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Highlights

• We extend MDVRPTW to include two types of vehicles for delivery and instal-

lation.

• Dual time windows: the time window and the customer service level are con-

sidered.

• We minimize the total relevant costs of depots, vehicles, transportation, and

labors.

• We develop a heuristic algorithm and a hybrid genetic algorithm for the MD-

VRPTW.

• Synchronized vehicles? schedule considering delivery and installation is pro-

posed.
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Abstract

We extend the multi-depot vehicle routing problem with time windows (MDVRPTW),

a practical and challenging problem in logistics and supply chain management, to a

study of service vehicles used for delivery and installation of electronics. This study

shows that MDVRPTW results can be used to minimize fixed costs of the depots and

the delivery and installation vehicles as well as expenses related to travel distances

and labor. Along with a mixed integer programming model, we develop a heuristic

and a genetic algorithm to identify a near-optimal solution. Computational results

demonstrate that the proposed algorithms can efficiently be used to solve relatively

large problems.

Keywords: vehicle routing problem; multiple depots; delivery and installation vehi-

cles; genetic algorithm
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1 Introduction

The multi-depot vehicle routing problem with time windows (MDVRPTW) is used

to determine the optimal set of fleet routes for satisfying the delivery demands of a

customer set under time window constraints in several depots at different locations.

It is considered a practical problem in the fields of transportation, distribution, and

logistics. We consider the MDVRPTW under heterogeneous service vehicles and an

additional service level constraint. In the MDVRPTW applied to delivery and in-

stallation vehicles, one vehicle is assumed to be dedicated solely to the delivery of

products, while another is dedicated to transporting people and equipment needed for

professional installation of the products. Each customer is associated with a specific

delivery demand and choice of installation options. In this case, some customers re-

quire only delivery while others also need installation services. Generally, customers

want their product installed as soon as possible after they receive the delivery. In

addition to time window requirements of the basic VRP, another time constraint is

imposed such that the installation service is provided within a certain time interval

after product delivery. The delivery and/or the installation service can be outsourced

to achieve service specialization in some industries. In such a case, to achieve the syn-

chronization of the delivery and installation vehicle for each customer, different types

of service vehicles and several scattered depots should be considered simultaneously.

The coordination of delivery and installation is the main focus of this paper. Firms

simultaneously attempt to meet customer demand and try to secure minimum trans-

portation and labor costs. The problem arises in various supply chain management

systems, including those associated with the electronics industry.

In the literature, several variants of the VRP exist. The multi-depot vehicle rout-

ing problem (MDVRP) is the problem of allocating customers to several depots, so

that the optimal set of routes is determined simultaneously to serve the delivery de-

mands of customers within scattered depots. The MDVRP was recently studied by

Cordeau and Maischberger [4], Escobar et al. [9], Shimizu and Sakaguchi [28], Subra-

manian et al. [30], and Vidal et al. [33]. Many heuristic methods have been developed

in the context of the MDVRP, including the local search method (Subramanian et al.

[30]), the tabu search algorithm (Cordeau and Maischberger [4]; Escobar et al. [9]),
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the genetic algorithm (Vidal et al. [33]), and the hierarchical hybrid meta-heuristic

(Shimizu and Sakaguchi [28]).

The location routing problem (LRP) is a generalized problem of the MDVRP

because it includes decisions of the number of depots and their locations. It calls for

the determination of opening and operation of depots based on routes of vehicles.

For a most recent survey on the LRP, the reader is referred to Drexl and Schneider

[5], Drexl and Schneider [6], and Prodhon and Prins [24]. Recently, many heuristic

methods have also been developed in the context of the LRP, including the local search

method (Contardo et al. [2]; Hemmelmayr et al. [13]), the Lagrangian relaxation-

based search method (Özyurt and Aksen [23]), the tabu search algorithm (Escobar et

al. [8]; Escobar et al. [7]), the particle swarm algorithm (Liu and Kachitvichyanukul

[18]), and the ant colony algorithm (Ting and Chen [32]). Sariçiçek and Akkuş [27]

recently considered models in which the locations of the hubs were decided prior to the

routing of unmanned aerial vehicles which were used for monitoring border security.

Mousavi et al. [21] formulated the location routing problem under uncertainty as two

mixed-integer linear programming problems and solved them via fuzzy possibilistic-

stochastic programming. The MDVRPTW is not a special case of the LRP because

heterogeneous service vehicles are considered under time windows and additional

service level constraints are imposed.

Among problems involving several variations of vehicles, the VRP as applied to a

heterogeneous fleet has been studied extensively (Golden et al. [12]; Liu [19]; Naji-

Azimi and Salari [22]; Salhi et al. [26]). One related variant of the heterogeneous fleet

problem is the fleet size and mix vehicle routing problem (FSMVRP), which simulta-

neously considers vehicles with different fixed costs within a fleet. In the FSMVRP,

the number of available vehicles for each type is not given or limited. This variant

was first studied by Golden et al. [12], and later by Liu [19]. Recently, the FSMVRP

with backhauls was proposed by Salhi et al. [26]. In the VRPB, delivery and pickup

service for customers can be considered simultaneously. A combined problem with

the FSMVRP and VRPB is considered representative of a realistic routing and logis-

tics distribution problem (Salhi et al. [26]). Recently, research on the VRP has also

focused on more realistic situations such as overtime and capacity overloads. Moon

et al. [20] presented a mixed integer programming model and a genetic algorithm for
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Table 1: Characteristics of literature review.

