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Abstract—Smart grids are power distribution networks that
include a significant communication infrastructure, which is used
to collect usage data and monitor the operational status of the
grid. As a consequence of this additional infrastructure, power
networks are at an increased risk of cyber-attacks. In this letter,
we address the problem of detecting and attributing anomalies
that occur in the sub-meter power consumption measurements
of a smart grid, which could be indicative of malicious behavior.
We achieve this by clustering a set of statistical features of power
measurements that are determined using the Smoothed Pseudo
Wigner Ville (SPWYV) energy Time-Frequency (TF) distribution.
We show how this approach is able to more accurately distinguish
clusters of energy consumption than simply using raw power
measurements. Our ultimate goal is to apply the principles of pro-
filing power consumption measurements as part of an enhanced
anomaly detection system for smart grids.

Index Terms—Clustering methods, energy time-frequency dis-
tributions, power measurement, SCADA systems, smart grid.

I. INTRODUCTION

MART grids are power distribution networks that depend

on an increased level of automated monitoring and control
[1]. To achieve this automation, new sensors and actuators
are connected to Supervisory Control and Data Acquisition
(SCADA) systems via wide-area communication networks.
Alongside these SCADA systems is an Advanced Metering
Infrastructure (AMI), which permits two-way communication
between the smart meter at the customer premises and the utility
company. Together, these systems can be used to collect usage
data and monitor the operational status of the infrastructure.
However, there are drawbacks of increased levels of automation
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in the smart grid, including higher system complexity, and a
greater interdependency between several communication pro-
tocols and middleware components. Furthermore, a growing
reliance on automation means that security threats can cause
serious disruptions.

Hence, it is crucial that any challenge to the smart grid and
supporting communications infrastructure is promptly detected
and acted upon. To do this it is necessary to detect a range of
challenges, including those that manifest as anomalies at the
network-level (e.g., unexpected peaks in traffic volume) and the
appliance-level (e.g., non-standard energy consumption and
generation measurements). For example, data injection attacks
may be used to change measurement values of some devices,
to hinder the operation of the grid [2]. Further, Mohsenian-Rad
and Leon-Garcia [3] describe load altering attacks, which
attempt to cause circuit overflow or disturb the balance
between power supply and demand in the grid. Approaches for
detecting network-level anomalies in communication networks
are relatively well-established. Furthermore, some research
has focused on detecting attacks in SCADA communication
protocols [4].

In this letter, we address the problem of detecting and at-
tributing anomalies that occur in sub-meter power measure-
ments, i.e., those for individual consumers of a smart grid. In
particular, we aim to detect the effects of load altering attacks
[3] that may be caused by an attacker sending direct load
control (DLC) commands to appliances, resulting in unusual
power consumption. For the clustering of power consumption
we propose a method using a statistical description of power
measurements. This is necessary because directly clustering
raw power measurements, as is for instance employed by [5],
leads to insufficient and inaccurate power consumption profil-
ing, since the measurements are non-stationary. To describe the
power measurements we apply the Smoothed Pseudo Wigner
Ville (SPWYV) energy Time-Frequency (TF) distribution, which
results in a coherent statistical probability distribution. Next
we extract a three-dimensional feature set that is based on
the 3" order Rényi entropy and the mean frequency and time
marginal values. These features are used as input to a clustering
algorithm that can identify groups of residences with similar
power consumption and anomalous outliers. The latter could
indicate malicious behavior.

The three TF-based features that we have used in our analysis
have, to the best of our knowledge, not previously been applied
to power measurement profiling. Using these features we are
able to clearly identify five power consumption clusters in a
dataset that was used to validate our approach. These findings
were cross-validated with the original raw power measure-
ments. The overall aim of this work is to apply the principles
of profiling power consumption as part of an attack detection
system that draws on multiple data sources from the network-
and appliance-level of a smart grid.
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Fig. 1. Initial clustering with k-means by using raw power measurements.

