
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 61, NO. 4, APRIL 2014 1183
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Abstract—The consensus problem of multiagent nonlinear sys-
tems (MANNs) with variable structure is discussed in this paper.
T-S fuzzy models are first presented to describe MANNs with vari-
able structure. The nodes of each T-S fuzzy model are rearranged
so that the global fuzzy model is decomposed into independent
and small-scale fuzzy models. It is shown that the consensus of
the global fuzzy model is equivalent to that of its corresponding
small-scale fuzzymodels in which the continuous and sampled con-
trollers are applied. Sufficient conditions are derived to ensure the
consensus of the controlled fuzzy models. Finally, simulation re-
sults are given to illustrate the effectiveness of the proposed cri-
teria.

Index Terms—Fuzzy modeling, MANNs with variable structure,
nodes rearrangement, graph Laplacian.

I. INTRODUCTION

I N recent years, the model of multiagent systems has been
utilized more andmore widely in the study of biological, so-

cial and engineering systems, such as group coordinated robots,
sensor systems, fish school and so on. An important applica-
tion area of multiagent systems is the distributed coordination
problem, since the pioneering work stemming from manage-
ment science and statistics in 1960s (see [1] and the references
therein). One of the critical research problems is how to con-
trol all the agents in a system to reach a consensus. Consensus
is a basic and fundamental research topic in the study of sys-
tems control of dynamic agents and has attracted great atten-
tion which is partly due to its broad applications in cooperative
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control of unmanned air vehicles, formation control of mobile
robots, control of communication systems, design of sensor sys-
tems, flocking of social insects, swarm-based computing, etc.
([2]–[13]). It has been shown that consensus in a system with
a dynamically changing topology can be reached if and only if
the time-varying system topology contains a spanning tree fre-
quently enough as the system evolves with time in [2]–[5]. In
[9], a distributed linear consensus protocol with second-order
dynamics has been designed, where both the current and some
sampled past position data are utilized. It has also been shown
in [12] that, for neutrally stable agents, there exists a protocol
achieving consensus with a consensus region that is the entire
open right-half plane if and only if each agent is stabilisable and
detectable.
In the literature related to the consensus problem of multi-

agent systems, a connection between the nodes is assumed to
either always exist or be always nonexistent. Obviously, this
assumption is unrealistic. In many real cases, the structures of
networks are always variable. For example, the existing con-
nections between the nodes may not work properly, while the
previous nonexistent connections may be joined from time to
time due to all kinds of inherent and external influences. System
structures may be changed due to some influences such as time,
external environment, and temperature. Clearly, such influences
are too complicated to be described clearly. Over the past few
decades, the Takagi-Sugeno (T-S) fuzzy model has been proven
to be an effective model to describe many nonlinear and com-
plex systems with unstructured uncertainty ([14]–[25]). Moti-
vated by the characteristics of the fuzzy model, we shall try to
regard the obscure influences caused by the varying system con-
nections as a fuzzy set. From the coordinated point of view, T-S
fuzzy model can be used to describe the different systems com-
municating through the links which can cooperatively eliminate
the uncertainties in a system. As a result, T-S fuzzy models will
be applied to describe a system with variable structure.
As we know, MANNs may not reach a consensus when its

connections are varying. Hence, effective control schemes have
to be designed to force the complex system achieving a con-
sensus. Generally, continuous controllers are usually designed
due to their convenience and simplicity. However, some real-
world applications can be modeled by continuous-time systems
together with some discrete-time controllers such as impulsive
responses, sampled data, quantization and so on. As a result, in
this paper, the sampled controller will be also used, which is
memoryless and easy to be designed since only information at
some particular time intervals is needed. Hence, T-S fuzzy sys-
tems will be taken into account to describe multiagent models
with variable structure in this paper. Moreover, the continuous
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and sampled controllers will be designed to achieve the con-
sensus of multiagent systems with variable structure respec-
tively. The contribution of this paper is presented as follows:
1) T-S fuzzy systems will be first presented to address multi-
agent models with variable structure in this paper. For the
proposed fuzzy models, a node-rearrangement method will
be used to decompose the large-scale fuzzy models into
independent and small-scale fuzzy models. Moreover, the
consensus of every large-scale fuzzy model is equivalent
to that of its corresponding small-scale fuzzy models.

