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Abstract. In these notes we present a pedagogical account of the population dynamics methods
recently introduced to simulate large deviation functionsof dynamical observables in and out of
equilibrium. After a brief introduction on large deviationfunctions and their simulations, we review
the method of Giardinàet al.for discrete time processes and that of Lecomteet al.for the continuous
time counterpart. Last we explain how these methods can be modified to handle static observables
and extract information about intermediate times.
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The main achievement of equilibrium statistical mechanicsis probably the simplifi-
cation it offers in the study of static observables in steadystate. Indeed, the resolution of
dynamical equations is replaced by static averages and ensemble approaches. This can
still be very difficult, but from a conceptual point of view, the problem is much simpler.
On the other hand, when one is interested in dynamical observables, like currents of par-
ticles, or in out-of-equilibrium situations, like for glassy or driven systems, such static
ensemble approaches are not available anymore and there is no general formalism on
which one can rely.

For the last ten years, physicists have been interested in large deviation functions
mainly because they are good candidates to extend the concept of thermodynamic poten-
tials to out-of-equilibrium situations and to dynamical observables (for a review, see [1]).
Of course the mere definition of out-of-equilibrium potentials is not useful in itself and
the challenge is thus to go beyond their construction. To do so, two strategies can be
followed. First, one can try to derive general properties oflarge deviation functions. An
example of success in this direction is provided by the Fluctuation Theorem [2, 3, 4, 5],
which can be read as a symmetry of large deviation functions and is one of the few
general results valid out-of-equilibrium. Another strategy is to consider specific exam-
ples and to compute the large deviation function explicitly. For some simple yet non-
trivial interacting particle systems, exact computationshave been possible (for a review
see [6]), but one has to rely on numerics for more generic systems. From the algorithmic
point of view, two paths can be followed. For small system sizes, exact procedures can
be used (see for instance [8, 9]) but as soon as mesoscopic systems are considered, one
has to rely on importance sampling approaches. Generalising a procedure followed pre-
viously to study rare events in chemical reactions [10, 11, 12], Kurchan and co-workers
developed methods to compute large deviation functions in dynamical systems [13], and
discrete [14] or continuous [15] time Markov chains. We shall concentrate here on the
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statistical mechanical aspects and review the methods available for Markov chains.
Let us consider a system and call{C } its set of configurations. As time goes from 0 to

a final timet, the system typically jumps into successive configurationsC0,C1, . . .CK at
distinct timest1, . . .tK. A dynamicalobservableQ is defined as a sum along the history
of small contributionsqCk+1Ck

, one for eachtransitionbetween two successive configu-
rations. The simplest example of such observable is probably a current of particlesQ in
a one-dimensional lattice gas, which is either incrementedof decremented every time a
particle jumps to the right or to the left, respectively. This contrasts with static observ-
ables, like the number of particles at a given site, which depend solely on the configura-
tion of the system at a given time. We will see below that the algorithms used to obtain
the large deviation functions slightly differ in these two cases. To characterise the fluc-
tuations of the observableQ, the first thing one can do is to extend the microcanonical
approach to the space of trajectories and compute the corresponding macrostate entropy

s(q) = lim
t→∞

1
t
logP[Q(t) = qt]. (1)

However one knows from usual statistical mechanics that working in the microcanonical
ensemble is often harder than in the canonical one and we rather introduce a dynamical
partition function and the corresponding dynamical free energy

Z(β , t) =
〈

e−βQ(t)
〉

; ψ(β ) = lim
t→∞

1
t

logZ(β , t). (2)

These definitions differ slightly from those used in the mathematical literature, where
one rather speaks about rate functions−s(q) and cumulants generating functions
ψ(−β ).

