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Abstract—This paper presents a method for configuring the loca-
tions of any number of cables, for the best total ampacity. The op-
timal configuration is determined through a proposed two-level op-
timization algorithm. At the outer level, a combinatorial optimiza-
tion based on a genetic algorithm explores the different possible
configurations. The performance of every configuration is evalu-
ated according to its total ampacity, which is calculated by using
a convex optimization algorithm. The convex optimization algo-
rithm, which forms the inner level of the overall optimization pro-
cedure, is based on the barrier method. The proposed approach
is tested for a duct bank installation containing 12 cables and 15
ducts, comprising two circuits and two cables per phase, and com-
pared with a brute force method of considering all possible config-
urations. The proposed approach is also applied to an installation
consisting of a single circuit inside a large magnetic steel casing.

Index Terms—Barrier method, cable ampacity, combinatorial
optimization, convex optimization, optimal configuration, vector
immune system (VIS) algorithm.

I. INTRODUCTION

T HE USE OF electric power cables for power transmission
and distribution is present in almost every geographical

area. Power cables are installed overhead in the air or buried un-
derground. Although the latter is more expensive to install and
maintain than the former, it is the preferred method for urban
areas. Due to the steep cost of underground cables installation
and maintenance, it is critical that they are used to their full
potential. However, to avoid overheating the cables, accurate
knowledge of cable ampacity is required.

Significant work has been done in the field of ampacity com-
putation for single and multiple cable installations. To deter-
mine the cable ampacities, analytical and empirical equations
have been developed [1]–[5], commercial programs that im-
plement these equations have been written [6], tables for spe-
cific cable designs and configurations have been published [7],
and iterative and optimization methods for solving the ampacity
equations for multiple cable installations have been proposed
[8]–[10].

In large urban areas, cables are often laid in concrete duct
banks to permit installation of several circuits in a fairly con-
fined space. Fig. 1 shows an example of this installation.
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Fig. 1. Example of cables located in a duct bank buried underground.

In a duct bank installation with multiple available ducts, mul-
tiple cable configurations are possible. Each configuration may
lead to a different circuit ampacity, because the mutual heating
effect depends on cable locations as do the sheath and armor
losses in each cable. The configuration that leads to the max-
imum total ampacity is desirable to maximize the usage of a
limited duct bank space. On the other hand, the configuration
with the smallest total ampacity is desirable when cables have
already been installed and information regarding which ducts
were used is lost, which happens quite often in practice when a
large number of cables are located in one duct bank. In this case,
a worst-case scenario is of interest.

Recently, another important installation configuration has
been gaining some attention—namely, installing cables in steel
or plastic casings. These are large pipes containing a number of
plastic ducts as shown, for example, in Fig. 2.

In addition to the issue of mutual heating and sheath/armor
losses discussed above, this installation may also result in very
large hysteresis and eddy current losses in the magnetic pipe. A
question arises regarding how the cables should be placed in the
available ducts to minimize the losses in the magnetic pipe and
to maximize overall circuit ratings.

A number of published works address the problem of cable
ampacity calculations given cable locations or configurations.
There have been no published papers on location optimization
procedures that determine the best or worst cable configurations,
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Fig. 2. Cables inside a casing.

from the total ampacity point of view. The aim of this paper is to
present a procedure for finding the optimal cable configuration
for cables located in a duct bank or a casing.

The issue of finding the best configuration for a number of cir-
cuits is by its nature a combinatorial optimization problem, due
to the discrete solution space of possible configurations. Refer-
ence [11] solves a problem of optimizing cables configuration
with the combined objectives of reducing the created magnetic
fields and the current imbalance. This problem is similar to the
problem at hand from the point of view of optimizing the cable
configuration, but is different with regards to the objective of
maximizing the total ampacity. Therefore, the approach in [11],
utilizing the vector immune system (VIS) algorithm, will serve
as the basis for the proposed algorithm that is presented in this
paper.

Section II provides an overview of a method for calculating
the ampacity of a system of cables placed in a fixed configura-
tion. As a starting point, the method uses the Neher McGrath
[1] and IEC [2] standard equations, which have been verified in
[12], and solves them by using a convex optimization algorithm
that provides always convergent results. The convex optimiza-
tion algorithm finds the ampacity of a fixed cable configuration
and, thus, serves as a single iteration within an outer-level com-
binatorial optimization algorithm that attempts to find the best
cable configuration, from the point of view of the total system
ampacity. The combinatorial optimization procedure is based on
the VIS algorithm and is detailed in Section III. The proposed
method is illustrated with a complex, real-life duct bank instal-
lation consisting of 12 cables and 15 available ducts, comprising
two different circuits with two cables per phase. The results are
presented in Section IV. Section V concludes this paper.