Authors This paper Sun [31] and Kim et al. [14] Sim et al. [29]

Number of depots Multi-depot Single-depot Single-depot

Delivery Time windows None Time windows

time windows

Installation Service level Service level Synchronization

time constraint constraint constraint constraint

Total cost Depot cost, Transportation cost Vehicle cost,

(Objective function) Vehicle cost, Transportation cost

Transportation cost,

Labor cost

Decision Number of depots, Routing Number of vehicles,

Number of vehicles, Routing

Routing

Methodology MILP, MINP*, Endosymbiotic MILP, Ant colony

Genetic algorithm evolutionary algorithm, algorithm

Genetic algorithm

* MINP(Mixed integer nonlinear programming)

the VRPTWOV that included driver overtime and vehicle outsourcing. Lee and Kim

[16] proposed a distributed dispatching method for large-scale pickup and delivery

systems. Kim and Lee [15] developed an ant colony algorithm for a delivery schedule

and proposed an expert system based on the developed algorithm to improve service

quality for customers.

Interest in the VRP stems from its practical importance as well as considerable

difficulty in finding optimal solutions for it. The VRP is regarded as one of the most

challenging integer programming problems. Lenstra and Rinnooy Kan [17] showed

that the VRP is NP-hard. The MDVRPTW is NP-hard in the strong sense, because

it generalizes the VRP as further complexity is added through time windows and

multiple depots. Due to the NP-hard nature of the problem, many good heuristic

approaches have been developed for it. Here, we propose a heuristic method and

a genetic algorithm for the MDVRPTW under installation vehicles and dual time

constraints for customers. The concept of the service level for installation vehicles was
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Figure 1: MDVRPTW with delivery and installation vehicles that satisfy dual time

constraints.

first presented by Sun [31], who set it as the duration between delivery and installation

services and also determined the delivery and installation vehicle routes and schedules

for a fixed depot. Sun [31] synchronized the delivery and installation vehicles by using

an endosymbiotic evolutionary algorithm based on a stochastic search mechanism.

More recently, a vehicle scheduling problem for simultaneous delivery and installation

was studied by Sim et al. [29] and Kim et al. [14]. Sim et al. [29] developed an

ant colony algorithm for creating a vehicle schedule for simultaneous delivery and

installation. The developed algorithm was applied to and tested in the context of a

logistics company. Kim et al. [14] developed a genetic algorithm for creating a vehicle

schedule.

The differences among the vehicle routing studies that include a service level and

an investigation described in this paper are summarized in Table 1. We minimize

transportation distances and labor time while satisfying dual time constraints of de-

livery and installation vehicles (see Figure 1). We determine a set of depots from

which routes originate that satisfy both delivery demands and installation require-
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ments of customers such that the fixed costs of the depots, delivery and installation

vehicles, as well as transportation and labor costs are minimized. The purpose of

this paper is twofold: It extends the MDVRPTW by accounting for delivery and in-

stallation vehicles with an additional service requirement and by addressing the time

interval between delivery and installation services, and (ii) it shows the development

of both a heuristic and a genetic algorithm for the MDVRPTW.

This paper is organized as follows: In Section 2, the assumptions and notation are

presented; furthermore, we develop a mixed integer programming model. A heuristic

algorithm for the MDVRPTW is presented in Section 3. A genetic algorithm for the

MDVRPTW is developed in Section 4. In Section 5, a numerical example and compu-

tational experiments illustrate the solution procedure, and the results are compared

with heuristic solutions. The paper ends with conclusions in Section 6.

2 Problem formulation

The following assumptions are used in the multi-depot vehicle routing problem with

time windows (MDVRPTW):

(1) Each vehicle must leave from and return to the same depot.

(2) Each customer is served exactly once by one vehicle.

(3) The customer demand along the route does not exceed the vehicle capacity.

(4) All of the customers with known demands are assigned to vehicles.

(5) The total time of a route does not exceed the maximum vehicle route time. The

maximum vehicle route times are equivalent to the time window of the depot.

(6) The time window constraints of each customer delivery must be satisfied.

(7) The difference between the arrival times of delivery and installation vehicles at

the same customer must not exceed the service level (maximum allowable time

interval).

5
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The following notation is used in the model:

Sets

I : set of delivery nodes

A : set of installation nodes, A ⊂ I

J : set of depot nodes

N : set of all nodes, N = I ∪ J

L : set of installation and depot nodes, L = A ∪ J

K : set of delivery vehicles

S : set of installation vehicles

Parameters

Fj : fixed cost for depot j

CFk : fixed cost for vehicle k

CFs : fixed cost for vehicle s

CTk : transportation cost for vehicle k per unit time

CTs : transportation cost for vehicle s per unit time

CRk : labor cost of the delivery person for vehicle k per unit time

CRs : labor cost of the installation engineer for vehicle s per unit time

tij : transportation time between nodes i and j

sti : service time of the installation vehicle at customer i

ei : earliest time at customer i

li : latest time at customer i

rk : maximum route time allowed for vehicle k

di : demand at customer i

qk : capacity of vehicle k

SL : service level for installation vehicles

6
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M : a sufficiently large number