2) Continuous pinning and sampled controllers will be de-
signed for the small-scale fuzzy models. With sampled
controllers, the controlled fuzzy models are hybrid sys-
tems. The sampled controllers will be then considered as
continuous delayed controllers with the transformation in
[26]. The hybrid fuzzy models are changed as continuous
fuzzy systems with time-varying delays. A simple control
method will be used to achieve a prescribed consensus.

The remainder of this paper is organized as follows. In
Section 2, some definitions about directed graph are presented.
The problem formulation and nodes rearrangement approach
are addressed in Section 3. In Section 4, T-S fuzzy systems are
first presented to address multiagent models with variable struc-
ture. Then, continuous and sampled controllers are designed to
achieve the prescribed consensus. In Section 5, simulations are
carried out to illustrate the effectiveness of the main results.
Finally, conclusions are drawn in Section 6.

II. PRELIMINARIES

Let be a digraph of order with the set of nodes
, the set of edges , and a

weighted adjacency matrix . An edge of is de-
noted by , where means that there is a
directed connection from node to node . That is, node
can send information to node . The entry if ,
and otherwise. Moreover, it is assumed that
for all . The Laplacian of the directed graph is
defined as , and is a
diagonal matrix with .
In a digraph, a directed path is an ordered sequence of vertices

such that from each of its vertices there is an edge to the next
vertex. If there is a directed path between any pair of distinct
nodes, the digraph is said to be strongly connected. A digraph is
undirected if for all . Obviously,
the Laplacian of an undirected graph is symmetric. A directed
graph is called weakly connected if replacing all of its directed
edges with undirected edges produces a connected undirected
graph. A digraph is a spanning tree if it has vertices and
edges and there exists a root vertex with directed paths to all
other vertices.
Assume that a system has agents, and each agent is re-

garded as a node in a directed graph . Let de-
note the state of agent , then with

is a directed system. Agents and
in the directed system are said to reach a (an) consensus

(agreement) if and only if as ,
for any . If the nodes are all in an

agreement, the common value is called the group deci-
sion value.
The general multiagent nonlinear system without possible

missing connections has the following dynamics

(1)

where is the
set of neighbors of node is the state
of agent , and is a nonlinear function which has the
same dimension with . The dimension of could be
arbitrary as long as it is the same for all agents.

is the weighted matrix. In this paper, for simplification,
we only analyze the case when the dimension of is one.
It is worth noticing that our analysis is valid for any dimension
when the system models are rewritten with Kronecker products.
According to the definition of the Laplacian matrix , (1) can

be rearranged as

(2)

where and
.

Notation: Throughout this paper, stands for the identity
matrix. The superscript “ ” represents the transpose. For all

. For a
symmetric matrix and denote the minimal
and maximal eigenvalues of matrix respectively. denotes
the spectral norm defined by . For real
symmetric matrixes and (or ) means that
matrix is positive definite (or positive semi-define).

III. PROBLEM FORMULATION AND NODES REARRANGEMENT
APPROACH

A. Problem Formulation

In this paper, we consider that the connections between nodes
may change in the process of information transmission due to
some affections such as time, external environment, tempera-
ture and so on. Here, the mentioned affections are obscure and
difficult to be elaborated clearly, which can be regarded as a
fuzzy set. A fuzzy dynamic model has been proposed by Takagi
and Sugeno [27] to represent different linear/nonlinear systems
of different rules. Based on this, we shall construct T-S fuzzy
models to describe multiagent systems with variable structure.
Similar to [18], [21], we consider a T-S fuzzy multiagent

model, in which the th rule is formulated in the following form:
Plant Rule :
IF is and is and and is ,
THEN

