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ABSTRACT
In the literature, the role of prognostic information in Condition-Based Maintenance (CBM)
policy has been assessed based on the assumptions of perfect condition monitoring and
diagnostics. However, effective prognosis require both detection and diagnosis. This research
focuses on CBM implementation from a new perspective by using an Excel-based interface
integrated with ARENA® based Discrete Event Simulation (DES) to assess and analyse the
impact of resources and monitoring effectiveness on the key critical phases in CBM policy.
This paper seeks to understand how the influence of resources and monitoring effectiveness
affect asset availability and overall cost, and to investigate the conditions under which
prognostics-enabled CBM could be superior to classic CBM. Without optimisation, prognos-
tics-enabled CBM provided superior technical benefits; however, with optimisation, overall
cost effectiveness was achieved. The proposed model can provide maintenance decision
makers implementing CBM with numerical evidence in assessing the benefits, and adoption
of prognostics in their operation.
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1. Introduction

Performance degradation and system failure is a
common feature of the complex engineered system.
Maintenance plays a critical role in improving the
useful life of an asset. Maintenance actions that can
either be preventive maintenance (predetermined or
condition-based) or corrective maintenance are
needed to ensure a satisfactory level of system per-
formance, to minimise the probability of failure
occurrence, and to return the system back to the
operational state. To meet up with the complexities
and provide effective maintenance operations for
modern engineered systems, condition-based main-
tenance (CBM) has been advocated because of its
added advantage of performing maintenance actions
only when required, increasing system availability
and reliability, and reducing maintenance cost,
which is a very important goal for business surviva-
bility and profitability. The growing popularity of the
use of CBM in industries is necessitated by the inves-
tigations that indicated that most of the equipment
failures that happen in a system are random-related
as opposed to being age-related (Amari, McLaughlin,
& Pham, 2006). The capability of CBM to detect the
random-related failure distinguishes it from other
maintenance policies. However, in practice, CBM
implementation in industries is still lagging behind
the heralded theoretical benefits (Koochaki, Bokhorst,

Wortmann, & Klingenberg, 2011; Keizer, Flapper, &
Teunter, 2017a; Veldman, Klingenberg, &
Wortmann, 2011). As a result, the full capability of
CBM has not been achieved in practice, leading to a
growing concern about the effectiveness of CBM pol-
icy in industries implementing CBM.

Practical implementation of CBM in industries
involves using condition monitoring (detection) sys-
tem to assess and compare the current state of the
system against a specified benchmarked parameter, in
order to determine when an abnormal operating con-
dition has occurred and perform condition-based
preventive maintenance (CBPM) immediately after
the anomaly detection. This approach implemented
in practice results in some potential loss of the system
useful life since when the actual failure of the asset
will occur is unknown. Some factors influencing the
practical benefits of CBM are required planning time,
imperfect condition monitoring, deterioration uncer-
tainty, and skill level of the workforce (Azadeh,
Asadzadeh, & Seif, 2014). While CBM provides the
opportunity to gain insight into failure evolution,
Prognostics and Health Management (PHM) pro-
vides failure foresight, thereby enabling advanced
preparation for needed maintenance support. PHM
has the capability of predicting the actual remaining
useful life (RUL) of the system during operation and
provides the needed maintenance support for the
effective and efficient implementation of maintenance
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actions. PHM is a key enabler to achieve the overall
goal of CBM. PHM-enabled CBM improves system
design, operational reliability, operational availability,
asset maintainability, system safety, logistics support
systems for maintenance planning and scheduling,
reduces maintenance-induced fault and operating
cost, and ensures the optimal use of the useful life
of an item (Kim, An, & Choi, 2017, pp. 14–19).
PHM-enabled CBM approach to maintenance
requires using condition monitoring system (detec-
tion phase) for anomaly detection, isolating and iden-
tifying the fault/failure (diagnostics phase), predicting
the remaining useful life (RUL) or the future condi-
tion (prognostics phase), and selecting appropriate
maintenance actions (Ben-Daya, Kumar, & Murthy,
2016; Guillén, Crespo, Macchi, & Gómez, 2016).

Maintenance resources, such as spare parts, and
maintenance personnel, play important role in the
effective execution of maintenance actions. The abil-
ity to carry out maintenance depends on the avail-
ability of maintenance resources and is particularly
important when multiple systems or components
share a limited set of maintenance resources. The
unavailability of resources at the time of maintenance
will increase the downtime of the asset or system in
the maintenance facility. Hence, it is important to
consider the effect of available maintenance resources
information in the implementation of CBM.

