk) → max .
We use exactly this criterion to determine optimal quantile levels.
In fact, we want to estimate α (with σ unknown) using two
quantiles. Then k = 2 and we obtain from Eq. (5) the following
objective function:

I2(λ1, λ2) =
β2
1

λ1
+
(β2 − β1)

2

λ2 − λ1
+

β2

1 − λ2
,

where λ1 < λ2,

βi = f (qλi)
∂qλi
∂α

,

and f and q are the density and quantile function of the truncated
Pareto (α, σ ) distribution, respectively. We have

f (y) =
α

σ


1 +

y
σ

−(α+1)
1 +

τ
σ

−α
,

qλ =


(1 − λ)−

1
α


1 +

τ

σ


− 1


σ ,

f (qλ) =
α

σ

(1 − λ)1+
1
α

1 +
τ
σ

 ,

∂qλ
∂α

=
σ

α2


1 +

τ

σ


(1 − λ)−

1
α ln(1 − λ),

∂qλ
∂σ

= (1 − λ)−
1
α − 1.
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Consequently, we obtain

βi =
1 − λi

α
ln(1 − λi).

The objective function may be rewritten as follows

I2(λ1, λ2)

=
1
α2


λ̌21 ln

2(λ̌1)

λ1
+


λ̌1 ln(λ̌1)− λ̌2 ln(λ̌2)

2

λ2 − λ1
+ λ̌2 ln2(λ̌2)


where λ̌ = 1 − λ.

This expression may be maximized with respect to λ1 and λ2
numerically. Of critical importance is that σ plays no role in this
optimization. The fact that σ is not required to determine the opti-
mal quantiles to estimate α is a mathematical consequence; how-
ever, given that σ is a scale parameter, and therefore has no impact
on ranking observations, it is intuitive that the optimal quantile es-
timation of α does not depend on it. The optimal solution, to four
decimal places, is given by (λ⋆1, λ

⋆
2) = (0.6385, 0.9265).

Fig. 1 shows the one-dimensional plots over λ1 for select values
of λ2 of 0.2, 0.5, 0.75, 0.9, 0.95, and 0.99. A break is present in each
graph due to the restriction λ1 ≠ λ2. Horizontal and vertical lines
are added to indicate themaximum value of the objective function
and optimal λ1, respectively. It may be noticed that as λ2 increases,
so does the optimal value of λ1. However, the maximum value of
the objective function increases until λ2 = 0.9265, after which it
decreases.

It is also of interest to determine the optimal (single) quantile
level to estimate α if σ is known. In this case, k = 1 and the
objective function is

I1(λ) =
β2

λ(1 − λ)
=


f (qλ)

∂qλ
∂α

2 1
λ(1 − λ)

=
1
α2

1 − λ

λ
ln2(1 − λ);

see Eq. (5). Consequently, optimal λ is found by maximizing
1 − λ

λ
ln2(1 − λ).

This objective function may be optimized numerically. Alterna-
tively, taking logarithms and differentiating with respect to λ pro-
duces the following equation for optimal λ⋆:

2λ⋆ + ln(1 − λ⋆) = 0. (6)

The optimal solution, to four decimal places, is given by λ⋆ =

0.7968; see Fig. 2, which shows the objective function as well as
Eq. (6) plotted over λ. Althoughα depends on σ , it is interesting to
note that λ⋆ does not.

We return to the case of unknown σ . Armed with an estimate
of α, we consider the optimal quantile level λ3, used in Eq. (2),
to estimate σ . To achieve this end, we optimize the following
objective function

I1(λ) =


f (qλ)

∂qλ
∂σ

2 1
λ(1 − λ)

=
α2

σ 2


1 +

τ

σ

−2
1 − (1 − λ3)

1
α

2 1 − λ3

λ3
;

see Eq. (5). Consequently, optimal λ3 is found by maximizing
1 − (1 − λ3)

1
α

2 1 − λ3

λ3
,

whichmay be numerically optimized directly. Alternatively, taking
logarithms and differentiating with respect to λ3 produces the
following equation for optimal λ⋆3:

α

(1 − λ⋆3)

−
1
α − 1


= 2λ⋆3. (7)
It is clear that λ⋆3 depends on α. In Fig. 3, the objective function is
plotted versus λ3 for select values of α of 0.5, 1, and 5; for the case
α = 5, the plot of Eq. (7) versus λ3 is also provided.

