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Abstract
Recommender systems can benefit from a plethora of signals influencing user behavior
such as her past interactions, her social connections, as well as the similarity between
different items.However, existingmethods are challengedwhen taking all this data into
account and often do not exploit all available information. This is primarily due to the
fact that it is non-trivial to combine the various information as they mutually influence
each other. To address this shortcoming, here, we propose a ‘Fusion Recommender’
(FuseRec), which models each of these factors separately and later combines them in
an interpretable manner. We find this general framework to yield compelling results
on all three investigated datasets, Epinions, Ciao, and CiaoDVD, outperforming the
state-of-the-art by more than 14% for Ciao and Epinions. In addition, we provide a
detailed ablation study, showing that our combined model achieves accurate results,
often better than any of its components individually. Our model also provides insights
on the importance of each of the factors in different datasets.

Keywords Attention-based graph networks · Temporal recommender systems ·
Social recommendation · Item similarity modeling

1 Introduction

Recommender systems are ubiquitous and model user preferences on commercial and
social websites as well as in apps. These systems predict with reasonable accuracy,
products thatwemay be interested in, peoplewhichwemay know, or songs andmovies
that we may appreciate. This success builds upon a long history of research. However,
to this day, a large active community continues to improve recommender systems
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Fig. 1 Illustrative diagram of factors affecting Alice’s decision on which movie to watch next in an online
social movie viewing platform. Her current interests are towards superhero movies (temporal); she could
either decide to watch recent superhero movies seen by her friends (social) or other superhero movies not
watched by her friends (similar items)

as many questions remain open, e.g., How to effectively model and merge multiple
factors influencing user preferences like (1) temporal context, (2) social influence, and
(3) similarity between items? We explore this question in detail.

Classic collaborative filtering is one of themost successful approaches tomodel user
preferences. It learns a low dimensional and often linear latent factor model for both
users and items via matrix factorization of the user-item interaction matrix (Rendle
et al. 2009). With deep learning taking a more prominent role, more complex models
have been applied to learn increasingly non-linear relationships (He et al. 2017; Wu
et al. 2016). However, those classical methods ignore all three of the factors above.
Hence, many techniques have been developed, which augment classical recommender
systems with one of those factors.

First, considering temporal context removes the assumption of a static interaction
matrix, which generally doesn’t hold as user preferences evolve with time. Thus,
history from a distant past is not necessarily relevant to current preferences. To this
end, Markov chains (Rendle et al. 2010) and recently, Convolution Neural Network
(CNN) (Kang and McAuley 2018) and Recurrent Neural Network (RNN) (Hidasi
et al. 2016) based methods have been proposed to model this temporal dependence in
recommender systems. Thosemethods remove the static interactionmatrix of classical
collaborative filtering and learn a user’s and an item’s hidden representation based on
their recent interactions.

Second, considering social influence removes the restriction that users operate in
isolation. This idea is popularized by the social influence theory (Tang et al. 2009),
which argues that a user’s preference is influenced by their friends’ behavior, leading
to user homophily (similar user preferences). It is noteworthy that these influences are
inherently dynamic as friends’ preferences are evolving too (socio-temporal influence),
a factmostly ignored by current systems. For instance, recent worksmodel static social
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effect (Zhao et al. 2014; Wu et al. 2018; Wang et al. 2018; Fan et al. 2019). These
methods look at the entire history of the user’s friends instead of emphasizing the most
recent actions. Moreover, these approaches assume uniform importance of all friends.
While this is not suitable in general, it is an important first step to understand social
influence for the recommendation.

Third, exploiting similarities between items (based on co-occurrence or similar fea-
tures) alleviates the data sparsity issue (many items with few ratings). Similar items
hold similar attractiveness to users, leading to item homophily. Deep net-based recom-
mender models are prone to skew prediction results towards popular items with ample
feedback in the training data (overfit to popular items) (Krishnan et al. 2018). This
is counterproductive to user experience as it leads to similar recommendations across
users. Also, compared to highly frequented items, long-tail items (items with fewer
ratings) result in higher profit margins for the platforms (Yin et al. 2012). Item-Item
collaborative filtering based methods (Sarwar et al. 2001) integrate these similarities
but ignore the user’s history; thus providing generic recommendations.

To make these three points concrete, let us consider the example shown in Fig. 1.
Alice is using an online social movie viewing platform. She is currently hooked onto
superhero movies (temporal). While deciding which movie to watch next, she will be
influenced by recent superhero movies watched by her friends on the platform (socio-
temporal influence). She could also decide to watch other superhero movies on the
platform not seen by her social circle yet (item-to-item similarity).

As illustrated earlier, a user’s behavior is affected by at least the aforementioned
three factors (others could include time-of-day, mood, etc.). However, the relative
importance of these factors remains unclear. It is indeed challenging to model these
factors effectively and efficiently in a unified model as these cues mutually influence
each other. This is emphasized by the fact that existing work often studies only a subset
of those three cues.

In this work, we first propose three different modules to model each factor: (1)
a user-temporal, (2) a user-social, and (3) an item-similarity module. To model the
temporal behavior of a user’s item viewing history, we use widely adopted recurrent
neural nets. These networks are shown to capture complex and non-linear relation-
ships of time-varying sequences. To capture the effect of a user’s friends’ behavior,
we develop a novel attention-based social aggregation model. Different from existing
works, it aggregates a user’s friends’ recent item history in a weighted manner. We
learn attention weights separately for each pair of a user and her friend. Note that as
user preferences evolve, our dynamic social recommender uses only recent interactions
from friend’s history relative to the current timestamp. For item-item similarity aggre-
gation, we construct a ‘social graph of items’ based on similarity in item features and
co-occurrence in the dataset. We develop a novel attention-based aggregation model
for the item similarity graph too. In contrast to existing work, we learn an attention
weight for each similar item and later aggregate information of neighboring items in
a weighted manner.