Decision variables

ai : arrival time of the delivery vehicle at customer i

bi : arrival time of the installation vehicle at customer i

ajk : arrival time of delivery vehicle k at depot j

bjs : arrival time of installation vehicle s at depot j

wdi : waiting time of the delivery vehicle at customer i

wti : waiting time of the installation vehicle at customer i

xijk =

{
1, if delivery vehicle k travels directly from i to j

0, otherwise

∀i, j ∈ N, k ∈ K

xijs =

{
1, if installation vehicle s travels directly from i to j

0, otherwise

∀i, j ∈ L, s ∈ S

Zj =

{
1, if depot j is used

0, otherwise

∀j ∈ J

The formulation of the MDVRPTW can be stated as follows:

Min
∑

j∈J
FjZj +

∑

i∈N

∑

j∈N

∑

k∈K
CTktijxijk +

∑

i∈L

∑

j∈L

∑

s∈S
CTstijxijs

+
∑

k∈K

∑

i∈J

∑

j∈I
CFkxijk +

∑

s∈S

∑

i∈J

∑

j∈A
CFsxijs +

∑

j∈J

∑

k∈K
CRkajk +

∑

j∈J

∑

s∈S
CRsbjs (1)

s.t.
∑

i∈N
xijk =

∑

i∈N
xjik, ∀j ∈ N, k ∈ K, (2)

∑

i∈L
xijs =

∑

i∈L
xjis, ∀j ∈ L, s ∈ S, (3)

∑

k∈K

∑

i∈N
xijk = 1, ∀j ∈ I, (4)

∑

s∈S

∑

i∈L
xijs = 1, ∀j ∈ A, (5)

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

∑

i∈J

∑

j∈I
xijk ≤ 1, ∀k ∈ K, (6)

∑

i∈J

∑

j∈A
xijs ≤ 1, ∀s ∈ S, (7)

∑

i∈N
xijk ≤ Zj, ∀j ∈ J, k ∈ K, (8)

∑

i∈L
xijs ≤ Zj, ∀j ∈ J, s ∈ S, (9)

∑

i∈I

∑

j∈N
dixijk ≤ qk, ∀k ∈ K, (10)

aj ≥ ai + wdi + tij + M(
∑

k∈K
xijk − 1), ∀i ∈ N, j ∈ I, (11)

bj ≥ bi + sti + wti + tij + M(
∑

s∈S
xijs − 1), ∀i ∈ L, j ∈ A, (12)

rk ≥ ajk ≥ ai + wdi + tij + M(xijk − 1), ∀i ∈ I, j ∈ J, k ∈ K, (13)

rs ≥ bjs ≥ bi + sti + wti + tij + M(xijs − 1), ∀i ∈ A, j ∈ J, s ∈ S, (14)

ei ≤ ai + wdi ≤ li, ∀i ∈ I, (15)

ai + wdi ≤ bi + wti ≤ SL + ai + wdi, ∀i ∈ A, (16)

aj = bj = stj = wdj = wtj = 0, ∀j ∈ J, (17)

xijk = {0, 1}, ∀i, j ∈ N, k ∈ K, (18)

xijs = {0, 1}, ∀i, j ∈ L, s ∈ S, (19)

Zj = {0, 1}, ∀j ∈ J. (20)

The objective function (1) sums all of the costs, including the fixed costs of the

depots and the delivery and installation vehicles as well as those related to transporta-

tion and labor. The fixed costs are amortized so that they can be directly compared

with operating costs. Constraints (2) and (3) ensure that the vehicle that leaves the

customer is the same vehicle as the one that visits the customer. Constraints (4) and

(5) stipulate that every customer is assigned to one delivery vehicle and that each

customer needing installation is assigned to exactly one installation vehicle, respec-

tively. Constraints (6) and (7) define whether or not each vehicle should be assigned

to a depot. Constraints (8) and (9) guarantee that vehicles can be assigned to a depot

only if that depot is open. Constraint (10) is the capacity constraint of the delivery

vehicles. Constraints (11)-(14) ensure compatible arrival times for service, waiting,
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and transportation between nodes i and j. The service time is considered only for

an installation vehicle. Constraints (15) and (16) specify the time windows at each

customer, and the service level is the time interval between delivery and installation

services. Constraint (17) defines the depot times. Finally, Constraints (18), (19), and

(20) are the binary requirements for the decision variables regarding the delivery

vehicle route, the installation vehicle route, and the depot location, respectively.

3 Heuristic algorithm

In this section, we develop a heuristic algorithm for the MDVRPTW considering

delivery and installation vehicles. The problem is decomposed into two distinct prob-

lems: The first involves solving the MDVRPTW considering only delivery vehicles,

and the second involves solving the MDVRPTW considering only installation vehi-

cles with respect to requirements of the service level. Based on the results of the first

problem, the second problem is generalized to the case of the VRP with time windows

because the delivery vehicle’s arrival time to the installation customers is calculated

and the service level is given.

For each decomposed problem, the heuristic first assigns each customer to its

nearest depot and constructs routes for the customer set of each depot. A routing

construction heuristic is similar to the nearest neighbor heuristics (NNH) (Reinelt

[25]).

procedure nearest neighbor (Reinelt [25])

(1) Select an arbitrary node j, set l = j and T = {1, 2, ..., n}\{j}.
(2) As long as T 6= ∅ do the following.