II. PROFILING OF POWER CONSUMPTION MEASUREMENTS
A. Dataset and Clustering Raw Power Measurements

The dataset! that we used for our analysis was gathered by
the Smart* project [6], and contains anonymized average power
utilization measurements from 440 residential buildings in
western Massachusetts, USA. The measurements were captured
at one-minute intervals. In a similar fashion to related work [5],
we initially attempted to cluster the raw power measurements
with a well-known clustering scheme. We chose to use the
k-means algorithm because of its minimal computational cost
when compared to other schemes.

Initial analysis using the raw measurements indicated that
k-means clustering could not provide a clear interpretation of
the power measurements or appropriately group similar usage
patterns that are present in the dataset. This is illustrated in
Fig. 1. The graph shows that there is a number of examples
where the power utilization of a given residence is similar
to others, but they are not placed in the same cluster. We
concluded that, because of the non-stationary nature of the
measurements, this method of creating power consumption
profiles is inappropriate. To overcome this problem, we looked
to derive meaningful statistical features from each raw power
measurement signal before applying k-means.

B. Determining Statistical Features for Effective Clustering

To determine a set of statistical features that can be used
as input to a clustering algorithm, we compute for all the
measurement signals, i.e., the power measurements from a
single residence, their corresponding Smoothed Pseudo Wigner
Ville (SPWYV) Time-Frequency (TF) distribution. Determining
a suitable probability distribution is a necessary first step to
derive metrics from a stochastic and non-stationary process, i.e.,
the power measurements. The SPWV is a special case of the
Wigner-Ville (WV) distribution, and is derived by the general
class of the Cohen energy TF distributions [7]. The SPWV-TF
was chosen because it is capable of handling non-stationary
signals and can map their energy on the TF plane. In addition,
the SPWV-TF also addresses the constraints related to auto,
cross and interference terms that are not fully dealt with through
the original WV distribution.

In more detail, let each power measurement signal for a given
residence be denoted as s(r), and its Hilbert-based analytical

'Smart* Dataset: http://traces.cs.umass.edu/index.php/Smart/Smart

form be s(u); the WV distribution which re-formulates the
general Cohen distribution is then expressed as [7]:

WV (t,0) = 1/+W*z L) oo r+lr dt (1)
=)t 2)¢ T2

Given this definition when T — 0, the product of s*(r — %‘L‘) and

s(t+ %‘t) contributes to the integral and is coherent. However, as
indicated in [7], [8], the bilinear nature of the WV distribution
has several shortcomings regarding windowing trade-offs, and
there are cases when regional signal intensities are indicated,
even though these are expected to be zero-valued. The inter-
ference terms that are not fully considered by the original WV
distribution [7] may be dramatically reduced through a smooth-
ing function (7). The function {(t) can also be designed with
explicit TF smoothing kernel functions to adapt sampling in
real-time and enable the efficient online computation of the
SPWYV over a non-stationary measurement signal [8]. When
() is employed in the WV distribution in Eq. (1), we obtain
the SPWV [7], [8]:

o0
SPWV (o) = [ gms(r+ g) 51— %) eIy (2)

Subsequently, we extract the descriptive statistics of the time
and frequency marginals alongside the 3’ order Rényi entropy
to characterize the resulting probability energy TF distribution
on the raw power measurements per residence. These features
are selected as they empirically lead to better k-means clus-
tering results when compared to other metrics derived by the
SPWYV distribution, such as the resulting total unit-less energy
metric of the SPWYV distribution and the 1% order frequency
and time moments.

The time (seconds) and frequency (Hz) marginals, which
jointly describe the marginal probability distribution of the val-
ues contained within the overall SPWV probability distribution,
are extracted as follows:

+o0

me(t) = SPWV (t,)dm 3)

where mg,(f) denotes the time marginal and m, (®) is the fre-
quency marginal expressed as:

~+o0

mi(®)= [  SPWV(r,0)d: (4)

—oo

We compute the 3¢ order Rényi entropy since it has been
shown to be a good discriminative feature in other disciplines
[9]. In particular, Baraniuk ef al. [8] were able to estimate the
37 order Rényi entropy RSpyy using the following definition:

oo
1
R$pwy = —5log // SPWV(t, w)dtdw ©))

The Rényi entropy is a generalization of Shannon entropy,
which provides a means of describing the level of complexity of
a signal, and is measured in bits. The entropy order is denoted
by the parameter o. which in our case is o0 = 3. When 0. = 1 we
recover the Shannon entropy as well as the Kullback-Leibler
divergence [8]. Despite the fact that the general form of the
Rényi entropy depends on the entropy order, we strictly com-
pute it for o = 3, since lower o values would negatively affect
the complexity representation for any Cohen-based distribu-
tion [8].
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Fig. 2. Clustering of power consumption based on TF features under five
clusters, namely: LC = Low Consumption, LMC = Low-to-Medium
Consumption, MC = Medium Consumption, HC = High Consumption,
VHC = Very High Consumption.