We further develop a ‘Fusion Recommender’ (FuseRec) model to jointly and effi-
ciently combine all these factors in a unified model. It takes into account a user’s
temporal changes along with homophily in the user and item space. It treats each
of the modules equally and combines them in an interpretable manner. Specifically,
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we compare the output from the user-temporal and user-social module with the out-
put from item-similarity module. We then linearly combine these scores via learned
weights to provide an understanding of the importance of the three factors. The mag-
nitude of the learned weights permits a glimpse at the importance of the individual
modules.

Weevaluate ourmodel on three representative benchmarkdatasets:Ciao,CiaoDVD,
and Epinions. We compare to an array of collaborative filtering, temporal, and social
methods and achieve a significant improvement ofmore than 14% forAUCon theCiao
and the Epinions dataset and perform similarly for the CiaoDVD dataset. In addition,
we provide a study on the importance of the three factors. Across all datasets, we find
the temporal module to be the most significant factor for modeling user preferences.

In summary, our main contributions are as follows:

– We propose a novel attention based aggregation model to capture homophily in
both the user and item space. Our proposed user-social module also uses dynamic
features as it operates on only the recent history of friends. The item-similarity
module operates on explicit item-item similarity graphs based on co-occurrence
and feature similarity to capture homophily in the item space.

– We further propose ‘FuseRec,’ a Fusion Recommender model to effectively com-
bine temporal, social, and item similarity modules in an interpretable manner.

– We evaluate our method on three benchmark datasets and compare it to a vari-
ety of recent temporal, social, and socio-temporal models. We also provide a
detailed study regarding the importance of different factors used in our model.
Our experiments show that different factors play a role in providing an effective
recommendation. However, user history contributes the most in predicting user
preferences.

2 Related work

Since FuseRec leverages temporal, social and item similarity factors, in the following,
we provide a brief review on temporal recommendation, social recommendation, and
item similarity. Before doing so, we discuss classical collaborative filtering. We also
provide background on Graph Convolution Nets, which we use in our model.

Collaborative filtering: Collaborative Filtering (CF) is one of the most popular tech-
niques for explicit feedback (predicting item ratings by a given user) in recommender
systems. Specifically, the methods employ Matrix Factorization (MF) to decompose
a user-item rating matrix into user and item-specific latent factors. Classical and sem-
inal work for MF-based recommender systems (Rendle et al. 2009) uses a Bayesian
pairwise loss (BPR). Collaborative filtering is also performed in item space (Sarwar
et al. 2001), where similar items are computed offline based on their rating similarity
or co-occurrence in the dataset. Consequently, it recommends items similar to the
ones used in the past by the user. We also use similar item-based collaborative filtering
for our item-similarity module. Neural net approaches have been proposed recently
to improve MF models. They learn more complex non-linearities in the user-item
interaction data (He et al. 2017; Wu et al. 2016).
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However, most MF approaches assume a static user-item interaction matrix. Often,
this assumption is not accurate, particularly for online communities where user prefer-
ences evolve— sometimes quickly—necessitating temporal recommendation, which
we use in FuseRec.

Temporal Recommendation: There has been significant work in the area of temporal
recommender systems that model a user’s past interactions to inform a user’s current
preference. These temporal models generally assume a linear relationship between
the events and model it using a Markov chain (Cheng et al. 2013; Rendle et al. 2010).
However, these are often ‘shallow’ (i.e., linear) methods that are inept at modeling the
more complex dynamics of temporal changes. Recent works (Sun et al. 2018; Cai et al.
2017;Kang andMcAuley 2018) use deep net approaches involving convolution layers,
attention networks, and recurrent neural nets tomodel complex relations. For example,
Tang andWang (2018) apply convolutional filters on the embedding matrix computed
from a few recent items of a user. This model captures a higher-order Markov chain,
but it still has a limited scope as it does not consider the entire history of a user.

In contrast, to model long term dependencies, Hidasi et al. (2016) propose to model
a user’s sequential behavior within a session using recurrent neural nets. Wu et al.
(2017) apply a recurrent architecture to both user and item sequences and hence model
dynamic influences in popularity of movies on users’ viewing preference. Kang and
McAuley (2018) instead employ a self-attentionmodule for next item recommendation
that adaptively learns the importance of all past items in a user’s history. However,
these models are limited as they do not leverage the social connections of a user as we
do in FuseRec.

Social Recommendation: Social recommenders integrate information from a user’s
social connections to mitigate data sparsity for cold-start users, i.e., users with no or
minimal history. They exploit the principle of social influence theory (Tang et al. 2009),
which states that socially connected users exert influence on each other’s behavior,
leading to a homophily effect: similar preferences towards items. Jamali and Ester
(2010), Ma et al. (2011) use social regularization in matrix factorization models to
constrain socially connected users to have similar preferences. The recently proposed
SERec (Wang et al. 2018) embeds items seen by the user’s social neighbors as a prior
in a matrix factorization model. The SBPR model (Zhao et al. 2014) extends the pair-
wise BPR model to incorporate social signals so that users assign higher ratings to
items preferred by their friends. However, thesemodels assume equal influence among
all social neighbors. TBPR (Wang et al. 2016) distinguishes between strong and weak
ties only when computing social influence strength.

In contrast, we specifically model the influence between each user, friend pair
via attention weights. Also, all of the aforementioned approaches model dependence
on the entire history of friends. In contrast, in FuseRec, we model dynamic social
influence, which emphasizes recent ‘consumptions’ of a user and their friends.

Socio-Temporal Recommendation: Few of the recent approaches have started to look
atmerging temporal dependencewith social influence. Cai et al. (2017) extendMarkov
chain based temporal recommenders (Rendle et al. 2010) by incorporating information
about the last interacted item of a user’s friends. However, this method only assumes
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linear dependence. FuseRec extends this work to capture more complexities in the
data.

In the context of session-based recommendation, Sun et al. (2018) propose a socially
aware recurrent neural network that uses a dynamic attention network to capture social
influence. On the other hand, Song et al. (2019) use graph attention nets tomodel social
influence on a user’s behavior in the session. Both these models learn a unified user
representation based on social influence with a user’s temporal history.

In contrast, we model temporal and dynamic social influence factors separately.
We subsequently combine them in an interpretable manner to obtain insights about
the importance of different factors. We also use an additional module to model item
similarity that is not used by any of these methods.