Therefore, in the case of unknown α and σ , we apply the
following estimation procedure using optimal quantile levels.

Algorithm 1. 1. Estimate α using Eq. (1) and quantile levels
(λ⋆1, λ

⋆
2) = (0.6385, 0.9265).

2. Usingα, determine λ⋆3 via Eq. (7).
3. Obtainσ using λ⋆3 in Eq. (2).

5. Numerical results

We provide a numerical comparison using simulated data in
order to demonstrate the performance of the various estimation
procedures. Although the simulation of multivariate Pareto obser-
vations does not introduce any difficulties, simulating truncated
observations does. Namely, observations will have to be discarded
in the generation process, which may considerably lengthen sim-
ulation times. The truncation point τ and the dimension n of the
distribution increase the time required to obtain an observation of
a truncated multivariate observation. In conjunction with τ and n,
the parameters α and σ also play a role.

The impact of the truncation point may be minimized by in-
cluding translation. In fact, given that the Pareto distribution is
expressly applied to investigate tail behaviour, translation is nat-
ural and accounted for in the generalized, three parameter, Pareto
distribution. However, rather than estimate the translation point
(location parameter), we set it to 60. This is done for illustrative
purposes; it would be of interest to model the generalized Pareto
distribution and rigorously determine the location parameter.

The impact of n, unfortunately, is not so easy to overcome. Sim-
ulation times increase drastically for n > 3 with the magnitude of
τ playing an ever increasing role. We produce various samples of
bivariate data with τ = 5 as well as some 20-variate samples with
τ = 2.5 (and a corresponding increase of the translation point
to 62.5). In other words, all the samples are of lifetimes with 65
serving as the effective truncation point. It is important to high-
light that, although simulating from a high-dimensional truncated
multivariate Pareto distribution produces computational difficul-
ties, this does not imply that fitting such a sample (if it were avail-
able) would incur any difficulties. As alluded to above, the present
theory imposes some conditions on any such sample data.

The plot of a generated bivariate Pareto distribution with α =

4, σ = 3 is provided in Fig. 4. Parameter values were chosen
to roughly resemble real joint-lives data truncated at 65; one
data-point was censored at 120.

Estimation results for a bivariate Pareto distribution with
α = 4, σ = 3 are provided in Table 1. The table shows re-
sults for m = 1000, 10,000, and 100,000. In addition to the
mean–variance estimation procedure of Section 4.1 (labelled MV),
the minimum-mean–variance procedure of Section 4.2 (labelled
Min), and the minimum-quantile with optimal quantile levels
λ⋆1 = 0.6385, λ⋆2 = 0.9265, and λ⋆3 of Section 4.3, we also provide
the minimum-quantile estimation procedures for various other
combinations of quantile levels. In these latter cases,α is estimated
using λ1 and λ2, and σ is estimated using α and λ1. We selected
these combinations of λ1 and λ2 to illustrate the importance of
choosing the quantile levels, especially when faced with a rela-
tively small sample.

It can be seen in Table 1 that the minimum-quantile procedure
with optimal quantile levels performs consistentlywell. Itmay also
be noted that the optimal quantile levels do not always produce
estimates closest to the true values. This is not alarming given
the manner in which we define optimal, which is related to the
variability of the estimator.
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(a) λ2 = 0.25. (b) λ2 = 0.5.

(c) λ2 = 0.75. (d) λ2 = 0.90.

(e) λ2 = 0.95. (f) λ2 = 0.99.

Fig. 1. Objective function versus λ1 for select values of λ2 .
(a) Objective function versus λ. (b) Eq. (6) versus λ.

Fig. 2. Optimal λ for estimating α for known σ .
Estimation results for a 20-variate Pareto distribution with α =

4, σ = 3 are provided in Table 2. The table shows results for m =

100, 1000, and 10,000. Note that for this set of results (only), the
translation and truncation points were 62.5 and 2.5, respectively.
The first thing to notice is that the minimum-quantile estimation
procedure is unable to provide estimates for many of the quantile
level pairs when m = 100, which is to be expected. In these cases,
Eq. (1), which must be solved numerically, has no solution. Even
with m = 1000, the results are still quite variable, as can be seen
by the estimate of σ for the minimum-mean–variance procedure.
However, with m = 10,000 the minimum-quantile estimation
with optimal quantile levels performs exceptionally well. It is also
noteworthy to remark on the sensitivity of the minimum-quantile
procedure with respect to the chosen quantile levels; for example,
taking λ1 = 0.40 and λ2 = 0.60 produces a rather undesirable
result.