(2.1) Let j ∈ T such that clj = min {cli | i ∈ T}.
(2.2) Connect l to j and set T = T\{j} and l = j.

(3) Connect l to the first node (selected in Step (1)) to form a tour.

end of nearest neighbor

Within each customer set, vehicle routes are determined to minimize the total

transportation distances, and they can be made by connecting a pair of consecutive

customers served from a depot. In our study, the NNH was used for constructing

9
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routes: First, two nodes with the minimum distances were identified and then the next

node as close as possible to the previous one was selected until a route is established

with all customers and one depot. Specifically, the following heuristic procedure is

repeated until all of the customers within each group are assigned to a route:

Step 1. Calculate the transportation distances for every pair of nodes including

customers and a depot.

Step 2. Select a pair of nodes with the minimum transportation distances.

Step 3. Connect the nodes from a start node to an end node by a visiting sequence

in ascending order of their earliest time.

Step 4. Connect the next node as close as possible to the previously connected end

node in order to make a route until all of the nodes are assigned to the route.

Step 5. Arrange the route so that a vehicle leaves from a depot and returns to the

same depot.

Step 6. Assign vehicles to the route sequentially until the demand, time windows,

and service level of all of the customers are satisfied.

One of the main characteristics of this algorithm is that infeasible solutions are

not allowed throughout the search. Feasible solutions are achieved through the simple

assignment of vehicles. Feasible routes are made by a sequential assignment method

of a vehicle that meets the time windows, maximum route time, and capacity con-

straints at each customer node. In other words, we assign vehicle k iteratively to the

constructed route as long as its capacity and the maximum route time is not exceeded

and each customer’s time window is not violated. This simple method allowed us to

make feasible routes easily.

4 Genetic algorithm

In this section, we develop a genetic algorithm for the vehicle scheduling problem

for delivery and installation services. We use a genetic scheme to simultaneously find

10
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a good assignment and vehicle routes. Genetic algorithms, which have been widely

used in various areas, are stochastic search algorithms based on the mechanisms

of natural selection (Gen and Cheng [11]). In contrast to the use of conventional

search techniques, one starts a genetic algorithm with an initial set of randomly

generated solutions called a population. Each individual in the population is called a

chromosome and represents a solution to the problem. A chromosome evolves through

successive iterations called generations. During each generation, genetic operators,

such as crossover, mutation, and selection, create chromosomes with new qualities that

more or less allow the individual to adapt to an environment. Each chromosome is then

evaluated by specific measures of fitness as a solution. Any genetic algorithm used to

solve a problem must possess certain basic components that depend on the problem

under investigation. We explain our overall strategies in the following subsection,

including the genetic representation, penalty and fitness functions, and the genetic

operators. To undertake the overall procedure, let P (t) and C(t) be the parents and

offspring in the current generation t, respectively. The pseudo-code for solving the

vehicle scheduling problem for delivery and installation is outlined in Figure 2.

4.1 Representation and initialization

The proper representation of a solution plays a key role in the development of a

genetic algorithm. The assignment and sequence have to be decided simultaneously

for the problem.

We use a random number representation for the assignment chromosome. Each

assignment chromosome in the population is used to assign customers to depots by

a simple decoding process. Priorityi = b(J − 1) × Gene(i)c + 1, bGc is the function

which finds the integer number less than G. Priorityi represents a priority of depot

selection and J is the total number of depot nodes. Each customer has priorities

of depot selection by distances from a customer to depots. Priority 1 means that a

customer is assigned to its nearest depot and priority J is assigned to its depot of the

longest distance. This decoding process easily converts a random number chromosome

between 0 and 1 into integer representation of depot selection by distance priority.

As in most genetic algorithms for the traveling salesman problem, a chromosome

11
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Genetic algorithm for the vehicle scheduling problem for delivery and installa-

tion:

Begin

t← 0;

initialize P (t) by the permutation encoding routine;

evaluate P (t) by the permutation decoding routine;

while (not termination condition) do

create C ′(t) from P (t) by the order crossover routine;

create C(t) from C ′(t) by the swap mutation routine;

evaluate C(t) by the permutation decoding routine;

select P (t + 1) from P (t) and C(t) by the ranking selection routine;

t← t + 1;

end

End

Figure 2: The pseudo-code for the overall procedure for solving the MDVRPTW.

is simply a permutation of n customer nodes (Gen and Cheng [11]). The output can

be interpreted as the order in which a vehicle must visit all the assigned customers if

the same vehicle is to make successive trips to each customer. To represent the vehicle

scheduling problem for delivery and installation, we used permutation-based encoding

and decoding methods in our investigation. The length of the permutation chromo-

some reflects the total number of customers. A gene in a chromosome is characterized

by the locus (position) and the allele (value) (Gen et al. [10]). In our model, each

allele represents the customers on the route, and each locus represents the position of

the customer. In addition, v(i) represents the priority of customer i. Figure 3 shows

an example of the genes sequenced in a chromosome of seven customers. The vehicle

visitation sequence for customers is 1-3-4-2-6-5-7.