Graph Convolution Networks: More recently, Graph Convolution Networks (GCNs)
have been proposed to learn embeddings for graph-structured data (Kipf and Welling
2017). In recommender systems, they have been used to model the user-item interac-
tion graph.GCMC (van denBerg et al. 2017) extendsGCNby training an auto-encoder
framework on a bipartite user-item interaction graph that performs differentiable mes-
sage passing, aggregating data from a user’s and an item’s ‘neighbors.’ PinSage (Ying
et al. 2018) proposed a random walk based sampling of neighbors to scale GCNs to
web-scale graphs. Fan et al. (2019) further extend these methods to incorporate infor-
mation from a user’s social connections. Similarly, Wu et al. (2019a) use graph neural
networks to model diffusion of social influence in recommender systems.

However, different from FuseRec, these methods either do not take a user’s social
neighbors into account or operate on static features. All these models also assign a
uniform weight to all their neighbors, which does not represent online social commu-
nities well. Typically in these communities, some friends are only superficially known
while others are known personally for years. Thus, they exert a different degree of
influence on a user’s behavior.

Graph Attention Networks (Veličković et al. 2018) have been recently proposed to
learn attention weights between each pair of nodes in a static graph. To account for a
different degree of social influence, in FuseRec, we also use an attention mechanism
to learn weights between a user and her friends in the user’s social graph. In contrast
to graph attention nets, we deal with graphs with dynamic features (recent items).
However, we argue that a friend’s influence on the user does not change with her
recent interactions. Thus, attention weights are computed separately based on users’
static preferences and then applied to the dynamic features.

In summary, in contrast to all the previous works, we develop a novel model that
learns temporal dependence of a user’s history alongwith socio-temporal influence and
item similarity. We also learn how to linearly combine these factors. This combination
helps to provide insights regarding the importance of each of the cues.
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3 Proposedmethod

We first provide an overview of the proposed FuseRec approach to model user and
item homophily via attention based nets while also modeling temporal relations. We
subsequently discuss the details of each employed module.

3.1 Overview

Our goal is to create a ranked list of items, indicating the preference of a user u for
interacting with item i ∈ I at time t . Here, I represents the set of all items available
on the considered platform. We compute this ranked list by sorting probability scores
r̂ tu,i for a user u and item i at time t . Formally, given user u and time t , we obtain ∀i ,
the probability scores after scaling the output of a linear layer, i.e.,

r̂ tu,i = σ (λ1S1 + λ2S2 + λ3S3 + λ4S4 + bc) . (1)

Hereby σ denotes the sigmoid function, bc is a learnable bias, and λk ∈ R, k ∈
{1, . . . , 4}, are four learnable weights for the scores Sk . Importantly, because we learn
a linear combination of scores, we can study their magnitude which provides evidence
regarding the importance of the different factors in the proposed FuseRec model. See
Sect. 4.5 for our experimental results.

As illustrated in Fig. 2, we obtain the scores Sk by combining information from
the following three modules: (1) the user-temporal module which leverages temporal
information about a user; (2) the user-social module which captures information about

Fig. 2 Overview of the proposed FuseRec model. Our model computes pairwise interaction scores which
compares item embeddings from the item-similarity module with user embeddings from both the user-
temporal module and the user-social module. These scores are then merged using learnable weights to
compute the final predicted score
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the recent interactions of a user’s friends; and (3) the item-similarity module, which
captures information about item homophily.

Specifically, Eq. (1) combines four pairwise interactions: (1) S1 = htu � yi , (2)
S2 = htu,i � yi , (3) S3 = stu � yi , and (4) S4 = stu,i � yi . Hereby, � indicates an inner
product between two embeddings. Note, all pairwise interaction scores Sk assess the
similarity between a D-dimensional representation obtained from the item-similarity
module (yi ∈ R

D) and information obtained from either the user-temporal module
(htu, h

t
u,i ∈ R

D) or the user-social module (stu, s
t
u,i ∈ R

D).
The user-temporal module encapsulates information from a history of user inter-

actions. This module computes a time-dependent embedding htu for user u ∈ U at
time t . This embedding denotes a user’s current preferences in general. We also com-
pute a context-specific user-temporal embedding, htu,i which encodes similarity of
a user’s current preferences (htu) in the context of the candidate item i ∈ I. Note
that both embeddings capture different aspects (general and item-specific) and are
time-dependent.

The user-social module captures a user’s social preferences based on the recent
history of the user’s social graph. Specifically, for user u at time t , we encode this
information in an embedding referred to as user-social embedding, stu . Similar to the
user-temporal module, we also compute a context-specific user-social embedding for
a user, stu,i , encoding similarity of a user’s social preferences (stu) with respect to the
candidate item i .

The item-similarity module employs item-item collaborative filtering, building an
implicit similarity network between items based on their features and co-occurrence
in the dataset. This module computes an item-similarity embedding yi for item i ∈ I,
which is identical across time. We think this is a reasonable assumption as properties
of items do not change over time.1

We will next provide details about computation of the user-temporal embedding
htu , the context-specific user-temporal embedding htu,i , a user-social embedding stu ,
the context-specific user-social embedding stu,i , and the item-similarity embedding yi .

3.2 User-temporal module

Users constantly interact with items offered on online platforms, e.g., users rate or
watch movies. Importantly, a user’s preference does not remain constant and changes
over time. To model temporal dynamics, classical methods have explored Markov
chains, attention networks, and convolution networks (Cheng et al. 2013; Kang and
McAuley 2018; Tang and Wang 2018). However, these methods assume dependence
on only recent history and thus do not capture long term dependencies within user-
item preferences. To address this concern, we use recurrent neural nets (RNNs) based
on long-short-term-memory (LSTM) components. Those are widely used in natural
language processing to capture sequential dynamics (Mikolov et al. 2010).

1 Experiments with time-sensitive item embeddings decreased accuracy of the reported results.
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Fig. 3 The user-temporal
module uses an LSTM to
compute an embedding htu based

on a user’s history ht−1
u and the

current item ĵ t−1
u . We also

compute context-specific
user-temporal embedding htu,i
with respect to candidate item i

In general,RNNsare basedon the following recurrence relation,whereht represents
the hidden vector at time t , xt is the input at time t and w refers to learnable weights:

ht = f (ht−1, xt−1, w).

