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This work develops and studies a model of an aircraft nose landing gear with torsional, lateral, and longitudinal

degrees of freedom. The corresponding three modes are coupled in a nonlinear fashion via the geometry of the

landing gear in the presence of a nonzero rake angle, as well as via the nonlinear tire forces. Their interplaymay lead

to different types of shimmy oscillations as a function of the forward velocity and the vertical force on the landing

gear. Methods from nonlinear dynamics, especially numerical continuation of equilibria and periodic solutions, are

used to asses how the three modes contribute to different types of shimmy dynamics. In conclusion, the longitudinal

mode does not actively participate in the nose-landing-gear dynamics over the entire range of forward velocity and

vertical force.

Nomenclature

c� = longitudinal bending damping of strut
c� = lateral bending damping of strut
c� = damping coefficient of elastic tire
c = torsional damping of strut
e = caster length
eeff = effective caster length
FK� = lateral tire force or cornering force
Fz = vertical load on the gear
h = contact patch length of elastic tire
Ix = moment of inertia of strut with regard to x axis
Iy = moment of inertia of strut with regard to y axis
Iz = moment of inertia of strut with regard to z axis
k� = self-aligning coefficient of elastic tire
k� = longitudinal bending stiffness of strut
k� = lateral bending stiffness of strut
k� = restoring coefficient of elastic tire
k = torsional stiffness of strut
L = relaxation length
lg = gear height
MD�

= moment due to tire lateral damping
MD�

= moment due to damping in the longitudinal mode
MD� = moment due to damping in the lateral bending mode
MD 

= moment due to damping in the torsional mode
MK�

= self-aligning moment due to tire force
MK�

= moment due to stiffness in the longitudinal mode
MK�

= moment due to stiffness in the lateral bending mode
MK 

= moment due to stiffness in the torsional mode
M��

= coupling moment between the tire deformation and
longitudinal mode

M��
= coupling moment between the tire deformation and

lateral mode
R = radius of nose wheel

V = forward velocity of the aircraft
�m = self-aligning moment limit
� = longitudinal bending angle
� = wheel tilt or camber angle
� = lateral bending angle
� = swivel angle
� = rake angle
 = torsion angle

I. Introduction

U NWANTED oscillations in wheeled vehicles, generally
referred to as shimmy oscillations, can be caused by a variety

of factors, such as component flexibilities, free play, etc. [1–4]. Even
though the triggering mechanism for shimmy oscillations may vary
in different types of vehicles, the consequences of such oscillations
are wear and tear of components and discomfort to the riders.
Specifically, in the case of aircraft landing gears considered here,
extreme shimmy oscillations can result in high maintenance costs
and also in violent vibrations in the cockpit [5,6], sometimes even
restricting the pilot’s ability to read the instrument panel.

Efforts to study shimmy oscillations, initially in cars, date back to
the early 1900s. As entry points to the literature see, for example, the
surveys by Dengler et al. [7], Smiley [8], and Pritchard [9], who
discuss theoretical as well as experimental studies, stressing both tire
theories and structural aspects of shimmy oscillations. Broulhiet’s
[10] seminal work on the effect of side slip of an elastic tire on
shimmy oscillations forms the basis for many modern shimmy
studies. However, it was von Schlippe and Dietrich [11] who
developed one of the earliest and still widely used models, the
stretched string model of tire kinematics, and used it for shimmy
analysis of an aircraft landing gear. Smiley [8] studied shimmy
oscillations in aircraft for three different landing gear structures and
studied them by means of linear stability analysis. Furthermore, he
provided a comprehensive comparison of different tire models. Even
though one of the landing gears Smiley considered included a
nonzero rake angle, its nonlinear and geometric effects were not
considered in his analysis. More recently, Somieski [12] performed
time domain analysis of a set of nonlinear ordinary differential
equations representing a nose landing gear. He reported that shimmy
oscillations appear (and disappear) via a Hopf bifurcation [13,14]
and exist over a range of velocities of the aircraft. A different
approach was taken byWoerner and Noel [15], who studied shimmy
oscillations by frequency analysis. They described the main cause of
shimmy oscillations as the energy transfer from the contact force
between the tires and the ground to vibrational modes of the landing
gear. In particular, Woerner and Noel studied the dependence of
frequency on the swivel friction and forward velocity; this suggested
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that coupled motion may occur due to resonance phenomena when
the forward velocity changes, a mechanism that may lead to high-
amplitude shimmy oscillations.

