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1 | INTRODUCTION

In recent decades, the widespread success in a series of asset price models from the range of financial markets has
been witnessed. The celebrated Black-Scholes model'* is based on assumption that the price of the underlying asset
behaves like a geometric Brownian motion with a drift and a constant volatility, which cannot explain the market
prices of options with various strike prices and maturities. To explain this behavior, a number of alternative models has
appeared in the financial literatures, for example, nonlinear models,*® stochastic volatility models,”** jump-diffusion
models,"**® regime-switching models,'”'® and regime-switching jump-diffusion models,'** which are given by coupled
partial integro-differential equations (PIDEs). However, these models are more difficult to handle numerically in con-
trast to the celebrated Black-Scholes model. If we use an implicit method for the time discretization, we should solve a
nonlinear system for nonlinear models and a nonsymmetric dense system for jump-diffusion models. We have proposed
two classes of splitting methods for solving nonlinear option pricing problems,”® and multigrid methods for dense system
resulted from the implicit time discretization of jump-diffusion models.?** In this study, we consider regime-switching
jump-diffusion models and formulate an efficient and accurate finite difference (FD) scheme with the fourth-order
convergence to price the financial derivatives under the models.

Jump-diffusion models represent a simple way to capture the stylized effects such as the negative skewness, the heav-
ier tail, and the volatility smile effect, thus overcoming the weaknesses of the Black-Schloles model in a wide range of
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financial markets. There has been much research on pricing options under jump models using FD methods, which are
the most common way to discretize the differential operators in the option pricing context (see, for example, Achdou
and Pironneau # and Tavella and Randall**). In 1997, Zhang® proposed an implicit-explicit (IMEX) time integral method
that treats the integral term explicitly and the differential terms implicitly for American options with Merton's model.
This method is a first-order accurate method and has a stability restriction for the time stepsize. Tavella and Randall*
considered using a fully implicit time stepping method to price European options and a stationary iterative method to
solve the resulting dense problems with a full matrix. Andersen and Andreasen® proposed an unconditionally stable,
second-order accurate alternating direction implicit (ADI)-type operator splitting method with two fractional steps for
European options. For American options, d'Halluin et al*’ used a penalty method and the Crank-Nicolson method with
adaptive time steps, and an approximate semismooth Newton method for the resulting nonlinear nonsmooth problems.
Briani et al?® proposed a fully explicit time stepping method for European options that leads to a more severe stability
restriction. In 2005, on a nonuniform spatial grid, d'Halluin et al ® developed a method in which to use the fast Fourier
transform (FFT) for evaluating the integral term on a uniform grid, they perform interpolations back and forth on nonuni-
form and uniform grids for European options under Merton's and Kou's model; Almendral and Oosterlee*® used the BDF2
method for time discretization, FFT for the integrations, and the iterative method proposed in Tavella and Randall* for
linear systems; Cont and Voltchkova® proposed an IMEX time integral method that treats the integral term explicitly and
the differential terms implicitly for pricing European options in Exponential Lévy models. Toivanen** developed a numer-
ical method for pricing European and American options under Kou's jump-diffusion model by using FD on nonuniform
grid for discretizing spatial differential operators, the implicit Rannacher scheme for the time stepping, and a stationary
iteration for the resulting dense linear systems. Salmi and Toivanen*® proposed an iterative method for pricing American
options under jump-diffusion models. Pindza et al* proposed a spectral collocation method in space in combination with
the IMEX predictor-corrector time-marching method for pricing European vanilla and butterfly spread options under
Merton's jump-diffusion model. Kadalbajoo et al* proposed and analyzed three IMEX time semi-discretizations for solv-
ing PIDEs under Merton and Kou jump-diffusion models. Kadalbajoo et al* presented a radial basis function-based
IMEX-BDF2 to solve the PIDEs under jump-diffusion model. Recently, we considered using discontinuous Galerkin finite
element together with FD scheme for solving Merton's jump-diffusion model and designed multigrid methods to solve
the dense algebraic system by taking into account the structure of the uniform and nonuniform spatial grids in Wang and
Chen?! and Chen et al,* respectively.

To reflect the volatility clustering effect observing in the financial markets, the regime-switching model is introduced by
Hamilton*”* (see, also, Naik*®). Then, some numerical methods are proposed to evaluate the financial derivatives when
the underlying asset follows a regime-switching model. Huang et al” analyzed several methods for pricing American
options under a regime-switching stochastic process. They proposed Crank-Nicolson time-stepping method combined
with a fixed point policy iteration. Company et al'® used IMEX #—methods to price American put option under regime
switching by a system of coupled partial differential equations. Egorova et al*’ discussed a coupled free boundary problem
of American put option under regime-switching model. Ma and Zhou*' studied moving mesh implicit FD methods for
pricing Asian options with regime-switching.

It is natural to combine the jump-diffusion model and the regime-switching model since they capture different market
behaviors (see previous studies'®*****). Since numerical valuation has become an important approach to evaluate the
financial derivatives, a variety of numerical methods are also proposed to efficiently price options under the mixed models.
Lee" used IMEX Leap-Frog scheme to solve the PIDEs and applied the operator splitting method to solve the linear
complementarity problem (LCP) for the prices of the European and American options at all states of the economy under
the regime-switching jump-diffusion models. Bastani et al?® introduced a radial basis function collocation approach to
price American options in a regime-switching jump-diffusion model with less than second-order accuracy. Ramponi*
presented a Fourier transform method to compute the price of European options within a two-state regime switching
version of the Merton jump-diffusion model. Costabile et al** proposed an explicit formula and a multinomial approach
to evaluate the profit of the underlying asset in regime-switching jump-diffusion models. Dang et al* studied the pricing
problem of Asian options under regime-switching state-dependent jump-diffusion models.

The purpose of this paper is to establish an efficient and accurate IMEX FD method with higher order convergence accu-
racy to price the European and American options under regime-switching jump-diffusion models. We use the IMEX BDF2
time discretization method that treats the differential terms implicitly and the integral term and the regime-switching
term explicitly, which lead to tridiagonal systems and can significantly reduce the computational cost. In space discretiza-
tion, we apply compact FD schemes combined with local mesh refinement strategy near the strike price, which is also
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studied by Lee and Sun'® for PIDEs without the regime-switching term. Since the regime-switching term involves different
state of economy, it is much more complex in both computation and theoretical proof.