Over the years, the increasing role of using simu-
lation in the modelling of complex maintenance sys-
tems has gained significant popularity in the
literature (Alabdulkarim and Ball, 2014; Duffuaa,
Ben-Daya, Al-Sultan, & Andijani, 2001; Sharma,
Yadava, & Deshmukh, 2011). The main reason for
the adoption of simulation approach is its inherent
ability to model complex systems that are analytical
restrictive, thus providing a more realistic solution to
the actual real-world process. Discrete event simula-
tion (DES) refers to the modelling technique where
changes in system states can be represented by dis-
crete events (Fishman, 2013). DES has been exten-
sively used in applications, such as manufacturing
systems, health, defense, transportation, supply
chains, and service industries (Robinson, 2014, p.
10). The capability of DES in modelling detailed
operation and item tracking, providing visual inter-
active environment and experimentation for a better
understanding of the system, and providing means of
integrating a greater range of factors with adaptable
fidelity, make DES more appropriate for modelling
complex maintenance systems (Robinson, 2010,
Chapter 2; Warrington, Jones, & Davis, 2002).

The objective of this paper is to assess with and
without optimisation the impact of resources (spare
parts and maintenance workers), and monitoring
effectiveness (imperfect condition monitoring, imper-
fect diagnostics, and imperfect prognostics) on CBM

using DES on a system-wide level. The monitoring
levels considered in this paper corresponds to the key
critical phases required in achieving the full capability
of CBM, and they are given as:

● Classic CBM, where only condition monitoring
is implemented in monitoring the asset.

● Diagnostics-enabled CBM, where diagnostics
capability is combined with condition monitor-
ing in monitoring the asset.

● Prognostics-enabled CBM, where condition
monitoring (ie, detection of abnormal operating
condition), diagnostics (ie, isolation and identi-
fication of the abnormal state), and prognostics
(ie, prediction of failure evolution (RUL)) are all
integrated to monitor the asset.

2. Literature review

2.1. The role of maintenance resources in CBM
policy

Effective implementation of various maintenance
activities is dependent on the availability of the
required maintenance resources, such as spare
parts, and maintenance personnel with the right
skill set. For example, in a manufacturing plant,
when a system cannot be maintained as a result
of inadequate spare parts or unavailable mainte-
nance personnel, the production process will be
significantly affected. On the dependence of main-
tenance execution on spare parts availability, main-
tenance literature generally assumes that spares are
constantly available. However, in practice, such
assumption does not hold, as considerable lead
time is required for spares to be ordered and deliv-
ered. The scenario of the joint strategy of spare
inventory and CBM using cost objective function
and genetic algorithm optimisation was investigated
by Xie and Wang (2008) by combining an inspec-
tion period (T) with (s,S) ordering policy, and
concluded with numerical evidence of the slightly
better performance as compared with separate
strategy. Wang, Chu, and Mao (2008) considered
the optimal benefits of jointly optimising CBM and
an (s, S) type spare inventory policy for multiple
identical deteriorating systems, where S spares are
ordered as soon as inventory spares drop below s.
An adaptive inventory policy that incorporates real-
time condition monitoring information into spares
inventory decision was discussed by Li and Ryan
(2011). Keizer, Teunter, and Veldman (2017b) in
their contribution discussed that for inventory pol-
icy to be optimal, ordering policy for spares can be
based on components deterioration level (condi-
tion-based) as the (s, S) inventory policy might
not necessarily be optimal.

2 T. J. OMOLEYE ET AL.



Another important maintenance resource is main-
tenance workers, who are generally responsible for
carrying out maintenance tasks. In practical settings,
the number of maintenance activities that can be
carried out is dependent on the number of available
maintenance workers. Different cases of maintenance
worker availability have been considered in the lit-
erature, such as when there is a single maintenance
worker (Liu, Zhengguo, Xie, & Kuo, 2014) and multi-
ple maintenance workers (Marseguerra, Zio, &
Podofillini, 2002). Koochaki, Bokhorst, Wortmann,
and Klingenberg (2013) investigated multiple scenar-
ios: with no maintenance worker, with a single main-
tenance worker, and with multiple maintenance
workers using maintenance cost as one of the key
performance indicators. In the context of DES,
Alrabghi and Tiwari (2016), considered the only
spare parts level as maintenance resource in the opti-
misation of cost in a multi-unit manufacturing sys-
tem. Similarly, the influence of maintenance
resources worker on different maintenance strategies
using different levels of spares’ availability and two
levels of maintenance worker’s availability was inves-
tigated by Alabdulkarim and Ball (2014). An exten-
sive review of CBM policies for systems under
resource dependence is reported in the works of
Keizer, Flapper, and Teunter (2017a). While it is
true that the important role of maintenance resources
in timely maintenance execution has been investi-
gated; however, within the context of CBM, the inves-
tigations have been based on the assumptions of
perfect monitoring (detection, diagnosis, and
prognosis).