To specialize to our case, consider again a platform where users watch movies.
Formally, for each user u at time t − 1, let j t−1

u ∈ I be the item which user u
interacted with at time t − 1. To compute its item embedding ĵ t−1

u ∈ R
D (throughout

we use ‘·̂’ to indicate embeddings), we concatenate the item j t−1
u with its one-hot

category information c( j t−1
u ) ∈ {0, 1}|C| and apply the linear transformation

ĵ t−1
u = Wp[ j t−1

u || c( j t−1
u )] + bp. (2)

With slight abuse of notation j t−1
u also denotes the one-hot representation. Here, Wp

and bp are trainable parameters and represent weight and bias of a linear layer, ‘||’
represents the concatenation operation and C is the total number of item categories.
This item embedding ĵ t−1

u is used as an input for an LSTMmodule based RNNwhich
computes the user-temporal embedding htu via

htu = f ′(ht−1
u , ĵ t−1

u , w). (3)

Here, f ′ represents the LSTM recurrence relation. This final user-temporal represen-
tation encodes a user’s past behavior.

While htu captures a user’s current preferences in general, we also separately capture
the relevance of candidate item i with respect to the user’s current preferences. For
instance, if the user is currently watching action movies, we should capture if the can-
didate action movie i matches her preferences. Thus, context-specific user-temporal
embedding htu,i encodes similarity between user-temporal embedding htu and the can-

didate item embedding î . Specifically, to capture similarity between the user-temporal
embedding and the item embedding, we compute htu,i as

htu,i = Wq [htu || î || htu ⊗ î] + bq , (4)
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where î is the embedding of candidate item i2 and ⊗ represents an element-wise
product of two vectors. Wq and bq are learnable parameters. Figure 3 depicts the
architecture of this user-temporal module.

3.3 User-social module

Beyond temporal changes, users are influenced by recent behavior or ratings of trusted
friends. Also, influences are not equal among all friends. To model this heterogeneous
social influence, we use an attention based aggregation of a user’s friends recent past
behavior. Figure 4a shows our user-social module. Formally, for user u at time t , the
user-social embedding stu ∈ R

D is computed as

stu =
∑

v∈F(u)

auv p
t
v, (5)

where F(u) represents social connections of user u, auv ∈ R is the attention weight
for friend v and ptv ∈ R

D is a feature vector representing the recent history of friend
v.

Most of the social recommender systems (Zhao et al. 2014; Wang et al. 2018; Pan
and Chen 2013) employ a uniform weighting for all social friends when computing
influence. However, we argue that this is sub-optimal, particularly for social media,
where a user does not trust all friends equally. Indeed, we think modeling of trust is
particularly important for online platforms due to large social circles with superficial
acquaintance. Thus,we obtain the attentionweightsauv froman influence score e(u, v)

for each user u and friend v:

e(u, v) = LeakyReLU(Wq [û || v̂] + bq), (6)

where û, v̂ ∈ R
D are user embeddings for user u and v respectively,3 while Wq and

bq are learnable parameters. The attention weight auv is obtained by normalizing the
influence score via a soft-max:

auv = exp(e(u, v))∑
v∈F(u) exp(e(u, v))

. (7)

Each friend v is represented by a dynamic feature vector ptv which captures recent
past behavior and is computed via

ĵ t
′

v = Wr [ j t ′v || c( j t ′v )] + br , (8)

ptv = AGG({ ĵ t ′v | t ′ < t}). (9)

Here ĵ t
′

v ∈ R
D is the item embedding for item j t

′
v clicked by user v at time t ′. Each

past item rated by the friend before the current timestamp t can be used to compute

2 î = W [i] where i represents the item index and W ∈ R|I|XD

3 û = W [u] where i represents the item index and W ∈ R|U |XD
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the historical profile of friend v. In practice, we found that using the recent past gives
similar performance compared to using all previous items. Therefore, we consider
only the items from the last t ′ timesteps of each friend. We aggregate these historical
item embeddings using the mean aggregation operation AGG. Note that it is possible
to aggregate this information in multiple ways but mean aggregation performed well
in our experiments. It is also worthwhile to note that attention weights remain static
across time while a user’s feature vectors are dynamic.

Similar to the user-temporal module, we also compute a context-specific user-social
embedding stu,i . This embedding captures similarity of the user’s social preferences
with respect to the candidate item i . Formally,

stu,i = Ws[stu || î || stu ⊗ î] + bs, (10)

where î is the item embedding of candidate item i and ⊗ is the element-wise product.

3.4 Item-similarity module

Online platformsoperatewith a large set of items,manyofwhich are rated infrequently.
It is consequently hard to construct meaningful representations of items, particularly if
the available information is scarce. Also, users are similarly attracted to related items
but it is non-trivial to implicitly learn item-item similarity. To address this concern, we
propose to construct a similarity aware item embedding based on information available
for users who have interacted, e.g., clicked this item, and item features like category
information. Figure 4b illustrates our item-similarity module.

In particular, we represent each item i ∈ I via an n-hot vector gi ∈ {0, 1}|U |,
where n is the number of users who have interacted with item i while |U | is the total
number of users on the platform. We then compute k-nearest neighbors for each item
using cosine similarity between these n-hot vectors. This results in an implicit social
network for item i , denoted by F(i). All these items are similar as the same users
interacted with them. However, this approach of computing the similarity between
items is biased towards popular items with a high user degree. Thus, we construct
another item similarity network based on item features. In particular, we compute the
network F ′(i) based on items that belong to the same category. We randomly connect
k′ items of the same category in F ′(i). In our experiments, we let k = k′, i.e., we use
the same neighborhood size for both item networks.