The remainder of this paper is organized as follows. In Section 2, we introduce the dynamics of regime-switching
jump-diffusion models. In Section 3, we propose the implicit-explicit method with three time levels to solve the PIDEs
and analyze the stability of the proposed method. We use fourth-order compact (FOC) difference scheme with local mesh
refinement strategy for spatial discretization in Section 4. Numerical results to illustrate the effectiveness of the proposed
method for European and American options under regime-switching Merton jump-diffusion models are given in Section
5. The last section, Section 6, is the conclusion.

2 | DYNAMICS OF REGIME-SWITCHING JUMP-DIFFUSION MODELS

In this section, we consider option pricing under regime-switching Merton jump-diffusion model as a stochastic process
of an underlying asset. On a probability space (€2, F, P), a continuous-time Markov chain process X = (X;);»0 is defined
to take a value in a finite state space H = (ey, ez, ..., €p) with the following transition property

ol — o — ) QAL+ 0(AD), for i # j,
PXivar = eilXe =€) = { 1 {I- qijAt + o(At), for i = j,

where the Q-dimensional column vector e; := (e{ ) is given by

i )0, fori#j,
e;_{l, fori=j.

The entries g; satisfy
g 20, ifi#j; ;== ¢ 1<j<Q
i#j
The Markov chain process can be described as®
dX[ = .A.X[_dt + dM[, (21)

where A = (gij)oxq is the generator of the Markov chain X; and M, is a martingale, then Ae; = (q1/, q2j, ... ,qu)T denote
the jth column of the matrix A.
Define the scalar product (-, -) in R? as

Ve = (v, X;),
where v : = (v1,V,, ...,vo)T is a Q-dimensional column vector. We assume that the dynamic of the underlying asset S;

follows the regime-switching jump-diffusion model. In a risk-neutral world, the stochastic differential equation of S; is
given by

ds
S—t = (r[ - Aﬂ(;)dt + G[th + I’[[dNt, (22)

[_
where r; is the risk-free interest rate, and o is the volatility with r;,o; > O0for1 < j < Q, W; is a Wiener process,
N; = (N, X;) with N, = (N}, N7, ... ,NtQ)T is a Poisson process with intensity A, #, is an impulse function giving a jump

from S;_ to S;, and «; is a Q-dimensional column vector with x; = E[y;]for1 < j < Q.
When the underlying asset S; follows the regime-switching jump-diffusion model in (2.2), the price of a European
option u(z, x, ¢)) satisfies the following PIDEs:

S—Z(T,x, e;)— Lu(r,x,e;) =0, (z,x,¢;)€[0,TIXRxXH, (2.3)
where
2
cutr,xe) = 2622 %z, 7,0, + (r, _lea_ ,1,-K,> Oz ze) = (1 + Au(r, 2, ¢)
2 7/ ox? 2/ 0x
2.4
+ /1]-/Ru(r,z, ej) f(z—x,e;)dz + (u, Ae;),
u = W u? ..., u?)7 is a Q-dimensional column vector with w/(z,x) = u(z,x,¢) for 1 < j < Q,x = In(S;/K) is the log

asset price with respect to an strike price K, 7 = T — tis the time to the expiration date T, and f(x, ¢;) is the probability
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density function. For Merton jump-diffusion model, f(x, ¢;) can be written as

Y
flx.e) = 1 exp<_u>,

where y; is the mean of the normal distribution at the j™ state of economy, and vj is the standard deviation.
The boundary conditions are given by

u(r,x,e;) =0, asx - —oo0, u(r,x,e;) = Ke* —Ke™'i", as x - +oo,
for European call option, and
u(z,x,e;) = Ke™'i* —Ke*, asx - —oo0, u(r,x,e;) =0, as x — +oo,

for European put option. The initial condition is given by

0 _ . J max(Ke* — K,0), in the case of a call option,
u(0,x.¢;) = gx) := max(K — Ke*,0), in the case of a put option.

For an American option under the regime-switching jump-diffusion model, its value satisfies the LCP

{ S(z.x,€)) — Lu(r, X, ¢/) 2 0, (u(r,x,¢)) — gx)) = 0,

2.5
(Z_':(T,X, e;) — Lu(z,x, ej)> (u(,x, ;) — g(x)) = 0, (2.5)

for all (z,x,¢e;) € [0, T] X R X H, where L is the integro-differential operator in (2.4).
The boundary conditions are given by

u(r,x,e;) =0, asx - —oo0, u(r,x,e;) = Ke* — K as x - +oo,
for American call option, and
u(r,x,e;) =K —Ke*, asx - —o0, u(r,x,e;) =0, as x - +oo,

for American put option. For the LCP (2.5) derived from an American put option, we consider the penalty method. After
introducing a penalty function

09 u(Ts X, ej) - g(x) > Oy

Pe(u(z. x. ;) = gx) 1= { (u(r,x,¢) — g /e, u(z,x,¢;) = g09) <0,

the LCP (2.5) can be approximated by the following formula:

Z—Z(r,x, e;) — Lu(z,x,e;) + fe(u(r,x,e;) — g(x)) = 0. (2.6)

3 | IMEX-BDF2 DISCRETIZATION IN TIME

In this section, we consider the time semi-discretization system. In order to construct the discrete equation, the
integro-differential operator £ in (2.4) is separated into three parts; for all (z, x, ¢;) € [0, T]xX QX H, the PIDE of European
option can be written as the following form:

3—:(1’,)&3, e;) = Du(r,x,e;) + A;Tu(z,x, e;) + Mu(r, X, e;), (3.1

where
1,0
2 7 ox2
Tu(r,x,e;) = /u(r,z, ej) f(z—x,e;)dz,
R
Mu(r,x, e;) = (u, Ae;),

D is the differential operator, T is the integral operator, and M is the regime-switching operator.