II. AMPACITY CALCULATION

A. Ampacity Equation

This section presents a method for calculating the total am-
pacity of a group of cables inside a duct bank buried under-
ground.

A typical power cable consists of a conductor, insulation,
metallic sheath or screen, possible armor bedding, armor, and

external serving layers, as shown in Fig. 3. The main sources of
heat generated by a cable are the Joule losses in the conductor,
sheath/screen, armor, and pipe. In addition, some cables may
produce substantial dielectric losses [5]. This heat is dissipated
through the various cable layers and the soil. The thermal resis-
tances of the cable layers and its surroundings influence the rate
at which the heat is dissipated and, hence, the rise of the con-
ductor temperature above the ambient temperature. This thermal
interaction can be represented for the steady-state conditions by
a lump-parameter thermal circuit that incorporates the thermal
resistances of the cable layers and the soil, the Joule and dielec-
tric losses, and the ambient and conductor temperatures. The
thermal circuit is then solved to obtain the maximum conductor
current, given the allowable insulation temperature. The solu-
tion for the current is formulated in (1), with a compre-
hensive derivation given in [5]

(1)

where

sheath loss factor, which is the ratio of the total
sheath losses to the total conductor losses;

armor loss factor, which is the ratio of the total
armor losses to the total conductor losses;

conductor ac resistance ;

dielectric losses (in Watts per meter);

number of load-carrying conductors in the cable;

thermal resistance of the insulation (in Kelvin
meter per watt);

thermal resistance of the armor bedding (in Kelvin
meter per watt);

thermal resistance of the external serving (in
Kelvin meter per watt);

thermal resistance of surrounding a medium (in
Kelvin meter per watt);

as the maximum allowable
temperature of the cable conductor and as
the ambient temperature;

conductor temperature reduction factor due to the
heating from the neighboring cables.

The cable parameters depend on the material of each layer
and its dimensions. The methods for calculating these parame-
ters can be found in [5] and are out of the scope of this paper.

Calculating for the ampacity equation of the cable of
interest “ ” is obtained by summing up the heat influences of
all neighboring cables, as given by (2). The heat influence by
each cable “ ” on cable “ ,” , is calculated by using (3)
by multiplying the heat produced by the cable “ ,” , and the
mutual thermal resistance between cables “ ” and “ .”
is the sum of the Joule and dielectric losses of cable “ ,” as
expressed in (4). depends on the distance between the two
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Fig. 3. Underground cable construction.

cables and their depth below the earth’s surface and is calculated
by using (5) [5]

(2)

(3)

(4)

(5)

In (2), is the total number of cables in the system. For
cable “ ,” is its conductor current, is its ac resistance

and are its sheath and armor loss factors, re-
spectively, is the number of conductors in the cable, is its
loss factor, and is its dielectric loss. The calculation of the
mutual thermal resistance becomes somewhat more involved
when the cables are located in a duct bank, backfill, or a large
casing [5].

It is evident from (1)–(5) that in order to calculate the am-
pacity of a cable “ ,” the currents of all the other cables must be
known. However, these currents are not known a priori because
the objective is to compute the ampacities of all the cables in
the system. The application of (1) to every cable will result in a
system of interrelated equations. In practice, these equations are
solved iteratively [5], [6], [8]. However, the iterative method is
not always convergent. A recently postulated alternative is to ex-
press these equations as an optimization problem and then solve

them to obtain the ampacities [10]. This method is always con-
vergent and is summarized next.

B. Convex Optimization Problem

Because the ampacity of a cable is the largest current that
it can carry while not causing its conductor temperature to rise
above a specified maximum, the total ampacity of a group of ca-
bles is the largest sum of the currents that do not cause any cable
to overheat. Using (1) for every cable, the resulting system of
interrelated equations can be expressed, through algebraic ma-
nipulations, as an optimization problem with an objective func-
tion of maximizing the sum of all cable currents and with the
constraints of having every cable conductor temperature below
a specified maximum. The resulting formulation is given in (6),
with a complete mathematical derivation detailed in [9]

Minimize

subject to

...

...

(6)

where and are defined in (7) and (8) at the bottom of the
page.

This problem belongs to the class of continuous convex op-
timization problems. Such type of problems can be solved ef-
fectively using the barrier method algorithm, which is briefly
described in the Appendix and is detailed in [9].