The main purpose of this short review is to explain how one cancomputeψ(β ) using
an approach relying on population dynamics. But let us first sketch why direct sampling
would be inefficient. Consider for simplicity the case wheres(q) has a single maximum
atq0, which satisfiess(q0) = 0 (for normalisation purpose). Fluctuations aroundQ= q0t
which occur with probabilities of order one must typically be of order 1/

√
t so that

P(Q= qt)≃ ets(q) ≃ e
1
2t(q−q0)

2s′′(q0) ∼ 1, (3)

whence a probability of larger fluctuations exponentially small in t. On the other hand,
the dynamical partition function has a weighte−βQ (with Q ∼ qt) exponential int. As
a result, there is a competition between the exponentially rare fluctuations and their
exponential weight such that forβ of order 1 the trajectories which dominate the average
in (2) are exponentially rare. A more quantitative way to rephrase this can be read in the
Legendre relation betweens(q) and ψ(β ): ψ(β ) = maxq[s(q)− βq]. The maximum
is realised for a valueq∗ which dominates the average in (2). It thus differs fromq0
– which maximises onlys(q) – by a factor independent oft. From (3) we see that
the corresponding trajectories indeed have a probability exponentially small int. To
have a good sampling overN unbiased simulations,N should thus be of orderet , an
impracticable requirement. Direct sampling is thus a hopeless strategy to observe large
deviations.
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DISCRETE TIME

We present in this section the method first introduced by Giardinà, Kurchan and
Peliti [14] to simulate cumulant generating functions in discrete time Markov chains.
In this case, the dynamics is defined by the transitionprobabilities U(C → C ′) =UC ′C
between configurations and the corresponding the master equation reads

P(C , t) = ∑
C ′

UCC ′P(C ′, t−1). (4)

Conservation of probability enforces the matrixU to be stochastic, i.e. for allC ′,
∑C UCC ′ = 1. Starting from a fixed configurationC0 the explicit solution of (4) is

P(C , t) = ∑
C1...Ct−1

UCCt−1UCt−1Ct−2 . . .UC1C0 =
[

U t]

C C0
. (5)

The dynamical observableQ can be written as a sum over configuration changesQ(t) =
qCtCt−1 + . . .+qC1C0. To compute the dynamical free energyψ(β ), we first rewrite the
dynamical partition function as

Z(β , t) =
〈

e−βQ(t)
〉

= ∑
C1...Ct

UCtCt−1e
−β qCtCt−1 . . .UC1C0e

−β qC1C0 = ∑
C

[

U t
β

]

C C0
, (6)

where we have introduced the matrix[Uβ ]CC ′ =UCC ′e−β q
C C ′ . Let us note thatψ(β ) is

given by the log of the largest eigenvalue ofUβ . A possible strategy, used for instance
in [7, 8, 9], is thus to compute numerically this eigenvalue.The matrixUβ is however
exponentially large in the system size, which limits this strategy to small systems.
The main advantage of this method is to yield a numerical approximation of an exact
expression - as pointed out in [9] - as opposed to our approach, efficient for large
systems, but relying on importance sampling. Note that the ‘exact’ approach can be
used to check the validity of the importance sampling approach for small system sizes,
before going to larger ones, as was actually done for the simulations presented in [15].

Comparison of expressions (5) and (6) leads one to think thatψ(β ) could be obtained
from a new dynamics, induced byUβ . However, the matrixUβ is not stochastic, as in
general

YC ′ ≡ ∑
C

[Uβ ]CC ′ = ∑
C

UCC ′e−β q
C C ′ 6= 1 (7)

and we should not understand (6) as a stochastic process withconserved probability but
as a population dynamics with branching and death, where thepopulation size is not
constant. To do so, let us define

U ′
CC ′ =

[Uβ ]CC ′

YC ′
=

UCC ′

YC ′
e−β q

C C ′ . (8)

The matrixU ′ is stochastic and (6) now writes
〈

e−βQ(t)
〉

= ∑
C1...Ct

U ′
CtCt−1

YCt−1 . . .U
′
C1C0

YC0. (9)
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This expression is now closer to (5) asU ′ is stochastic, and can be interpreted as follows:
N agents evolve with the stochastic dynamics defined byU ′ and are replicated with a rate
YC when they are in configurationC . This interpretation is possible asYC depends solely
on the initial configurationC and can thus be interpreted as a configuration-dependent
reproduction rate. This was less apparent in (6), where factorse−β q

C C ′ depend on both
initial and final configurations.