This paper studies the onset and stability of shimmy oscillations in
an aircraft nose landing gear in a free rolling scenario with emphasis
on the influence of different vibrational modes on the landing gear
dynamics. This work considers the main three vibrational modes of a
generic midsize commercial passenger aircraft: the torsional mode
corresponding to the rotation about the gear strut axis, the lateral
bending mode that is representative of vibrations of the gear from
left to right, and the longitudinal bending mode in the direction of
straight-line travel of the aircraft. These modes of vibration are
coupled via the geometry of the gear and via the force generated at the
tire–ground contact. Their nonlinear interaction plays an important
role in aircraft shimmy dynamics. Note that, as is also the case in the
past research on shimmy oscillations, the vertical mode associated
with the oleos (shock dampers) of the gear is not included as part of
the model considered here. Namely, it is known from operational
practice that the vertical dynamics is not the triggering mechanism
for shimmy oscillations, certainly for smooth runways and taxiways
as used today. The only earlier work that mentions the vertical mode
in the context of shimmy analysis is the work by Dengler et. al. [7],
who conclude that shimmy is generally independent of the vertical
degree of freedom. Furthermore, our previous work [16] concluded
that the vertical degree of freedom does not influence the nature of
shimmy oscillations in a nose landing gear in our model.

Specifically, a seven-dimensional ordinary differential equation
model for the torsional, lateral, and longitudinal modes and the tire
force is developed and studied. In a first-order approximation, each
vibrational mode is modeled as a single degree of freedom oscillator,
which is coupled with the other modes via the gear geometry and the
tire–ground contact. The elastic tire ismodeled by amodified version
of the stretched stringmodel [11] that includes the effect of the lateral
bending mode on the deformation of the tire. Importantly, the case of
a nonzero rake angle of the gear, which has consequences for the
coupling of the modes via nonlinear geometric effects, is considered.

The model presented here is an extension of a five-dimensional
model that was developed previously [17], which does not include
the longitudinal degree of freedom, but allows for the nonlinear
interaction between the torsional and lateral modes in an aircraft nose
landing gear. This made it possible to identify types of shimmy
oscillations that are dominated either by the torsional mode, the
lateral mode, or transient behavior featuring contributions from both.
In the latter case, one may find quasi-periodic shimmy oscillations,
which are characterized by two incommensurate frequencies [13,14].
We remark that stable quasi-periodic shimmy oscillations have been
found by Pacejka [18] in the quite different setting of a pulled trailer
with zero rake angle and negligible damping.

Typically, the fundamental frequency of the longitudinalmode of a
landing gear is in about the same range as that of the torsional and
lateral bending modes. Moreover, the longitudinal mode is coupled
to the other modes via the geometry of the gear and also the restoring
force generated at the tire–ground contact. This coupling is nonlinear
in nature, given the characteristics of the tire force and also due
to the nonzero rake angle. In fact, due to the nonlinear nature of the
problem, even small longitudinal motion might result in shimmy
oscillations. Hence, it is a priori entirely possible that the longitudinal
mode may be involved in shimmy oscillations. The main question
that is addressed here is whether the inclusion of the longitudinal
mode affects the dynamics in a significant way. To answer this
question, we perform time and frequency domain analyses of
the different types of shimmy oscillations with MATLAB®, in con-
junction with a numerical bifurcation analysis with the software
package AUTO [19]. This allows us to assess the role of the
longitudinal mode over the entire relevant operational range of
forward velocity of the aircraft and vertical force on the gear by
means of one- and two-parameter bifurcation diagrams. This work
also investigates how regions of different types of shimmy
oscillations in the two-parameter bifurcation diagrams change with
the damping in the torsional mode.

The paper is organized as follows. Section II introduces and
discusses the mathematical model of the nose landing gear.
Section III is devoted to the analysis of the model, in which we show
representative time series and frequency spectra, one-parameter
continuations in the forward velocity, and a two-parameter bifur-
cation diagram in the plane of forward velocity and vertical force on
the gear. Section IV investigates the influence of torsional damping
on the bifurcation diagrams. Finally, Sec. V summarizes and dis-
cusses directions of future research.

II. Model of a Nose Landing Gear

The nose landing gear of an aircraft as considered here is shown in
Fig. 1. Awheel with a pneumatic tire of radius R is mounted on an
axle that is connected to a strut via a mechanical caster (trail) of
length e. The landing gear experiences a vertical load Fz while
moving with a forward velocity V. The load Fz includes not only the
static weight of the remainder of the aircraft but also the moments
exerted on the gear due to its acceleration and deceleration. This
modeling practice is also used in the literature [2,20]. Moreover,
during testing of an aircraft, Fz is measured as one of the main
parameters. Therefore, in our studyFz is used as an input and natural
bifurcation parameter. One of the conventionally accepted coord-
inate systems for aircraft analysis is used, in which the positive x axis
is along the fuselage centerline and points in the backward direction
of the aircraft, the z axis is the upward normal to the flat ground, and
the y axis completes the right-handed coordinate system. In the static
equilibrium position of the gear, the strut axis lies in the �x; z� plane,
and it is inclined to the vertical at a rake angle �. Note that the rake
angle varies significantly from one aircraft type to the other and may
be anywhere in the range of 0–30 deg, whereas a range of 0–15 deg is
more typical for commercial passenger aircraft.