(3)

where is the fuzzy set,
and is the th Laplacian matrix corresponding to the th rule.
Remark 1: Note that, the network structures may be changed

due to some influences such as time, external environment and
temperature. Many influences are too complicated to be de-
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Fig. 1. A directed graph with 5 nodes.

scribed clearly. As we know, the T-S fuzzy model has been
proven to be an effective model to describe many nonlinear
and complex systems with unstructured uncertainty. Hence, the
fuzzy model (3) is proposed to describe some MANNs with
variable structure.
The defuzzified output of the T-S fuzzy system (3) is repre-

sented as shown in the following

(4)

where
, and is the membership

function of in .
A basic property of is that

(5)

and therefore,

(6)

for .

B. Nodes Rearrangement and Control Law

In this paper, we do not assume that graph contains a span-
ning tree. Clearly, fuzzy system (4) may not reach a consensus
when its connections are varying. As a result, some control
schemes have to be designed to achieve a consensus of fuzzy
system (4). As mentioned in [28], it is difficult to know which
nodes needed to be controlled for a large-scale system. Hence,
we shall rearrange the node order of fuzzy system (4) in the fol-
lowing. In a graph, those root nodes are called the leaders, and
the other nodes are called the followers.
For the original graph , construct the rearranged graph

as follows:

Algorithm 1

1) Note that may not be connected. For any
, find out all Strongly Connected

Components

is the number of nodes in and is an
integer) of graph by using the algorithms in [29], [30].

Then, the nodes in are all root nodes of graph and
the other nodes are all followers.

2) Rearrange the numerical orders of all nodes. Mark all
root nodes as and number the followers behind
the root nodes.

3) Graph is rearranged as graph . The Laplacian matrix
of graph can be written as

. . .
...

...

Here, are irreducible square matrices
and in each line of the rest lines, there exists at least
one entry satisfying

.
Remark 2: A simple example is given to illustrate Algorithm

1. In Fig. 1, one knows that nodes 3, 4 and 5 are the root nodes,
and nodes 1 and 2 are followers. Then, rearrange the numerical
orders of all nodes. Number nodes 1, 2, 3, 4 and 5 to be nodes
5, 4, 3, 2 and 1, respectively. As a result, the followers are all
numbered behind the root nodes. The Laplacian matrix of the
rearranged graph can be written as

Clearly, the above matrix is similar to that in Algorithm 1.
Based on Algorithm 1, the fuzzy system (3) can be rewritten

as
Plant Rule :
IF is and is and and is ,
THEN

(7)

where is a node-rearrange-
ment of .
The defuzzified output of the T-S fuzzy system (7) is

(8)

where is simplified as .
Remark 3: According to Algorithm 1, one knows that the

corresponding nodes in are root nodes,
while the rest nodes are followers. According to the results
in [28], the consensus of system (7) can be achieved if its root
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nodes can reach a consensus. As a result, one only needs to
control the corresponding nodes of
in system (7) to achieve a consensus.
We introduce a virtual leader such that system (3)

wants to realize the prescribed consensus value
(let ). Correspondingly,
the prescribed consensus vector of system (8) is also

). We consider two kinds of
control laws for the fuzzy system (8) as follows:
i) The continuous control law is
Controller Rule :
IF is and is and and is ,
THEN

(9)

where is a diagonal
matrix and for any .
The overall fuzzy controller can be given by

. Note that ,
the T-S fuzzy continuous control system of model (8) is
governed by

(10)

ii) The sampled control law is
Controller Rule :
IF is and is and and is ,
THEN

(11)

where is
a diagonal matrix. The discrete-time control signal is as-
sumed to be generated by a zero-order hold function with
a sequence of hold times .
Here, and
is a positive number. Similar to the continuous control
law, the overall sampled fuzzy controller can be given by

. As a result, the T-S fuzzy
discrete-time control system of model (8) is governed by

(12)

In the following, our objective is to design continuous and
sampled controllers to ensure the consensus of fuzzy systems
(10) and (12).