1 ou
(r,2,¢;) + <Vj - —Uf - )'jKj> &(T,Z, e;) — (rj + Aj)u(r, 2, e5),

Du(r,x,ej) = >
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Let us consider uniform time grid on [0, T]. For a given number N, let Az = T/N be a time grid size. Then we set up
time grid points 7, = nAzforn = 0,1, ..., N. Let u" denote the approximation of /(z,x) at = 7,. We apply the IMEX
scheme where the differential part is treated implicitly, and the integral and regime-switching part is treated explicitly.
Thus, Equation 3.1 will be discretized as the following form:

3u™ — qut 4y
2AT

= Du" + A, T(Eu™) + M(Eu™), (3.2)

with the initial condition u® = g(x), where Eu™ = 2u™ — u"~%, and

T(Bu™) = 2(u /)™ — @« )"V,
M(Eu",j) = 2(u“,Aej) _ <un_l,A€j>,

Q
u = @™ u?, L umQT) (un, Ae;) = Zu”’qu,j.

k=1

The above discretization method is called IMEX-BDF2 method. In order to use the proposed method, we need two
initial values on the zeroth and first time level. The value u% is given by initial condition of the model problem, and the
value u'Y can be applying the IMEX backward difference method of order one

Li — 04 . . .

U v _put4 A Tu + Mu®. (3.3)
At

Suppose that u™ is the solution of Equation 3.2, and @™/ is the solution of perturbed equation

3an+1,j _ 4an,j + an—l,j
2AT

= Du" + L, T(Ea™) + M(EW™) + 6" n > 1. (3.4)

It can be easily shown that for all u(-,t,e) € L*(Q),t € (0, T), the integral operator satisfies the condition
IZuC, t,e)ll < Crllu(t, el

for some constant C; independent of ¢, where |[v]| := ( fQ|v(x)|2dx)1/ 2. The regime-switching term (u", Ae;) can be
controlled by the inequality

Q Q
(", Al = | P uqis| < 3 max " ]lgil-
k=1 k=17

Let u™* := max |u™*|. Then
k=1,...Q

Q
[(u™, Ae)| < [u™n Y Iqisl| = 21q;,1 u™. (3.5)
k=1
Now we define the error term ™/ := "™/ — u™/.
a1e . 1
Theorem 3.1. (L2-stability). For sufficiently small At such that At < PrRCYWoRTTETEE we have
lleV/]1> < C(max ||e®¥|? + max [|e"¥||® + max [|§™|]?), V2< N < I (3.6)
1<k<Q 1<k<Q 2<n<N N
2
(rj—iu/?—zjkj) ~2(r,+4,)0? ) _
where p; = P , and C is a constant depending on the parameter Cr, 1,0, A, and T.
J
Proof. The error term e' satisfies the following relations:
36n+1sj — 4ensj + en_lsj 1 . . 1./
= D" + A, T(Ee™) + M(Ee™) + ™. (3.7

2AT
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Taking the inner product of Equation 3.7 with e”*+ 1Y, we obtain

n+1,j n,j n—1,j
3e" T — 4e) 4 e oL
2AT ’

) = (De™" + A, I(Ee™) + M(Ee™) + 5", ")

2

o . 1 . .
= R+ (1 = 507 = Ay ) (€€

= (r; + AP N1? + A (T(Ee™), e
+ (M(Ee™), ") + (8™ ")

By simplifying the above results, we can obtain

<Sen+1,j — 4e™ 4+ en—L.Jj

A ’en+1,j> S pj”en+1,j“2 + A‘j (I(Ee”’j), en+1,j) + (M(Ee”’j),e”+1’j) + (5n+1,j’en+1,j) ,
T

2
1 2 2
<rj—56/ —/lej> —2(rj+/1j)aj

where p; =
J 2
20'}

Using the relation 2(3a — 4b + c,a) = ||a||*> — [|blI*> + |I2a — b||*> — |I12b — ¢||I* + |la — 2b + c||?, we have
1

1At
< pj”en+1,j”2 + ﬂj (Z(Ee"*j), en+1,j) + (M(Een,j),en+l,j) + (5n+1,j,en+l,j)

[le™ 112 = [le™ |1 + [|26™17 — |2 — ||2¢™ - "1 2]

Q
< pylle™ 12 + 2,CrllEe™ || [l || + <Z(Ee"'k)qk,j, e"“”) + 118" Nl le™ 1.
k=1

Applying Cauchy-Schwarz inequality and (3.5) yields
1

4AT
< pille™ 112 + A, CrlEe™ ||[|le ]| + 21g; ;[ |Ee™ [ le™ || + (|16 ||le™ |

[le™ 11 = [le™ |1+ [| 2617 — |2 — ||2¢™ - "1 2]

A;Cr 1 . A;Cr . 1 .
< () + o+ gyl + DI I+ ZZZNES P + 1, 1B | + S 116 |
/1‘C[ 1 . . 1
<(p; + ’T +1q;,1 + E)IIE"“’JII2 + 4, Cr(4lle™ |I” + [le" ™ |I?)
+ 20q Al [P + e s ) + 2167,
Multiplying 4Ar on both sides of the equation, we get

™12 = (1™ ||> + [|12¢"1 — e ||? — ||2¢™ — "2
< At [(4p; +24;C1 + 4lg; ;| + 2lle™™ 1> + 16A4,Cyl|€™ ||* + 44;Crlle" ||
+32(g; 1 lle™ > + 8] | le" M1 ]|> + 2[15™ 7] .