Here, a nose landing gear with three geometrical degrees of
freedom is considered. First, the gear may rotate about the strut axis
S, which gives rise to the torsional mode described by the torsion
angle  (rad). Second, the gear may bend about the x axis, which
gives rise to the lateral mode. It is described in a first-order approach
by the angle � (rad) over which the strut is rotated about the mount
point in the lateral direction. Third, the gear may bend about the y
axis, which gives rise to the longitudinal mode as described by the
angle � (rad) over which the strut is rotated in the longitudinal
direction. The model considered here is an extension of the nose-
landing-gear model presented in Thota et al. [17]. Specifically, the
extra degree of freedom corresponding to the longitudinal motion as
described by � is added to investigate its influence on the overall
dynamics.
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Fig. 1 Schematic views of an aircraft nose landing gear: a) side,

b) front, and c) top.
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The longitudinal mode is coupled to the torsional and lateral
modes via the tire–ground interface, but also introduces several
geometrical effects into the gear dynamics. Namely, the angle �
contributes to the overall rake angle, so that the effective rake angle
becomes (�� �). The effective rake angle, in turn, has several
geometric consequences. First of all, the effective caster length eeff ,
which has significant influence on the stability of the gear [17,21],
now takes the form

eeff � e cos��� �� � R tan��� �� � e sin��� �� tan��� ��
(1)

Hence, any longitudinal bending motion induces a time-varying
effective caster length eeff , while eeff is constant when the longit-
udinal bending mode is not taken into account (that is, � � 0).

Apart from influencing the effective caster length, there are other
geometrical effects of a nonzero effective rake angle. Specifically, the
swivel angle �, which is the angle between thewheel center plane and
the x axis, is related to the torsion angle  by

��  cos��� �� (2)

Furthermore, for a nonzero torsion angle , a tilt � in thewheel center
plane is created; it is given by

� �  sin��� �� (3)

Finally, a nonzero effective rake angle changes the moment that
destabilizes the static orientation of the gear [17].

Equations (1–3) contribute to the coupling of the longitudinal
mode (that is, �) to the other two modes, described by  and �. This
type of pure geometrical coupling is an addition to the dynamic
coupling between the modes via the forces generated at the tire–
ground contact of the elastic tire. Here, amodified version of thewell-
established stretched string tire model developed by von Schlippe
and Dietrich [11] is used. Our modification includes the effect of the
lateral deformation caused by the lateral bending mode �. Because
the tilt � is known to influence tire dynamics in cars more than in
aircraft [17], it is not included in the model here.

Overall, the equations of motion for the nose-landing-gear model
can be written as

Iz � �MK �MD �MF1
�MD� � Fz sin��� ��eeff sin��� � 0

(4)

Ix ���MK�
�MD�

�M��
� Fzeeff sin��� � 0 (5)

Iy ���MK�
�MD�

�M��
� Fzlg sin��� �� � 0 (6)

_�� V
L
�� V sin��� � lg _� cos��� � �eeff � h� cos��� _ cos��� ��

� 0 (7)

Equations (4–7) are a seven-dimensional model for the dynamics of
the nose landing gear. Here, Eqs. (4–6) model the torsional, lateral,
and longitudinal degrees of freedom, with moments of inertia
Iz, Ix, and Iy, respectively. Equation (7) comes from von Schlippe’s
stretched string model [11], which describes the nonlinear kinematic
relationship between the torsion angle , lateral bending angle �, and
the lateral deformation � of the leading edge of the contact patch of
the tire. Note that the torsional mode and the lateral bending mode
appear as part of a five-dimensional model [17], but Eq. (6) and the
respective coupling terms are new. To keep this paper self-contained,
a more detailed description of the individual terms of Eqs. (4–7) is
presented.

The second and third terms in Eq. (4) describe the stiffness and
damping of the torsional mode asMK 

� k  andMD 
� c  . The

second and third terms in Eqs. (5) and (6) describe the stiffness and
damping of the lateral and longitudinal modes in exactly the same
way; see Table 1 for the values of the stiffnesses k� and dampings c�

of the three modes as used in our calculations. The equations also
contain coupling moments generated due to the interaction of the
elastic tirewith the ground. Specifically, the tire forceFK� , which is a
result of the tire deformation �, tries to restore the motions to their
equilibrium states and simultaneously acts as a coupling factor for the
three modes.

