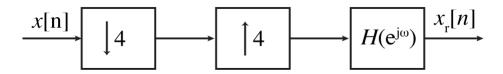
Fall 2024

University of Massachusetts Dartmouth

Department of Electrical and Computer Engineering

ECE 475/574 DISCRETE-TIME SIGNAL PROCESSING


Problem Set No. 4

Issued: Wednesday, September 25, 2024

Due: Friday, October 11, 2024

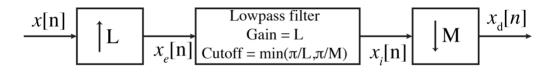
ECE 475: Problems 4.1, 4.2, 4.3(a) and 4.3(b), and 4.4(a) ECE 574: All Problems

Problem 4.1 Consider the system shown in the figure below

where

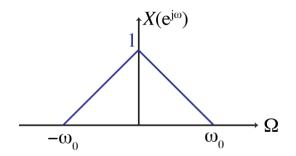
$$H(e^{jw}) = \begin{cases} 2, & |w| \le \pi/4 \\ 0, & \frac{\pi}{4} < |w| \le \pi \end{cases}$$

For each of the following input signals, x[n], indicate whether the output $x_r[n] = x[n]$:


(a)
$$x[n] = \cos(\pi n/5)$$

(b) $x[n] = \cos(\pi n/2)$
(c) $x[n] = \left[\frac{\sin(\pi n/8)}{\pi n}\right]^2$

Tip for (c) - use the Fourier Transform properties


Rubric for Problem 4.1

Criterion/section	Points ECE 475	Points ECE 574
Use correct procedure to determine if the output is equal to the input	4 pt/section	3 pt/section
Provide correct solution whether the output is equal to the input or not	2 pt/section	1.5 pt/section
	18 pt	13.5 pt

Problem 4.2 Consider the below system

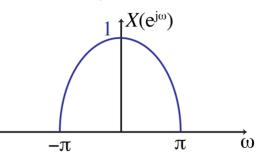
and the below Fourier Transform of the input signal x[n],

Specify the maximum value of the cutoff frequency of the input signal so that $X_d(e^{jw}) = a X(e^{jMw/L})$ where *a* is a constant value, for each of the following cases:

- (a) M = 5 and L = 3
- (b) M = 3 and L = 5

Rubric for Problem 4.2

Criterion/section	Points ECE 475	Points ECE 574
Use correct procedure to determine if the maximum possible value of the cutoff frequency of the signal	6 pt/section	6 pt/section
Provide correct solution	3 pt/section	3 pt/section
	18 pt	18 pt

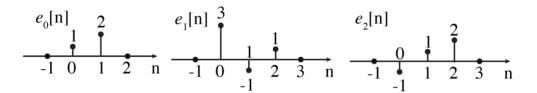

Problem 4.3 Let x[n] be samples of a continuous-time signal $x_c(t)$ sampled at T = 1/28,000 sec (i.e., 28 kHz). Assume that $x_c(t)$ is bandlimited so that $X_c(j \Omega) = 0$ for $|\Omega| \ge 2\pi(14,000)$ rad/sec.

(a) Design a system that will produce $y[n] = x_c(n T_2)$ where $T_2 = 1/30,000$. Your system **must only use** the modules in Table 1. Specify all parameters for all the modules implemented in your system. Calculate the total cost of your system based on Table 4.1.