After summing up for n between 1 to N' — 1, for 1 < N < N, we get

e /17 = 11t |17 = [12¢ — &)1

N-1 N-1
< At (44,011 |17 +204;CrlleM | + (4p; + 224, + 4g; 51 +2) Y Nl 1P +2 ) [l6™H |12
n=2 n=1
N-1 N-1

+ (4p; + 24;Cr +41q; 1 + 2l 12 + 321g;51 Y e +8lq;51 Y lle™ | | .

n=1 n=1
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Case 1. If e » = max |e™| =™/, for1 <n < N, then
,esQ

eV )12 = (et |2 — [|2e" — &%/ |2

N-1
< At | (44,Cr + 8 DI I + (204,Cy + 401q; ; DIl 17 + (4p; + 224,Cr +441q;51 +2) Y [l |2
n=2
N-1
+ (4p; +24,C1 +41g; 1 + 2l P +2 ) 116™]12 ] .
n=1

. . . 1
Now, we consider Az sufficiently small such that 1 — At(4p; +24Cr + 4|qu| +2) > 0,thatis, At < PrRCy RIS

then the above relation implies that

N N-1
eV 117 < CAlle® 17 + Nle |12 + Az Y1812 + Az ) lle™|1%)
n=2 n=2
N-1
< C(le™ 11> + lle™ |I* + NAz max [|6™/]|* + Az Z lle™/11%).
2<j<N =
Since N'Ar < T, we have
N-1
e 11> < C(lle® [1” + lle™|I* + max [|6™||* + Az Z lle™/|12).
2<n<N —
Applying the discrete Gronwall's inequality leads to the result
eV V11> < Cle® |17 + lle™|> + max [16™]]2), (3.8)
2<n<N

where C is a constant, which is independent of mesh length.
Case 2. If e = max |e™| # ™/, then |e%]| < |e%¥|, |el| < |eb¥|. Let e™F = max{ebfi,e>%2, ..., e™*}. Then we
k=1,...,Q

obtain

e 112 = lle 11> = fl2¢ — |1

N-1 N-1
<At l4x,»cf||e°’f||2 +204,Crlle™ |12 + (4p; +224;Cr + 4lg; | +2) D lle™ |12 +2 ) 16" |12

n=2 n=1
N-1 N-1

+ (4p; +24;Cr + 4lg; ;1 + 21712 + 320q;,51 D e 112 +8lg;1 D] ||e"'”‘||2] :
n=1 n=1

1

Given a sufficiently small At < ————
4p,+22,Cr+4q; ;|42

, we get

N N-1 N-1
leV|1> < € <||e°’f||2 + e 117+ Az Y 16" 2 + Az Y [l |2 + [|e™ |12 + [le¥||> + Az Y ||e"~k||2>

n=2 n=2 n=2

N-1 N-1
0,/ 112 1.j112 J 112 J1N2 0,k 12 k2 J2
SC<||e TP+l 1P + N A max (182 + Az 3 1117 + 1|7 + lle 1> + Az Y fle” ||>
ATRS n=2 n=2

N-1
0,k (12 1.k 2 N2 k2
5C<Ile’ 1"+ lle”[I" + max [|8"/]| +Ar§ lle™*]] >
2<n<N

n=2

Applying the discrete Gronwall's inequality, we deduce the result

e 112 < C(lle® |17 + lle™ 1% + max [|8™/]|2), (3.9)
2<n<N

where C is a constant, which is independent of mesh length.
From (3.8) and (3.9), we get (3.6) and therefore complete the proof. O
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4 | FOCDIFFERENCE DISCRETIZATION IN SPACE

In this section, we consider full discretization approximation of the European option under the regime-switching
jump-diffusion model. To do this, we truncate the infinite domain R for x to be finite domain Q = [Xpin, Xmax] With a suffi-
ciently small xy,in and a sufficiently large xyax. For a given number M, let h = (Xyax — Xmin)/M be a spatial grid size. Then
we obtain spatial grid points X, = Xmin + mh form = 0,1, ..., M. We define uﬁj as the approximation of u(z,, X, ¢;) and
define fr/r'l’k 1= Xk — Xm, €)).

In order to approximate numerically the integral term, we divide this term into two parts on Q and R \ €, then the
integral operator can be split as

Tu(r,x,e;) = /u(r,z, e))f(z—x,e)dz + / u(z,z,e;) f(z —x,e;)dz. (10)
Q R\Q
The integral over Q is discretized by the composite Simpson's rule, which gives us the fourth-order accuracy in the spatial
variable, and the integral over R \ Q is computed by using the corresponding boundary conditions. Then,
Tu,! = (u+ ) + O,
where (u * f )Z;j at each grid point (z,,, Xn, €)) is given by

M
W )y = thluln”f;’l+R(rn,xm,ej)
=0
with
14242 24241
[W()?Wl’ ""WM] = 15°53°53°53°53° 25323335

Note that R(z,, X, ¢;) denotes the approximation of the integral over R\ Q in (3.2), which can be given by using asymptotic
behavior, ie,

2 _ . 2
R(ta. Xms ) = KEn ™+ 50 (xm Tmex T, ) — Ke <M>
b 9 .] - ‘
7j Vi

for call option, and

2
Xmin — Xm — M 7 Xmin —Xm — Hj —Y;
R(Tn’xmsej) = Ke "itn®d <mln—mﬂj> _Kexm"'l‘/‘*'éq)( J >
Vi Yj

2
for put option. Here, ®(y) = e dn is the cumulative normal distribution, which can be computed directly.

y

4.1 | FOC scheme

We briefly introduce how to obtain an FOC scheme for (3.1). For simplicity, we consider the following PIDE:

ou o%u ou
E(T,x, ej) = ajﬁ(f,x, ej) + bja(’l’,x, ej') - cju(‘r,x, ej) + JH(T,X, ej), (41)
where
1, 1.,
aj=50'j>0, bj=rj—50'j—ﬂj1cj,

ci=ri+4;, Ju(r,x,e) = A= f)r,x,e)+ (u, Ae;).