This interpretation as a population dynamics can be implemented using a diffusion
Monte Carlo algorithm. Let us consider an ensemble ofN0 agents (N0 ≫ 1) evolving in
the configuration space{C }. At each time stepτ → τ +1,

(1) Each agent evolves according to theβ -modified dynamicsU ′
CC ′,

(2) Each agent in configurationC is replicated/killed with probabilityYC , i.e. is re-
placed byy copies, where

y=

{

⌊YC ⌋+1 with probabilityYC −⌊YC ⌋
⌊YC ⌋ with probability 1− (YC −⌊YC ⌋) (10)

Concretely, the agent is replaced byy copies of itself, so that the population size is
increased byy−1 (decreased by 1 ify= 0).

Let us show that the size of the population at timet yields the large deviation function.
For a given history, the numberN(C ,τ) of copies in configurationC at intermediate
timeτ satisfiesN(Cτ ,τ) =U ′

CτCτ−1
YCτ−1N(Cτ−1,τ −1), so that for the whole history

N(Ct , t) =U ′
CtCt−1

YCt−1 . . .U
′
C1C0

YC0 N(C0,0). (11)

Consequently, we see from (9) that the population sizeN(t) = ∑C N(C , t) behaves as
N(t)/N0= 〈e−β Q(t)〉 ∼ etψ(β ). As usual in importance sampling approaches, the ensem-
ble average〈.〉 has been replaced by an average over a finite number of simulations.
Whereas in principle correct, this approach is however impracticable since the popu-
lation size varies exponentially in time and we thus add a third step to the previous
algorithm:

(3) After the cloning step, the population is rescaled by a factorXτ to its initial sizeN0,
by uniformly pruning/replicating the agents.

At each time stepτ, the rescaling factor is given byXτ =
N(τ−1)

N(τ) so thatXt . . .X0 =
N0

N(t)
and finally

ψ(β ) =− lim
t→∞

1
t
log〈Xt . . .X0〉. (12)

CONTINUOUS TIME DYNAMICS

For a continuous time dynamics defined by ratesW(C → C ′) the master equation reads

∂tP(C , t) = ∑
C ′ 6=C

W(C ′ → C )P(C ′, t) − r(C )P(C , t), (13)
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wherer(C ) = ∑C ′ W(C → C ′) is the escape rate from configurationC .
There are many different ways of deriving the algorithm presented in the previous

section and we shall follow here a derivation of the continuous time algorithm slightly
different from the one we introduced in [15]. The formal solution of (13) reads

P(C , t) = ∑K≥0 ∑C1...CK−1

∫ t
t0

dtK
∫ tK
t0

dtK−1 . . .
∫ t2
t0

dt1 (14)

ρ(tK|CK−1, tK−1) · · ·ρ(t1|C0, t0)e−(t−tK)r(C )W(C0→C1)
r(C0)

. . .
W(CK−1→C )

r(CK−1)
,

where ρ(tk|Ck−1, tk−1) = r(Ck−1)exp[−(tk − tk−1)r(Ck−1)] represents the probability
distribution of the time intervals between jumps. The sum over K corresponds to all
the possible numbers of jumps between 0 andt, the sum over theCk’s to the different
configurations which can be visited. The integrals overtk account for all the possible
times at which jumps occur. Last, the ratioW(Ck−1→Ck)

r(Ck−1)
gives theprobability that the

system goes to configurationCk, when it quits configurationCk−1. Multiplying the
second line of (14) bye−βQ yields an explicit formula forZ(β , t):

Z(β , t) = ∑K≥0 ∑C1...CK−1,C

∫ t
t0

dtK
∫ tK
t0

dtK−1 . . .
∫ t2
t0

dt1 (15)

ρ(tK|CK−1, tK−1) · · ·ρ(t1|C0, t0)e−(t−tK)r(C )

W(C0→C1)
r(C0)

e−βqC1C0 . . .W(CK−1→C )
r(CK−1)

e−βqC CK−1.