Although unable to verify with simulation, the results from
Tables 1 and 2 do seem to indicate that fitting poolswith large n can
yield desirable results. Furthermore, in this scenario, we anticipate
that the mean–variance estimators will perform better than the
quantile estimators.

Finally, we provide a comparison for different values of the
model parameters α and σ ; see Table 3. Recall that the mean–
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(a) Objective function versus λ3 for α = 0.5. (b) Objective function versus λ3 for α = 1.

(c) Objective function versus λ3 for α = 5. (d) Eq. (7) versus λ3 for α = 5.

Fig. 3. Optimal λ3 for estimating σ for known α.
Table 1
Estimation results for various samples of a bivariate distribution.

n = 2,m = 1000 Minimum-quantile
λ⋆3 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2

MV Min 0.6945 0.25 0.75 0.30 0.70 0.40 0.60 0.50 0.75 0.50 0.95 0.5 0.995

α 4 5.38 3.79 3.85 3.01 4.07 5.12 3.38 3.44 4.01
σ 3 8.82 2.38 2.51 -0.53 3.29 7.48 0.91 1.14 3.19

n = 2,m = 10,000 Minimum-quantile
MV Min 0.6947 0.25 0.75 0.30 0.70 0.40 0.60 0.50 0.75 0.50 0.95 0.5 0.995

α 4 4.64 4.33 3.86 5.21 4.70 5.97 4.58 4.10 4.42
σ 3 5.47 4.28 2.37 7.38 5.50 10.02 5.00 3.30 4.41

n = 2,m = 100,000 Minimum-quantile
MV Min 0.7001 0.25 0.75 0.30 0.70 0.40 0.60 0.50 0.75 0.50 0.95 0.5 0.995

α 4 3.89 3.75 4.10 4.24 4.35 4.49 3.92 4.00 3.95
σ 3 2.54 1.90 3.40 3.93 4.34 4.77 2.68 3.00 2.80
Table 2
Estimation results for various samples of a 20-variate distribution.

n = 20,m = 100 Minimum-Quantile
λ⋆3 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2

MV Min 0.7365 0.25 0.75 0.30 0.70 0.40 0.60 0.50 0.75 0.50 0.95 0.5 0.995

α 4 4.92 5.48 6.83 NA NA NA 8.21 NA 6.04
σ 3 14.8 7.43 19.82 NA NA NA 39.01 NA 14.52

n = 20,m = 1000 Minimum-quantile
MV Min 0.7106 0.25 0.75 0.30 0.70 0.40 0.60 0.50 0.75 0.50 0.95 0.5 0.995

α 4 4.27 6.04 4.64 4.61 5.06 7.56 5.66 5.71 4.90
σ 3 9.19 43.31 19.19 17.35 26.66 68.03 35.19 35.95 23.68

n = 20,m = 10,000 Minimum-quantile
MV Min 0.6962 0.25 0.75 0.30 0.70 0.40 0.60 0.50 0.75 0.50 0.95 0.5 0.995

α 4 4.1 4.15 3.92 4.08 4.58 11.38 4.52 3.95 3.97
σ 3 5.46 7.43 2.92 5.77 13.4 117.17 12.92 4.4 4.72
variance andminimum-mean–variance estimation procedures are
not valid for α ≤ 2.We include the results of these estimation pro-
cedures to provide insight in the consequences of misapplied cal-
ibration techniques. Fortunately, these two procedures essentially
identify their inappropriateness by estimating α very close to two
and σ very large; approximately onemillion in the case ofα = 0.5.
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Table 3
Estimation results for various samples of a bivariate distribution.

n = 2,m = 10,000 Minimum-quantile
λ⋆3 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2