2.2. The role of PHM information in CBM policy

In the application of PHM information in the selec-
tion of CBM optimal policy using DES, it is observed
that only a limited number of literature utilised the
benefit of PHM information in the assessment of
CBM policy. Wang, Cui, and Shi (2015) developed a
framework to assess the general performance of PHM
information integration with maintenance and logis-
tics planning in an airline industry. Do, Voisin,
Levrat, and Iung (2015) proposed a proactive CBM
policy for a deteriorating system considering the
impact of both perfect and imperfect maintenance
actions, and with inspection based on an adaptive
RUL estimation. Camci (2009) demonstrated in his
study the beneficial role of incorporating prognostic
information in maintenance policy optimisation as
compared to the use of thresholds for triggering
maintenance actions. Rodrigues et al. (2015) empha-
sised the importance of taking system architecture
into account while using PHM information in main-
tenance planning with application in aeronautical
systems. Huynh, Barros, and Berenguer (2012) used

maintenance cost savings to assess when the value of
PHM information in maintenance decision making
can be advantageous over other maintenance strate-
gies. The benefits of integrated systems health man-
agement (ISHM) as an enabler of CBM was discussed
by Vandawaker, Jacques, and Freels (2015). The
impact of prognostic error on CBM efficiency was
assessed by Ma, Kang, Zhao, and Liu (2012). The
added value of prognostic information in the selec-
tion of optimal maintenance policy was investigated
by Van Horenbeek and Pintelon (2011).

2.3. The role of simulation in maintenance

Analytical approach, such as Markov models have been
extensively used in modelling system states in CBM, but
rely on oversimplified and unrealistic assumptions, and
becomes intractable and incapable of capturing and
representing the dynamic behaviour of complex systems,
hence limiting their practical application and implemen-
tation in industries (Verma, Srividya, & Karanki, 2016;
Alrabghi & Tiwari, 2016). Simulation approach, on the
other hand, can be used to solve complex maintenance
problems (Alabdulkarim, Ball, & Tiwari, 2013; Alrabghi
and Tiwari, 2015; Robinson, 2010), and is based on fewer
assumptions and has the capability of capturing com-
plexities and performance analysis of the complex sys-
tem. This result in realistic solutions that can improve the
decision-making process. In addition, since the simula-
tion model allows imitation of the actual process, it can
be used to better understand the real world behaviour of
the complex system (Sauer, Oppermann, Werner,
Wohlrabe, Zerna, Weigert, & Wolter, 2006). The suit-
ability of DES over other simulation techniques for mod-
elling maintenance system include better understanding
by visualisation of complex maintenance system in a
cost-effective way, the ability to model variability, and
its appropriateness for modelling detailed operation sys-
tems (Alabdulkarim and Ball, 2014; Alrabghi & Tiwari,
2016; Sauer et al., 2006). Some of the few papers that
assess maintenance operations developed with DES
using asset monitoring levels were Alabdulkarim and
Ball (2014), and Alabdulkarim, Ball, & Tiwari, 2015.
They used three different monitoring levels (reactive,
diagnostic, and prognostic) to assess the effect of
resources on maintenance applications.

