Fluvial Hydraulics and Morphodynamics (a.y. 2021/22) Assignment December 2021

Consider the terminal L=50 km of a river channel debouching into the sea and characterized by a rectangular cross section with a constant width b_u and a longitudinal bed slope i_f . The sediment is uniform with a diameter d_s and relative density s. The Gauckler-Strickler coefficient is k_s . Assuming normal flow conditions (cross section NOT infinitely wide!) and employing van Rijn (1982) formula for both bedload and suspended load:

- 1. Evaluate the bedload transport capacity Q_{sb} , the suspended transport capacity Q_{ss} and the total load Q_s (= $Q_{sb} + Q_{ss}$) as a function of the flow discharge Q. Report the results both in tabular form, in one plot (Q, Q_s) indicating both the bedload and suspended load, and in one plot (Q, $Q_{sb}/Q_s \ Q_{ss}/Q_s$) showing the ratio of both bedload and suspended load to the total load.
- 2. Compute the value of the flow discharge Q_M and sediment transport Q_{SM} in present configuration (constant width) such that the normal flow depth Y = 5 m.

It is now suggested by local authorities to widen terminal reach of the river according to a sinusoidal function of the form:

$$b = b_{u} \qquad 0 < x < L_{up}$$

$$b = b_{u} + \frac{1}{2}(b_{0} - b_{u})\left[1 - \cos\left(2\pi\frac{(x - L_{up})}{L_{b}}\right)\right] \qquad L_{up} \leq x \leq L$$
PLANFORM
$$FLOW \qquad ORIGINAL WIDTH \qquad DESIGN WIDTH \qquad ESIGN WIDTH \qquad$$

3. Calculate the gradually varied flow profile under the hypotheses of steady flow and fixed bed conditions for a flow discharge Q_M , a free surface elevation at the downstream boundary h_0 , a bed level at the downstream boundary η_0 and a constant longitudinal bed slope i_f . Represent the result in a graph (x coord, elevation) showing the bed level elevation, the critical depth elevation and the free surface elevation.

Longitudinal Coordinate x [m]

 $\times 10^4$

4. With the values Q_M and Q_{SM} determined at point 2., compute the equilibrium configuration of the bed in the design configuration assuming that the free surface at the downstream boundary condition is still h_0 .

Report the solution both in a tabular form and as a longitudinal plot where the equilibrium bed elevation η_{EQ} and the equilibrium free surface elevation h_{EQ} in the design configuration are compared with the corresponding values in the present configuration.

5. Briefly discuss the implications of the channel widening on the flood hazard.

Input values:

- > Channel width $b_u = 100 \text{ m}$
- > Longitudinal bed slope $i_f = 8 \cdot 10^{-5}$
- Sediment diameter $d_s = 0.35$ mm
- Sediment relative density s = 2.65
- Gauckler-Strickler coefficient $k_s = 35 \text{ m}^{1/3}/\text{s}$
- > Downstream water level $h_0 = 0$ m
- > Downstream bed level $\eta_0 = -5$ m
- Design configuration:
 - o *b*_o = 150 m
 - \circ L_{up} = 10 km
 - \circ L_b = 80 km