MV Min 0.6947 0.25 0.75 0.30 0.70 0.40 0.60 0.50 0.75 0.50 0.95 0.5 0.995

α 4 4.64 4.33 3.86 5.21 4.70 5.97 4.58 4.10 4.42
σ 3 5.47 4.28 2.37 7.38 5.50 10.02 5.00 3.30 4.41

n = 2,m = 10,000 Minimum-quantile
MV Min 0.5729 0.25 0.75 0.30 0.70 0.40 0.60 0.50 0.75 0.50 0.95 0.5 0.995

α 1.5 2.14 2.17 1.50 1.52 1.43 1.58 1.48 1.53 1.54
σ 2 14.96 15.37 1.84 2.35 1.38 2.63 1.77 2.26 2.36

n = 2,m = 10,000 Minimum-quantile
MV Min 0.3594 0.25 0.75 0.30 0.70 0.40 0.60 0.50 0.75 0.50 0.95 0.5 0.995

α 0.5 2.00 2.00 0.50 0.53 0.54 0.50 0.51 0.50 0.48
σ 5 ≈1 M ≈1 M 4.51 4.51 6.64 4.37 4.65 4.27 3.14
Fig. 4. 1000 simulated joint lives with α = 4, σ = 3.

The minimum-quantile procedure performs well, arguably better
as α decreases.

6. Bulk annuity pricing

We focus on one pool and begin by considering the case with
no truncation.

6.1. The distribution of survivors

Theorem 4. Consider Y = (Y1, . . . , Yn) ∼ Multivariate Pareto
(α, σ ) and let F(y) denote the survival function of the univariate
Pareto distributionwith parametersα andσ . Let St denote the number
of remaining survivors in the pool at time t > 0;

St =

n
i=1

1{Yi>t}.

The probability mass function of St is given by

P(St = x) =


n
x

 n−x
i=0

(−1)i

n − x

i


F(t(x + i)), x ∈ {0, . . . , n},

and the joint probability of St and Ss for s > t is given by

P(St = x, Ss = y)

=


n
y


n − y
x − y

 n−x
i=0

x−y
j=0

(−1)i+j

n − x

i


x − y

j


F(s(y + j)

+ t((x + i)− (y + j))),

for x, y ∈ {0, . . . , n}, x ≥ y.
Proof. Since the marginal distributions are identical, we consider
one particular joint probability and apply the appropriate binomial
coefficient.

P(St = x) =


n
x


P(Y1 > t, . . . , Yx > t, Yx+1 ≤ t, . . . , Yn ≤ t),

which, for simplicity, we write for x ∈ {0, . . . , n}, with x = 0
and x = n corresponding to P(Y1 ≤ t, . . . , Yn ≤ t) and P(Y1 >
t, . . . , Yn > t), respectively. In otherwords,we require that strictly
x individuals survive until time t . Let Bi = {Yi > t} for i ∈

{1, . . . , n} and let Bc denote the complement of B. We focus on the
probability

P(Y1 > t, . . . , Yx > t, Yx+1 ≤ t, . . . , Yn ≤ t)
= P(∩x

k=1 Bk,∩
n
k=x+1 B

c
k),

and again, x = 0 and x = n correspond to P(∩n
k=1 B

c
k) and

P(∩n
k=1 Bk), respectively. The survivors do not pose any difficulty

since working with the joint survival function is convenient.
We address the remaining n − x lives using the well-known
inclusion–exclusion result for probability, which states that for
index set I = {1, . . . , n},

P(∩k∈I Bc
k) =


J⊆I

(−1)|J|P(∩k∈J Bk),

where |J| denotes the cardinality of set J . Since the marginal
distributions are identical, we can simplify this result. Rather
than considering every subset J of I , we let our summation index
represent the cardinality (or size) of the subsets and apply the
appropriate binomial coefficient.

P(∩k∈I Bc
k) =

n
i=0

(−1)i

n
i


P(∩i

k=1 Bk).

Putting these two elements together, we have that

P(∩x
k=1 Bk,∩

n
k=x+1 B

c
k) =

n−x
i=0

(−1)i

n − x

i


P(∩x

k=1 Bk,∩
x+i
k=x+1 Bk)

=

n−x
i=0

(−1)i

n − x

i


P(∩x+i

k=1 Bk)

=

n−x
i=0

(−1)i

n − x

i


F(t(x + i)).

