16 points

own to exist in three conformational states that are denoted by the symbols: further known that:

- (1) The states B and C have the same energy i.e. $E_B = E_C$, and (2) The state A has the lowest energy such that $E_A = \frac{1}{2}E_B$.
- (a) State (with reasoning) the ratio of the probabilities that the molecule will exist in

For same conformation B vs. in conformation C at a temperature T_1 (i.e. ratio $\frac{P_B}{P_C}$).

PB = $\frac{-BEB}{Z = BEC}$ | $\frac{PB}{PC} = \frac{-BEB}{Z = BEC}$ | $\frac{PB}{PC} = \frac{-BEC}{Z = BEC}$ | $\frac{PB}{Z = BEC} = \frac{-BC}{Z = BEC}$ | $\frac{PC}{Z = BEC}$ | $\frac{PC}{Z$

conformational energy state (i.e. state A) at a temperature
$$T_1$$
. Probability $T_2 = BE_3$

$$P_A = \frac{BE_4}{2BE_4} = \frac{BE_4}{2BE_5} = \frac{BE_5}{2BE_5} = \frac{BE_5}$$