Let u}' be the approximation at spatial level x; and time level z,. We consider the following IMEX scheme:

l!j . .
ou n+ ou \ L .y i ou\ L
o (Z8Y™ (Y™ st = g - () »
’(ax2>m "Nox/m s Bttn) =\ 57 m (42)
forn = 0,1, ..., N. The difference operators at each grid point (z,, X, ¢;) is approximated by using the central difference
formula
n+1,j n+1,j n+l,j n+l,j n+1l,j
52 = Bml T 2y, AU, Sy = Uppl — U
xthm = n2 = TN
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By the Taylor's theorem, we have the following relations:

()Ll n+1,j nel h2 ()311. ntlj
— =6 I — + O(h"), 4.3
(%), =o' =% (5 ., ") (“3)
ou n+1,j ' h *u n+1,j
< ax2'> = 52ult — o +O(h"). (4.4)
m

Putting these approximations into (4.2) gives

n+l,j 2 4 n+l,j
2, n+Lj +1.j 1y, B2 *u h o*u
ajéxufn ) - bjéxu:ln T 4 cju:'n S — 6 b <ax3 + Eaj a—

m

. n+l,j
= J(Eu,’) - (?TZ) + O(h™).

Taking the derivative of Equation 4.2, we obtain
3.\ I b (o%u ntli o . n+l,j ) n+l,j
<a_”3‘> =__<d 2) +_/(a_u) _10 [J(Eu%’)—<%> ]’ (4.5)
ox3 /. ox* /. a; \ox/m a; ox 0t/ m
n+1j / ntlj p. CJ n+1,j 1 92 By ou \ i
a_ a; >m a? <()X> _a_jﬁ [J( ) ( ‘L')m ]

+22 [ﬂ - (%)),

By substituting the standard second-order central difference operators into (4.5) and (4.6), we obtain second-order

(4.6)

accuracy in space approximations for a—“ and ‘;x‘:
PR b j i1 ; ou \"H
<ﬁ> -2 melj S5 el 5,17 (Eu) - <E) 1+ 0(h?), 4.7)
m J a; J m

+1,j 2 .
du n+l,j _ b_j N < §2u ﬁéxunmﬂ,j _ 1 JEL) - (0u)n+1,1
6x4 ajz_ aj aZ j 0t/ m

5 ;o (4.8)
i njy _ _M L 2
+ ; 5 [J(Eum ) ( = ) ] + O(h?).

Substituting formulas (4.7) and (4.8) into (4.3) and (4.4), we can see that both the first derivative operator g—z and the

. . 2 . .
second derivative operator ZTZ have fourth-order accuracy. Equation 4.2 can be written as

h? b 2 L h? h? b; 1j
- Oy b o) / 1+ =82+ —-Ls n+ly
l(a it > + ] to (14 o+ e un

B h ) hzb n] ou n+1,j
_<1+126"+1za- )[J(E ) <T>m |

J

(4.9)

where the difference operators are defined as follows:

JEL ) = 2T (Eup)) + J(Eu) |
h? ’

I (Buy) = I Buyl,
2h

827 (Eup)) = 6xJ (Bul)) =
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Combining (4.9), we get, forn > 1,

3 1 1 _ 1, 1 1 1,j
(2 +c,Af> [ = a; = apup™ + o™+ aup ] + A [ + Fpun™ = B — iy

=(1-a;—a) <2uf,;j ;u" 1’) +a; <2u$j —%u" 1’) <2u"’ L 1/>

m+l 2 m+1
+ 207 [(L—a; —apu = fop) +ajus O +aws i
—Ar[1—a; — @) (u * et +a,(u w f) 1’ +a;u f)T lj]

m+1

— k k _ k
+ 2AT l(l - — aj)Zunm qk,j + aqu:;l_lqk,j + aqu"quk,j]

k=1 k=1 k=1
Q Q Q
— n-1,k n-1,k — n-1,k
- At (l—aj—aj)Zum qk,j+aj2um_l qk,j+(xj2um+l gk.j | »
k=1 k=1 k=1

where

L W 1.1
12 24a;’ J 12 “24a;’
b? b? . :

B = — 4 ﬁ — 4 b_
ST 2a, T w2 2h’ S 120, T W2 2h

(ij

Let us consider the numerical approximation U" of the IMEX method with three levels arranged in a line with all states
of the economy on the (n)th time level as the following form:

T
_ JNT INT 1T 2T 2 N\T Q\T QT
U = (WD U o U )T U, U2 DT, UF T, U2 )
Then, the linear system of the discrete equations is given by
AU™ =2(C+ AtD)U" — (%c + ATD) U™ + AzQQU * )" — (U * f)™1) + 0",

where A, B, C is a block diagonal matrix of size (M — 1)Q,

An 0 ... 0 By 0 ... 0 Ch 0 ... 0
0 0 .. Ag 0o 0 .. Bgo 0 0 .. Cgo

and the submatrices Aj;, Cjj, and Bj; are (M — 1) X (M — 1) square matrices, A;; = <§ + cl-Ar> C;j+A7Bj;forl <j<Q,
where

ij = tridiag[aj, 1- o — &j,&j], Bjj = tridiag[—ﬁj,ﬁj + ﬂ_j, —ﬁ_j].
D is the square matrix of size (M — 1)Q with Q row and column partitions

Dll D12 DlQ

D= D21 Dzz DzQ

b

DQ1 DQ2 ... Dog
and all submatrices D;j for1 < i,j < Qare (M — 1) X (M — 1) scalar matrices of the form
Dij = tridiag[aj, 1- o — 5‘/,55;](111

We consider the numerical approximation (U = f) of the integral term of the PIDE (3.1) arranged in line with all state as
the following form:

(U= f)" = (U = ") U = HT, (U = f)"'Q)T)T,
and all vectors (U * f)* 1= (U * f )Zj )for1 < j < Q are column vectors of M-1 dimensions with entries

U=y =Q—a;—aps g +aw= OV +aw= O, m=1,2 ..., M-1.
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0" is a column vector of size (M — 1) X Q with Q row partitions
"0, L (0" )T),

and all column vectors ¢/ := (omj) for1 < j < Q are of M-1 dimensions with entries

"= ((o

p

[ (2 +CJAT>(XJ+AT,BJ] Uyt + o (2057 - tup )

+Arza; <2Zu Qi — Zu"lk ,) form=1,

for2<m<M-2,

n.j
om =40,
[ ( +CJAT>aJ+ATﬂJ] U 4 g <2U’” 2UA"J“)
Q Q
+Ara/(22uM qrj — ZMM Qi) form=M-1.
k=1 k=1