So far, ampacities have been calculated for multiple cables
placed at the specific known positions, by solving a corre-
sponding convex optimization problem. However, in some
cases, there are multiple available laying locations for the
cables, and the engineer might be interested in the optimal
cable configuration, which would lead to the largest or the
smallest possible total ampacity. The need to find this optimal
configuration leads to another optimization problem at a dif-
ferent, outer level than the aforementioned convex optimization
problem. The convex optimization problem simply provides

(7)

(8)
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the total ampacities for a specific configuration and, therefore,
constitutes a single iteration in the outer-level combinatorial
optimization problem that seeks the best or worst configuration
resulting in the optimal attainable total ampacity. Considering
all the possible cable configurations and calculating the total
ampacity for each can be a very time-consuming task. Instead,
combinatorial optimization algorithms can be invoked to solve
this problem. The following section presents this outer-level
combinatorial optimization problem and provides an algorithm
for solving it.

III. CABLE CONFIGURATION OPTIMIZATION

This section presents a method for configuring cables for the
total ampacity. The method is based on a Vector Immune System
(VIS) combinatorial optimization algorithm. Customization of
this algorithm to suit the problem being solved is also shown.

A. Vector Immune System

In most duct bank installations, the cables can be placed in
various fixed empty ducts. The task of finding the best duct al-
location for each cable that would result in the maximum pos-
sible total ampacity is by its nature a combinatorial optimization
problem. This is because the solution space, which is the set of
duct allocations of cables, is discrete. A combinatorial optimiza-
tion algorithm that has been applied to a similar problem is de-
scribed in [11]. Thus, the VIS algorithm will serve as basis for
the algorithm presented here and will be customized to suit our
problem. The customization of the VIS algorithm is presented
in Section III.B.

Evolutionary algorithms such as the VIS are based on the sur-
vival of the fittest, where the traits of only the fittest population
are passed on from one generation to the next. This is achieved in
the VIS algorithm by structuring the operations into two nested
loops, as illustrated by the flowchart in Fig. 4. In the inner loop,
two operations are applied to the population, namely, cloning
and mutation and clonal selection. The parent population from
the previous iteration is copied into clones, and each
clone is mutated by random modifications. The mutation oper-
ations are discussed in Section III.B. The parents and their mu-
tated clones, also called children, are each given a measure of
fitness, according to their respective values of the objective func-
tion. Among each parent and its children, the one with the best
fitness is selected to become the parent of the next generation,
or inner iteration. This process ensures the fitness of the pop-
ulation improves with every new generation. In the outer loop,
the population undergoes affinity, suppression, and random re-
placement. This is done by measuring the Euclidean distance
between the memory cells in the objective space, which in our
case is the change in the total system ampacity. All the memory
cells, except the ones with distances below a preset threshold,
are suppressed, or deleted, and are replaced by randomly gener-
ated new ones. The optimization algorithm ends when the num-
bers of outer and inner iterations reach their preset limits,
and . At this point, the parent solution with the best fitness
is output as the final solution. The greater the number of inner
and outer iterations, the larger the probability that the output so-
lution is the sought optimal for the problem.

Fig. 4. Flowchart illustrating the VIS algorithm [11].

Fig. 5. Duct bank installation showing twelve cables in fifteen ducts and the
corresponding sequence representation.

The following subsections detail some of the steps in the
aforementioned algorithm and its customization to suit the
problem being solved here.

B. Algorithm Customization

1) Encoding and Random Generation: Each different cable
configuration is a viable solution to the combinatorial optimiza-
tion problem, and should be unique in its representation as a
solution candidate in the VIS algorithm. Because the cable con-
figurations are simply the positions of the cables in fixed ducts,
a natural way of representing each configuration is through a se-
quence of cable identifiers. Each identifier is assigned to a spe-
cific cable, and each position within the sequence is preset to a
specific duct. An illustration of the sequence corresponding to a
cable configuration is shown in Fig. 5.

The identifiers specify the cable’s circuit and phase. If there
are multiple cables per phase, then they are distinguished
through the addition of an extra apostrophe. For example, the
identifier “ 1a’ ” represents one of the two cables belonging
to phase “a” of circuit 1, the other cable having the identifier
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Fig. 6. Exchange mutation operation.

Fig. 7. Inversion mutation operation.

“ 1a ”. If there is no cable filling a particular duct, then this
non-existent cable is represented by a zero, “0”. As can be seen
in Fig. 5 each duct contains a cable identifier. Each duct is also
preset to a position in the sequence. This preset position is given
by a number at the top left corner of the duct, corresponding to
a position index within the sequence going from left to right.

In the first step of the algorithm, a number of allowable se-
quences, , are generated randomly to represent the initial
population. Next, the population undergoes cloning and muta-
tion operations in the inner loop of the algorithm, as discussed
next.

