
METHODOLOGIES FOR DISCRETE EVENT

MODELING AND SIMULATION

SYSC 5104

Assignment #1

Simulation of location update in GSM mobile network

Dan Liu

Part I: The Conceptual Model
Description of Problem
Mobility is one of the most important functionality of GSM mobile network, which tracks where
MS(mobile subscriber, such as cell phone) are and allows various network services to be
delivered to them seamlessly in various locations. Location update is a crucial procedure to
implement the functionality of mobility in the GSM mobile network.
Briefly, location update is a procedure of periodically updating the exact current position of
mobile subscriber, commonly a location area in the GSM mobile network. With maintained latest
location information of MS, the GSM mobile network is able to deliver various network services
to them when required.  
 
In this assignment, I plan to build a basic model of the GSM mobile network and then simulate
the location update procedure in different scenarios.

Brief Sketch of Model Structure
First of all, I give out a brief sketch of the GSM mobile network where location update procedure
is performed.

Description of Components
MS represents terminal clients of the GSM mobile network, such as cell phone and laptop.

As shown, basically, the GSM mobile network consists of 2 parts, Wireless access network and
Core network.

1.Wireless access network(WAN)

MS connects to Wireless access network to access the GSM mobile network through wireless
channel. MS sends and receives message to the GSM mobile network through Wireless access
network.

To be more specific, there are 2 components in Wireless access network, BTS(Base
Transceiver Station) and BSC(Base Station Controller). BTS is a outdoor station in charge of
sending and receiving wireless signal while BSC is the controller part of Wireless access
network.

2.Core network(CN)

Namely, Core network plays a core role in the GSM mobile network, which provides most of
core functionalities of the network delivered to MS(such as call and SMS). A Core network can
be much more complex than illustrated. I simplify its’ structure which only involves related parts
with location update procedure.

As shown, MSC(Mobile Switching Center) and HLR(Home Location Register) are 2 basic parts
of Core network. MSC is one of the most important part of Core network, which implements the
majority of business logics processing, including call switching, data routing, MS information
storage and so on. Among them, MS information storage will be discussed detailedly in my
assignment because location update procedure is just one application of it.

Besides, HLR is also very important part of Core network where lots of essential data of MS is
stored. It plays a key role in location update procedure in some scenarios.

Part II: DEVS Formal Specification
As described in the part I, there are 3 levels in the entire simulated system which contains 5
atomic models totally: MS, BTS, BSC, MSC and HR. BTS and BSC are coupled to form WAN
model while MSC and HR are coupled to form CN model. WAN and CN compose the complete
GSM mobile network which provides mobile service to MS. MS, WAN and CN are coupled to
form TOPONE model which simulates the entire location update procedure in GSM mobile
network.

Next, formalism specification of atomic models and coupled models will be presented
successively as illustrated in the following figure:

Formalism Specification of Atomic Models

1.MS

State Variables:
sigma = INFINITY, phase = IDLE; // { IDLE, UPDATE }
update_result = 0; // { DEFAULT, SUCC, FAIL }
imsi = XXX; // IMSI of MS
ta(IDLE) = INFINITY
ta(UPDATE) = 1min

X = { force_update, update_ack }
Y = { update_request }
S = { {sigma, phase, update_result, imsi} }

δext(S, e, X)
{
 case phase

 IDLE:
 if X is from force_update
 phase = UPDATE;

 UPDATE:
 if X is from update_ack
 update_result = SUCC;
 phase = IDLE;

TOPONE
GSM Mobile Network

Core Network
(CN)

MSC

HR

Wireless Access
Network (WAN)MS

BTS

BSC

AckOutput

ReqInput

UpdateReqInReqOuput

AckInput UpdateAckOut

In

}

δint(S, e)
{
 case phase

 IDLE:
 update_result = DEFAULT;
 paasivate();

 UPDATE:
 passivate();
}

λ(UPDATE)
{
 send update_request to out port;
}

2.BTS

X = { update_request_i, update_ack_i }
Y = { update_request_o, update_ack_o }
S = { IDLE, UPDATING, ACK }
ta(IDLE) = INFINITY
ta(UPDATING) = 10s
ta(ACK) = 10s

