Homework 2

MED131 and MBG211
2023 Fall

December 6, 2023
Due: December 142023

Questions (20 points each)

1. The mean serum-creatinine level measured in 12 patients 24 hours after they received a newly proposed antibiotic was $1.2 \mathrm{mg} / \mathrm{dL}$.

- If the mean and standard deviation of serum creatinine in the general population are $1.0 \mathrm{and} 0.4 \mathrm{mg} / \mathrm{dL}$, respectively, then, using a significance level of $\alpha=.05$, test whether the mean serum-creatinine level in this group is different from that of the general population.
- What is the p-value for the test?
- Suppose the sample standard deviation of serum creatinine is $0.6 \mathrm{mg} / \mathrm{dL}$. Assume that the standard deviation of serum creatinine is not known, and re-perform the hypothesis test. Report a p-value.
- Compute a two-sided 95% confidence interval (CI) for the true mean serum-creatinine level.
- How does the CI relate to your p-value?

2. Use the t-table and a computer program to compute the probability that a t distribution with 36 df exceeds 2.5.
3. Use the t -table and a computer program to compute the lower 10 th percentile of a t distribution with 54 df .
4. Plasma-glucose levels are used to determine the presence of diabetes. Suppose the mean \ln (plasma-glucose) concentration ($\mathrm{mg} / \mathrm{dL}$) in 35 - to 44 -year-olds is 4.86 with standard deviation $=0.54$. A study of 100 sedentary people in this age group is planned to test whether they have a higher or lower level of plasma glucose than the general population.

- If the expected difference is 0.10 ln units, then what is the power of such a study if a two-sided test is to be used with $\alpha=.05$?
- How many people would need to be studied to have 80% power under the assumptions?
- Answer, if the expected difference is 0.20 ln units.
- How many people would need to be studied to have 95% power under the assumptions? (assuming that the difference is 0.20 ln units.)

5. Suppose the incidence rate of myocardial infarction (MI) was 5 per 1000 among 45 - to 54 -year-old men. To look at changes in incidence over time, 5000 men in this age group are followed and 15 new cases of MI were found in this year.

- Using the critical-value method with $\alpha=.05$, test the hypothesis that incidence rates of MI changed.
- Report the p-value.
- Compute a two-sided 95% confidence interval (CI) for the true proportion.
- How does the CI relate to your p-value?