It is evident from the literature that considerable
attention has been given to the investigation of the
role of prognostic information and resources in CBM
policy. However, the combined effect of monitoring
effectiveness on the three critical phases of CBM
implementation, and resources (spare parts, and
maintenance workers) were not properly considered
in all their works. Most of the research made some
assumptions of perfect condition monitoring and
diagnostics or no mention of the condition monitor-
ing and diagnostics tools when evaluating the role of
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prognostic information in CBM (Rodrigues et al.,
2015; Ma et al., 2012; Alabdulkarim et al., 2015;
Wang et al., 2015). However, it has been reported in
the literature that instead of addressing prognosis in
isolation, prognosis requires both detection and diag-
nosis and that the quality of the diagnostics can also
affect the prognostics system (Guillén et al., 2016;
Jardine, Lin, & Banjevic, 2006; Niknam, Kobza, and
Hines, 2015; Saxena et al., 2010). Also since in real-
life applications, maintenance and resources are
interconnected (Alrabghi, Tiwari, & Alabdulkarim,
2013; Van Horenbeek, Bure, Cattrysse, Pintelon, &
Vansteenwegen, 2013), hence it is pertinent to
include resources, such as spare parts, and mainte-
nance workers when evaluating maintenance policy.
In addition, the monitoring coverage rate (MCR) of
condition monitoring, diagnostics and prognostics
tools used should also be considered in the evaluation
since these tools’ effectiveness are gradually evolving
and can significantly affect the decision of adopting
CBM or not. The combined effects of resources and
monitoring effectiveness of CBM implementation
have not been fully investigated in the assessment of
the value of PHM in CBM policy. This paper intends
to exploit the capability of DES approach in model-
ling complex maintenance systems to provide
answers to the following questions:

Research Question 1: How would the influence of
resources and monitoring effectiveness affect asset
operational availability and overall total cost under
CBM policy?

Research Question 2: Under which condition could
the added value of prognostic information in CBM
implementation be an advantage over classic CBM?

3. Methodology

The aim is to exploit the capability of DES approach in
modelling complex maintenance operation to help
maintenance operation decision maker to gain a better
understanding and to assess the impact of resources
and monitoring effectiveness in the adoption of CBM
policy based on a practical performance measure of
operational availability, and cost. From the three critical
phases of CBM implementation, three logic flowcharts
that capture the requirements of each monitoring level
were developed and analysed in this research work in
order to understand the behaviour of complex main-
tenance operations implementing CBM policy.

A DES tool modelled using ARENA® simulation soft-
ware (Rockwell Automation, 2015) and Visual Basic for
Application (VBA) codes was built to capture the differ-
ent monitoring levels (Prognostics-enabled CBM,
Diagnostics-enabled CBM, and Classic CBM).

Although there are many DES software’s, the choice of
ARENA® software was due to its resilience, programma-
ble capability, and seamless integration with user-
friendly Microsoft technologies for automation pur-
pose. The degradation model based on non-stationary
gamma process model is used in this research to model
the degradation process as it is the most common degra-
dation process used in many engineering applications
(eg, wear, crack growth etc.) due to its independent
increment and monotone sample path properties
(Zhang, Lei, & Shen, 2016 and Van Noortwijk, 2009).
We adopt condition based ordering policy approach for
spare parts ordering with the prognostics-enabled CBM
monitoring level, which is based on the value of predicted
RUL. If the predicted RUL is greater than the lead time
for spares, then spares are ordered, and the downtime of
the asset is limited to the time to perform the actual
maintenance action. In the case where the predicted
RUL is less than the lead time for spares, spares are
ordered as well but the total downtime of the asset is
increased due to the additional wait time for the spares to
arrive before maintenance action could be carried out.
Furthermore, for the other two monitoring levels, we
adopt (s, S) type spare inventory policy, where S spares
are ordered as soon as inventory spares drop below s.
Since in practice, condition monitoring, fault/failure
diagnostics, and prognostics tools might be unable to
detect, diagnose, and predict all faults perfectly, we
adopt the approach of using probability to capture the
effectiveness of the monitoring tools which is similar to
the approach used by Verma, Sridiya, & Ramesh, 2012,
and Wang et al. (2015). For example, a condition mon-
itoring detective ability of 0.9 indicates that only 90% of
the fault in the system can be detected.

3.1. Classic CBM monitoring level

In classic CBM policy as illustrated in Figure 1, when
an abnormal operating condition is detected by the
condition monitoring system, the asset is immedi-
ately sent to the maintenance centre for inspection,
diagnosis, and CBPM. In addition, the absence of
diagnostics capability in this monitoring level means
that the probability of a human-induced fault in the
asset will be increased, particularly during the process
of diagnosing the fault. Furthermore, the downtime
of the asset is significantly increased as it has been
reported in the literature that a considerable amount
of time is required for diagnosis (Niebel, 1994).