δext(S, e, X)
{
 case phase

 IDLE:
 if X is from update_request_i
 phase = UPDATING;

 ACK:
 if X is from update_ack_i
 phase = ACK;
}

δint(S, e, X)
{
 case phase
 IDLE:

 passivate();

 UPDATING:
 phase = ACK;
 passivate();

 ACK:
 phase = IDLE;
}

λ(UPDATING)
{
 send update_request to out port update_request_o;
}
λ(ACK)
{
 send update_ack to out port update_ack_o;
}

3.BSC

X = { update_request_i, update_ack_i }
Y = { update_request_o, update_ack_o }
S = { IDLE, UPDATING, ACK }

δext(S, e, X)
{
 case phase

 IDLE:
 if X is from update_request_i
 phase = UPDATING;
 ACK:
 if X is from update_ack_i
 phase = ACK;
}

δint(S, e)
{
 case phase
 IDLE:
 passivate();
 UPDATING:
 phase = ACK;
 passivate();

 ACK:
 phase = IDLE;
}

λ(UPDATING)
{
 send update_request to out port update_request_o;
}
λ(ACK)
{
 send update_ac to out port update_ack_o;
}

4.MSC

X = { update_request_i, hr_ack_i }
Y = { hr_request_o, update_ack_o }
S = { IDLE, UPDATING, ACK, REQ_HR }

δext(S, e, X)
{
 case phase

 IDLE:
 if X is from update_request_i
 {
 if (isSameMSC)
 {
 phase = UPDATING;
 }
 else
 {
 phase = REQ_HR
 }
 }

 REQ_HR:
 if X is from hr_ack_i
 phase = ACK;
}

δint(S, e)
{
 case phase
 IDLE:

 passivate();
 UPDATING:
 phase = ACK;
 passivate();
 ACK:
 phase = IDLE;
 REQ_HR:
 passivate();
}

λ(REQ_HR)
{
 send hr_request to out port hr_request_o;
}
λ(ACK)
{
 send update_ack to out port update_ack_o;
}

5.HR

X = { hr_request_i }
Y = { hr_ack_o }
S = { IDLE, UPDATING, ACK }

δext(S, e, X)
{
 case phase

 idle:
 if x from hr_request_i
 phase = updating;

}

δint(S, e)
{
 case phase
 idle:
 passivate();
 Updating:
 phase = Ack;
 Ack:
 phase = idle;
}

λ(ACK)
{
 send hr_ack to out port hr_ack_o;
}

Formalism Specification of Coupled Models

1,WAN coupled model(BTS, BSC)

X = { ReqInput, AckInput }
Y = { ReqOutput, AckOutput }
D = { BTS, BSC }
I(BTS) = {BSC}
I(BSC) = {BTS}
Z(BTS) = BSC
Z(BSC) = BTS
SELECT: ({ BTS, BSC }) = BSC

2,CN coupled model(MSC, HR)

X = { UpdateReqIn }
Y = { UpdateAckOut }
D = { MSC, HR }
I(MSC) = {HR}
I(HR) = {MSC}
Z(MSC) = HR
Z(HR) = MSC
SELECT: ({MSC, HR}) = MSC

3,TOPONE coupled model(MS, WAN, CN)

X = { In }
Y = { NULL }
D = { MS, WAN, CN }
I(MS) = { WAN }
I(WAN) = { CN }
Z(MS) = WAN
Z(WAN) = CN
SELECT: ({MS, WAN, CN}) = CN

Test Strategy

Firstly, atomic models will be tested individually using different input events files(.ev) to assure
the correctness of atomic models. Then coupled models(WAN, CN, TOPONE) will be tested
integrating atomic models using different input events files in order to verify the correctness of
entire simulation system.

Part III: Implementation and Results
Atomic models and coupled models defined in part II are implemented using CD++. Relevant
source code files are packaged with this document.