2) Mutation: Evolutionary algorithms explore the solution
space generally through crossover and mutation of the pop-
ulation. However, algorithms that are based on the immune
system do not have a crossover analogy, and thus only mutation
is implemented in the VIS solution. Mutation is achieved
basically through random local modifications of each sequence.
The mutation operation should be closed—that is, the resulting
sequence should also be legal. Two mutation operations are im-
plemented in the algorithm—namely, Exchange and Inversion
mutation. These two operations are detailed below.

The Exchange mutation operation exchanges the contents of
two random elements in the sequence. This operation is illus-
trated in Fig. 6.

As can be seen in Fig. 6, two elements are exchanged such that
the cable in duct “11” is removed and placed in the previously
empty duct “14”.

Inversion mutation is implemented by choosing two random
edges within the sequence and reversing the order of the ele-
ments in between. This operation is illustrated in Fig. 7.

As can be seen from Fig. 7, the cables inside ducts 3–6 are
reversed in order.

3) Fitness: The measure of fitness in our problem is the total
ampacity, which is computed using the method discussed in Sec-
tion II.B for each cable configuration. Depending on whether
the objective is to minimize or maximize the total ampacity, a
solution with a better fitness will have a lower or higher total
ampacity, respectively.

4) Affinity, Suppression, and Random Replacement: The
affinity and suppression operations implemented in [11] are
based on comparing sequences together, element by ele-
ment, and determining how many elements differ. If the two

sequences differ by less than a preset threshold number of
elements, then one of the sequences is deleted and replaced
by a randomly generated one. These operations filter out any
similar sequences in the population.

However, this approach does not result in optimal perfor-
mance for the problem being solved here. This is because two
sequences differing by just two elements can correspond to two
different cable configurations with a large difference in the total
ampacity. Thus, the suppression operation is implemented by
making an exact comparison between every two sequences. If
the two sequences are exactly the same, then one of them is
deleted and replaced by a randomly generated new one.

IV. NUMERICAL EXAMPLES

Two real-life installations for which the cable location plays
an important role are examined here. The first is a duct bank
with several empty ducts and the second is a steel casing where
the losses in the steel pipe are heavily dependent on the location
of the cables.

The system of cables and ducts is shown in Fig. 5. The size
of the population and the number of clones are chosen to be
equal to: and , respectively. There is
no proof for the optimality of these choices, but rather they are
picked based on the experience of the authors with solving this
combinatorial optimization problem. The number of the inner
and outer loop iterations are: and 12. Be-
cause the total number of iterations directly corresponds to the
probability that the final solution is identical to the sought op-
timal, these choices for the number of iterations are important
in determining the accuracy and simulation time of the pro-
posed method. Generally, the greater the number of iterations,
the better the accuracy but the longer the simulation time will
be. The authors have chosen the number of iterations such that
at least for every ten consecutive simulations, the same final so-
lution is obtained.

A sensitivity analysis was carried out to examine the effect
of the number of iterations on the accuracy and simulation
time, with the results for this case presented in Fig. 8. The total
number of iterations represent the product of and .
While performing the analysis, the authors found that an equal
change in the total number of iterations due to an increment of

or had almost the same effect on the accuracy and
simulation time. Thus, only the total number of iterations is
shown. Due to the probabilistic nature of the applied algorithm,
the data points represent the total ampacity averaged over five
simulations for a given total number of iterations. The dashed
horizontal line shows the optimal solution (with very high
probability), which is obtained after simulating for a very long
time (i.e., 30 and 30). The results in Fig. 8
justify the selection of the number of iterations used by the
authors.

The simulation time on a Intel Pentium Dual Core 2 Ghz
computer was about 20 minutes, and the final solutions com-
puted for the largest and the smallest ampacity cases are shown
in Figs. 9 and 10, respectively. The largest total ampacity is 5
703 A, whereas the smallest total current is 3 437 A. This large
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Fig. 8. Total ampacity and simulation time for different number of iterations.

Fig. 9. Configuration of cables for largest total ampacity of 5 703A.

Fig. 10. Configuration of cables for smallest total ampacity of 3 437A.

difference in ampacity illustrates the importance of selecting
proper cable configuration.

Cable dimensions and parameters that are common to all ca-
bles used in the aforementioned two cases are given in Table I.
The cable ampacities, conductor temperatures, sheath loss fac-

TABLE I
CABLE DIMENSIONS AND CURRENT-INDEPENDENT PARAMETERS

TABLE II
CABLE AMPACITIES, TEMPERATURES, SHEATH LOSS FACTORS, AC

RESISTANCES, AND THERMAL RESISTANCES FOR THE CONFIGURATION IN FIG. 9

tors, ac resistances, and thermal resistances of the surroundings
are given in Tables II and III, corresponding to the configura-
tions in Figs. 9 and 10, respectively.