The decoding procedure sequentially cuts a permutation chromosome into routes

that satisfy the time windows, maximum route time, and capacity constraints, and

leads to solution of a vehicle scheduling problem that matches up with the sequence.

One of the main characteristics of the decoding procedures is that infeasible solutions

12
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Figure 3: Example of a sequence chromosome for seven customers.

are not allowed throughout the search. Feasible solutions are achieved through the

simple and sequential assignment of vehicles. The following decoding procedure for

the permutation chromosome, where the binary route variable xijk is equal to one if

vehicle k travels directly from node i to node j, reflects a delivery route:

Procedure: Decoding of the permutation chromosome for delivery routes

Input : v(i)

Output : xijk, ai

Step 1. Put xijk = 0, ∀ij ∈ I, k ∈ K.

Set the vehicle number to k = 1, the arrival time to a∗m = 0 and the sum of

demand at customer to dsum∗k = 0.

q = argmax{v(i), i ∈ I}; set the total number of customers.

Step 2. m = argmim{v(i), i ∈ I}; select the first priority node.

If v(m) = q, then go to Step 5.

n = argmim{v(i), i ∈ I\m}; select the second priority node.

a∗m = max{a∗m, em} and dsum∗k = dsum∗k + dm.

Step 3. Check the feasibility of the constraints.

Calculate a∗n = a∗m + tmn and dsum∗k = dsum∗k + dn.

If a∗n ≤ ln, a∗n ≤ rk and dsum∗k ≤ qk, then xmnk = 1.

Otherwise, k = k + 1, a∗m = 0 and dsum∗k = 0; go to Step 3.

Step 4. If xmnk = 1, then v(m) = q; update the priority of the gene.

Step 5. If v(i) = q,∀i ∈ I, then calculate the total cost and stop.

Otherwise, go to Step 2.

13
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The decoding procedure for the permutation chromosome for the installation

routes can be stated as follows where the binary route variable xijs is equal to one if

vehicle s travels directly from node i to node j:

Procedure: Decoding of the permutation chromosome for the installation routes

Input : v(i)

Output : xijs, bi

Step 1. Put xijs = 0,∀ij ∈ I, s ∈ S.

Set the vehicle number to s = 1 and the arrival time to b∗m = 0.

q = argmax{v(i), i ∈ I}; set the total number of customers.

Step 2. m = argmim{v(i), i ∈ I}; select the first priority node.

If v(m) = q, then go to Step 5.

n = argmim{v(i), i ∈ I\m}; select the second priority node.

b∗m = max{b∗m, bm + wtm + stm}.

Step 3. Check the feasibility of the constraints.

Calculate b∗n = b∗m + tmn.

If b∗n − an + wdn ≤ SL and b∗n ≤ rs, then xmns = 1.

Otherwise, s = s + 1 and b∗m = 0; go to Step 3.

Step 4. If xmns = 1, then v(m) = q; update the priority of the gene.

Step 5. If v(i) = q,∀i ∈ I, then calculate the total cost and stop.

Otherwise, go to Step 2.

The initial population is typically created either randomly or using modifications

of well-known construction heuristics (Bräysy and Gendreau [1]). We apply the heuris-

tic solution described earlier to the initial population instead of generating chromo-

somes randomly. An initial population with a chromosome of heuristic solution is

more likely to increase the speed of convergence in large size problems. Because an

initial population with the heuristic solution has a possible drawback of early con-

vergence to local optimal solutions in small size problems, an initial population is

14
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P1 1 2 3 4 5 6 7 8 9

P2 5 7 4 9 1 3 6 2 8

C1 7 9 3 4 5 6 1 2 8

C2 2 5 4 9 1 3 6 7 8

Figure 4: Example of OX for the sequence chromosomes.

generated properly according to problem sizes. A population of size 50 was used for

computational experiments.

4.2 Genetic operators

A simple genetic algorithm that yields good results for many practical problems fea-

tures three operators: crossover, mutation, and selection. It is the combination of

these genetic operators that affects the performance of the genetic algorithm and the

scope of the search (Gen and Cheng [11]). Therefore, it is important to select proper

genetic operators for each problem. Accumulated information is usually exploited by

the selection mechanisms and is partially exploited by the crossover mechanism, while

new regions of the search space are explored by the mutation operator.

For a permutation-based sequence representation, several crossover operators have

been proposed, such as the partial-mapped crossover (PMX), order crossover (OX),

cycle crossover (CX), position-based crossover (PX), and heuristic crossover (Gen et

P1 0 0.3 0.1 0 1 0.5 0.1 0.4 0.2 0.8 0.9

P2 0.5 0.7 0.8 0.2 0.6 0 0.7 0.1 0.4 0.2 0

C1 0 0.3 0.8 0 1 0.5 0.7 0.1 0.2 0.8 0.9

C2 0.5 0.7 0.1 0.2 0.6 0 0.1 0.4 0.4 0.2 0

Figure 5: Example of uniform crossover for the assignment chromosomes.
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P1 1 … 4 … 15 … 21 … 27

C1 1 … 21 … 15 … 4 … 27

Figure 6: Example of swap mutation for the sequence chromosomes.

al. [10]). PMX and OX are conventional two-cut point crossovers and PX is a variation

of a uniform crossover operator. A uniform crossover operator such as PX enables us

to exchange bits rather than segments, whereas PMX and OX are to choose two cut

points uniformly at random and, based on these cut points, to exchange segments. In

this problem, we use OX in order to preserve and generate a good segments schema

from a pair of parents. Figure 4 depicts an example of OX for the sequence chro-

mosomes (Gen and Cheng [11]). For the assignment chromosomes, we use a uniform

crossover operator which enables us to exchange bits rather than segments. Uniform

crossover first generates a random crossover mask and then exchanges relative genes

between parents according to the mask (Gen and Cheng [11]). Figure 5 shows an

example of a uniform crossover for the assignment chromosomes.