A. Coupling of the Torsional Mode

In Eq. (4), the combined moment MF1
due to the tire’s restoring

force FK� and self-aligning momentMK�
is given by

MF1
�MK�

� eeffFK� (8)

HereMK�
is given by the piecewise continuous function [12,17]

MK�
�
�
k�

�m
�
sin�� �

�m
�Fz if j�j � �m;

0 if j�j> �m
(9)

and the lateral restoring forceFK� due to tire deformation is given by

FK� � k�tan�1�7:0 tan���� cos�0:95tan�1�7:0 tan�����Fz (10)

The constants k� and k� represent the torsional and lateral stiffness
coefficients of the tire. The slip angle � is related to the lateral
deformation � by �� tan�1��=L�, where L is the relaxation length
of the tire. In thiswork, a piecewise smooth approximation to the self-
aligning momentMK�

is considered; the constant �m in Eq. (9) sets a
limit on the slip angle � beyond whichMK�

is taken to be zero.
Finally, in Eq. (4) the momentMD� due to the tire’s tread damping

is given by

MD�
� c� cos��� ��

_ 

V
(11)

It is clear from these equations, describing the influence of the tire–
ground contact, that the longitudinal mode variable � enters into the
torsional mode via the effective caster length eeff and also via the last
term in Eq. (4) representing a destabilizing moment.

B. Coupling of the Lateral and Longitudinal Modes

In Eq. (5) the moment M��
couples the torsional, lateral, and

longitudinal motions; it is given by

M��
� lgFK� cos��� cos��� �� (12)

Table 1 System parameters and their values as used in the modeling

Symbol Parameter Value

Structure Parameters

lg Gear height 2.5 m
e Caster length 0.16 m
� Rake angle 14.7 deg (0.2571 rad)
k Torsional stiffness of strut 3:0 	 105 Nm 
 rad�1
k� Lateral bending stiffness of strut 3:24 	 106 Nm 
 rad�1
k� Longitudinal bending stiffness of strut 3:0 	 107 Nm 
 rad�1
c Torsional damping of strut 110:0 Nms rad�1

c� Lateral bending damping of strut 1:0 Nms rad�1

c� Longitudinal bending damping of strut 10:0 Nms rad�1

Iz Moment of inertia of strut w.r.t. z axis 100:0 kg 
m2

Iy Moment of inertia of strut w.r.t. y axis 300:0 kg 
m2

Ix Moment of inertia of strut w.r.t. x axis 600:0 kg 
m2

Tire Parameters

R Radius of nose wheel 0.362 m
h Contact patch length 0.1 m
k� Self-aligning coefficient of elastic tire 1:0 m=rad
k� Restoring coefficient of elastic tire 0:01 rad�1

c� Damping coefficient of elastic tire 570:0 Nm2 
 rad�1
L Relaxation length 0.3 m
�m Self-aligning moment limit 10.0 deg (0.1745 rad)

Continuation Parameters

Fz Vertical force on the gear 40.0–200.0 kN
V Forward velocity 0:0–110:0 ms�1
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where lg is the distance between the point of attachment of the gear to
the fuselage and the ground. The last term in Eq. (5) represents a
destabilizing moment that is proportional to the vertical load on the
aircraft. This moment becomes active in a significant way during
landing of an aircraft, when there is a sudden increase in the vertical
load.

Similarly, in Eq. (6) the coupling momentM��
is given by

M��
� lgFK� sin��� cos��� �� (13)

Again, the last term in Eq. (6) represents a destabilizing moment
proportional to the vertical force Fz as well as to the sine of the
effective rake angle. For a nonzero rake angle � of the landing gear,
this moment is responsible for a nonzero stable equilibrium position.
This is different from the case in which the longitudinal degree of
freedom � is not considered in the model, so that the equilibrium
position is at zero [17].

C. Tire Kinematics

Equation (7) describes the motion of the tire under the influence of
the strut’s torsional, lateral, and longitudinal motions. Here, the
resultant tire deformation is an algebraic sum of the deformation
caused by the torsional and lateral modes. The effect of the lateral
deformation caused due to the lateral bending mode [17] is incorp-
orated into Eq. (7) by adding an extra term to the conventional
equation representing the stretched string model [11]. Super-
imposing the effects of both the modes is justified by derivations that
are not presented here. The longitudinal mode variable � enters into
the tire motion via the effective caster length eeff and the effective
rake angle.

