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Abstract
Let S be the smallest subset of vertices in a graph G such that every vertex outside of S has
a unique distance vector with respect to S. Then |S| is defined as the metric dimension of
G and it is denoted by dimM (G). In this paper, the metric dimension of the complement of
the zero-divisor graph associated with a commutative ring is discussed. Several formulae for
different classes of rings are given.

Keywords Metric dimension · Zero-divisor · Commutative ring

Mathematics Subject Classification 13A99 · 05C78 · 05C12

1 Introduction

Metric dimension of a graph which is an NP-hard problem with many usages in chem-
istry, combinatorial optimization, robotics, and so on, originates from trilateration in the two
dimensional real plane. Some applications of metric dimension in graph theory may be found
in [1–3]. Computing themetric dimension in different classes of graphs is interesting not only
for graph theorists but also for algebraic graph theorists, see for instance [4–10]. In particular,
metric and strong metric dimension of zero-divisor graphs have been studied in [11–13]. In
this paper, metric dimension in complement of zero-divisor graphs is investigated.

In this paper, all rings R are assumed to be commutative, non-integral domains with
identity and all graphs G = (V , E) are simple. We recall that nodes of a zero-divisor graph
associated with a ring R are zero-divisors except 0R and two different nodes are joined if
their product is zero (see [14], for more details). The symbol �(R) stands to denote the
complement of a zero-divisor graph associated with R. Moreover, if S is the smallest subset
of vertices in a graphG such that all vertices outside of S have different distance vectors with
respect to S, then |S| is defined as the metric dimension of G and it is denoted by dimM (G).
The definitions of standard graph and ring theoretical notions are omitted so that there is no
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similarity between this paper and earlier published papers and textbooks. These can be found
in [12, 15–17].

2 diam(0(R))

First, we need to find the diameter of �(R), as components of distance vectors do not exceed
from diam(�(R)).

Lemma 2.1 Let R be a ring and �(R) be a connected graph. Then diam(�(R)) ≤ 4.

Proof Let x, y ∈ V (�(R)) and d(x, y) �= 1. If ann(x) ∪ ann(y) �= Z(R), then �(R)

contains the path x − z − y from x to y, for every z ∈ Z(R) \ ann(x) ∪ ann(y). Now,
let ann(x) ∪ ann(y) = Z(R). If the equality ann(t) ∪ ann(s) = Z(R) holds, for every
t ∈ N (x) and s ∈ N (y), then �(R) is not connected, a contradiction. So there exist t ∈ N (x)
and s ∈ N (y) such that ann(t) ∪ ann(s) �= Z(R). Let k ∈ Z(R) \ ann(t) ∪ ann(s). Then
x − t − k − s − y is a path of length 4 from x to y. ��

Using Lemma 2.1 and a similar argument to that of [18, Proposition 2.1], one may prove
the following result. Hence, we omit its proof

Proposition 2.1 If R is a ring, then dimM (�(R)) is finite if and only if R is finite.

Lemma 2.2 Suppose that R ∼= R1 × · · · × Rn, where Ri is a finite local ring for every
1 ≤ i ≤ n.

(1) If n = 1 and |V (�(R))| ≥ 2 or n = 2 and R is reduced, then �(R) is not connected.
(2) If n = 2 and R is non-reduced, then �(R) is connected and diam(�(R)) = 3.
(3) If n ≥ 3, then �(R) is connected and diam(�(R)) = 2.

Proof (1) If n = 1, then (R,m) is a local ring and since R is finite, ann(m) �= 0. Now, it is
clear that for every a ∈ ann(m), a is not adjacent to any other vertex. Hence, �(R) is
not connected. Also, if n = 2 and R is reduced, then R ∼= R1 × R2, where Ri is a field
for 1 ≤ i ≤ 2. In this case �(R) is not connected, as �(R) = K|R1|−1 + K|R2|−1.

(2) If n = 2 and R is non-reduced, then R ∼= R1 × R2, where (Ri ,mi ) is a local ring,
for 1 ≤ i ≤ 2. With no loss of generality, suppose that m1 �= 0. Let x = (a, 1) and
y = (1, 0), where a ∈ ann(m1). Then it is clear that any other vertex is adjacent either
to x or y. On the other hand, x is adjacent to y. This implies that diam(�(R)) ≤ 3. Let
t = (a, 0) and s = (0, 1), if m2 = 0 and s = (0, b) if m2 �= 0 with b ∈ ann(m2). Then
it is easy to check that d(t, s) = 3. Therefore, diam(�(R)) = 3.