After implementation, each atomic model and coupled model are tested individually using
different input event files(.ev), generating corresponding output files which shows correct results
as expected. Correct results as expected prove the correctness of models, including atomic
models, coupled models and entire simulation system.

Analysis of execution and result of each models is presented as following successively.

1.MS

As defined in source code file, I use some minus integers to represent instructions
communicated between models which will be contained in input event files(.ev) to simulate input
events in test.

For MS atomic model, It is assumed that a force_update_request is received every 30ms and
then 15ms after this a update_ack is received, by defining input event sequence in .ev file as
follow:

Posing above input event file, MS atomic model generated correct output results as expected
shown in the follow:

00:00:00:15 In -2
00:00:00:30 In -3
00:00:00:45 In -2
00:00:00:60 In -3
00:00:00:75 In -2
00:00:00:90 In -3

//define -100 - -1 as instructions contained in message
#define FAIL -1
#define FORCE_UPDATE -2
#define FORCE_UPDATE_ACK -3
#define UPDATE_REQ -4
#define UPDATE_ACK -5

00:00:00:025 out -4
00:00:00:055 out -4
00:00:00:085 out -4

The results shown above is consistent with expectation which could prove the correctness of
this atomic model.

2.BTS
For BTS atomic model, It is assumed that a update_request is received every 30ms and then
15ms after this a update_ack is received, by defining input event sequence in .ev file as follow:

Posing above input event file, BTS atomic model generated correct output results as expected
shown in the follow:

The results shown above is consistent with expectation which could prove the correctness of
this atomic model.

3.BSC
For BSC atomic model, It is assumed that a update_request is received every 30ms and then
15ms after this a update_ack is received, by defining input event sequence in .ev file as follow:

Posing above input event file, BSC atomic model generated correct output results as expected
shown in the follow:

00:00:00:15 ReqInput -4
00:00:00:30 AckInput -5
00:00:00:45 ReqInput -4
00:00:00:60 AckInput -5
00:00:00:75 ReqInput -4
00:00:00:90 AckInput -5

00:00:00:025 reqoutput -4
00:00:00:040 ackoutput -5
00:00:00:055 reqoutput -4
00:00:00:070 ackoutput -5
00:00:00:085 reqoutput -4
00:00:00:100 ackoutput -5

00:00:00:15 ReqInput -4
00:00:00:30 AckInput -5
00:00:00:45 ReqInput -4
00:00:00:60 AckInput -5
00:00:00:75 ReqInput -4
00:00:00:90 AckInput -5

00:00:00:025 reqoutput -4
00:00:00:040 ackoutput -5
00:00:00:055 reqoutput -4
00:00:00:070 ackoutput -5
00:00:00:085 reqoutput -4
00:00:00:100 ackoutput -5

The results shown above is consistent with expectation which could prove the correctness of
this atomic model.

4.MSC
In the purpose of simplifying the stuff, for MSC atomic model, I only consider the most complex
scenario that MS performs location update in different MSC scope which means MSC will
interact with HR to update old information stored in HR.

In my simulation, It is assumed that a update_request is received by MSC every 30ms and then
15ms after this a hr_ack is received, by defining input event sequence in .ev file as follow:

Posing above input event file, MSC atomic model generated correct output results as expected
shown in the follow:

The results shown above is consistent with expectation which could prove the correctness of
this atomic model.

5.HR
For HR atomic model, It is assumed that a hr_request is received every 30ms, by defining input
event sequence in .ev file as follow:

Posing above input event file, HR atomic model generated correct output results as expected
shown in the follow:

00:00:00:15 UpdateReqIn -4
00:00:00:30 HRAckIn -7
00:00:00:45 UpdateReqIn -4
00:00:00:60 HRAckIn -7
00:00:00:75 UpdateReqIn -4
00:00:00:90 HRAckIn -7

00:00:00:15 In -6
00:00:00:45 In -6
00:00:00:75 In -6
00:00:00:105 In -6
00:00:00:135 In -6
00:00:00:165 In -6

00:00:00:015 hrreqout -6
00:00:00:040 updateackout -5
00:00:00:045 hrreqout -6
00:00:00:070 updateackout -5
00:00:00:075 hrreqout -6
00:00:00:100 updateackout -5

The results shown above is consistent with expectation which could prove the correctness of
this atomic model.