We then aggregate both of these item graphs to learn item-similarity embeddings
via

yi = α
∑

j∈F(i)

bi j ĵ + (1 − α)
∑

j∈F ′(i)
bi j ĵ + î, (11)

where α ∈ [0, 1] is a learnable parameter which controls the effect of co-occurring
similarity versus category relationship. To compute the attentionweightsbi j , we follow
our earlier approach: similar to the user model, e(i, j) is the influence score for each
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item i and its similar item j :

e(i, j) = LeakyReLU
(
Wn[î || ĵ] + bn

)
, (12)

where î, ĵ are item embeddings for item i and j respectively, andWn and bn are learn-
able parameters. The final attention weight is obtained by normalizing the influence
score via a soft-max function:

bi j = exp(e(i, j))∑
j∈F(i) exp(e(i, j))

. (13)

Note that we use the same embeddings to compute attention weights for both graphs.
The final estimated ‘item-similarity’ module models similarity between items with

similar features and frequently co-occurring items. This helps to address the data
sparsity in the item space by exploiting item homophily.

Each module learns separates factors that influence user choices in recommender
systems. We fuse these factors via a linear operation as detailed in Eq. (1).

3.5 Training

We train all the three modules simultaneously end-to-end in a unified framework using
the binary cross-entropy loss:

Lθ = −
∑

(u,i,t)∈B
r tui log

(
r̂ tui

) + (
1 − r tui

)
log

(
1 − r̂ tui

)
,

where θ represents all the learnable parameters in the model and B is the currently
sampled mini-batch. Specifically, for each sample (u, i, t) ∈ B, we also obtain user
u’s friends, F(u) along with the corresponding item graph of the item i , i.e., F(i) and
F ′(i).

Aswe are dealingwith implicit feedback,wedon’t have any negative samples. Thus,
in each iteration of the training process, for every observed user-item interaction at
time t , (u, i, t) ∈ B, we sample m unobserved items for user u. Similar to Song
et al. (2019), we assign a weight of 1/m for each negative instance to provide a weak
negative signal. This is done as each unobserved item does not necessarily mean that
the user will not interact with this item in the future. For our experiments, we set
m = 5.

Parameter Settings. For all three modules, we use an embedding size D = 32 for all
user and item embeddings. We also initialize the embedding matrix using a Gaussian
distribution with a mean of 0 and a standard deviation of 0.01. For the user-social and
item-similarity modules, in each iteration, we subsample a set of friends F at each
timestamp for a user (item) instead of considering all friends. This sampling has two
benefits: (1) it avoids overfitting by introducing random noise in the social module;
and (2) it is computationally more tractable. We use a sample size of 10 for both user
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F(u) and item F(i), F ′(i) social graphs. If a user has less than 10 friends, we pad
the remainder with zeros. We set a friend’s history length, t ′ = 3 in the user-social
module. We will study the effect of this and other hyper-parameters subsequently.

For the user-temporal and user-social module, we set the length of the historical
sequence of user interactions to 30 for all users. For users with a history length of
less than 30, we utilize all the available interactions. We also study the effect of this
sequence length on our results in the next section. We use the Adam optimizer for
training our model and perform a grid search over {0.1, 0.01, 0.001} for a suitable
learning rate on the validation set. The validation set is used for tuning the model
hyper-parameters, e.g., learning rate, embedding dimension, sample size of a user’s
friends, etc. We report results on the test set for the best performance model on the
validation set. We also use dropout along with gradient clipping with a value of 0.25
and L2 regularization on the user and item embeddings to avoid overfitting.

4 Experiments

In this section, we first describe the datasets we use to evaluate the proposed approach,
followedby the evaluation setup and competing state-of-the-art baselines.We then ana-
lyze the performance of our model, followed by ablation studies on different modules
and hyper-parameters. Finally, we analyze the importance of each module using the
learned weight parameters.

4.1 Datasets

We use benchmark datasets available from three online social review platforms: Ciao,
Epinions, and CiaoDVD.

Ciao is a product reviewwebsite where users provide reviews along with ratings for
products ranging across a variety of categories. This dataset was crawled by Tang et al.
(2012) and contains rating information along with the creation timestamp given up to
May 2011. Users also establish directed trust relations with other users on the platform
and add them to their ’Circle of Trust.’ Epinions is another popular online consumer
review website like Ciao (Tang et al. 2012). However, this dataset is longer spanning a
decade fromAug. 1999 toNov. 2013. This dataset also contains trust relations between
users.4 CiaoDVD is a movie review dataset of DVDs crawled from dvd.ciao.co.uk in
December 2013. This dataset contains user reviews of movies accompanied by their
overall rating. It also contains directed trust relations between users.5

As we are dealing with implicit feedback (user-item interaction data), we convert
all the observed interactions, i.e., ratings, into positive instances. For both datasets, we
only keep users with at least five rated items. The final data statistics are summarized
in Table 1. Epinions is by far the largest dataset.

4 Both Ciao and Epinions datasets are available at www.cse.msu.edu/~tangjili/trust.html.
5 Dataset available from www.librec.net/datasets.html.

123

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

www.cse.msu.edu/~tangjili/trust.html
www.librec.net/datasets.html


FuseRec: fusing user and item homophily modeling

Table 1 Dataset statistics

Dataset #Users #Items #Interactions #Trusts #Cat μ(len) Social density Data density

Ciao 1653 16,862 26,190 32,955 6 15.84 1.21% 0.09%

Epinions 22,143 296,278 464,249 83,363 28 20.97 0.02% 0.01%

CiaoDVD 2609 16,122 32,054 8926 17 12.29 0.10% 0.08%

#Cat refers to the number of categories while μ(len) denotes the average history length of users. Ciao has
the most dense social network while Epinions has the most sparse user-item interaction data

4.2 Evaluation protocol

We split each user sequence into training, validation, and test set. For each user, the
most recent item is held out for testing. The second most recent item is held out for
validation while we train the model on the remainder of the sequence.