(3) Since Z(R) = m1∪· · ·∪mn andn ≥ 3, for every x, y ∈ Z(R)∗,ann(x)∪ann(y) �= Z(R)

and hence by the proof of Lemma 2.1, we have diam(�(R)) = 2. ��

3 dimM(0(R)); Reduced rings

In this section , we establish some formulas for dimM (�(R)), when R is reduced.

Theorem 3.1 Let n ≥ 3 be a positive integer and R = ∏n
i=1 Z2. Then the following

statements hold.

(1) dimM (�(Z2 × Z2 × Z2)) = 2.
(2) dimM (�(

∏n
i=1 Z2)) = n, for n ≥ 4.

123



Metric dimension of the complement... Page 3 of 9   167 

Proof (1) If n = 3, then we put W = {(1, 0, 0), (0, 1, 0)}. Now, we have D((0, 0, 1)|W ) =
(2, 2), D((0, 1, 1)|W ) = (2, 1), D((1, 0, 1)|W ) = (1, 2) and D((1, 1, 0)|W ) = (1, 1).
This implies that dimM (�(Z2 × Z2 × Z2)) = 2.

(2) Assume that n ≥ 4. We show that dimM (�(
∏n

i=1 Z2)) = n. Indeed, we have the
following claims:
Claim 1. dimM (�(

∏n
i=1 Z2)) ≥ n.

Let W = {x1, x2, . . . , xk} be a metric basis for �(
∏n

i=1 Z2), where k is a non negative
integer. Since n ≥ 3, by Lemma 2.2, diam(�) ≤ 2 and hence there are exactly 2k choices
for D(x |W ), for every x ∈ Z(R)∗ \ W . Thus |Z(R)∗| − k ≤ 2k . Since |Z(R)∗| = 2n − 2,
2n − 2 − k ≤ 2k and so 2n ≤ 2k + 2 + k. Since n ≥ 4, we conclude that k ≥ n. Therefore
dimM (�(

∏n
i=1 Z2)) ≥ n.

Claim 2. dimM (�(
∏n

i=1 Z2)) ≤ n.
Let wi = (0, . . . , 0, 1, 0 . . . , 0) ∈ Z(R)∗, with 1 in i-th component and put

W = {w1, w2, . . . , wn}.
We show that W is a resolving set for �(R). Let u, v ∈ V (�(R)) \ W and u �= v. Since
diam(�(R)) ≤ 2, it is not hard to see that each component of D(u|W ) is 1 if and only if
this component in u is 1 and each component of D(u|W ) is 2 if and only if this component
in u is 0 (We note that every component of u is 0 or 1). In other words, D(u|W ) is obtained
by replacing zero components of u by 2 and nonzero components by 1. Since u �= v,
we conclude that D(u|W ) �= D(v|W ) and so W is the resolving set for �(R). Therefore
dimM (�(

∏n
i=1 Z2)) ≤ n.

By Claims 1, 2, dimM (�(
∏n

i=1 Z2)) = n, for n ≥ 4. ��
To prove Theorem 3.2, the following results are needed.

Remark 3.1 Let G be a connected graph and V1, V2, . . . , Vk be a partition of V (G) such that
for every 1 ≤ i ≤ k, x, y ∈ Vi , if and only if d(x, a) = d(y, a) for all a ∈ V (G) \ {x, y}.
Then dimM (G) ≥ |V (G)| − k.

Proof [10, Theorem 2.1]. ��
Lemma 3.1 Suppose that R ∼= R1 × · · · × Rn, where Ri is a finite local ring for every
1 ≤ i ≤ n and x, y ∈ V (�(R)).

(1) If Rx = Ry, then N (x) = N (y).
(2) N (x) = N (y) if and only if d(x, a) = d(y, a) for all a ∈ V (G) \ {x, y}.
Proof (1) Suppose that x − a is an edge of �(R). Hence ax �= 0. Since Rx = Ry, we have

annR(x) = annR(y) and so we deduce that ay �= 0. This means that y − a is an edge of
�(R) and thus N (x) ⊆ N (y). Similarly, N (y) ⊆ N (x), as desired.