The simulation time for calculating the total ampacity of a
single configuration is about 0.06 s. Solving the combinatorial
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TABLE III
CABLE AMPACITIES, TEMPERATURES, SHEATH LOSS FACTORS,

AC RESISTANCES AND THERMAL RESISTANCES FOR THE

CONFIGURATION IN FIG. 10

TABLE IV
CASING PARAMETERS AND DUCT LOCATIONS

optimization problem through a brute force method by consid-
ering all possible cable configurations and comparing their total
ampacities would require minutes (or 415 years) for

different permutations. Even if vertical symmetry is
considered, the simulation time would be halved and still be on
the order of an unreasonable 207 years.

The proposed method is also applied for an installation con-
sisting of a single circuit inside a large steel casing, with a
single cable per phase and five available ducts. This installa-
tion is illustrated in Fig. 12, and its relevant parameters are
given in Table IV. The same cables, ducts and ambient con-
ditions are used as in the duct bank installation, but the cable
sheaths are single-point bonded and, thus, no sheath circulating
current losses are incurred (i.e., ). The cable currents

Fig. 11. Cables inside a steel casing, with a largest ampacity of 2 851A.

Fig. 12. Cables inside a steel casing, with a smallest ampacity of 2 766A.

TABLE V
CABLE AMPACITIES, TEMPERATURES, AC RESISTANCES,
THERMAL RESISTANCES, AND TOTAL PIPE LOSS RATIO

FOR THE CONFIGURATION IN FIG. 11

TABLE VI
CABLE AMPACITIES, TEMPERATURES, AC RESISTANCES,
THERMAL RESISTANCES, AND TOTAL PIPE LOSS RATIO

FOR THE CONFIGURATION IN FIG. 12

cause eddy-current and hysteresis losses in the magnetic steel
pipe. These losses are computed applying an analytical method
outlined in [14]. Different cable configurations give rise to dif-
ferent pipe losses and hence different cable ampacity. The con-
figuration resulting in the largest ampacity is shown in Fig. 11
whereas the one giving rise to the smallest ampacity is shown in
Fig. 12. Cable ampacities, temperatures and current dependent
parameters, pertaining to the configurations in Figs. 11 and 12
are presented in Tables V and VI, respectively. is the ratio
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of the total pipe losses to the total cable conductor losses in the
circuit. is the thermal resistance outside of a cable but in-
side the casing, whereas is the thermal resistance outside
the casing. The combinatorial optimization algorithm parame-
ters are as follows: and

.

V. CONCLUSION

This paper presents a method for configuring the locations
of any number of cables, with the objective of obtaining either
the largest or smallest total ampacity. The largest ampacity
configuration is useful when designing for a limited space,
whereas the lowest ampacity configuration is important when
information regarding the actual installed configuration is lost,
and thus a worst-case scenario is considered. The optimal
configuration is obtained through a two-level optimization
algorithm. At the outer level, a combinatorial optimization
algorithm that is based on the VIS algorithm explores the
different possible configurations. The performance of every
configuration is evaluated according to its total ampacity that is
calculated using a convex optimization algorithm. The convex
optimization algorithm, which forms the inner level of the
overall optimization algorithm, is based on the barrier method.
The proposed method is tested for a duct bank installation con-
taining twelve cables and fifteen ducts, comprising two circuits
and two cables per phase, and for an installation consisting of a
single circuit in a large steel casing. The results obtained show
that the proposed method for the duct bank case is on the order
of times faster than using a brute force method of trying
all possible configurations. The steel casing example shows
the effect of cable configuration on casing losses and thus the
ampacity of the circuit.

APPENDIX

BARRIER METHOD ALGORITHM

The convex optimization problem given in (6) is of the fol-
lowing form:

Minimize

subject to

where .
This problem can be solved by using the barrier method al-

gorithm as follows:

Given: strictly feasible , tolerance

Repeat:
1) Compute the solution of

, starting at , using Newton’s method
as follows:

Given: starting point feasible ,
tolerance .
Repeat:

1) Compute by solving the matrix equation:

2) Compute damping factor for updating :

while norm

3) Update .
4) Stopping criterion: stop if .

2) Update
3) Stopping criterion: stop if
4) Increase

where . and are the gra-
dient and hessian of the objective function , respectively, and

and are the gradient and hessian of the function ,
respectively.
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