6.WAN coupled model
For WAN coupled model, It is assumed that a update_request is received every 90ms and then
45ms after this a update_ack is received, by defining input event sequence in .ev file as follow:

Posing above input event file, WAN coupled model generated correct output results as expected
shown in the follow:

The results shown above is consistent with expectation which could prove the correctness of
this coupled model.

7.CN coupled model
For CN coupled model, It is assumed that a update_request is received every 60ms, by defining
input event sequence in .ev file as follow:

Posing above input event file, CN coupled model generated correct output results as expected
shown in the follow:

00:00:00:15 ReqInput -4
00:00:00:60 AckInput -5
00:00:00:105 ReqInput -4
00:00:00:150 AckInput -5
00:00:00:195 ReqInput -4
00:00:00:240 AckInput -5

00:00:00:035 out -7
00:00:00:065 out -7
00:00:00:095 out -7
00:00:00:125 out -7
00:00:00:155 out -7
00:00:00:185 out -7

00:00:00:035 reqoutput -4
00:00:00:080 ackoutput -5
00:00:00:125 reqoutput -4
00:00:00:170 ackoutput -5
00:00:00:215 reqoutput -4
00:00:00:260 ackoutput -5

00:00:00:15 UpdateReqIn -4
00:00:00:75 UpdateReqIn -4
00:00:00:135 UpdateReqIn -4

The results shown above is consistent with expectation which could prove the correctness of
this coupled model.

8.TOPONE coupled model
For TOPONE coupled model, It is assumed that a force_update_request is received every 1s,
by defining input event sequence in .ev file as follow:

As predicted, there is no output generated after simulation, posing above input event file.
However, we can check the console output to track the execution of simulation which is shown
as follow:

00:00:00:045 updateackout -5
00:00:00:105 updateackout -5
00:00:00:165 updateackout -5

00:00:00:15 In -2
00:00:01:15 In -2
00:00:02:15 In -2

MSC initFunction()
HR initFunction()
BTS initFunction()
BSC initFunction()
MS initFunction()
MSC outputFunction() at 00:00:00:000
MSC internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

HR outputFunction() at 00:00:00:000
HR internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

BTS outputFunction() at 00:00:00:000
BTS internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

BSC outputFunction() at 00:00:00:000
BSC internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

MS outputFunction() at 00:00:00:000
MS internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

MS externalFunction() at 00:00:00:015, value: -2
I received FORCE_UPDATE ext message -2 at 00:00:00:01

MS outputFunction() at 00:00:00:025
I sent update request with imsi 123456 at 00:00:00:025

MS internalFunction()
The input state is UPDATE
Call passivate()
The Output state is UPDATE

BTS externalFunction() at 00:00:00:025, value: -4
I received UPDATE_REQ ext message -4 at 00:00:00:025

BTS outputFunction() at 00:00:00:035
I sent update request at 00:00:00:035

BTS internalFunction()
The input state is UPDATE
Call passivate()
The Output state is ACK

BSC externalFunction() at 00:00:00:035, value: -4
I received UPDATE_REQ ext message -4 at 00:00:00:035

BSC outputFunction() at 00:00:00:045
I sent update request at 00:00:00:045

BSC internalFunction()
The input state is UPDATE
Call passivate()
The Output state is ACK

MSC externalFunction() at 00:00:00:045, value: -4
I received UPDATE_REQ ext message -4 at 00:00:00:045

MSC outputFunction() at 00:00:00:045
I sent HR request at 00:00:00:045

MSC internalFunction()
The input state is REQ_HR
Call passivate()
The Output state is REQ_HR

HR externalFunction() at 00:00:00:045, value: -6
I received HR_REQ ext message -6 at 00:00:00:045