C. Applying k-Means Clustering

Using the statistical features calculated earlier, we apply the
k-means clustering algorithm to group similar power measure-
ments, and possibly identify outliers that represent unusual
consumption patterns that could indicate malicious behavior.
We initially construct a composite i by j matrix X, where
each row i represents a residence and each column j represents
the computed feature. In this study, i = 440 and j = 3, since
there are 440 residences and three features. Then, we apply
k-means to identify the most representative k clusters. Initially,
k random rows in X are selected and marked as the centroids
for k clusters C, respectively [Cy,Cs,---,C¢]. In our experi-
ments, we determine the most representative number of cen-
troids by minimizing the sum of squares within a cluster using
Eq. (6), where X; denotes the actual row data vector that
represents a single residence from a total of M residences,
¢y 18 a given cluster centroid of the k resulting clusters, and
[|X; —ca||? is defined as the Euclidean distance between the data
vector for a residence and its centroid.

k M
> Y IXi—al? (©)
n=li=1
In our experiments, we apply k-means iteratively, minimizing
the sum of squares within a cluster on every iteration, to identify
the optimal number of clusters.

III. CLUSTERING RESULTS ANALYSIS

Fig. 2 depicts the final number of clusters and provides a
visualization of the relationship between these clusters and their
corresponding ranges of TF energy statistical features. There is
a clear separation of per-residence power consumption into five
distinct clusters:

1) Low Consumption (LC): Defined by the majority, con-
sisting of 429 houses where power consumption ranges
between 0—10 kW/min;

2) Low-Medium Consumption (LMC): Defined by a set
of four residences where power consumption is between
10-70 kW/min with mild peak fluctuations;

3) Medium Consumption (MC): A single residence that
exhibits high peaks within the range of 45—120 kW/min;

4) High Consumption (HC): Mapped to a set of three
residences, in which each demonstrates mild to high
fluctuations of the average peak power and most of their
measured values range between 10-200 kW/min; and

IEEE COMMUNICATIONS LETTERS, VOL. 19, NO. 1, JANUARY 2015

Cluster: LG - Low Power Consumpltion

== Hause 1 [LC)
—— House 2 (LC)
& Housa 3 [LC)

Minutes

Fig. 3. Exemplar power consumption of three residences from the Low
Consumption (LC) cluster.

5) Very High Consumption (VHC): A single house with an
initial consumption of 130 kW/min and extreme fluctua-
tion on its power peaks that reaches up to 530 kW/min.

This clustering approach has provided a distinct separation of
low power utilization users, which were placed in the LC clus-
ter. Given the visual representation of this cluster, it can be seen
that its most discriminative feature is the similar range of values
in the mean frequency marginals of the SPWYV distribution (i.e.,
the z-axis in Fig. 2). In particular, all houses that belong to the
LC cluster have a range of 0-210 Hz with a mean time marginal
that varied in the range of O—1 seconds, and the Rényi entropy
for the majority of these houses ranges between 12 and 16 bits.
Moreover, none of the houses assigned to this cluster consumed
large amounts of power per minute, as can be seen in Fig. 3.