(2) (�⇒) Assume that d(x, a) = 1 for some a ∈ V (G) \ {x, y}. Since N (x) = N (y),
d(y, a) = 1. Now, assume that d(x, a) = 2 for some a ∈ V (G)\{x, y}. Then there exists
k ∈ V (G) such that x −k−a is a path from x to a. Hence k ∈ N (x) = N (y). Therefore,
y − k − a is a path from y to a. This means that d(y, a) ≤ 2. Since d(x, a) = 2 and
N (x) = N (y), we have d(y, a) = 2. Finally, if d(x, a) = 3 for some a ∈ V (G)\ {x, y},
then since diam(�(R)) ≤ 3, we have d(x, a) = 3.

(⇐�) It is obvious. ��
Theorem 3.2 Suppose that R ∼= F1 × · · · × Ft × F ′

1 × · · · × F ′
s , where every Fi �= Z2 is a

finite field, for 1 ≤ i ≤ t and F ′
i

∼= Z2, for every 1 ≤ i ≤ s. Then the following statements
hold.
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(1) If s ≥ 2, then dimM (�(R)) = |Z(R)∗| − 2t+s + s + 2.
(2) If s = 1, then dimM (�(R)) = |Z(R)∗| − 2t+1 + 2.
(3) If s = 0, then dimM (�(R)) = |Z(R)∗| − 2t + 2.

Proof (1) Let
A = {(x1, . . . , xt+s) ∈ V (�(R)) | xi ∈ {0, 1} for every 1 ≤ i ≤ t + s} and B =

{(1, . . . , 1
︸ ︷︷ ︸

t

, x1, . . . , xs) ∈ A}.

We complete the proof in two steps.
Step 1. We show that dimM (�(R)) ≥ |Z(R)∗| − 2t+s + s + 2.
Assume that x = (x1, . . . , xt+s) and y = (y1, . . . , yt+s) are vertices of �(R). Define

the relation ∼ on V (�(R)) as follows: x ∼ y, whenever “Rx = Ry”. It is easily seen
that ∼ is an equivalence relation on V (�(R)). By [x], we denote the equivalence class of
x . Let a = (a1, . . . , at+s) and b = (b1, . . . , bt+s) be two elements of [x]. Since a ∼ b,
Ra = Rb, and so by Lemma 3.1, N (a) = N (b). This, together with the fact that the number
of equivalence classes is 2t+s − 2 and Remark 3.1, imply that

(Z(R)∗ \ A) ⊆ W ′, where W ′ is a metric basis for �(R), because |[x] ∩ A| = 1.
Let a ∈ B. Then d(a, b) = 1 for every b ∈ Z(R)∗ \ A. This means that to resolve the

elements of B the set W ′ must have some more elements of A. Since |B| = 2s − 1, W ′ has
at least s more elements. Thus dimM (�(R)) ≥ |Z(R)∗| − 2t+s + s + 2.

Step 2. We show that dimM (�(R)) ≤ |Z(R)∗| − 2t+s + s + 2. Let
C = {(0, . . . , 0

︸ ︷︷ ︸
t

, 1, 0, . . . , 0), . . . , (0, . . . , 0
︸ ︷︷ ︸

t

, 0, . . . , 0, 1)} and W = (Z(R)∗ \ A) ∪ C .

We show that W is a resolving set for the graph �(R). Indeed, we prove that D(x |W ) �=
D(y|W ), for all x, y ∈ Z(R)∗ \W with x �= y. For this purpose, we divide the set of vertices
of Z(R)∗ \ W into following subsets.

V1 = {(x1, . . . , xt︸ ︷︷ ︸
t

, y1, . . . , ys︸ ︷︷ ︸
) | xi = 0 for some 1 ≤ i ≤ s} and

V2 = {(1, . . . , 1
︸ ︷︷ ︸

t

, y1, . . . , ys︸ ︷︷ ︸
)}.

We continue the proof in the following cases.
Case 1. Let x = (x1, . . . , xt︸ ︷︷ ︸

t

, y1, . . . , ys︸ ︷︷ ︸
) ∈ V1 and ui ∈ U (Fi ) with ui �= 1 for every

1 ≤ i ≤ t . Put z = (a1, . . . , at︸ ︷︷ ︸
t

, b1, . . . , bs︸ ︷︷ ︸
), where xi = 0 and y j = 0 if and only if

ai = ui and b j = 1, respectively and xi = 1 and y j = 1 if and only if ai = 0 and b j = 0,
respectively. Then we can easily get z ∈ W and d(x, z) �= d(y, z) for every y ∈ V1 ∪ V2.
This implies that D(x |W ) �= D(y|W ).