Further introducing the biased ratesWβ (C → C ′) = W(C → C ′)e−βq
C ′C , the corre-

sponding escape ratesrβ and time distributions between two jumpsρβ , (15) can be
rewritten (after some algebra) as

Z(β , t) = ∑K≥0 ∑C1...CK−1,C

∫ t
t0

dtK
∫ tK
t0

dtK−1 . . .
∫ t2
t0

dt1 (16)

ρβ (tK|CK−1, tK−1) · · ·ρβ (t1|C0, t0)e
−(t−tK)rβ (C )

Y(C0)
t1−t0 Wβ (C0→C1)

rβ (C0)
. . .Y(CK−1)

tK−tK−1
Wβ (CK−1→C )

rβ (CK−1)
Y(C )t−tK ,

whereY(Ck) = erβ (Ck)−r(Ck). Z(β , t) is thus a weighted sum over all possible trajectories
generated by the biased ratesWβ , where the weights are given by the factorsY(Ck)

tk+1−tk.
A first idea which can come to mind is to simply evolve the population with the rates
Wβ , without cloning and to simply averagee

∫ t
0 dτ(rβ (C (τ))−r(C (τ))) over these trajectories,

as was proposed in [16]. This however fails as soon ast is large, for the same reason
as the one described in the introduction: the weight is exponentially large int and large
fluctuations of the exponent are exponentially rare. One thus has to use a biased sampling
to compute the average (16). Following the philosophy of the“Go with the Winner
methods” [19], the general idea is to stochastically replace a trajectory with weightW
by ‘W ’ trajectories with weight 1, so that trajectories which high rates are favoured
whereas those with small weights are not investigated.

If the re-weighting procedure is made systematic, every time an agentcα changes of
configuration at timetα , one gets the following algorithm:

(0) The time is set totα .
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(1) cα jumps from its configurationC to another configurationC ′ with probability
Wβ (C → C ′)/rβ (C ).

(2) The time interval∆t until the next jump ofcα is chosen from the Poisson lawρβ of
parameterrβ (C

′).

(3) The agentcα is either cloned or pruned with a rateY (C ′) = e∆t(rβ (C
′)−r(C ′))

a) One computesy= ⌊Y (C ′)+ ε⌋ whereε is uniformly distributed on[0,1].
b) If y= 0, the copycα is erased.
c) If y> 1, we makey−1 new copies ofcα .

(4) If y= 0, one agentcβ 6= cα is chosen at random and copied, while ify> 1, y−1
agents are chosen uniformly among theN+y−1 agents and erased. We store the
rescaling factorX = N

N+y−1.

To reconstruct the dynamical free energy, we keep track of all X factors

1
t
log〈X1 . . .Xτ〉=

1
t
log

〈

e−βQ(t)
〉

∼−ψ(β ) as t → ∞ (17)

Once again the step (4) ensures constant population.

THE CASE OF STATIC OBSERVABLES

The methods presented above only apply for dynamical observables, which can be de-
composed as sums of individual contributions over each configuration change. One
could also be interested in averages of static observables along the historiesO =
∫ t

0 dτ o(τ) = ∑k(tk+1− tk)o(Ck). In this case, the above procedure simplifies and the
algorithm is identical apart from two points.

• First, there is no bias in the rate. The agents are evolved with the unmodified
Markov ratesW(C → C ′).

• Second, the cloning rate is simply given bye−β (tk+1−tk)o(Ck).

This can best be seen in formula (15) by replacing the weighte−βqCk+1Ck which depends
on the configurations before and after the jump bye−β (tk+1−tk)o(Ck) which depends solely
on the configurationCk and can thus be seen as a constant cloning rate for the whole time
the system spends in the configurationCk.