In a similar fashion, the houses assigned to the LMC and
MC clusters had as their most distinguishable feature the range
of values for the mean frequency marginals of the SPWV
distribution. Despite their similar values for the Rényi entropy
and estimated mean time marginals, the members of the LMC
and the single member of the MC cluster showed higher mean
frequency marginals than the LC. This means that their raw
power measurements had more frequent peaks than houses in
the LC cluster. However, apart from higher frequency marginals
in its corresponding SPWV distribution, the single house of
the MC cluster had also a higher mean time marginal with a
larger power consumption compared to the four residences in
the LMC cluster, as shown in Fig. 4.2

Members of the HC cluster exhibited higher mean frequency
marginals, with medium-ranged mean time marginals that cor-
respond to frequent fluctuations of peak power utilization. Nev-
ertheless, none of the houses assigned to the HC cluster reached
more than 200 kW/min on a single peak, and their peak fluc-
tuations did not significantly exceed their average power peak
(which was ~ 142 kW/min). However, as indicated in Fig. 5,
the single house that exhibited excessive power consumption
(VHC cluster) had a sudden increase of power utilization that
remained constant for a period of 12.5 hours (i.e., 750 minutes).
The behavior demonstrated by this particular house can also be
seen in Fig. 2, in which a single point indicates a higher mean
time marginal than any other data point, as well as higher Rényi
entropy.

’In Fig. 3, Fig. 4 and Fig. 5 we show only representative houses of the LC,
LMC and HC clusters to more clearly demonstrate the differences in power
consumption between houses in these clusters.
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Fig. 4. Exemplar consumption of three residences from the Low-Medium
Consumption (LMC) and one of the Medium Consumption (MC) cluster.
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Fig. 5. Exemplar consumption from two residences of the High Consumption
(HC) cluster and from the only member of the Very High Consumption (VHC)
cluster.

Overall, the outcomes of our clustering approach demon-
strate that power consumption profiles can be established based
on energy TF features that are derived from the SPWV distribu-
tion. Consumption profiles characterized by low, low-medium
and medium utilization can be easily distinguished via the mean
time and frequency marginals. Also, the separation of houses
with higher power consumption (HC and VHC clusters) can
be distinguished based on the mean time marginal and the
Rényi entropy. Arguably, a shortcoming of our approach is its
inability to place residences with all-zero measurements (shown
at the origin of Fig. 2) in a unique cluster—these measurements
could be indicative of malicious behavior. Experiments aimed
at addressing this problem with different numbers of clusters
led to over-fitting. This issue motivates our overall goal to
integrate this profiling technique into a system that collectively
examines both appliance- and network-level anomalies. For
example, a lack of network packets from a smart meter could
indicate that physical tampering has occurred, or network traffic
is being blocked or manipulated at an intermediate point—data
from sensors that measure these characteristics could be used
to build a hypothesis regarding the root cause of an anomaly.
Furthermore, based on the introduced scheme it will be possible
to correlate and cluster network communication and appliance-
related features from a number of sub-meters to adequately
profile distinct situations that are either caused by local system
failures or distributed power load attacks.

IV. CONCLUDING REMARKS

Resilient operation of smart grid communication networks
must ensure the detection of anomalies that manifest at the
network-level and the appliance-level. Although attack de-
tection in SCADA communication protocols has attracted
some attention recently, we advocate in this letter that it is
also necessary to detect and attribute anomalies that occur
in the appliance-level measurements. To achieve this we ap-
ply a Smoothed Pseudo Wigner Ville (SPWV) energy Time-
Frequency (TF) distribution as a basis for creating statistical
features that describe power measurements. A significant ben-
efit of using SPWV is that the input timeseries can be non-
stationary. This is in contrast to timeseries models that are
used in commercial tools (e.g., IBM’s SPSS?) that require the
(weak) stationarity of measurements. This is a shortcoming that
results in the need for transforming a signal, potentially leading
to errors in later analysis stages. Having applied SPWV, we
use the k-means clustering algorithm to identify outliers that
could indicate malicious behavior. Our results are promising
and we anticipate that profiling power consumption using the
techniques introduced in this letter can be part of an enhanced
anomaly detection system. Additionally, we foresee detailed
power profiles being useful for grid capacity planning and
generating accurate consumption forecasts that can be applied
for energy trading [10]. Future work will investigate how to
realize our approach in an online manner. Specifically, we will
adapt the MATLAB-based routines that we have used for our
analysis to a parallel programming model, such as MapReduce.
Furthermore, we will investigate the performance benefits of
data sampling, so that very large data volumes can be processed
in near real-time.
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