3.2. Diagnostics-enabled CBM monitoring level

Diagnostics-enabled CBMmonitoring level as illustrated
in Figure 2 is similar to the classic CBMmonitoring level
except that the diagnostics unit is triggered when the
condition monitoring system detects an abnormal oper-
ating condition. The presence of the diagnostics
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capability in the asset reduces the downtime of the asset
in the maintenance centre since the cause of fault would
have been identified, isolated, and located by the diag-
nostic tool. The main benefit of this approach is that
maintenance workers are equipped with the knowledge
of which components that is faulty, which results in the
reduction in time to implement maintenance operation,
as well as the prevention of human-induced faults in the
asset.

3.3. Prognostics-enabled CBM monitoring level

Prognostics-enabled CBM monitoring level as illu-
strated in Figure 3 builds on the diagnostics-enabled
CBMmonitoring level by triggering the prognostic tool
to estimate the remaining useful life (RUL) after detec-
tion and diagnosis. As indicated in Figure 3, the dashed

line represents the path of the identified degraded asset
whose RUL is being monitored and recursively updated
during the process. In order to set a threshold for which
CBPMmust be performed, a safety margin (duration of
mission completeness) is subtracted from the estimated
RUL to yield the prognostic threshold. The decision to
maintain the asset or not depends on the value of the
predicted RUL with reference to the prognostic thresh-
old. If the predicted RUL is greater than the prognostic
threshold, the asset can still be in operation while logis-
tics and administrative support plans, such as the spares
required can be ordered, maintenance personnel with
the skill set to perform the maintenance can be sched-
uled ahead of the maintenance task. On the other hand,
if the estimated RUL is the same or less than the prog-
nostic threshold, the asset is immediately sent to the
maintenance centre for urgent CPBM.

Figure 1. Simulation procedure of classic CBM under perfect monitoring.
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The main advantage of this monitoring level is
that prior information is provided by the pre-
dicted RUL, which allows optimal use of the
asset before failure, as well as allowing required
maintenance support to be planned and scheduled
in advance before the asset is sent to the main-
tenance centre. Therefore, this approach improves
the uptime of the asset, while the downtime of the
asset is significantly reduced. The main advantage
of this monitoring level is that prior information
is provided by the predicted RUL, which allows
optimal use of the asset before failure, as well as
allowing required maintenance support to be
planned and scheduled in advance before the
asset is sent to the maintenance centre.

4. Performance metrics

The performance metrics used in this paper includes
overall availability and overall total cost. These per-
formance metrics are discussed extensively below.

4.1. Availability

Availability provides an effective method of evaluating
the system efficiency of a maintenance policy since the
associated parameters of availability (uptime and down-
time) can be accuratelymeasured (Liao, Elsayed, &Chan,
2006). There are mainly three different types of availabil-
ity identified in the literature, namely: Inherent
Availability (Ai), Achieved Availability (Aa), and

Figure 2. Simulation procedure of diagnostics-enabled CBM under perfect monitoring.
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Operational Availability (Ao). Their differences are
shown in Table 1. MTTF is the Mean Time To Failure,
MTTR is Mean Time To Repair, MTBM is Mean Time
Between Maintenance, MMT is Mean Maintenance

Time (combines Corrective Maintenance (CM) duration
and Preventive Maintenance (PM) duration), and MDT
is Mean Delay Time (combines CM duration, PM dura-
tion, logistics delay duration, and administrative delay

Figure 3. Simulation procedure of prognostics-enabled CBM under perfect monitoring.

Table 1. Characteristics of the different types of availability.
Parameters

Downtime

Availability type Uptime Corrective maintenance Preventive maintenance Logistics delay Administrative delay

Ai ¼ MTTF
MTTFþ MTTR

√ √ � � �
Aa ¼ MTBM

MTBMþ MMT
√ √ √ � �

A0 ¼ MTBM
MTBMþMDT

√ √ √ √ √
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duration). Since the maintenance actions considered in
this paper include bothCM,CBPM, logistics, and admin-
istrative delay time,Ao has been chosen as the availability
performance metric as it provides the means of assessing
both maintenance effectiveness and efficiency (Pascual &
Kumar, 2016).