We have, for x, y ∈ {0, . . . , n}, x ≥ y,

P(St = x, Ss = y) =


n
y


n − y
x − y


P(Y1 > s, . . . , Yy > s,

t < Yy+1 ≤ s, . . . , t < Yx ≤ s, Yx+1 ≤ t, . . . , Yn ≤ t).



D.H. Alai et al. / Insurance: Mathematics and Economics 70 (2016) 272–285 283
The coefficient is due to the fact that we have identical marginal
distributions; we choose strictly y individuals to survive until time
s, and from the remaining n− y, we choose strictly x− y to survive
until time t . Let Ci = {Yi > s} for i ∈ {1, . . . , n}. We focus on the
probability

P(Y1 > s, . . . , Yy > s, t < Yy+1 ≤ s, . . . ,
t < Yx ≤ s, Yx+1 ≤ t, . . . , Yn ≤ t)

= P(∩y
k=1 Ck,∩

x
k=y+1 C

c
k ,∩

x
k=y+1 Bk,∩

n
k=x+1 B

c
k)

=

n−x
i=0

(−1)i

n − x

i


P(∩y

k=1 Ck,∩
x
k=y+1 C

c
k ,∩

x
k=y+1 Bk,∩

x+i
k=x+1 Bk)

=

n−x
i=0

(−1)i

n − x

i



×

x−y
j=0

(−1)j

x − y

j


P(∩y

k=1 Ck,∩
y+j
k=y+1 Ck,∩

x+i
k=y+1 Bk)

=

n−x
i=0

x−y
j=0

(−1)i+j

n − x

i


x − y

j


P(∩y+j

k=1 Ck,∩
x+i
k=y+j+1 Bk)

=

n−x
i=0

x−y
j=0

(−1)i+j

n − x

i


x − y

j


F(s(y + j)

+ t((x + i)− (y + j))).

In the first step of this derivation, we rewrite our probability
in terms of sets B and C . In the second, we rewrite the Bc in
terms of B via an application of the inclusion–exclusion result
for probability. Next, we rewrite the C c in the same way and
simultaneously combine the B. Thereafter, we combine the C and
adjust the indexation of the B; the event Bk = {Yk > t} is
redundant since we already have Ck = {Yk > s}, s > t , for
k ∈ {y+1, . . . , y+j}. Finally, since only survival conditions remain,
we can rewrite the probability using the joint survival function,
which is equivalent to the univariate survival function with the
appropriate argument. �

6.2. The bulk annuity

Consider selling a bulk annuity to this pool Y. The product pays
1 to each survivor of the pool at the end of each year. Let A denote
the value of this annuity at inception (t = 0).

A =

∞
t=1

Stvt ,

where v is the discount factor, for example, with constant force of
interest δ, v = e−δ . We also have that

A2
=

∞
t=1

S2t v
2t

+ 2
∞
t=1

∞
s=t+1

StSsvt+s.

With our knowledge of P(St = x) and P(St = x, Ss = y), we
can calculate the expectation and variance of the annuity value at
inception.

E[A] =

∞
t=1

n
x=0

xP(St = x)vt ,

E[A2
] =

∞
t=1

n
x=0

x2P(St = x)v2t

+ 2
∞
t=1

∞
s=t+1

n
y=0

n
x=y

xyP(St = x, Ss = y)vt+s,

Var(A) = E[A2
] − E[A]

2.
Furthermore, we can contrast the results with the assumption of
independent lives. For independent lives, we need only adjust the
distribution of St , trivially, we have that under independence,

P(St = x) =


n
x


F(t)x


1 − F(t)

n−x
, x ∈ {0, . . . , n},

P(St = x, Ss = y)

=


n
y


n − y
x − y


F(s)y


F(t)− F(s)

x−y1 − F(t)
n−x

,

for x, y ∈ {0, . . . , n}, x ≥ y.Matters are slightly complicated once
we allow for truncation.

6.3. Allowing for truncation

We generalize Theorem 4 to allow for truncation.

Theorem 5. Consider Y = (Y1, . . . , Yn) ∼ Multivariate Pareto
(α, σ ) with associated truncated multivariate distribution τY =

{Y|Y > τ}. Let F(y) denote the survival function of the univariate
Pareto distribution with parameters α and σ . Let τ St denote the
number of survivors in the pool at time t ≥ τ ;

τ St =

n
i=1

1{τ Yi>t}.