III. Nonlinear Dynamics of the Nose Landing Gear

We now consider the nonlinear dynamics of the mathematical
model (4–7) of the nose landing gear. In Table 1, we summarize the
values for the parameters used in this work, which are realistic
choices for a generic midsized passenger aircraft that have been
adapted from the literature [12,17] and complemented by data from
Airbus internal reports. First, a time and frequency domain analysis
of the model with MATLAB is presented for three different settings
of the forward velocity V and the downward force Fz, which
correspond to three different kinds of shimmy oscillations. This
allows us to investigate the relative contributions of the three
vibrational modes to the overall landing gear dynamics. Next, a one-

parameter bifurcation study in the forward velocity V is presented to
determine the relative strengths of the threemodes over a larger range
of operating conditions. Finally, a direct comparison of two-
parameter bifurcation diagrams in the �V;Fz� plane of Eqs. (4–7)
with and without an active longitudinal bending mode is presented.
The bifurcation studies were performed with the numerical con-
tinuation package AUTO [22], which allows one to follow equilibria
and periodic solutions and their bifurcations in system parameters.

A. Time and Frequency Domain Analysis

For the parameter values in Table 1, the linear damped natural
frequencies of the torsional, lateral, and longitudinal modes in the
case of an unloaded gear are 8.71, 11.69, and 50.32 Hz, respectively.
These frequencies of the uncoupled linear modes are in realistic
ranges for a midsize passenger aircraft. Because of the nonlinearities
of the model, the frequencies of the three modes during shimmy
oscillationswill deviate somewhat from their natural frequencies, but
they remain clearly distinguishable.

The lateral and longitudinal bending modes manifest themselves
at the tire–ground interface as motions that deform the tire.
Therefore, it is convenient to consider not the angular variables � and
� themselves, but their strokes at ground level as given by

�� � lg sin��� and �� � lg sin��� (14)

where lg is the height of the gear. The strokes �
� and �� allow for a

direct comparison of the amplitudes of the lateral and longitudinal
motions relative to the tire deformation � (measured in meters).
Because all modes interact via the tire, the respective frequency
components in the power spectrum of � reveal the contributions of
the threemodes to the dynamics. To assess the role of the longitudinal
bending oscillations, the power spectrum of �� is considered as well.

Figures 2–4 show time histories and frequency spectra for three
different sets of values of the velocity V and the vertical force Fz.
Each figure illustrates the relative contributions of the different
modes to different kinds of shimmy oscillations. In each figure, three
time series panels (left column) show oscillations of the torsion angle
 , of the tire deformation � in comparison with the lateral stroke ��,
and of the longitudinal stroke ��, respectively. Notice the difference
in scale, which shows that the longitudinal stroke �� oscillates with
negligible amplitudes, whereas the lateral stroke �� oscillates with
amplitudes of several centimeters. The two spectra panels (right

23

-23

ψ
[d

eg
]

0.1

-0.1

δ∗
,λ

[m
]

3.2

0 t[s] 0.2
3.18

β∗
[m

]

0

a)

d)

e)

b)

c)

t[s] 0.2

0 t[s] 0.2

x10-3

0 20 80 100f [Hz]

5

sp
ec

t(
β∗

)

x10-6

fβ

0 5 20 25f [Hz]10

0.03

sp
ec

t(
λ)

ft

fβ/3

Fig. 2 V � 20 m=s and Fz � 60 kN: a), b), and c) time histories; and d) and e) frequency spectra. The individual panels show time series of the

following: a) torsional mode variable, b) lateral stroke (black) and the tire deformation (gray), c) longitudinal stroke, and spectra of d) tire deformation,

and e) the longitudinal stroke (where ft, fl , and f indicate the frequencies of the torsional, lateral, and longitudinal modes).
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column) show the frequency content of the tire deformation � and of
the longitudinal stroke ��.

Figures 2a–2e show shimmy oscillations for V � 20 m=s and
Fz � 60 kN, a relatively low velocity and low vertical force. This
type of shimmy dynamics can be identified as pure torsional shimmy:
 oscillates with a considerable amplitude of about 7 deg, and this
induces oscillations of the tire deformation � (Figs. 2a and 2b) at the
frequency ft � 8:79 Hz of the torsional mode (Fig. 2d). The lateral
mode is effectively following this excitation with a very small
amplitude. However, the longitudinal mode is oscillating at the

frequency f� � 49:8 and
f�
3
� 16:6 Hz, and with negligible amplit-

udes. Even though the stiffness in the longitudinal mode is slightly
higher than in the lateral and torsional mode, the restoring effect of
the coupling term M��

extracts most of the energy out of the

longitudinal mode.
For the higher-vertical-force case ofV � 5 m=s andFz � 162 kN

in Figs. 3a–3e, a very different type of shimmy oscillations is found:
pure lateral shimmy driving the torsional mode. Here, the lateral
mode drives the tire deformation at a comparable amplitude of about
5 cm (Figs. 3b and 3d) and at a frequency fl � 11:72 Hz. In contrast
to the earlier case, the torsional mode follows this excitation by the
lateral mode. Here, the longitudinal mode is oscillating at the
frequency of the lateral motion fl � 11:7 and 2fl � 23:4 but has no
influence on shimmy oscillations.