4.2. Cost

Maintenance cost takes significant proportions of the
total operating cost in industries (Cigolini, Fedele,
Garetti, & Macchi, 2008; Turan, Ölçer, Lazakis,
Rigo, & Caprace, 2009). Hence, maintenance man-
agers are interested in minimising maintenance cost
while assuring a satisfactory level of equipment avail-
ability and reliability. Due to high initial set-up cost
of CBM technologies, CBM is presently adopted and
implemented in industries where reliability and safety
are of highest priority. In this research work, which is
based within the context of CBM, the initial set-up
cost of CBM installation is excluded from the overall
total cost as it has been reported in the literature that
it has a predictable offsetting effect on the mainte-
nance cost (Koochaki et al., 2011). The explanation of
each cost parameter used in this research is given in
details as follows:

● CBPM Cost (CCBPM): The cost incurred when
executing preventive maintenance based on the
condition of the asset. It is expressed as:

CCBPM ¼
Xn
i¼1

NPMi � CPMið Þ (1)

NPMi is the total number of CBPM actions carried out
on component i, and CPMi is the cost of CBPM action
on each failure mode (i) of the component.

● Corrective Maintenance Cost (CCM): The cost
incurred when corrective maintenance is exe-
cuted on the asset. It is expressed as:

CCM ¼
Xn
i¼1

NCMi � CCMið Þ (2)

NCMi is the total number of CM actions carried out
on component i, and CCMi is the cost of CM action on
each failure modes (i) of the component.

● Spare Parts Cost (CSP): The sum of the cost of
ordering spare parts and the respective holding
cost. It is expressed as:

CSP ¼ COS þ CHC (3)

COS ¼
Xn
j¼1

NCOj � CDCj
� �

(4)

CHC ¼
Xn
j¼1

NHCj � CHCj
� �

(5)

COS is the ordering cost for each component j, CHC is
the holding cost incurred in storage, NCOi is the total
number of spares ordered for each component j, CDCj

is the delivery cost of each component (j) ordered,
NHCj is the total number of spare parts for each
component (j) in storage, and CHCj is the holding
cost of each component j. Hence, the overall total
cost can be expressed as:

Overall Total Cost ¼ CCBPM þ CCM þ CSP (6)

5. Case study

The case study used in this research is a published case
study (Wang et al., 2015), which consists of four civic
airlines with airplanes that fly between four base sta-
tions, each airline has spares inventory system with a
fixed capacity, the airplanes are identical as they are
produced from the same production line, and for each
maintenance task, and only one spare is taken from the
spare parts inventory. The data used in the published
case study is shown in Table 2, which details the airline
network formulation, component information, fault
modes, criticality, and repair information, and the
spare capacity distribution of each airline base. It should
be noted that the components which have no PHM
function have been removed from the data in Table 2.
The RUL variables for the two components follows the
symmetry triangular distribution of TRIA(0,500,1000)
for component 1, and TRIA(0, 1500,2000) for compo-
nent 2. The total delivery cost of each spare ordered is
#200, and the holding cost for each spare is assumed
to cost #20, and the lead time for delivery is 50 hours.
The deterioration of the airplanes gear and aero engine
at time t, t � 0 are denoted by XG tð Þ, and XE tð Þ. The
mean of the gamma distribution is given as MTBF ffi
α
β (Pham, 2006, Chapter 2). Since the failure rate is

constant, the shape parameter α ¼ 1 (Pham, 2006,
Chapter 2), and given the MTBF values, as shown in
Table 2, we can estimate the value of β for both the gear
and aero engine. For the simulation of the gear degra-
dation process, we used αG ¼ 1 and βG ¼ 2� 10�3,
while for the simulation of the gear degradation process,
we used αE ¼ 1 and βE ¼ 6:667� 10�4. We fix the
detection threshold value at 0.6 to indicate when the
abnormal operating condition is detected, while the
failure threshold is fixed at 1.

In addition, to adapt the case study for the
purpose of this research, we define some synthetic
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parameters to capture the duration of the mainte-
nance actions. The CBPM duration follows a trian-
gular distribution of TRIA(3,4,6) hours. The CM
duration follows the same triangular distribution of
TRIA(6,8,12) hours. The diagnosis duration follows
a triangular distribution of TRIA(2,3,4) hours. We
assume that at each airline base, at least two main-
tenance engineers are required for performing
maintenance-related tasks, and the route of each
airline is as shown in Figure 4. All the activities
(disassembly, replacement, reassembly, and testing)
are lumped together to represent the total duration
of each maintenance action except the diagnosis
duration, which is necessary to account for the
diagnostic ability incorporated in both prognos-
tics-enabled and diagnostics-enabled CBM moni-
toring levels. The primary goal of this simulation
study is to demonstrate and assess the potential
benefits of PHM as an enabler for CBM implemen-
tation under the influence of resources (spare parts,
maintenance workers), and varying monitoring
effectiveness, using practical performance measures
of overall Ao, and overall total costs.