The probability mass function of τ St is given by

P(τ St = x) =


n
x

 n−x
i=0

(−1)i

n − x

i


F(t(x + i)+ τ(n − (x + i)))

F(τn)
,

for x ∈ {0, . . . , n}, and the joint probability of τ St and τ Ss for s > t
is given by

P(τ St = x, τ Ss = y)

=


n
y


n − y
x − y

 n−x
i=0

x−y
j=0

(−1)i+j

n − x

i


x − y

j



×
F(s(y + j)+ t((x + i)− (y + j))+ τ(n − (x + i)))

F(τn)
,

for x, y ∈ {0, . . . , n}, x ≥ y.

Proof. In addition to the notation introduced in the proof of
Theorem 4, let Ai = {Yi > τ } for i ∈ {1, . . . , n}. For x ∈ {0, . . . , n},

P(τ St = x)

=


n
x


P(Y1 > t, . . . , Yx > t, τ < Yx+1 ≤ t, . . . , τ < Yn ≤ t)

P(Y1 > τ, . . . , Yn > τ)

=


n
x


P(∩x

k=1 Bk,∩
n
k=x+1 B

c
k,∩

n
k=x+1 Ak)

P(∩n
k=1 Ak)

=


n
x

 n−x
i=0

(−1)i

n − x

i


P(∩x

k=1 Bk,∩
x+i
k=x+1 Bk,∩

n
k=x+1 Ak)

P(∩n
k=1 Ak)

=


n
x

 n−x
i=0

(−1)i

n − x

i


P(∩x+i

k=1 Bk,∩
n
k=x+i+1 Ak)

P(∩n
k=1 Ak)

=


n
x

 n−x
i=0

(−1)i

n − x

i


F(t(x + i)+ τ(n − (x + i)))

F(τn)
.

We have, for x, y ∈ {0, . . . , n}, x ≥ y, the equation given in
Box I. �
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P(τ St = x, τ Ss = y)


n
y


n − y
x − y

−1

=
P(Y1 > s, . . . , Yy > s, t < Yy+1 ≤ s, . . . , t < Yx ≤ s, τ < Yx+1 ≤ t, . . . , τ < Yn ≤ t)

P(Y1 > τ, . . . , Yn > τ)

=
P(∩y

k=1 Ck,∩
x
k=y+1 C

c
k ,∩

x
k=y+1 Bk,∩

n
k=x+1 B

c
k,∩

n
k=x+1 Ak)

P(∩n
k=1 Ak)

=

n−x
i=0

(−1)i

n − x

i

P(∩y
k=1 Ck,∩

x
k=y+1 C

c
k ,∩

x
k=y+1 Bk,∩

x+i
k=x+1 Bk,∩

n
k=x+1 Ak)

P(∩n
k=1 Ak)

=

n−x
i=0

(−1)i

n − x

i

 x−y
j=0

(−1)j

x − y

j

P(∩y
k=1 Ck,∩

y+j
k=y+1 Ck,∩

x+i
k=y+1 Bk,∩

n
k=x+i+1 Ak)

P(∩n
k=1 Ak)

=

n−x
i=0

x−y
j=0

(−1)i+j

n − x

i


x − y

j

P(∩y+j
k=1 Ck,∩

x+i
k=y+j+1 Bk,∩

n
k=x+i+1 Ak)

P(∩n
k=1 Ak)

=

n−x
i=0

x−y
j=0

(−1)i+j

n − x

i


x − y

j


F(s(y + j)+ t((x + i)− (y + j))+ τ(n − (x + i)))

F(τn)
.

Box I.
Now, consider selling a bulk annuity to the pool τY. This product
is sold at time τ , and we let τA denote its value at inception.

τA =

∞
t=τ+1

τ Stvt−τ ,

τA2
=

∞
t=τ+1

τ S2t v
2(t−τ)

+ 2
∞

t=τ+1

∞
s=t+1

τ St τ Ssvt+s−2τ .