We evaluate model performance on the test set via two widely used evaluation met-
rics: HitRate@10 (HR@10) and Area under Curve (AUC). HitRate@10 is computed
as follows:

HR@10 = 1

|U |
∑

u∈U
1(Lu,i tu < 10), (14)

where i tu is the ground truth item that user u clicked at test time t , Lu,i tu is the rank of
the ground truth item in the predicted ranked list, and 1(.) is the indicator function.
The HR@10 metric checks if the ground truth item is present in the top-10 ranking.
In contrast, AUC measures the rank of the test item in the predicted ranked list. This
is a harder metric as it takes into account the exact position of the ground truth item.
Formally,

AUC = 1

|U |
∑

u∈U

1

|I|
∑

j∈I
1(Lu,i tu > Lu, j ). (15)

where Lu, j is the rank of item j in the predicted ranked list for user u. (Cai et al.
2017). Due to the sparsity of user-item interaction data (number of items is huge) and
computational feasibility, following He et al. (2016), HitRate@10 is reported on a
sample subset of negative items instead of the whole set. For each user-item pair in
the test set, we sample 99 negative items that the user has not rated before. Similarly,
for AUC computation, we sample a set of 5,000 unobserved items for each user for
both our model and the baselines.

4.3 Baselines

We compare to a large variety of state-of-the-art collaborative filtering (CF), temporal,
social, and socio-temporal recommenders:
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– BPR-MF (Rendle et al. 2009) is a classic matrix factorization model that uses a
pairwise ranking loss.

– NeuMF (He et al. 2017) is a recently proposed CF-based model with neural
architecture. It merges matrix factorization and multi-layer perceptron modules
to predict item ranking.

– NAIS (He et al. 2018) is an item-to-item CF-based model which employs user-
specific attention between items to identify similar items.6

– TBPR (Wang et al. 2016) extends the BPR model to capture strong and weak ties
separately in a user’s social network in order to distinguish the degree of influence
of a user’s connections on her behavior.

– SERec (Wang et al. 2018) is a state-of-the-art CF-based social recommendermodel
that augments collaborative filtering with social exposure through regularization
and boosting.

– DiffNet (Wu et al. 2019a) is a state-of-the-art graph convolution-based social
recommender that propagates user influence through their social network. We use
the item category information for item feature vectors in the model .7

– GraphRec (Fan et al. 2019) is another recently proposed social recommender that
uses graph convolution networks to incorporate information from both a user-item
and a user’s social graph. The original model was proposed for rating prediction,
andwe adopt it for our item ranking task. For that purpose, we change the loss func-
tion to a log loss and augment the training data with randomly sampled negative
items following other ranking prediction models (He et al. 2017).

– SASRec (Kang and McAuley 2018) is a state-of-the-art model for the temporal
recommendation that uses a self-attentivemodule to capture the long-term interests
of a user.8

– SR-GNN(Wuet al. 2019b) is a graphneural network-based temporal recommender
that aggregates information from all previous timesteps of the user.9

– SPMC (Cai et al. 2017) is an extension of aMarkov chain basedRendle et al. (2010)
model which captures both temporal and social dynamics for recommendation.10

– ARSE (Sun et al. 2018) is a state-of-the-art social session recommendation model.
It employs a session LSTM module to model change in user preferences across
sessions while incorporating social influence as an input to the LSTM module.11

Similar to their paper, we divide the training dataset into monthly intervals and
predicted for the test item in the next session.12

– DGRec (Song et al. 2019): Another social session recommender method that
uses graph attention networks to merge preferences of social neighbors from the

6 github.com/AaronHeee/Neural-Attentive-Item-Similarity-Model.
7 github.com/PeiJieSun/diffnet.
8 github.com/kang205/SASRec.
9 github.com/CRIPAC-DIG/SR-GNN.
10 github.com/cwcai633/SPMC.
11 github.com/DeepGraphLearning/RecommenderSystems/.
12 We also experimented with constraining each training session to comprise of just a single item, but that
resulted in slightly worse performance.
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previous session with a user’s preference in the current session. We use similar
month-wise intervals to denote each training session.13

BPR-MF, NeuMF, and NAIS are Collaborative Filtering models, while TBPR and
SERec are social recommenders. Diffnet and GraphRec are graph convolution-based
social recommenders. SASRec and SR-GNN are temporal recommender models. We
omit a comparison with Fossil and GRU (Hidasi et al. 2016) as they are RNN based
temporal recommendation methods. The results for our user-temporal module are
equivalent to their models. SPMC is most similar to our model as it also models
temporal behavior and socio-temporal influence. However, it is a shallow model as
it extends a Markov chain to model linear dependence. ARSE and DGRec are also
socio-temporal recommenders proposed for session recommendations.

We use the Adam optimizer for our models with a batch size of 256 for Ciao,
CiaoDVD, and 1024 for Epinions. We used the implementation provided by the
RecQ python library for BPR-MF,14 NeuMF, TBPR, and SERec models. We used
the authors’ implementation for all the other models. Specifically, for ARSE and
GraphRec, we wish to thank the authors as they generously shared their implementa-
tion.We keep the embedding dimension D = 32, for all the baselines to be comparable
with ourmodel.We report the best result of the baselines using either hyper-parameters
based on the authors’ specifications or values,which performed better on our validation
set.

4.4 Performance analysis

Table 2 details a comparison of HR@10 and AUC for our model and the state-of-the-
art baselines on all three datasets. We report mean results over five runs. Our model
substantially outperforms all the baselines on the AUC metric by at least around 14%
for Epinions, and 18% for Ciao while performing similarly for CiaoDVD. On the Ciao
and Epinions dataset, our FuseRec model also improves the HR@10metric by at least
4%. Note that each of the baselines models one or a subset of three factors (temporal,
socio-temporal, and item similarity), while our FuseRec model considers all factors
jointly. Our user-socialmodule outperforms its respective baselines forHR@10metric
while the item-similarity module outperforms classical CF models on AUCmetric for
CiaoDVD and Epinions dataset. The user-temporal module performs comparably to
the other temporal recommenders. Further, the combined FuseRecmodel considerably
outperforms the individual components. This improvement indicates that our model is
effective at combining the individualmodules, each capturing a distinct factor affecting
a user’s preference.