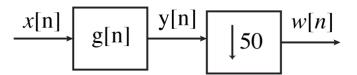
Table 1: Modules				
Module	Specification	Symbol	Param.	Cost
Expander	$y_1[n] = \begin{cases} x_1[\frac{n}{L}] & n = 0, \pm L, \pm 2L, \dots \\ 0 & \text{otherwise} \end{cases}$	$x_1[n] \rightarrow \uparrow L \rightarrow y_1[n]$	L	50
Compressor	$y_2[n] = x_2[nM]$	$x_2[n] \rightarrow M \rightarrow y_2[n]$	Μ	50
Lowpass Filter	$Y_{3}(e^{j\omega}) = \begin{cases} X_{3}(e^{j\omega}), & \omega \leq \omega_{c} \\ 0, & \text{otherwise} \end{cases}$	$x_3[n] \rightarrow \text{LPF } (\omega_c) \rightarrow y_3[n]$	ω_c	$\frac{50\pi}{\omega_c}$
Highpass Filter	$Y_4(e^{j\omega}) = \begin{cases} X_4(e^{j\omega}), & \omega_c \leq \omega \leq \pi \\ 0, & \text{otherwise} \end{cases}$	$x_4[n] \not \longrightarrow \text{HPF } (\omega_c) \not \rightarrowtail y_4[n]$	ω_c	$\frac{50\pi}{\omega_c}$
Gain	$y_5[n] = Ax_5[n]$	$x_5[n] \rightarrow A \rightarrow y_5[n]$	A	10
Adder	$y_6[n] = x_6[n] + w_6[n]$	$x_6[n] \longrightarrow \underbrace{y_6[n]}_{w_6[n]} y_6[n]$	None	10
Bandpass Filter	$Y_7(e^{j\omega}) = \begin{cases} X_7(e^{j\omega}), & \omega_1 \le \omega \le \omega_2 \\ 0, & \text{otherwise} \end{cases}$	$x_7[n] \rightarrow BPF(\omega_1, \omega_2) \rightarrow y_7[n]$	ω_1, ω_2	$\frac{100\pi}{\omega_2 - \omega_1}$
Modulate	$y_{8}[n] = \cos(\Delta \omega n) x_{8}[n]$	$x_8[n] \rightarrow \operatorname{Mod}(\Delta \omega) \rightarrow y_8[n]$	$\Delta \omega$	50

Table 1: Modules

(b) Consider that the below DTFT of the original input, x[n]. Sketch output spectra of each module to demonstrate that your design/system produces the desired signal. Label all important frequencies and amplitude for your sketches to receive full credit.


(c) (Bonus for ECE475). To receive additional 10 points, the system in (a) should be costeffective. Prove that the design in (a) is the cheapest one. If it is not, re-design the system to be the cheapest one.

Rubric for Problem 4.3


Criterion/section	Points ECE 475	Points ECE 574
Use correct procedure to design a system that	25	20
provides $y[n] = x_c(nT_2)$		
Provide correct design	10	5
Sketch spectra of your above design, labeling	15 pt	15 pt
all important magnitudes and frequencies		
Investigate/Prove/Discuss multiple designs so	+10 pt (Bonus)	10
the cost is the cheapest one whereas still		
satisfying $y[n] = x_c(nT_2)$		
	50 pt (+10 bonus)	50 pt

Problem 4.4 – ECE475 students only part (a)

(a) The below figure shows the three L = 3 polyphase components for a polyphase implementation of an FIR LTI system with impulse response h[n]. Sketch the impulse response h[n]

(b) You are a DSP engineer at NUWC. Your job is to implement the system shown below on a DSP chip, so it runs in real-time and provides an output sample w[n] at a rate of 40 kHz. The input signal is real-valued and sampled at 2 MHz. The DSP chip that you must implement the system on can multiply two real numbers in $T_{mult} = 10$ ns. You may assume that the time required for any other operations is negligible compared to T_{mult} . You may also assume that g[n] is a real-valued, FIR impulse response of length 500 implementing a lowpass filter with cutoff frequency $w_c = \pi/50$. What is the minimum polyphase factor you can use in implementing the system to satisfy these requirements? Sketch a system that will satisfy the real-time requirements given and be equivalent to the system shown in the below figure.

Rubric for Problem 4.4

Criterion/section	Points ECE 475 (only	Points ECE 574
	a)	
Use correct procedure to determine the	10	8
impulse response		
Provide correct impulse response	4	3
Provide correct procedure to determine the		4
minimum polyphase factor		
Sketch a system that satisfies the real-time		3.5
requirements and is equivalent to Fig. P4.5.2		
	14 pt	18.5 pt