The expectation and variance of τA can be determined using
the dependence structure given by the multivariate Pareto
distribution, or using the assumption of independent lives. These
can be contrasted to highlight the importance of considering
dependence. For completeness, with truncation, the distribution of
τ St under the assumption of independent lives is

P(τ St = x) =


n
x


F(t)

F(τ )

x
1 −

F(t)

F(τ )

n−x

, x ∈ {0, . . . , n},

P(τ St = x, τ Ss = y)

=


n
y


n − y
x − y


F(s)

F(τ )

y F(t)

F(τ )
−

F(s)

F(τ )

x−y
1 −

F(t)

F(τ )

n−x

,

for x, y ∈ {0, . . . , n}, x ≥ y.

6.4. Examples

We provide two numerical examples. For each of these exam-
ples, we contrast the multivariate Pareto dependence structure
with the assumption of independent lifetimes. It is noteworthy
to remind the reader that the marginal distribution of the trun-
cated multivariate Pareto depends on n, the number of people in
the pool; under the assumption of independence, this is no longer
the case. Hence, for a proper comparison, we adjust the parameter
σ in order to match the first moment of τY1. As a consequence of
matching the first moment, we alsomatch E[τA] under the two ap-
proaches (multivariate versus independent Pareto). The difference
will be seen in the variance (or standard deviation) of τA.

The first example is of a bivariate distribution. We set δ, the
force of interest, to 2%. Let ρ denote the translation point, as
before, we set it to 60. We set τ , the truncation point, to 5. Under
the multivariate Pareto approach, α and σ are set to 3 and 10,
respectively. This means the average lifetime of an individual is
75 with a standard deviation of 17.32. To attain the same lifetime
distribution under the independent Pareto approach, we set σ
Table 4
Bulk annuity pricing.

n 2 2 20 20

δ 0.02 0.02 0.02 0.02
α 3 3 12 12
σ 10 15 10 105
ρ 60 60 60 60
τ 5 5 5 5

Multivariate Pareto

α1(τ Y1) 75.00 77.50 75.00 83.64
µ2(τ Y1)

1
2 17.32 21.65 10.95 20.42

Independent Pareto

α1(τ Y1) 72.50 75.00 66.36 75.00
µ2(τ Y1)

1
2 12.99 17.32 1.49 10.95

Multivariate Pareto

E[τA] 14.38 17.29 154.70 256.72
Var(τA)

1
2 13.11 14.77 52.07 73.52

Independent Pareto

E[τA] 11.19 14.38 17.83 154.70
Var(τA)

1
2 9.69 11.50 6.11 32.79

to 15. Under these two scenarios, we find that E[τA] = 14.38.
For the independent Pareto approach, the corresponding standard
deviation is 11.50, for themultivariate Pareto approach, it is 13.11;
this represents an approximate 15% increase in the risk; please
refer to Table 4.

Similarly, we compare a 20-variate distribution. As before, we
let ρ and τ equal 60 and 5, respectively, and set δ equal to 2%.
Under the multivariate Pareto approach, we set α and σ to 12 and
10, respectively, and attain a marginal lifetime distribution with
mean 75 and standard deviation 10.95. Under the independent
Pareto approach, we set σ to 105 to recover the same marginal
distribution. Under these two scenarios, we find that E[τA] =

154.70. For the independent Pareto approach, the corresponding
standard deviation is 32.79, for the multivariate Pareto approach,
it is 52.07; this represents an approximate 60% increase in the risk;
please refer to Table 4.

7. Conclusion

We derive properties of a multivariate type II Pareto distribu-
tion in order to facilitate parameter estimation procedures and in-
vestigate the implications on pricing bulk annuities. This model
is of primary interest to investigate old-age mortality, specifically
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for joint-life annuities and portfolios of deferred annuity prod-
ucts. Given thenature of the data, parameter estimation techniques
need to incorporate left-truncation. We derive the necessary re-
sults for various estimation procedures. These differ significantly,
and their respective performance is situational, producing a robust
framework under which to operate. We test the performance of
these procedures using simulation. Because of both computational
and practical constraints, workingwith a high-dimensional sample
(i.e. with large n) is problematic and hence we focus our numer-
ical results on bivariate and 20-variate distributions. The former
refers to joint-lifetimes, an important subset of insurance products
worthy of further exploration. The results, although providing no
conclusive ‘best estimator’, provide insight into the nature of this
particular multivariate distribution and also highlight the impor-
tance of considering dependence when assessing the risk of bulk
annuity-type products.
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