Several mutation operators have also been proposed for permutation representa-

tion, such as swap, inversion, and insertion mutations. We used the swap mutations

for the sequence chromosomes. Two digits are randomly selected and their positions

are exchanged in the swap mutation. Figure 6 depicts an example of swap mutation

for the sequence chromosomes. For the assignment chromosomes, a digit is randomly

selected with probability and a new random number between zero and one is gener-

ated.

Selection is a process in which individual strings create a new population for the

next generation based on their fitness function values. In this paper, parents are

chosen with a rank-based mechanism. A ranking approach offers a smoother selection

probability curve. This prevents good strings from totally dominating the search at

an early stage.
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Table 2: Computational results for parameter selection.

Mean error (%)

Pm / Pc 0.4 0.6 0.8

0.2 0.045 0.038 0.020

0.3 0.039 0.046 0.049

0.4 0.053 0.045 0.046

4.3 Termination condition and parameter selection

In this study, we performed computational experiments with the following values of

the GA parameters. In order to select the appropriate values of the GA parameters, we

conducted a pilot experiment using 10 randomly generated problems. Three different

crossover and mutation rates are considered. Computational results for parameter

selection are shown in Table 2.

• Population size : 50

• Crossover rate (Pc) : 0.8

• Mutation rate (Pm) : 0.2

We considered as many as 6000 generations, even for small problems, but we used

tighter termination conditions to generate a solution with little computational effort

for large problems. The genetic algorithm makes a stop once no improvement is made

in 100 generations or the best individual is not allowed to improve more than 0.01%

over 500 generations.

5 Computational experiment

In this section, we present computational results for the MDVPRTW. Our com-

putational experiments were performed on three instances: small problem, medium

problem, and the modified Cordeau et al’s [3] problem. Specifically, we compare the

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 3: Data on customer demands (in units) and time constraints (in minutes).

Customer 1 2 3 4 5

Demand 10 7 13 19 26

Service time - - 30 40 55

Earliest time 24 79 56 38 47

Latest time 225 229 170 278 113

performances of the mixed integer program and the genetic algorithm. The mixed

integer program was implemented and solved with LINGO 10.0. All computational

tests presented here were performed on an Intel Core(TM) i7 with 2.67 GHz and 4GB

RAM.

Example I Small problem and sensitivity analysis

First, we solved a small problem. The parameters for customers in a small problem

are shown in Tables 3 and 4. The other parameters, for comparison, are as follows:

• Number of depots: 2

• Number of delivery nodes: 5

Table 4: Distance matrix of the vehicle operation for each customer and depot (in

minutes).

Customer Depot

1 2 3 4 5 6 7

Customer 1 0.0 24.8 13.6 34.9 18.3 17.5 11.6

2 24.8 0.0 35.4 25.1 8.4 13.8 18.1

3 13.6 35.4 0.0 36.6 30.5 23.9 17.8

4 34.9 25.1 36.6 0.0 30.3 18.3 23.3

5 18.3 8.4 30.5 30.3 0.0 14.3 15.4

Depot 6 17.5 13.8 23.9 18.3 14.3 0.0

7 11.6 18.1 17.8 23.3 15.4 0.0
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• Number of installation nodes: 3

• Number of vehicles: 4 (2 delivery vehicles and 2 installation vehicles)

• Service level: 70 minutes

• Vehicle capacity: 100 units

• Maximum transportation time: 300 minutes

• Fixed cost for depots: $100/depot

• Fixed cost for delivery and installation vehicles: $10/vehicle

• Transportation cost for delivery and installation vehicles: $1/minute

• Labor cost: $1/minute

The solution is comprised of Z6 = 1, x642 = 1, x644 = 1, one delivery and instal-

lation route, and a total cost of $701.8. Each vehicle’s routing times for the small

problem are summarized in Table 5. The table shows the delivery vehicle attempts to

minimize the total transportation time within the time windows and the installation

vehicle attempts to minimize the arrival time at the depot and meet the customer’s

service level. The resulting transportation routes are as follows:

• Delivery Vehicle: 6-4-3-1-5-2-6

• Installation Vehicle: 6-4-3-5-6.

Table 6 shows the sensitivity analysis with respect to the service level. This anal-

ysis reveals that if the service level is relaxed (i.e., larger time intervals are allowed

between delivery and installation), the solutions will be better due to decreased labor

costs. Table 7 also shows the results of sensitivity analysis taking into account labor

costs and the service level. The sensitivity analyses include a general problem with

vehicle routing service by one vehicle (i.e., delivery and installation are handled si-

multaneously such that the delivery person and installation engineer travel together).

Table 7 includes the results of sensitivity analysis serviced by separate vehicles with
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Table 5: Vehicle routing times for the small problem.