HR outputFunction() at 00:00:00:055
HR internalFunction()

The input state is UPDATE
The Output state is ACK_UPDATE

HR outputFunction() at 00:00:00:065
I sent update ack at 00:00:00:065

HR internalFunction()
The input state is ACK_UPDATE
The Output state is IDLE

MSC externalFunction() at 00:00:00:065, value: -7
I received HR_ACK ext message -7 at 00:00:00:065

HR outputFunction() at 00:00:00:065
HR internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

MSC outputFunction() at 00:00:00:075
I sent update ack at 00:00:00:075

MSC internalFunction()
The input state is ACK_UPDATE
The Output state is IDLE

BSC externalFunction() at 00:00:00:075, value: -5
I received UPDATE_ACK ext message -5 at 00:00:00:075

MSC outputFunction() at 00:00:00:075

MSC internalFunction()
The input state is IDLE
Call passivate()
The Output state is IDLE

BSC outputFunction() at 00:00:00:085
I sent update ack at 00:00:00:085

BSC internalFunction()
The input state is ACK
The Output state is IDLE

BTS externalFunction() at 00:00:00:085, value: -5
I received UPDATE_ACK ext message -5 at 00:00:00:085

BSC outputFunction() at 00:00:00:085
BSC internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

BTS outputFunction() at 00:00:00:095
I sent update ack at 00:00:00:095

BTS internalFunction()
The input state is ACK
The Output state is IDLE

MS externalFunction() at 00:00:00:095, value: -5
I received FORCE_UPDATE_ACK ext message -5 at 00:00:00:095

BTS outputFunction() at 00:00:00:095
BTS internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

MS outputFunction() at 00:00:00:105
MS internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

MS externalFunction() at 00:00:01:015, value: -2
I received FORCE_UPDATE ext message -2 at 00:00:01:015

MS outputFunction() at 00:00:01:025
I sent update request with imsi 123456 at 00:00:01:025

MS internalFunction()
The input state is UPDATE
Call passivate()
The Output state is UPDATE

BTS externalFunction() at 00:00:01:025, value: -4
I received UPDATE_REQ ext message -4 at 00:00:01:025

BTS outputFunction() at 00:00:01:035
I sent update request at 00:00:01:035

BTS internalFunction()
The input state is UPDATE
Call passivate()
The Output state is ACK

BSC externalFunction() at 00:00:01:035, value: -4
I received UPDATE_REQ ext message -4 at 00:00:01:035

BSC outputFunction() at 00:00:01:045
I sent update request at 00:00:01:045

BSC internalFunction()
The input state is UPDATE
Call passivate()
The Output state is ACK

MSC externalFunction() at 00:00:01:045, value: -4
I received UPDATE_REQ ext message -4 at 00:00:01:045

MSC outputFunction() at 00:00:01:045
I sent HR request at 00:00:01:045

MSC internalFunction()
The input state is REQ_HR
Call passivate()
The Output state is REQ_HR

HR externalFunction() at 00:00:01:045, value: -6
I received HR_REQ ext message -6 at 00:00:01:045

HR outputFunction() at 00:00:01:055
HR internalFunction()

The input state is UPDATE
The Output state is ACK_UPDATE

HR outputFunction() at 00:00:01:065
I sent update ack at 00:00:01:065

HR internalFunction()
The input state is ACK_UPDATE
The Output state is IDLE

MSC externalFunction() at 00:00:01:065, value: -7
I received HR_ACK ext message -7 at 00:00:01:065

HR outputFunction() at 00:00:01:065
HR internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

MSC outputFunction() at 00:00:01:075
I sent update ack at 00:00:01:075

MSC internalFunction()
The input state is ACK_UPDATE
The Output state is IDLE

BSC externalFunction() at 00:00:01:075, value: -5
I received UPDATE_ACK ext message -5 at 00:00:01:075

MSC outputFunction() at 00:00:01:075
MSC internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