Case 2. If x, y ∈ V2, then by the proof of Theorem 3.1, for some z ∈ C , d(x, z) �=
d(y, z) where C = {(0, . . . , 0

︸ ︷︷ ︸
t

, 1, 0, . . . , 0), . . . , (0, . . . , 0
︸ ︷︷ ︸

t

, 0, . . . , 0, 1)}. Hence D(x |W ) �=

D(y|W ). Therefore, W is a resolving set.
By Steps 1,2, dimM (�(R)) = |Z(R)∗| − 2t+s + s + 2.
(2, 3) If s ≤ 1, then in the proof of part 1, we have |B| = 1 or B = ∅. So it is easy to see

that (2) and (3) hold. ��
Example 3.1 (1) Let R ∼= Z3 × Z2 × Z2. Then (2, 0, 1) ∈ [(1, 0, 1)], (2, 1, 0) ∈ [(1, 1, 0)]

and (2, 0, 0) ∈ [(1, 0, 0)], {(2, 0, 1), (2, 1, 0), (2, 0, 0)} ⊆ W , where W is a resolving
set for the graph �(R). On the other hand, if we put B = {(1, 0, 1), (1, 1, 0), (1, 0, 0)},
then d(a, b) = 1 for every a ∈ B and b ∈ {(2, 0, 1), (2, 1, 0), (2, 0, 0)}. So we need
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to add at least 2 elements in {(2, 0, 1), (2, 1, 0), (2, 0, 0)} to resolve the elements of B.
Now, assume that W = {(2, 0, 1), (2, 1, 0), (2, 0, 0), (0, 1, 0), (0, 0, 1)}. Then we have
D((1, 0, 1)|W ) = (1, 1, 1, 2, 1), D((1, 1, 0)|W ) = (1, 1, 1, 1, 2), D((1, 0, 0)|W ) =
(1, 1, 1, 2, 2) and D((0, 0, 1)|W ) = (1, 2, 2, 2, 1). Therefore, dimM (�(R)) = 5.

(2) Let R ∼= Z3 × Z3 × Z2. Then with a same method as in (1),
{(2, 2, 0), (2, 0, 0), (2, 0, 1), (2, 1, 0), (1, 2, 0), (0, 2, 1), (0, 2, 0)} ⊆ W . Since |B| =
1,we put {(2, 2, 0), (2, 0, 0), (2, 0, 1), (2, 1, 0), (1, 2, 0), (0, 2, 1), (0, 2, 0)} = W . Then
D((1, 1, 0)|W ) = (1, 1, 1, 1, 1, 1, 1),
D((1, 0, 1)|W ) = (1, 1, 1, 1, 1, 1, 2),
D((0, 1, 1)|W ) = (1, 2, 1, 1, 1, 1, 1),
D((1, 0, 0)|W ) = (1, 1, 1, 1, 1, 2, 2),
D((0, 1, 0)|W ) = (1, 2, 2, 1, 1, 1, 1),
D((0, 0, 1)|W ) = (2, 2, 1, 2, 2, 1, 2).
Therefore, dimM (�(R)) = 7.

4 dimM(0(R)); Non-reduced rings

In this section, we compute dimM (�(R)) in case R is a non-reduced ring. We start with the
following result.

Theorem 4.1 Suppose that R ∼= R1 × · · · × Rn, where (Ri ,mi ) is a finite local ring such
that m2

i = 0 and |mi | = 2 for every 1 ≤ i ≤ n and n ≥ 2. Then dimM (�(R)) =
4n − 3n − 2n + n + 1.

Proof For every 1 ≤ i ≤ n, suppose thatmi = {0, ai }, where ai is a non-zero zero divisor of
Ri . Hence Ri = {0, ai , 1, 1 + ai }, where U (Ri ) = {1, 1 + ai } (note that |Z(R)| = 2 if and
only if R ∼= Z4 or R ∼= Z2[X ]/(X2)). Assume that 1 + ai = bi and consider the following
sets.