Customer (Depot) 6 4 3 1 5 2 6

Delivery Arrival time - 18.3 74.6 88.2 106.5 114.8 128.7

vehicle Waiting time - 19.7 0.0 0.0 0.0 0.0 -

Delivery time - 38.0 74.6 88.2 106.5 114.8 -

Earliest time - 38.0 56.0 24.0 47.0 79.0 -

Latest time - 278.0 170.0 225.0 113.0 229.0 -

Installation Arrival time - 18.3 114.6 - 175.2 - 244.4

vehicle Waiting time - 19.7 0.0 - 0.0 - -

Installation time - 38.0 114.6 - 175.2 - -

Service time - 40.0 30.0 - 55.0 - -

Table 6: Sensitivity analysis on the value of the service level.

Service Selected Routes Transportation Labor Total

level depot cost($) cost($) cost($)

Serviced by one vehicle 6 6-5-2-1-3-4-6 115.9 547.3 773.2

Serviced by 0 6 6-4-3-1-5-2-6 219.6 436.5 786.0

separate 6-4-5-6

vehicles 6-3-6

20 6 6-4-3-1-5-2-6 219.6 434.7 784.2

6-4-5-6

6-3-6

40 7 7-4-2-5-1-3-7 208.5 413.2 741.7

7-4-5-3-7

60 7 7-4-2-5-1-3-7 208.5 393.3 721.7

7-4-5-3-7

70 6 6-4-3-1-5-2-6 208.7 373.1 701.8

6-4-3-5-6

varying service levels and labor costs. The GAP in parentheses shows the percent-

age gap between the cost of service by one vehicle and that of service by separate
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vehicles. This analysis clearly shows that the solution achieved by separate vehicles

is significantly better than that procured by one vehicle. In particular, as labor costs

and service levels increase, the total cost of service by separate vehicles is significantly

lower than those accrued through use of one vehicle.

Example II Medium problem

Table 8 shows a comparison of the results from the mixed integer program and

the genetic algorithm. In the table, the asterisk indicates an optimal solution. Each

objective function has the same value. From this result, the applicability of our model

is demonstrated. Because of the characteristics of the NP-hard problem, the compu-

tational time increases exponentially as the number of customers is increased. The

genetic algorithm obtains optimal solutions within two minutes for the examples in

Table 8.

Table 7: Sensitivity analysis on the value of labor costs and the service level.

Service level Cost factor

CRk = 1, CRs = 1 CRk = 1, CRs = 2 CRk = 2, CRs = 2 CRk = 2, CRs = 4

Serviced by one vehicle $773.2 $1046.8 $1320.5 $1867.7

Serviced by

separate

vehicles

0 $786.0 (-1.7%) $1067.9 (-2.0%) $1222.6 ( 7.4%) $1800.2 ( 3.6%)

20 $784.2 (-1.4%) $1047.9 (-0.1%) $1218.9 ( 7.7%) $1760.2 ( 5.8%)

40 $741.7 ( 4.1%) $983.4 ( 6.1%) $1155.0 (12.5%) $1638.3 (12.3%)

60 $721.7 ( 6.7%) $963.4 ( 8.0%) $1115.0 (15.6%) $1598.3 (14.4%)

70 $701.8 ( 9.2%) $946.2 ( 9.6%) $1074.9 (18.6%) $1563.7 (16.3%)

Table 8: Comparison of the results from the mixed integer program and the genetic

algorithm.

J I A K S q Mixed integer program Genetic algorithm

Average Objective Remark Objective Remark

evaluation time value($) value($)

2 5 3 2 2 100 107 seconds 701.8 * 701.8 *

4 20 5 2 3 200 20 hours 3175.8 * 3175.8 *

5 20 10 2 3 200 27 hours 4401.4 * 4401.4 *
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Table 9: Characteristics of the Cordeau’s instances of the MDVRPTW.

No. I A J q No. I A J q

1a 48 23 4 200 1b 48 23 4 200

2a 96 47 4 195 2b 96 47 4 195

3a 144 71 4 190 3b 144 71 4 190

4a 192 95 4 185 4b 192 95 4 185

5a 240 119 4 180 5b 240 119 4 180

6a 288 143 4 175 6b 288 143 4 175

7a 72 35 6 200 7b 72 35 6 200

8a 144 71 6 190 8b 144 71 6 190

9a 216 107 6 180 9b 216 107 6 180

10a 288 143 6 170 10b 288 143 6 170

Example III Modified Cordeau et al’s instances

In addition, we conducted computational experiments to evaluate the performance

of the heuristic and the genetic algorithm. Cordeau et al. [3]’s instances were con-

sidered for comparison purposes. A values that represent the number of installation

nodes were added to our data based on Cordeau et al. [3]. The number of installation

nodes, A, equals one-half the number of customers. The difference between groups

(a) and (b) lies only in the length of the time windows. In group (a), narrow time

windows are generated by choosing a uniform random number ei in the interval [60,

480] and then choosing a uniform random number li in the interval [ei + 90, ei + 180].

In group (b), larger time windows are created by choosing the random numbers ei

and li in the interval [60, 300] and [ei + 180, ei + 360], respectively (Cordeau et al.