A qualitatively different type of shimmy dynamics can be seen in
Figs. 4a–4e for V � 12 m=s and Fz � 162 kN, in which an
interaction between the torsional mode and the lateral bending mode
is seen. In Figs. 4a and 4b, the modulation in the amplitudes of the
torsional and lateral bending modes indicates an interplay of two
incommensurate frequencies. The frequency spectrum given in
Fig. 4d clearly shows that these two frequencies correspond to the
torsional (ft) and lateral bending (fl) modes. The time histories
shown in these panels correspond to a transient quasi-periodic
behavior in the vicinity of a torus bifurcation [13,14]. Depending on
the distance from the torus bifurcation, the transient behavior may
last anywhere from tens to hundreds of seconds. In a situation such as
takeoff or landing, during which the velocities change quite rapidly,
such transient behavior plays an important role in the observed
dynamics.

An important conclusion from Figs. 2–4 is that the longitudinal
mode does not appear to contribute to the landing gear dynamics.
Even though we considered three qualitatively different types of
shimmy oscillations, the longitudinal mode is excited only very
weakly, oscillateswith a negligible amplitude, and does not influence
either the torsional or the lateral mode.

B. Shimmy Oscillations as a Function of Forward Velocity V

This section investigates the role of the longitudinal bendingmode
for the nose gear dynamics as described by Eqs. (4–7) over the range
of 0–110 m=s of the forward velocity V for two fixed values
of the downward force Fz. Specifically, we perform a numerical
continuation study of the equilibrium and bifurcating shimmy
oscillations and their stability for the light and the heavy cases
Fz � 60 and 162 kN. Note that this choice of Fz means that the
examples of shimmy oscillations shown in Figs. 2–4 are covered by
the one-parameter bifurcation diagrams presented here.

Figure 5 shows the resulting branches of solutions of two
continuation runs in V for Fz � 60 and 162 kN. For each case, three
panels show the maximum amplitude of the torsion angle  , of the
lateral stroke ��, and of the longitudinal stroke ��, respectively.
Notice again the difference in scale between �� and ��. The
equilibrium solution of the gear, which corresponds to the desired
straight-line motion, is represented by the straight line with zero
amplitude in the panels. In both cases, a single branch of shimmy
oscillations with nonzero amplitudes of the modes is found. The
equilibrium and the shimmy oscillations may be stable (solid curves)
or unstable (dashed curves). Note that the straight-line motion may
be stable for low and high velocitiesV for a given range of downward
force Fz. Stability changes at bifurcation points, such as the Hopf
bifurcation at which the shimmy oscillations are born. Changes of
stability at torus bifurcations of shimmy oscillations are also found;
this means that a second frequency becomes involved in the gear
motion.

Figures 5a, 5c, and 5e show a low-loading case for Fz � 60 kN.
Here, even though the straight-line equilibrium is unstable for very
low velocities, it becomes stable in a Hopf bifurcation corresponding
to the lateral mode and remains stable for the velocity range of
2–9 m=s. As the velocity increases further, the stability of the stable
equilibrium is lost in a Hopf bifurcation H at V � 9:8 m=s. This
Hopf bifurcation is supercritical, and it gives rise to stable periodic
shimmy oscillations. The relativemaximal amplitudes show that this
type of shimmy oscillation is dominated by the torsional mode. Its
maximal amplitude initially grows with V but decreases again above
V � 20 m=s (Fig. 5a). The lateral frequency effectively remains
dormant (Fig. 5c) and the longitudinal motion is relatively small
(Fig. 5e), which indeed agrees with the dynamics in Figs. 2a–2e. The
branch of stable torsional shimmy oscillations reduces to zero
amplitude at V � 55:8 m=s in a third Hopf bifurcation H. Beyond
this bifurcation point, the straight-line equilibrium is stable and
shimmy oscillations are not observed.
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Figures 5b, 5d, and 5f show some marked differences for the
higher-loading case of Fz � 162 kN. Again, the straight-line
equilibrium, which is already unstable, undergoes a stability change
via a supercritical Hopf bifurcation H, now at V � 9:2 m=s.
However, now the unstable shimmy oscillation that is born at the
Hopf bifurcation quickly changes stability in a torus bifurcation T,
which results in stable shimmy oscillations dominated by the
torsional mode. The maximal amplitudes of the shimmy oscillations
initially grow with V but then decrease again. Notice that the
maximum amplitude of the torsional mode is now about 10 deg. It is
reached around V � 16 m=s, after which it decreases substantially
(Fig. 5b); this is mirrored on amuch smaller scale by the longitudinal
mode (Fig. 5f). Themaximum amplitude of the lateral mode of about
10 cm is also attained at V � 16 m=s (Fig. 5d). The branch of stable
shimmy oscillations disappears at V � 88:2 m=s in a second Hopf
bifurcationH. We remark that in the unstable region before the torus

bifurcation the system jumps to stable pure lateral shimmy oscill-
ations as shown in Figs. 3a–3e.