For n = 0, we can obtain the similar result
(1+cjA7) [(1 - aj - “J)u -+ aju, n+l/ +aju nmill’j] + A7 [(ﬂj + ﬂ_j)uZHI Biuy, n+1J —fu Zfﬁj]
=1 -a; —au,’ +aj L, tau m+1
+ At [(1—aj—aj)(u>kf)m +aj(u*f) +ocj(u>x<f)m+1
Q Q
+ At (1 —Qj — o'tj)Zuxqu,j + aquyilqk,j + &quzlfrlqu
k=1 k=1 k=1
Then, the linear system of the discrete equations is given by
AU™ = (C+ AtD)U™ + Az(U = )" + ",
where A is a block diagonal matrix of size (M — 1)Q, the submatrices A;; = (1+ ¢;A7)C;; + ArB;;, Cjj, Bj and (U = f)" are
given by the above form, for 1 < j < Q, and ¢" is defined by the similar form to ¢", here

Q
[~ + A, + Acpy| Uy ™ + Uy + Ara; Y iy, for m=1,

. k=1
o, =10, for2<m<M-2,
[~(1 + ¢;AD)a; + Acg | UL + &, U +Am,2u Qij. form=M—1.
k=1

4.2 | Local mesh refinement
In the case of pricing a European option with regime-switching jump-diffusion, the financial payoff function for each

state is given by
0.x) = max(Ke* — K, 0), for a call option,
u®.x) = max(K — Ke*,0), for a put option,

which is nonsmooth around the strike price £&* = 0.

L] L] L] L] L] L] L] L] L]

[ [ ° A ° A . A . A ° . .

L] L] L] A L] A L] A L] A L] L] .
é*

FIGURE1 A discretized computational domain with local mesh refinement [Colour figure can be viewed at wileyonlinelibrary.com]
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Assume that the spatial direction is first discretized by a uniform mesh with initial mesh size
ho = h = Xmax — Xmin
0 v
where M + 1 is the beginning number of grid points in the x-direction. Choosing £* and four points closest to &*, that is,
5* - 2h07 é* - hO’ 5*7 5* + hOv é* + 2h07

inserting the first four points among them, and letting h; = hy/2, we obtain

E* —2hy, & =3hy, & —hy, & -hy, &, E4h, E+hy, & +3h, & +2h.

Choosing £* and four points among them, and letting h, = h;/2, we obtain

5* - hOv é* - 3h2’ 5% - h’l’ 5* - h27 5*, 5% + hz’ 5* + h17 g* + 3h2 é* + h'O-

Repeat the above steps until some h reaches the stopping criterion h < h2; see Figure 1.

5 | NUMERICAL EXPERIMENTS

In this section, we present several numerical experiments to evaluate the prices of the European and American
options under the regime-switching jump-diffusion models. We discuss three states of the Markov chain under the

TABLE 1 The value of European call option at the first state of the economy obtained by IMEX-BDF2-FOC scheme with uniform grid and
the convergence orders of the scheme

S =90 S = 100 S =110 CPU
M Value Error Order Value Error Order Value Error Order times (s)
32 8.54712688 1.17e-02 15.59375427 2.05e-02 23.84844357 1.03e-02 3.75
64 8.53806069 2.63e-03 2.15 15.50128597 4.80e-03 2.10 23.86016081 1.37e-03 2.92 7.70
128 8.53598345 5.51e-04 2.25 15.61308786 1.16e-03 2.05 23.85847262 3.18e-04 2.11 17.19
256 8.53530607 1.26e-04 2.12 15.61395789 2.90e-04 2.00 23.85886767 7.74e-05 2.04 43.44
512 8.53545681 2.43e-05 2.38 15.61431338 6.58e-05 2.14 23.85877119 1.90e-05 2.02 115.29
1024 8.53543825 5.74e-06 2.08 15.61426369 1.61e-05 2.03 23.85879364 3.40e-06 2.48 331.02
2048 8.53543143 1.08e-06 2.40 15.61425146 3.88e-06 2.05 23.85879108 8.47e-07 2.01 1195.16

-1 T T T T T
— — — without local mesh refinement
with local mesh refinement ]

_12 . . . . . . .
0 50 100 150 200 250 300 350 400
S

FIGURE 2 Error distribution of fourth-order compact (FOC) scheme for pricing European call option under regime-switching Merton
model with M = 128 and N = 1600 at timer = T
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regime-switching Merton model. The corresponding parameters used in the simulation are

0.15 0.05 -0.50 0.45
c=[015), r=(005), u=[-050), y={o045),
0.15 0.05 —0.50 0.45

the rate matrix A of the Markov chain, and the intensity 4 are

-0.8 0.2 0.1 0.3
A= 06 —-10 0.3 and A= 05 ),
02 08 -04 0.7

the strike price is K = 100, and the maturity date is T = 1. These parameters are also used by Lee." For truncating the
infinite spatial domain [Xpin, Xmax], We select Xpmin = —1.5 and X0 = 1.5.

We first give the numerical results of pricing European call options under regime-switching Merton jump-diffusion
model. Because there is no exact solution, we need a numerical reference solution. The reference solution uie p is com-
puted on the grid with M = 4096 and N = 1600 for ¢ = T at the j-state of the economy. This choice of the reference
solution stems from previous research.'®* From their numerical research, we know that the approximation error is very
small if we take their spatial and temporal steps. The CPU times are given in seconds on a PC with Dell OptiPlex 3020
Intel CORE i3.