[3]). The characteristics of Cordeau et al. [3]’s instances are shown in Table 9. We

first show the comparison with a general case of vehicle scheduling problem using the

Cordeau’s instances. Figure 7 illustrates a typical improvement of total costs accord-

ing to the service level. The service level of zero means that a delivery person and an

installation engineer travel separately, but the installation engineer should arrive at

an installation customer earlier or the same time with the delivery person.

We improve the initial solutions based on the heuristic solution in each instance
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with different service levels by the genetic algorithm, and the CPU time of the genetic

algorithm is set to 3 minutes for the instances. As shown in this figure, a separate

scheduling of delivery and installation service is more effective when time windows

are more tight and large service levels are allowed between delivery and installation.

Because the length of time windows in group (b) is quite large, the improvement in

group (b) according to the service levels is less than that in group (a). Moreover,

because no exact solutions are available for benchmarking the problem, we compared

the results from our heuristic with those from the genetic algorithm. Table 10 displays

the computational results of the algorithms.

We computed the total objective function value using Equation (1) and the same

cost parameters as used for the small problem. We set the service level at 100 minutes

for the Cordeau et al. [3]’s instance. We also used the maximum transportation time

of 700 minutes instead of the maximum duration of a route as in the case of Cordeau

et al. [3]. The service times of the delivery and installation vehicles are considered

equal. The first part of the table shows the results of the heuristic: the CPU time

in seconds, the transportation distances of the delivery and installation vehicles, and

the total objective function. The second part of the table shows the results of the

genetic algorithm. The values in the table are the same as for the heuristic, but the

CPU time is set to 3 minutes for the instances. We examined the gap between the

objective function values obtained by the heuristic and those obtained by the genetic

algorithm. In group (a), the average gap is 3.7%, but the average gap is 1.5% in group

(b). The improvement of the genetic algorithm over the heuristic in group (b) is much
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Figure 7: Total costs graph according to the different service level.
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Table 10: Comparison of the results of the heuristic method and the genetic algorithm.

No. Heuristic Genetic algorithm GAP(%)

CPU time Distance Objective CPU time Distance Objective

(seconds) value ($) (seconds) value ($)

1a 13 2225.4 14273.3 180 2691.0 12325.6 13.6

2a 25 3759.6 22722.1 180 3885.0 22021.2 3.1

3a 37 6186.5 37149.1 180 6600.6 36047.5 3.0

4a 49 8265.5 50406.0 180 9821.4 49093.1 2.6

5a 60 8401.4 56487.8 180 8996.5 55297.1 2.1

6a 71 8898.3 62685.8 180 9654.4 61952.2 1.2

7a 20 3156.1 20220.7 180 3248.3 18730.5 7.4

8a 38 6234.3 37927.2 180 6651.1 37556.9 1.0

9a 55 7225.0 54024.3 180 8305.7 53427.4 1.1

10a 72 10659.7 73337.0 180 11232.9 71553.7 2.4

1b 14 1854.0 8422.5 180 1904.6 7987.5 5.2

2b 25 3061.9 14436.0 180 3061.9 14436.0 0.0

3b 38 5222.0 24140.0 180 5195.1 23268.8 3.6

4b 50 6236.3 26839.2 180 6236.3 26839.2 0.0

5b 61 5989.4 29589.3 180 5989.4 29589.3 0.0

6b 71 7729.7 37715.2 180 7729.7 37715.2 0.0

7b 20 2638.6 12973.2 180 3097.6 12473.5 3.9

8b 38 4635.6 21077.5 180 4635.6 21077.5 0.0

9b 55 5511.0 25473.5 180 6149.2 24772.2 2.8

10b 73 7559.3 35946.9 180 7559.3 35946.9 0.0

less than the improvement in group (a). The performance of the heuristic is much

better with the larger time windows. In addition, it is more difficult for the genetic

algorithm to construct routes within each depot because the ranges of the earliest

and latest time are narrow in group (b).

Based on these results, the genetic algorithm yields a better solution for most of

the instances. Although the total transportation distance increases, the total objec-

tive value decreases. It appears that the fixed costs for the vehicles decrease, and

the total cost is reduced. This computational study demonstrates that the genetic

algorithm outperforms the heuristic algorithm, but the developed heuristic algorithm
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can efficiently solve comparatively large instances.

6 Conclusions

The MDVRPTW is an important NP-hard problem that has inspired the develop-

ment of numerous heuristic algorithms. In this paper, we have considered the problem

of scheduling installation vehicles for electronics through synchronization with deliv-

ery service vehicles from multiple depots. We have assumed that there is a service

level for installation vehicles, which implies that the arrival times of delivery and

installation vehicles at the same customer must not exceed the maximum allowable

time interval. We have proposed a mathematical model and efficient algorithms for

the MDVRPTW with respect to delivery and installation vehicles and their dual time

constraints. We have developed a heuristic algorithm and a genetic algorithm for the

MDVRPTW, and conducted numerical experiments for the MDVRPTW. We have

shown that the solutions achieved by a separate scheduling of delivery and installation

service are better than those serviced by one vehicle when time windows are tighter

and large service levels are allowed. The results of the computational experiments

also show the applicability and effectiveness of the developed genetic algorithm. A

real-life case study based on these meta-heuristic algorithms would make an interest-

ing research problem because meta-heuristics effectively solve realistic and practical

logistics problems.
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