BSC outputFunction() at 00:00:01:085
I sent update ack at 00:00:01:085

BSC internalFunction()
The input state is ACK
The Output state is IDLE

BTS externalFunction() at 00:00:01:085, value: -5
I received UPDATE_ACK ext message -5 at 00:00:01:085

BSC outputFunction() at 00:00:01:085
BSC internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

BTS outputFunction() at 00:00:01:095
I sent update ack at 00:00:01:095

BTS internalFunction()
The input state is ACK
The Output state is IDLE

MS externalFunction() at 00:00:01:095, value: -5
I received FORCE_UPDATE_ACK ext message -5 at 00:00:01:095

BTS outputFunction() at 00:00:01:095
BTS internalFunction()

The input state is IDLE
Call passivate()

The Output state is IDLE
MS outputFunction() at 00:00:01:105
MS internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

MS externalFunction() at 00:00:02:015, value: -2
I received FORCE_UPDATE ext message -2 at 00:00:02:015

MS outputFunction() at 00:00:02:025
I sent update request with imsi 123456 at 00:00:02:025

MS internalFunction()
The input state is UPDATE
Call passivate()
The Output state is UPDATE

BTS externalFunction() at 00:00:02:025, value: -4
I received UPDATE_REQ ext message -4 at 00:00:02:025

BTS outputFunction() at 00:00:02:035
I sent update request at 00:00:02:035

BTS internalFunction()
The input state is UPDATE
Call passivate()
The Output state is ACK

BSC externalFunction() at 00:00:02:035, value: -4
I received UPDATE_REQ ext message -4 at 00:00:02:035

BSC outputFunction() at 00:00:02:045
I sent update request at 00:00:02:045

BSC internalFunction()
The input state is UPDATE
Call passivate()
The Output state is ACK

MSC externalFunction() at 00:00:02:045, value: -4
I received UPDATE_REQ ext message -4 at 00:00:02:045

MSC outputFunction() at 00:00:02:045
I sent HR request at 00:00:02:045

MSC internalFunction()
The input state is REQ_HR
Call passivate()
The Output state is REQ_HR

HR externalFunction() at 00:00:02:045, value: -6
I received HR_REQ ext message -6 at 00:00:02:045

HR outputFunction() at 00:00:02:055
HR internalFunction()

The input state is UPDATE
The Output state is ACK_UPDATE

HR outputFunction() at 00:00:02:065
I sent update ack at 00:00:02:065

HR internalFunction()
The input state is ACK_UPDATE
The Output state is IDLE

MSC externalFunction() at 00:00:02:065, value: -7
I received HR_ACK ext message -7 at 00:00:02:065

HR outputFunction() at 00:00:02:065
HR internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

MSC outputFunction() at 00:00:02:075
I sent update ack at 00:00:02:075

The results shown above is consistent with expectation which could prove the correctness of
this entire model system which simulates the location update procedure in GSM mobile network.

MSC internalFunction()
The input state is ACK_UPDATE
The Output state is IDLE

BSC externalFunction() at 00:00:02:075, value: -5
I received UPDATE_ACK ext message -5 at 00:00:02:075

MSC outputFunction() at 00:00:02:075
MSC internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

BSC outputFunction() at 00:00:02:085
I sent update ack at 00:00:02:085

BSC internalFunction()
The input state is ACK
The Output state is IDLE

BTS externalFunction() at 00:00:02:085, value: -5
I received UPDATE_ACK ext message -5 at 00:00:02:085

BSC outputFunction() at 00:00:02:085
BSC internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

BTS outputFunction() at 00:00:02:095
I sent update ack at 00:00:02:095

BTS internalFunction()
The input state is ACK
The Output state is IDLE

MS externalFunction() at 00:00:02:095, value: -5
I received FORCE_UPDATE_ACK ext message -5 at 00:00:02:095

BTS outputFunction() at 00:00:02:095
BTS internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

MS outputFunction() at 00:00:02:105
MS internalFunction()

The input state is IDLE
Call passivate()
The Output state is IDLE

Simulation ended!