IV. MAIN RESULTS

The following assumption and lemma are needed for our
main results.
Assumption 1: Nonlinear function satisfies that
, where denotes a set of nonlinear functions, and each

is continuous and strictly increasing. Moreover, for each
.

Lemma 1: For any vectors and scalar , the
following inequality holds:

Let , then Systems (10) and (12) can be respec-
tively rewritten as

(13)

(14)

where
and .

Following [26], we represent the digital control law in (14)
as a delayed control as follows:

(15)

where . For simplification, let
in (14), . As a result, (14) can be rewritten as

(16)

In the following, our objective is to analyze the asymptotical
stability of (13) and (16).
Theorem 1: Consider the fuzzy system (13). Under

Assumption 1, for any initial values, system (13)
can realize asymptotical stability (i.e., system (10)
can achieve the prescribed consensus) if matrix

satis-
fies that there exists at least one , for any

,
where and

is the number of nodes
in ) are nonnegative diagonal matrices.

Proof: According to Remark 3, one only
needs to control the corresponding nodes of

in system (13). That is, we
can define and

are nonnegative diagonal matrices. As a result,
system (13) can realize asymptotical stability if and only if the
following systems can reach asymptotical stability

(17)

where
and

.
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Clearly, satisfies the conditions in Assumption 1. Hence,
one can construct the following Lyapunov function

(18)

where

is the left eigenvalue of matrix with zero eigenvalue. It is
well know that each element of vector is greater than 0 since
is an irreducible matrix [31].
Clearly, is positive definite and radially unbounded.

The time derivative of along the solution of system
(17) is

(19)

where
and

. It is easy to prove that is
irreducible, symmetric and with zero-row-sum. That is, the
eigenvalues of are greater than or equal to zero [31]. Note
that there exists at least one in matrix for

. One has that
and if and only

if .
From LaSalle’s invariant principle, one can conclude that

. As a result, and
. Note that, the rest

nodes of system (13) are all followers. According to
the results in [28], one can obtain that
and . That is, system
(13) realizes asymptotical stability, i.e., system (10) achieves a
consensus. The proof is completed.
Theorem 2: Consider the fuzzy system (16). If there exist

matrices and with appropriate dimension
such that

(20)

(21)

where

, system (16)
can realize asymptotical stability, i.e., system (12) can achieve
the prescribed consensus. Here,

and ( is the
number of nodes in ) are diagonal matrices.

Proof: Similar to Theorem 1, system (16) can realize
asymptotical stability if and only if the following systems can
reach asymptotical stability

(22)

where
and

are diagonal matrices.
Construct the following Lyapunov function

(23)

where . Note that does not increase
along the jumps sine and
at the jumps . Thus, the condition

holds.
Since

one has

(24)

Denoting , one has that

. From [26], one has that

(25)

From (22) and , one obtains that

Then, one has

(26)

where some matrices are
added into the left-hand side of (26).
Combining (24), (25) and (26), one has from
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(27)

Setting , one obtain that from
(27)

(28)

where

(29)

and
.

In (29), and lead to the LMIs
, and are shown in (20) and (21).

Let , then (20) and (21) imply (29)
since

.
One can conclude from (20) and (21) that the inequality (29)

holds. That is, the fuzzy system (16) can realize asymptotical
stability, i.e., system (12) can achieve the prescribed consensus.
The proof is completed.
Remark 4: Combined with Theorems 1 and 2, the advantages

of Algorithm 1 are as follows:
1) All nodes are rearranged in a system so that the root nodes
and the followers are clearly separated.Moreover, one only
needs to control one node in each in Theorem 1 since

are irreducible square matrices.
This is consistent with the intuition that the root nodesmust
be controlled. As a result, the method in Algorithm 1 can
reduce the number of nodes needed to be controlled effec-
tively. Moreover, the rearranged systems do not change the
consensus property of the system.

2) With Algorithm 1, the asymptotical stability of system (16)
is equivalent to that of system (22). One can notice that the
dimension of system (22) is smaller. As a result, conditions
(20) and (21) can be easily obtained.