A = {(x1, . . . , xn) ∈ V (�(R)) | xi = bi for some 1 ≤ i ≤ n} and
B = {(x1, . . . , xn) ∈ V (�(R)) \ A | xi �= 0 for every 1 ≤ i ≤ n}.
We complete the proof in two steps.
Step 1. We show that dimM (�(R)) ≥ 4n − 3n − 2n + n + 1.
Let x = (x1, . . . , xn) ∈ A and y = (y1, . . . , yn) ∈ V (�(R)) \ A such that yi = 1 if

and only if xi = bi for every 1 ≤ i ≤ n and other components of y are the same as the
components of x . In this case it is clear that N [x] = N [y], and hence by Remark 3.1, x ∈ W ′
or y ∈ W ′, for every metric basis W ′. Let W ′′ be a metric basis such that A ⊆ W ′′. Now, let
a ∈ B. Then d(a, b) = 1 for every b ∈ A ∪ B. This means that to resolve the elements of B
the set W ′′ must have some more elements of V (�(R)) \ A. Since |B| = 2n − 1, W ′′ has at
least n more elements. Thus dimM (�(R)) ≥ 4n − 3n − 2n + n + 1.

Step 2. We show that dimM (�(R)) ≤ 4n − 3n − 2n + n + 1. Let
C = {(a1, 0, . . . , 0), (0, a2, 0, . . . , 0), . . . , (0, . . . , 0, an)} and W = A ∪ C . We show

thatW is a resolving set for the graph �(R). We divide the set of vertices of V (�(R))\ A∪C
as below.

V1 = {(x1, . . . , xn) ∈ V (�(R)) \ A ∪ C | xi �= 0 for every 1 ≤ i ≤ n},
V2 = {(x1, . . . , xn) ∈ V (�(R)) \ A ∪ C | xi ∈ {0, 1} for every 1 ≤ i ≤ n},
V3 = {(x1, . . . , xn) ∈ V (�(R)) \ A ∪ C | xi ∈ {0, ai } for every 1 ≤ i ≤ n} and
V4 = {(x1, . . . , xn) ∈ V (�(R))\ A∪C | xi = 0, x j = 1, xk = ak for some 1 ≤ i, j, k ≤

n}.
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Also, we consider the following partition for W :
E = {(b1, 0, . . . , 0), (0, b2, 0, . . . , 0), . . . , (0, . . . , 0, bn)},
C = {(a1, 0, . . . , 0), (0, a2, 0, . . . , 0), . . . , (0, . . . , 0, an)} and
D = W \ E ∪ C .
In fact, we arrange the elements of W as follows.
W = {((b1, 0, . . . , 0), . . . , (0, . . . , 0, bn)︸ ︷︷ ︸

∈E
), ((a1, 0, . . . , 0), . . . , (0, . . . , 0, an)︸ ︷︷ ︸

∈C
),

d1, . . . , d|D|
︸ ︷︷ ︸

∈D
)}.

Now we check the distance vectors of the elements of V1, . . . , V4 with respect to W .
Let x = (x1, . . . , xn) ∈ V1. Then since xi �= 0, we can easily get

D(x |W ) = ( 1, . . . , 1
︸ ︷︷ ︸

n components

, s1, . . . , sn︸ ︷︷ ︸
n components

, d1, . . . , d|D|
︸ ︷︷ ︸
|D| components

)

such that si = 1 if and only if xi = 1 and s j = 2 if and only if x j = a j for every 1 ≤ i, j ≤ n.
Next, let x = (x1, . . . , xn) ∈ V2. Then

D(x |W ) = ( t1, . . . , tn︸ ︷︷ ︸
n components

, s1, . . . , sn︸ ︷︷ ︸
n components

, d1, . . . , d|D|
︸ ︷︷ ︸
|D| components

)

such that ti = si = 1 if and only if xi = 1 and t j = s j = 2 if and only if x j = a j for every
1 ≤ i, j ≤ n.

Let x = (x1, . . . , xn) ∈ V3. Then

D(x |W ) = ( t1, . . . , tn︸ ︷︷ ︸
n components

, 2, , 2, . . . , 2
︸ ︷︷ ︸
n components

, d1, . . . , d|D|
︸ ︷︷ ︸
|D| components

)

such that ti = 1 if and only if xi = ai and t j = 2 if and only if x j = 0 for every 1 ≤ i, j ≤ n.
Finally, let x = (x1, . . . , xn) ∈ V4. Then

D(x |W ) = ( t1, . . . , tn︸ ︷︷ ︸
n components

, s1, . . . , sn︸ ︷︷ ︸
n components

, d1, . . . , d|D|
︸ ︷︷ ︸
|D| components

)

such that ti = 1 if and only if xi = 1 or xi = ai and s j = 2 if and only if x j = a j or x j = 0
for every 1 ≤ i, j ≤ n.