Amongst our proposed modules, for the HR@10 metric, the user-social module
performs best for Ciao and CiaoDVD, while the user-temporal module performs best
for Epinions. This difference can be attributed to the fact that Ciao and CiaoDVD
have much denser (100 and 10 times respectively) social networks than the Epinions
dataset. Also, Epinions has the longest mean user history length among the three

13 We also evaluated other intervals, but they all performed similarly.
14 github.com/Coder-Yu/RecQ.
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datasets. This difference further underlines that it is essential to model a variety of
factors for an effective recommendation.

On the other hand, for the AUCmetric, the item-similarity module outperforms the
other modules for Epinions and CiaoDVD. This difference between the metrics could
be because the user-social module improves the ranking of items currently popular
among a user’s social connections. In contrast, the item-similarity module emphasizes
items that frequently co-occur in the entire dataset, irrespective of the user preferences.
This increases the bias of the item ranking only slightly, as co-occurrence is a weak
signal for a specific user (it is averaged across all users). Note that we use randomly
initialized user embeddings (instead of user embeddings from the other two modules)
to compute the individual performance of the item-similarity module.

Collaborative:CF-based approach BPR-MF performs competitively with the other
sophisticated baselines when considering the AUC metric while NeuMF performs
competitively for HR@10. This superior performance highlights that classical matrix
factorization approaches are still very competitive for the recommendation. The user-
specific attention-based NAIS model did not outperform the non-attention based CF
models.

Social: Our proposed user-social module outperforms all baseline social recom-
menders for both metrics (except for the AUC metric on CiaoDVD). Among the
baselines, the TBPR model that models the user’s social graph with different weights
for strong and weak ties performs better than the SERec that considers each friend’s
contribution equally. This reaffirms our assumption that each friend exerts a different
influence on the user. In general, we found the recently proposed SERec to underper-
form on the three datasets used here. It proposes that social connections have a limited
influence on a user’s preference. Social influence is weakly modeled through exposure
prior on the items. However, we think the low performance indicates the contrary, i.e.,
social influence plays a significant part in shaping a user’s preference.

Our GCN based user-social module is inherently different from the other GCN
based baselines, DiffNet, and GraphRec. Our user-social module is time-dependent
with dynamic user features while both baselines operate on static features (entire
item history). These dynamic features result in superior performance in the HR@10
metric for product review websites, Ciao, and Epinions. However, performance dip
for movie review platform, CiaoDVD, shows that the user’s movie preferences do
not evolve rapidly and longer friend history is needed to accurately estimate social
influence.

Further, our architecture also differs: we employ attention between a user and her
social connections, whereas GraphRec computes attention based on user history rather
than the user itself. Our superior performance supports the difference. The difference
is particularly pronounced for Ciao that has a denser friendship network than the other
two datasets (see Table 1).

Although the DiffNet model performs the best among the baseline social recom-
menders, it is unable to scale to our largest dataset, Epinions. Note that we used the
authors’ implementation, and our largest dataset is bigger than the one reported in
their paper. In contrast, the other GCN based model GraphRec performs poorly on all
the datasets. Note that for results obtained in their paper, they only consider users with
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non-zero social connections and items previously seen in the training data, while we
do not make any such assumptions.

Temporal: Our user-temporal module uses information from only the previous
timestep for prediction at the current timestep while the baseline temporal recom-
menders aggregate information from all previous timesteps. However, we argue that
information from a distant past is not useful. The comparable performance of our user-
temporal module with the temporal baselines confirms our argument. In general, both
the temporal recommenders, SASRec and SR-GNN, perform better than social rec-
ommenders and are comparable to the best performing BPR baseline on the Epinions
and CiaoDVD dataset when using the AUC metric. While they perform competitively
with other baselines on HR@10.

Social + Temporal: SPMC, which combines temporal and social influence, per-
forms worse than baselines, which model either of the two factors. This worse
performance is expected as it is a shallow model with linear dependence. The other
socio-temporal models ARSE and DGRec perform similarly, with ARSE perform-
ing slightly better for the HR@10 metric. Note that despite modeling socio-temporal
influence, in general, these methods do not outperform best performing social and
temporal only baselines. This could be since these models were originally proposed
for the session-based recommendation. Sessions are typically defined as a sequence
of activities performed by a user in a single visit to the website or platform.

Thus, for the session prediction settings, models work on recommending the next
item to consume by the user in the current session. They typically assume either none
or limited past session information of the users and assume static user preferences
per session. These methods also aggregate item information among each past session,
thus, losing the sequential information. In contrast, for our temporal recommendation
settings, we model the evolution per item for each user (user-temporal module) and
expect a significant change in a user’s preference over time.

Specifically, DGRec only models socio-temporal influence based on the friend’s
last session and ignores the evolution of the user’s preference across sessions. In
contrast, ARSEmodels the user’s evolution across sessions but aggregates information
per session resulting in limited flexibility. Also, it is worthy to note that none of these
models exploit similarity in the item space that is used in our proposedmodel. Thus, the
worse performance of these session-based socio-temporal methods indicates that they
are not well suited for temporal recommendation owing to information aggregation
within sessions.

4.5 Module analysis

We now evaluate the importance of each module (user-temporal, user-social, and
item-similarity) in our combined model using learned weights, λk . Figure 5 shows the
learned magnitude of the weights λk for k ∈ {1, . . . , 4} for each of the Sk (Eq. (1))
scores for all the datasets. Weight λ1 corresponds to a user-temporal embedding (htu)
and contributes most to the final score. This high magnitude is expected as a user’s
history of interactions play a crucial role in modeling user preferences accurately. λ2
corresponds to the context-specific user-temporal embedding (htu,i ) and is the second
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Fig. 5 Learned value of the
weights λk for k ∈ {1, . . . , 4} for
different scores in our model.
Weight λ1 corresponding to
user-temporal embedding
contributes most to the final
score

Table 3 Performance of our FuseRec model for all three datasets, when removing one module at a time

Model variants Ciao Epinions CiaoDVD

HR@10 AUC HR@10 AUC HR@10 AUC

{social + item} 0.329 0.574 0.478 0.713 0.526 0.738

{temporal + item} 0.335 0.631 0.557 0.798 0.531 0.743

{temporal + social} 0.327 0.679 0.536 0.736 0.540 0.745

FuseRec 0.355 0.745 0.549 0.834 0.538 0.774

All of these variants perform worse than the combined model

most important factor for Ciao and CiaoDVD datasets. In contrast, λ3, which corre-
sponds to a user-social embedding (stu) is the second-highest factor for Epinions. This
difference indicates that social influence plays an important factor for users in the Epin-
ions dataset while it is slightly less important for the Ciao and the CiaoDVD datasets.
λ4, which corresponds to the context-specific user-social embedding (stu,i ) contributes
the least across all datasets. Note that all scores use item-similarity embeddings.