One of the main features of the one-parameter bifurcation
diagrams in Fig. 5 is the negligible size of the longitudinal oscill-
ations. Throughout the entireV range, and for both loading cases, the
longitudinal stroke�� is at least twoorders ofmagnitude smaller than
the lateral stroke, never exceeding 0.1 mm. This forms evidence that
the longitudinal motion � is insignificant for the landing gear
dynamics for a free-rolling nose landing gear.

C. Bifurcation Diagram in the �V;Fz� Plane

The role of the longitudinal mode for the dynamics of the nose
landing gear over the entire relevant range of the two main opera-
tional parameters V and Fz is considered here. To this end, Fig. 6
shows the two-parameter bifurcation diagram in the �V;Fz� plane of
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Fig. 4 V � 12 m=s and Fz � 162 kN: a), b), and c) time histories; and d) and e) frequency spectra.
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the seven-dimensional Eqs. (4–7) and of the five-dimensional model
where � � 0, both computed with the package AUTO for the
parameter values in Table 1.

Figure 6a is the two-parameter bifurcation diagram for the seven-
dimensional model (4–7), which includes the longitudinal degree of
freedom �. It provides a global summary of the dynamics of this
model by presenting the locations of the main bifurcations. Specif-
ically, the locations of Hopf bifurcations, saddle-node bifurcations,
and torus bifurcations are shown. Along the curveHt, one finds Hopf
bifurcations of the torsional mode, meaning that the bifurcating
shimmy oscillations are dominated by the torsional component. The
curveHt forms an isola (closed curve); the solid part of the curveHt

corresponds to supercritical Hopf bifurcations in which stable
shimmy oscillations are born if the equilibrium before the bifurcation
is stable, whereas the dashed part of Ht corresponds to subcritical
Hopf bifurcations in which unstable shimmy oscillations bifurcate.
The transition between the super- and subcritical parts ofHt occurs at
two special points that are known as degenerate Hopf (DH) points
[13,14]. Each of these DH points is the starting point of a curve of
saddle-node (SN) bifurcations. There is also a curve Hl of Hopf
bifurcations of the lateral bending mode. It intersects the torsional
Hopf curve Ht in two points that are known as double-Hopf (HH)
points. As predicted by bifurcation theory [13,14], we find that,
locally, two curves of torus bifurcations emanate from each of theHH
points. There are two main torus curves in Fig. 6a: along Tt one finds
torus bifurcations of the torsional shimmyoscillations born atHt, and
along Tl one finds torus bifurcations of the lateral shimmy oscill-
ations born atHl. Note that the curves Tl and Tt both connect the two
HH points.

Overall, the bifurcation curves in Fig. 6a organize the �V;Fz�
plane into regions with different types of dynamics. The shaded
region represents parameter values for which the straight-line
equilibrium is stable, that is, there are no shimmy oscillations.
Different regions bounded by the bifurcation curves correspond to
different types of dynamics. Specifically, the three different types (a–
c) of shimmy oscillations from Figs. 2–4 can be identified in Fig. 6a.
In the region including (a), the torsional mode is dominant; in the
region including (b), shimmy oscillations are dominated by the
lateral mode; and in the region including (c), one may observe
coupling between the torsional and lateral modes. Note further that
the one-parameter bifurcation diagrams in Fig. 5 correspond to
horizontal cross sections of Fig. 6a at Fz � 60 and 162 kN, respec-
tively. The different bifurcations that are encountered as the forward
velocity V is changed are readily identified.

Figure 6b shows the two-parameter bifurcation diagram for the
five-dimensional model without inclusion of the longitudinal degree
of freedom �. The agreement with the bifurcation diagram in Fig. 6a
is immediate. The corresponding bifurcation curves differ by less
than 1% across the entire �V;Fz� plane. The only minor difference
between Figs. 6a and 6b is the fact that the isola of Ht encloses a
slightly smaller area of the �V; Fz� plane in Fig. 6a. This is due to the

increase in the effective rake angle (�� �) in the presence of the
longitudinal mode �. Overall, the excellent agreement of the two
bifurcation diagrams constitutes conclusive evidence over the entire
range of the operating parameters V and Fz that the longitudinal
motion � does indeed not influence the landing gear dynamics in any
significant way.