INTERMEDIATE TIMES

As pointed out in [14], the configurations probed along the simulation are representative
of the typical ones atfinal time t in the evolution, rather than at intermediate times
(0 ≪ τ ≪ t). In particular, the weighted average value〈O(t)〉β of a static observable
O(C (t)) at final timet is obtained in the algorithm by computing the average ofO
among the agents at the end of the simulation.

In general, the value of〈O(τ)〉β at intermediate times 0≪ τ ≪ t differs from the
one at final time, yet〈O(τ)〉β is of particular interest since it is representative of
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configurations visited during most of the weighted evolution (see [20] for examples).
A way to compute〈O(τ)〉β numerically can be read in its formal expression:

〈O(τ)〉β = ∑K≥0∑C1...CK−1,C

∫ t
t0 dtK

∫ tK
t0 dtK−1 . . .

∫ t2
t0 dt1O(τ) (18)

ρβ (tK|CK−1, tK−1) · · ·ρβ (t1|C0, t0)e
−(t−tK)rβ (C )

Y(C0)
t1−t0 Wβ (C0→C1)

rβ (C0)
. . .Y(CK−1)

tK−tK−1
Wβ (CK−1→C )

rβ (CK−1)
Y(C )t−tK

One simply runs the same algorithm as before, which generates the bias on trajectories,
except that whenever an agent arrives at a timetk such thattk−1 ≤ τ < tk, the corre-
sponding valueO(Ck−1) is attached to the agent. Then, each time an agent is cloned, the
corresponding value ofO is copied accordingly. At the end of the simulation,〈O(τ)〉β
is obtained from the average of the values ofO(τ) attached to the surviving clones. Of
course, thanks to the cloning process betweenτ andt, this average differs from the one
we could have done at the intermediate timeτ in the simulation.

The same kind of scheme also applies to compute the weighted average of any
observableO depending on the whole history of the system and the crucial step is to
copy the value of the observable when cloning events occur. Note in particular that the
determination of〈O(τ)〉β can be quite noisy since only a few instances ofO(τ) have
survived at timet. In the long time limit one may gain similar information by studying
1
t

〈
∫ t

0 dτO(C (τ))
〉

β [20] which is a less noisy dynamical observable.

DISCUSSION

These numerical methods have been applied successfully in many different situations but
it is important to keep in mind their limitations. First, as pointed out in [17] convergence
problems are met when the evolution operator is gapless. This can for instance happen
in systems where the configuration space is unbounded, as in the Zero Range Process
but will however not be a problem as long as the configuration space remains finite.

1

L
ψ(β)

β

FIGURE 1. Large deviation functionψ(β )/L (in log scale) for the total current of particles in the
SSEP at densityρ = 1/2 (L = 400 sites). The points (+) are the result of the continuous-time numerical
algorithm. The line is the analytic result (19) valid for very large deviations|β | ≫ 1.
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The other important limitation is the finiteness of the population of agents, which can
be problematic for very large deviations yielding large cloning rates. For all applications
considered in [15], we thus ensured that the cloning factor would never grow larger than
few percent of the total population size and agreement with theory - when at hand -
was very good. As an example, one can compare (figure 1) for thesimple symmetric
exclusion process (SSEP) the numerical result in the regimeof very large deviations
with the analytical result [18]

1
L

ψ(β ) = 2coshβ
sinπρ

π
−2ρ(1−ρ)−2

sin2(πρ)
π2 +O(e−|β |) (19)

valid for |β | ≫ 1, for the total current of particles in the system. Agreement is very good
although the values ofβ correspond to very large deviations. For large cloning rates, it
may also be necessary to modify step (4) of the continuous time algorithm so that agents
are not pruned uniformly but according to the weight they carry since their last change of
configuration∝ e(t−tk)[rβ (Ck)−r(Ck)] but in our simulations we never ran into this problem.
In this worst case scenario, the efficiency of the continuoustime implementation would
fall back to that of the discrete time where at every step the whole population is re-
sampled.
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