TABLE 2 The value of European call option at the first state of the economy obtained by IMEX-BDF2-FOC scheme with local mesh
refinement and the convergence orders of the scheme

S =90 S = 100 S = 110 CPU
M L, Value Error Order Value Error Order Value Error Order times (s)
32 16 8.54102948 5.60e-03 15.62250215 8.26e-03 23.85523189 3.56e-03 4.20
64 24 8.53498631  4.46e-04  3.65 15.61474272  4.95e-04 4.06 23.85856357  2.27e-04  3.97 8.01
128 32 8.53545784  2.53e-05 4.14 15.61428252 3.49¢-05 3.82 23.85880444 1.42e-05 4.00 19.48
256 40 8.53543104 1.47e-06 4.10 15.61424548  2.09e-06  4.06 23.85879113  9.01e-07 3.98 46.13
512 48 8.53543261 9.83e-08 3.91 15.61424772 1.45e-07 3.85 23.85879029 6.23e-08 3.85 117.51
1024 56 8.53543252  6.74e-09 3.87 15.61424758  8.86e-09  4.03 23.85879024  3.88e-09  4.00 334.53
2048 64 8.53543251 4.84e-10  3.80 15.61424758  6.18e-10 3.84 23.85879023  2.69e-10  3.85 1230.45
70
Payoff
—A— State A, =0.3
60 1
State x2=o.5
G 5ol State 2,,=0.7
8
&
S 401
5
8 30}
S
(9]
s
5 20
L
10+
0 =i

50 100 150
Stock price (S)

FIGURE 3 The price curve European call option under the regime-switching Merton model with 1600 time steps and 64 spatial meshes at
7t = T [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 3 The value of European call option at the second state of the economy obtained by IMEX-BDF2-FOC scheme and the
convergence orders of the scheme. Upper: without local mesh refinement; bottom: with local mesh refinement
S =90 S = 100 S = 110 CPU
Value Error Order Value Error Order Value Error Order times (s)
10.74824369  1.42e-02 18.13914260  2.55e-02 26.26403285  1.82e-02 3.54
10.76573949  3.33e-03  2.09 18.11978688  6.13e-03  2.06 26.28655223  4.31e-03  2.08 7.20
10.76318045  7.74e-04  2.11 18.11207350  1.58e-03  1.95 26.28331606 1.07e-03  2.01 16.94
10.76221810 1.88e-04 2.04 18.11404805 3.91e-04 2.02 26.28250225  2.56e-04  2.06 39.85
10.76245267 4.67e-05  2.01 18.11374756  9.05e-05  2.11 26.28218298  6.29¢-05  2.03 109.37
10.76241749  1.15e-05 2.02 18.11367591  1.88e-05  2.27 26.28223127 1.46e-05 2.11 336.36
10.76240856  2.55e-06  2.17 18.11365253  4.56e-06  2.05 26.28224235  3.50e-06  2.06 1169.42
S =90 S = 100 S =110 CPU
Value Error Order Value Error Order Value Error Order times (s)
10.75594856  6.46e-03 18.12204692  8.39e-03 26.28643612  4.19e-03 4.15
10.76282154  4.16e-04  3.96 18.11312479  5.32e-04 3.98 26.28251136  2.66e-04  3.99 7.85
10.76243148  2.55e-05 4.03 18.11362446  3.26e-05  4.03 26.28226244  1.66e-05 4.00 18.27
10.76240457 1.45e-06 4.14 18.11365488 2.21e-06  3.89 26.28224476  1.10e-06  3.92 45.28
10.76240610  8.63e-08  4.07 18.11365722  1.36e-07  4.03 26.28224579  6.53e-08  4.07 116.65
10.76240601  5.38e-09  4.00 18.11365708  8.93e-09 3.92 26.28224586  4.05e-09 4.01 335.25
10.76240602  3.24e-10  4.06 18.11365709  5.37e-10  4.06 26.28224585  2.50e-10  4.02 1198.06

2048

64

TABLE 4 The value of European call option at the third state of the economy obtained by IMEX-BDF2-FOC scheme and the convergence
orders of the scheme. Upper: without local mesh refinement; bottom: with local mesh refinement

M

32
64
128
256
512
1024
2048

32
64
128
256
512
1024
2048

L,
16
24
32
40
48
56
64

S =90 S = 100 S =110

Value Error Order Value Error Order Value Error Order
12.33533900  5.26e-02 19.74244557  6.24e-02 27.83084006  2.09e-02
12.37491025 1.31e-02 2.01 19.81968956  1.48e-02  2.08 27.85664872  4.92e-03  2.09
12.38474242  3.28e-03  2.00 19.80857015  3.68e-03  2.01 27.85293917 1.21e-03  2.02
12.38730517  7.18e-04  2.20 19.80394438 9.47e-04 1.96 27.85140539  3.21e-04 1.92
12.38819697 1.74e-04 2.04 19.80465988  2.32e-04  2.03 27.85180249  7.58e-05  2.09
12.38806583  4.33e-05  2.01 19.80483460  5.72e-05  2.02 27.85174357 1.68e-05 2.17
12.38803328  1.07e-05 2.01 19.80487781  1.40e-05  2.03 27.85172266  4.08e-06  2.05
S =90 S = 100 S =110

Value Error Order Value Error Order Value Error Order
12.39238763  4.37e-03 19.81244557  7.56e-03 27.84843612  3.29e-03
12.38827146  2.49e-04 4.13 19.80439335 4.98e-04 3.92 27.85151556 2.11e-04 3.96
12.38803722 1.47e-05 4.09 19.80486211  2.97e-05  4.07 27.85171386  1.29e-05 4.04
12.38802348  9.14e-07  4.00 19.80489359  1.80e-06  4.04 27.85172595  7.89e-07 4.03
12.38802251 5.76e-08  3.99 19.80489190  1.10e-07 4.03 27.85172679  4.94e-08  4.00
12.38802256  3.39¢-09 4.09 19.80489178  6.43e-09 4.10 27.85172673  2.98e-09 4.05
12.38802257  2.04e-10  4.06 19.80489179  3.73e-10 4.12 27.85172674 1.63e-10  4.20

CPU
times (s)
3.53

7.17
16.59
39.15
106.97
333.91
1157.42
CPU
times (s)
4.03

7.54
17.82
44.12
114.87
334.13
1195.49

In Table 1, we present the prices of the European call option at the first state of economy with FOC scheme using
uniform grid. We give the prices and their errors at the stock prices S = 90,S = 100, and S = 110. Also, the given
convergence order is defined by

Order = log,

) — I
J J ’
”uh/z - uref”

where the value uil is the numerical solution at ¢ = T at the j-state of the economy.
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From Table 1, we notice that the result can only achieve second-order convergence accuracy, even though our theory can
reach order 4. The reason is that in the option pricing problem, the initial condition is nondifferentiable at the strike price.
To solve this problem, we apply the space grid refinement method. Figure 2 shows the effect of local mesh refinement
by drawing the error distribution at time T. From the figure, we notice that the error at the strike price S = K = 100 is
around 1072 without local mesh refinement (blue dotted line), while by local mesh refinement (red solid line) with the
added new node number L, = 32, the error significantly lowers to 107*. In Table 2, M is the initial number of spatial grid
points; L is the added new node number. From the table, we can observe that the FOC scheme with local mesh refinement
achieves fourth-order accuracy. Furthermore, we plot the price curve of the European call option under regime-switching
Merton models with the intensity 4 = 0.3,0.5,0.7 in Figure 3, respectively.