IV. Effects of Torsional Damping

Now, a study of how the torsional damping c influences the
bifurcation diagram in the �V;Fz� plane is performed. Here, the fact
that the longitudinal mode � does not play a significant role in the
dynamics of the landing gear is used, so that it suffices to consider the
five-dimensional model where � � 0. The damping c models the
overall damping characteristics in the torsional mode of the nose
landing gear. Specifically, it includes the damping associated with an
extra torsional or shimmy damper that is often installed on landing
gears to curtail torsional oscillations. The disadvantage of shimmy
dampers is that they increase the mass of the landing gear,
contributing to the overall weight of the aircraft. Hence, a study of the
effects of torsional damping on shimmy oscillations is important for
the evaluation and design of a landing gear.

Figure 7 shows two-parameter bifurcation diagrams for the
torsional damping values c � 150 Nms rad�1 (Fig. 7a) and c �
70 Nms rad�1 (Fig. 7b), where all other parameters are as shown in
Table 1. The two panels of Fig. 7 correspond to larger and smaller
values of c than that of 110 Nms rad�1 given in Table 1 and used in
Fig. 6. It is quite evident from Figs. 7a and 7b that, as torsional
damping decreases, the torsional shimmy region enclosed by the
curve Ht becomes significantly larger. In contrast, decreasing c 
reduces the region corresponding to lateral shimmy, but this is a small
effect. This reduction is due to the transfer of energy from the lateral
bending mode into the torsional mode.

We now investigate how the region (the isola) corresponding to
torsional oscillations varies over a wider range of c values. To this
end, Fig. 8 shows the minimum and maximum of the velocity along
Ht as a function of c . The corresponding valuesH

min
t andHmax

t were
computed for the seven different values of c that are marked as dots
in Fig. 8. These data were then used to obtain the solid curves by
spline interpolation. Torsional shimmy oscillations can occur in the
shaded region bounded by the two interpolated curves. It is observed
that, although a change in c has very little effect on Hmin

t , it has a
large effect onHmax

t . Specifically, for c � 200 Nms rad�1, torsional
oscillations can occur only between V � 11 and 50 m=s. At a lower
value of c , say c � 100 Nms rad�1, on the other hand, torsional
oscillations are born above V � 7 m=s and may be sustained for
velocities greater than the average takeoff velocity of a midsize
passenger aircraft. As an extreme case, Hmin

t and Hmax
t for c �

10 Nms rad�1 are also calculated, where Hmax
t is at V � 1207 m=s,

which falls well outside the range of Fig. 8. A study in Thota et al.
[17] found that Hmin

t and Hmax
t depend linearly on the rake angle �.
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Such studies expand the existing knowledge of the parameter
dependence of shimmy oscillations. In particular, they provide
crucial sensitivity information that can assist in choosing optimal
damping parameters over an entire operational range.

V. Conclusions

This work focused on the interaction of different vibrational
modes in shimmy oscillations of the nose landing gear of a generic
midsized passenger aircraft. Specifically, a seven-dimensionalmodel
that includes torsional, lateral, and longitudinal degrees of freedom
was developed. Time histories and frequency spectra, in conjunction
with a numerical bifurcation analysis in the forward velocity and the
vertical force on the gear, showed that the torsional and the lateral
bending modes interact very strongly to give rise to different types of
shimmy oscillations. By contrast, the longitudinal degree of freedom
does not actively participate in any of the different possible types of
shimmy oscillations.

The overall conclusion is that the longitudinal degree of freedom
can safely be omitted in the analysis of nose-landing-gear shimmy.
Hence, without a sacrifice in qualitative and quantitative accuracy, it
is sufficient toworkwith a five-dimensional model. This reduction in
dimensionality and complexity of the model is of practical interest
because it allows for more extensive bifurcation studies of the
landing gear system. In this way, even quite complicated dynamical
scenarios can be investigated. As an example, the investigation of the
dependence of shimmy oscillations on torsional damping c was
presented. The analysis concluded that the choice of appropriate
overall torsional damping is crucial in minimizing the velocity range
in which torsional shimmy occurs. In the longer term, dynamical
scenarios, including acceleration during takeoff and braking after

landing, could be considered. In this case, forward velocity and
vertical force are not independent of each other and their relationship
can be derived from flight-test data. Furthermore, the study of a
braking aircraft may require the inclusion of a vertical degree of
freedom due to possible excitement of oleo (shock damper)
dynamics. It would also be interesting to study the influence of other
degrees of freedom on shimmy dynamics, in particular the torsional
and lateral bending modes of the aircraft fuselage for the case of a
larger passenger aircraft.
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