Now, it is easy to see that for all x, y ∈ V = ∪Vi , with x �= y, we have D(x |W ) �=
D(y|W ). Hence W is a resolving set for the graph �(R).

By Steps 1,2, dimM (�(R)) = 4n − 3n − 2n + n + 1. ��
Theorem 4.2 Suppose that R ∼= R1 × · · · × Rn, where (Ri ,mi ) is a finite local ring such
that m2

i = 0 and |mi | ≥ 3 for every 1 ≤ i ≤ n. Then dimM (�(R)) = |Z(R)∗| − 3n + 2.

Proof Assume that ai ∈ mi , for some non-zero zero-divisor element ai of Ri , and
A = {(x1, . . . , xn) ∈ V (�(R)) | xi ∈ {0, 1, ai } for every 1 ≤ i ≤ n}.
We complete the proof in two steps.
Step 1. We show that dimM (�(R)) ≥ |Z(R)∗| − 3n + 2. By a similar proof to that of

Theorem 4.1, there exists x ∈ A such that N [x] = N [y], for every y ∈ Z(R)∗ \ A. Hence by
Remark 3.1, Z(R)∗ \ A ⊆ W ′, where W ′ is a metric basis for �(R). Thus dimM (�(R)) ≥
|Z(R)∗| − 3n + 2.

Step 2. We show that dimM (�(R)) ≤ |Z(R)∗| − 3n + 2.
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Let W = Z(R)∗ \ A. We show that W is a resolving set for the graph �(R). We divide
the set of vertices of A as below.

V1 = {(x1, . . . , xn) ∈ A | xi �= 0 for every 1 ≤ i ≤ n},
V2 = {(x1, . . . , xn) ∈ A | xi ∈ {0, 1} for every 1 ≤ i ≤ n},
V3 = {(x1, . . . , xn) ∈ A | xi ∈ {0, ai } for every 1 ≤ i ≤ n} and
V4 = {(x1, . . . , xn) ∈ A | xi = 0, x j = 1, xk = ak for some 1 ≤ i, j, k ≤ n}.
Also assume that ui ∈ U (Ri ) and 0 �= bi ∈ mi with ui �= 1 and bi �= ai for every

1 ≤ i ≤ n. Then we consider the following partition for W .
E = {(u1, 0, . . . , 0), (0, u2, 0, . . . , 0), . . . , (0, . . . , 0, un)},
C = {(b1, 0, . . . , 0), (0, b2, 0, . . . , 0), . . . , (0, . . . , 0, bn)} and
D = W \ E ∪ C .
In fact, we arrange the elements of W as follows.
W = {((u1, 0, . . . , 0), . . . , (0, . . . , 0, un)︸ ︷︷ ︸

∈E
), ((b1, 0, . . . , 0), . . . , (0, . . . , 0, bn)︸ ︷︷ ︸

∈C
),

d1, . . . , d|D|
︸ ︷︷ ︸

∈D
)}. Now, by a similar proof to that of Theorem 4.1, D(x |W ) �= D(y|W ), for all

x, y ∈ V = ∪Vi , with x �= y.
By Steps 1,2, dimM (�(R)) = |Z(R)∗| − 3n + 2. ��

Theorem 4.3 Suppose that R ∼= R1 × · · · × Rn × R′
1 × · · · × R′

m, (Ri ,mi ) is a finite local
ring such that m2

i = 0 and |mi | ≥ 3 for every 1 ≤ i ≤ n and (R′
i ,m

′
i ) is a local ring with

|m′
i | = 2 for every 1 ≤ i ≤ m with m ≥ 2. Then dimM (�(R)) = |Z(R)∗| − 3n+m +m + 2.