Next, we perform ablation experiments by removing each module at a time from
the final model, as shown in Table 3. All variants performworse than the final FuseRec
model for the AUC metric, emphasizing the need for each of the modules. For all the
datasets, removing the user-temporalmodule results in the largest drop in performance.
This is expected as a user’s history encapsulates a great deal of information for the
recommendation. Thus, personalized recommendations fare better than generic ones.

Apart from the user-temporal module, for CiaoDVD, the model without the item-
similarity module performs best, while for Epinions and Ciao, the model without
the user-social module performs the best. Thus, for the movie reviewing platform
CiaoDVD, the preferences of a user’s social connections play a significant role in
predicting her movie preferences. In contrast, for Epinions and Ciao, both of which
contain broad categories of products, items frequently bought together by users are
better predictors of purchasing behavior. This seems intuitive as movie preferences
are subjective in general, while users tend to believe strangers on online reviewing
platforms for products like electronics, furniture, etc.
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Fig. 6 Fraction of user with correct item predictions on test data by individual modules with different user
sequence length and varying size of a user’s social connections and fraction of correct item predictions with
varying item popularity. The item-similarity module performs better for rare items while the user-social
module better models cold-start users

Further, we evaluated individual modules with varying item popularity in the
dataset, different sequence length for users, and varying size of a user’s social graph
for the Epinions dataset as shown in Fig. 6. The user-social module can predict cold-
start users better than the user-temporal module as it takes information from a user’s
social connections into account (top row). Note, the item-similarity module performs
uniformly for different user sequence length as it does not contain any user informa-
tion. Information about the past behavior of social connections (user-social module)
improves performance compared to not using social connections (item-similaritymod-
ule). Note that this effect increases with more friends and does not create noise as our
attention model can distinguish between strong and weak connections (middle row).
The item-similarity module exploits item homophily in the user space and the feature
space. Thus, it can accurately predict rarely reviewed items (in the left section of the
figure, close to zero) better than the other two modules (bottom row) (also see item
coverage analysis in the Appendix). Thus, our model provides an interpretable way of
determining the importance of each of the factors used in our model through multiple
experiments.

4.6 Cold-start analysis

Combining different factors in each of the threemodules helps to alleviate data sparsity
and to predict for cold-start users effectively. To verify this claim, we evaluate our
model in cold-start settings using a decreasing number of past available interactions
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Fig. 7 AUC over different number of past interactions to mimic cold-start settings. Our model consistently
outperforms all the social and temporal based baselines

for a user. Figure 7 provides our results with varying user sequence length compared
to the baselines. Our model substantially outperforms the baselines modeling a subset
of the factors for cold-start settings on all three datasets reaffirming our claim. Also,
we observe that our model performs comparably for maximum user history lengths
10 and above, while the performance drops for a very short sequence length of up
to 5. This further underlines that a user’s temporal history is an essential cue for the
recommendation.

4.7 Parameter sensitivity

Table 4 details performance results after removing attention from our user-social and
item-similarity modules, respectively. The variant without attention on both the mod-
ules performs the worst. Comparing the user-social and item-similarity module: only
using attention in the item-similarity module performs better than using attention in
the user-social module exclusively. This is expected as the ties between similar items
are weaker than explicit social connections between users. Thus, attention results in
lower weights for noisy connections in the item-similarity module.

Figure 8 illustrates the performance of our model with different hyper-parameters
on the Epinions dataset. For a user’s friend’s history length t ′ (Eq. (8)), we observe:
using fewer past interactions performs better. However, no change in performance is
observed if t ′ increases tomore than the last five interacted items. Increasing the size of
the hidden dimension D improves performance initially due to larger model capacity.
However, results decline beyond a certain point due to overfitting. For the user and item

Table 4 Performance of our model without attention in the user-social and the item-similarity module

Ciao Epinions CiaoDVD

HR@10 AUC HR@10 AUC HR@10 AUC

No attn 0.313 0.707 0.536 0.697 0.515 0.742

Userside attn 0.356 0.719 0.531 0.729 0.532 0.747

Itemside attn 0.356 0.737 0.541 0.740 0.536 0.752

FuseRec 0.355 0.745 0.549 0.834 0.538 0.774

Attention in item-similarity module only performs better than only user-social module attention
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Fig. 8 Ablation results of
different model
hyper-parameters on Epinions
datatset

friend sample size, F(u) (Eq. (5)) and F(i), F ′(i) (Eq. (11)) respectively, performance
slightly increases with an increased size but plateaus for sample sizes larger than 10.

5 Conclusion

We presented a model that captures temporal changes and socio-temporal influence
while taking into account item similarity and later combines them in an interpretable
manner. We used an RNN model to capture the evolution of user preferences. We
proposed an attention-based user social module that aggregates historical features
for all of the user’s neighbors. To capture item-based homophily, we proposed an
attention-based item module to learn item embeddings using similar items frequently
co-occurring in the platform.Wecompared our approach to a large number of temporal,
social, and socio-temporal recommenders on three benchmark datasets. We report
an improvement of more than 14% over state-of-the-art baselines on the Ciao and
Epinions datasets for AUC metric. Our ablation study shows that each module is
essential to capture different factors affecting user behavior in recommender systems.
Further, the user-temporal module is the most important factor across all datasets.

We would also like to mention some of the limitations of our approach: 1) there are
potentially many other factors affecting user preferences apart from the ones explored
in this work; 2) the temporal module is sub-optimal for datasets where the preferences
do not evolve rapidly (CiaoDVD in our work), and 3) the item network construction
can be computationally demanding. We need to use scalable approaches to compute
a KNN graph between items efficiently.
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