Tables 3 and 4 present the prices of the European call option at the second and third states of the economy, respectively.
Table 5 presents the prices of the European put option at the first state of the economy. From Tables 3, 4, and 5, we can
also notice that the FOC scheme only achieve second-order convergence accuracy with uniform mesh, while it can reach
fourth-order accuracy by local mesh refinement.

TABLE 5 The value of European put option at the first state of the economy obtained by IMEX-BDF2-FOC scheme and the convergence
orders of the scheme. Upper: without local mesh refinement; bottom: with local mesh refinement

S =90 S = 100 S = 110 CPU
M Value Error Order Value Error Order Value Error Order times (s)
32 13.34798554  1.80e-01 10.30254189  2.43e-01 8.58318495 1.67e-01 3.82
64 13.48567913  4.27e-02  2.08 10.48785901  5.80e-02  2.07 8.70935825  4.08e-02  2.03 8.06
128 13.51848914  9.85e-03  2.11 10.53173758  1.42e-02  2.04 8.74036916  9.78e-03  2.06 17.82
256 13.52608741  2.25e-03  2.13 10.54239125  3.50e-03  2.02 8.74782458  2.32e-03  2.07 42.12
512 13.52779014  5.52e-04  2.03 10.54502149  8.69¢-04  2.01 8.74957436  5.74e-04  2.02 116.34
1024 13.52846812  1.26e-04 2.13 10.54567650  2.14e-04  2.02 8.75028833  1.40e-04 2.03 334.25
2048 13.52837268  3.06e-05  2.04 10.54584051  5.02e-05  2.09 8.75018272  3.48e-05 2.01 1201.47
S =90 S = 100 S = 110 CPU
M L, Value Error Order Value Error Order Value Error Order times (s)
32 16 13.51954987  8.79e-03 10.53675697  9.14e-03 8.74350135  6.65e-03 4.15
64 24 13.52778014  5.62e-04  3.97 10.54534531  5.46e-04  4.07 8.74973549  4.12e-04  4.01 8.38
128 32 13.52837612  3.41e-05 4.04 10.54585625  3.45e-05  3.98 8.75012359  2.43e-05 4.08 20.46
256 40 13.52834421 2.15e-06  3.99 10.54589283  2.07e-06  4.06 8.75014636  1.55e-06  3.97 45.37
512 48 13.52834219 1.33e-07 4.01 10.54589063 1.33e-07 3.96 8.75014781  9.90e-08  3.97 118.12
1024 56 13.52834207  8.28e-09  4.01 10.54589075  8.29e-09  4.00 8.75014790  5.74e-09 4.11 337.54

2048 64  13.52834206  5.25e-10  3.98 10.54589076  4.98¢-10  4.06 8.75014790  3.52e-10  4.03 1216.75

TABLE 6 The price of American put option at various state of
economy with M = 1024and N = 1600atz = T
S =90 S = 100 S = 110
First state of economy 14.28425133 11.11738725 9.22672458
Second state of economy 16.66358246 13.83104538 11.88294541
Third state of economy 18.44635972  15.73549804 13.64587215

TABLE 7 Comparative CPU times (s) of American put option using our method versus those using radial basis
function (RBF) collocation method in Bastani et al?® for the first state of economy atz = T

Our method without refinement Our method with refinement RBF?
M N Value CPU times L, Value CPU times Value CPU times
128 64 14.3552 0.55 32 14.3370 0.56 14.3128 0.57
256 128 14.3085 2.59 40 14.2843 2.63 14.2842 3.90
512 256 14.2914 15.74 48 14.2649 16.17 14.2664 20.62
1024 512 14.2863 104.26 56 14.2567 106.92 14.2575 218.64

2048 1024 14.2845 746.04 64 14.2537 763.34 14.2539 1683.82
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FIGURE 4 The option price curve obtained with 1600 time steps and 64 spatial meshes steps at ¢ = T under the regime-switching Merton
model. Left: European put option. Right: American put option [Colour figure can be viewed at wileyonlinelibrary.com]

Next, we describe the prices of American put option under Merton regime-switching jump-diffusion model. Table 6
presents options at various states of economy for different values of asset price. The parameters of American put option
are the same as those of the European option. As for the penalty method, we use the penalty parameter e = 107*. Table 7
present the CPU times (s) of American put option at the first state of the economy obtained by our method and by radial
basis function (RBF) collocation method proposed by Bastani et al*® at ¢ = T. From Table 7, we observe that our method
is much faster than the RBF collocation method, and the numerical valuations using our method with refinement are
better approximations of to 14.2502 (which is reported with the Fourier space time-stepping [FST]| method*) than those
obtained by RBF collocation method.” In Figure 4, the prices of the European and American put options are plotted at
various states of economy.

6 | CONCLUSIONS

In this paper, we used the IMEX-BDF2 method to solve the PIDEs for the prices of the European option under the
regime-switching Merton jump-diffusion models. We proved the L*-stability of the semi-discrete IMEX-BDF2 method.
The governing equation was discretized in space by using FOC scheme with local mesh refinement method around the
singularity, which effectively improves the overall accuracy. Moreover, we applied the penalty method to solve the LCP
derived from the American option. A number of numerical experiments were carried out for European and American
options under the regime-switching models and showed that the proposed method are effective.
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