Proof Assume that 0 �= ai ∈ mi , 0 �= a′
i ∈ m′

i , for some elements ai ∈ Ri , a′
i ∈ R′

i ,
A = {(x1, . . . , xn+m) ∈ V (�(R)) | xi ∈ {0, 1, ai , a′

j }},
B = {(1, . . . , 1

︸ ︷︷ ︸
n

, x1, . . . , xm) ∈ A | xi �= 0 for every 1 ≤ i ≤ m} and

C = {(0, . . . , 0
︸ ︷︷ ︸

n

, a′
1, 0, . . . , 0), . . . , (0, . . . , 0︸ ︷︷ ︸

n

, 0, . . . , 0, a′
m)}.

If we letW = (Z(R)∗\A)∪C , then a similar argument to that of the proof of Theorem 4.1
shows that W is a metric basis for the graph �(R) and hence dimM (�(R)) = |Z(R)∗| −
3n+m + m + 2. ��

We end this paper with the following result.

Corollary 4.1 Let R ∼= S1 × S2 × S3 × S4, where S1 ∼= R1 × · · · × Rn, S2 ∼= R′
1 × · · · × R′

m,
S3 ∼= F1 ×· · ·× Ft , S4 = F ′

1 ×· · ·× F ′
s such that (Ri ,mi ) is a finite local ring withm2

i = 0,
|mi | ≥ 3 for every 1 ≤ i ≤ n, (R′

i ,m
′
i ) is a local ring with |m′

i | = 2 for every 1 ≤ i ≤ m,
Fi is a finite field with |Fi | > 2, for every 1 ≤ i ≤ t and F ′

i
∼= Z2, for every 1 ≤ i ≤ s,

m, s ≥ 2. Then dimM (�(R)) = |Z(R)∗| − 3n+m2t+s + m + s + 2.

Proof Assume that 0 �= ai ∈ mi , 0 �= a′
i ∈ m′

i for some elements ai ∈ Ri , a′
i ∈ R′

i ,
A = {(x1, . . . , xn+m+t+s) ∈ V (�(R)) | xi ∈ {0, 1, ai , a′

j }},
B = {(1, . . . , 1

︸ ︷︷ ︸
n

, x1, . . . , xm, 1, . . . , 1
︸ ︷︷ ︸

t+s

) ∈ A | xi �= 0 for every 1 ≤ i ≤ m} and

C = {(1, . . . , 1
︸ ︷︷ ︸
n+m+t

, x1, . . . , xs) ∈ A | xi = 0, 1 1 ≤ i ≤ s}.

We complete the proof in two steps.
Step 1. We show that dimM (�(R)) ≥ |Z(R)∗| − 3n+m2t+s + m + s + 2.
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A similar proof to that of Theorem 4.1 shows that Z(R)∗ \ A ⊆ W ′, whereW ′ is a metric
basis for�(R). Again, by a similar argument used in the proof of Theorem 4.1, let a ∈ B∪C .
Thend(a, b) = 1 for everyb ∈ Z(R)∗\A. Thismeans that to resolve the elements of B∪C the
setW ′ must have somemore elements of V (�(R))\ A. Since |B| = 2m −1 and |C | = 2s −1,
W ′ has at leastm+s more elements. Thus dimM (�(R)) ≥ |Z(R)∗|−3n+m2t+s +m+s+2.

Step 2. We show that dimM (�(R)) ≤ |Z(R)∗| − 3n+m2t+s + m + s + 2.
Let
B ′ = {(0, . . . , 0

︸ ︷︷ ︸
n

, a′
1, 0, . . . , 0︸ ︷︷ ︸

m

, 0, . . . , 0
︸ ︷︷ ︸

t+s

), . . . , (0, . . . , 0
︸ ︷︷ ︸

n

, 0, . . . , 0, a′
m︸ ︷︷ ︸

m

, 0, . . . , 0
︸ ︷︷ ︸

t+s

)},

C ′ = {(0, . . . , 0
︸ ︷︷ ︸
n+m+t

, 1, 0, . . . , 0), . . . , (0, . . . , 0
︸ ︷︷ ︸
n+m+t

, 0, . . . , 0, 1)} andW = {Z(R)∗ \ A}∪{B ′ ∪

C ′}. By similar proofs to those of Theorems 4.3 and 3.2, we get {Z(R)∗ \ A} ∪ {B ′ ∪C ′} is
a resolving set. Thus dimM (�(R)) ≤ |Z(R)∗| − 3n+m2t+s + m + s + 2.

By Steps 1,2 dimM (�(R)) = |Z(R)∗| − 3n+m2t+s + m + s + 2. ��
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