V. ILLUSTRATIVE EXAMPLES

In this section, a numerical example is presented to demon-
strate the effectiveness of the developed results.
Consider a group of mobile agents with 8 agents where each

agent has two sensors transmitting and receiving messages over
the communication links. Here, the sensors monitor physical

or environmental conditions, such as temperature, sound, pres-
sure, etc, and cooperatively pass their data through the system.
How to handle the different data to achieve the final asymptotic
consensus state? As mentioned in Section 3, we will use the
membership function in a fuzzy setting to describe the propor-
tion of the data in different sensors and achieve the final data
of the physical condition. For simplification, we only consider
that one receives two different data for the same physical con-
dition. Hence, a T-S fuzzy system with 8 nodes is proposed and
its rules are as follows:
Plant Rule 1:
IF is ,
THEN

(30)

Plant Rule 2:
IF is ,
THEN

(31)

where and is the data
state of the th sensor. is the transmitted data of the
th sensor, which is assumed to be nonlinear and

. The weight
communication matrices and among the 8 sensors are
assumed to

The membership function is assumed to
.

Here, and can be seen the proportion of different data in
deciding the final data of the physical condition. The defuzzi-
fied output of the T-S fuzzy systems (30) and (31) is

(32)

For an arbitrary initial vector, let
be the prescribed consensus vector. Fig. 2 shows the state re-
sponses for the uncontrolled fuzzy system, which apparently
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Fig. 2. The state trajectories of the uncontrolled fuzzy system (4) with 8 nodes.

cannot reach a consensus. According to Algorithm 1, and
can be rearranged as

where and

. The continuous control matrices in (17)

are designed as follows: and
. According to Theorem 1, system

(10) can achieve the prescribed consensus (i.e., system (13)
can realize an asymptotical stability). Fig. 3 shows the state
responses for the continuous control fuzzy system (10), which
apparently reach a consensus.
The discrete-time control matrices in (17) are designed as

follows: , and define
. By using the MATLAB LMI toolbox, LMIs (20) and (21)

can be solved with feasible solutions. According to Theorem 2,
system (16) can realize asymptotical stability. That is, system
(12) (here, ) can achieve the prescribed con-
sensus. Fig. 4 shows the state responses for the discrete-time
control fuzzy system (12), which apparently reach a consensus.

Fig. 3. The state trajectories of the continuous control fuzzy system (10) with
8 nodes.

Fig. 4. The state trajectories of the sampled control fuzzy system (12) with 8
nodes.

In addition, consider a T-S fuzzy system (3) with 100
nodes and the rules (30), (31). For the weight matrix

, let all of the connection
weights be 1, that is, if .
is the corresponding Laplacian matrix of . Define

. We still
let be the prescribed consensus
vector.
Fig. 5 shows the state responses for the uncontrolled fuzzy

system, which apparently cannot reach a consensus. By de-
signing the appropriate continuous controllers according to
Theorem 1, Fig. 6 shows the state responses for the contin-
uous control fuzzy system (10), which reach the prescribed
consensus.

VI. CONCLUSION

In this paper, we have discussed on the consensus of a kind
of multiagent nonlinear systems with variable structure. T-S
fuzzy models have been first addressed to describe multiagent
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Fig. 5. The state trajectories of the uncontrolled fuzzy system (4) with 100
nodes.

Fig. 6. The state trajectories of the appropriate continuous control fuzzy system
(4) with 100 nodes.

nonlinear systems with variable structure. For the proposed
models, a node-rearrangement algorithm has been applied to
decompose every large-scale fuzzy model into independent
and small-scale fuzzy models. Moreover, the consensus of
every large-scale fuzzy model is equivalent to that of its cor-
responding small-scale fuzzy models. Then, continuous and
sampled controllers have been applied in the small-scale fuzzy
models. Sufficient conditions have been derived to ensure the
consensus of the fuzzy models. Finally, numerical examples
with the numerical simulations have been provided to illustrate
the effectiveness of the obtained criteria.
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