5.1. Simulation setup

The required setup parameters when doing a simula-
tion experiment includes; warm-up period, simula-
tion run length, and the number of replications.
Simulation models can either be terminating or
non-terminating (Robinson, 2010, p. 138). While ter-
minating simulation model reaches a natural end,
non-terminating simulation model reaches steady-
state. The nature of the case study follows a non-
terminating simulation model since the airplanes are
expected to fly their different routes consecutively day
after day. In order to ensure simulation stability, it is
required to determine the warm-up period where all
transient behaviours inherent in the simulation
would have disappeared.

In this case study, the run length has been decided
to be five years, this is to ensure that during the
period decided, useful information about the main-
tenance task and sufficient CBPM and CM would
have occurred in the fleet. In order to specify the
warm-up period, we follow the approach described
by Robinson (Robinson, 2010, p. 138) and

Table 2. System configuration parameters [Adapted from Wang et al. (2015)].
Airline network formation

Airline name Code Main base Fleet size Daily flight hours

Qantas airways QF SYD 21 206
Qatar airways QR DOH 9 85
Korean air KE ICN 7 65.5
Singapore airlines SQ SIN 7 64

Component information

No Name Quantity MTBF (h) PHM function

Component 1 Transmission gear 1 500 YES
Component 2 Aero engine 1 1500 YES

Fault modes, criticality, and repair cost information

No Number of failure modes Fault rate percentage Criticality Repair costs

Component 1 3 0.75 #1,000 #300
0.2 #2,000 #500
0.05 #4,000 #1,000

Component 2 3 0.65 #2,500 #100
0.3 #2,500 #100
0.05 #2,500 #100

Spare capacity distribution of the airline bases

Part number SYD DOH ICN SIN

Component 1 8 5 3 4
Component 2 4 3 2 2

Figure 4. Movement of airplanes across the four main bases.

JOURNAL OF SIMULATION 9



implemented by Alabdulkarim et al. (2015) in their
paper. They used one of the output measures to
visually decide the start of the steady state behaviour
of the system. Hence, we used maintenance personnel
utilisation to decide the warm-up period. The time
series diagram as shown in Figure 5 with 10 replica-
tion length (indicated by different lines) indicates that
the warm-up period should be set as 2.22 years
(20,000 hours).

The number of replication was decided based on
the confidence interval method. The overall opera-
tional availability of the airplanes under perfect
monitoring simulation model for the prognostics-
enabled CBM policy was used for the calculation of
the number of replications. Hence, based on the
calculated number of replications using the confi-
dence interval method, 100 replications was used
for the case study.

5.2. Model verification and validation

Model verification and validation is a required, and
prerequisite step to the experimental analysis of the
simulation model (Andijani and Duffuaa, 2002).
The process of verification ensures the correct
mapping between the developed model and the
system being represented by the model, while vali-
dation ensures that the developed model closely
represent the behaviour of the real-world system.
Model verification was done by utilising the anima-
tion facilities provided by ARENA® simulation

software. The animation facilities enabled model
logic to be verified by observing and following the
path of the entity.

The validation step was based on sensitivity analysis
suggested by Greasley (2004). He stated that “if a simu-
lation model has been built for a system . . ., performing
sensitivity analysis is particularly appropriate”. He
argued that “if there is little variation in output as a
consequence of a change in input then we can be
reasonably confident in the results”. In this paper, sen-
sitivity analysis was performed by observing the effects
of input parameter variation (resources andmonitoring
effectiveness) on the model results. Additional valida-
tion was performed by discussing the model logic and
results with experts in the field of simulation. The
model logic and results were deemed to be logical,
representative, and explainable.

5.3. Maintenance manager user-friendly
platform for maintenance analysis

An Excel-based interface was developed to provide
an easy and convenient way to analyse the simula-
tion of the different CBM monitoring levels. Three
interfaces corresponding to each monitoring level
were developed in this paper. The approach uses
VBA code written in excel to automate the process
of providing input to the ARENA model, as well as
exporting the output to the Excel interface. This
approach is similar to the approach implemented
by Saltzman and Mehrotra (2004). The Excel

Figure 5. Warm-up period using time series plot of maintenance worker’s utilisation.
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interface for prognostic-enabled CBM monitoring
level, which automatically controls the execution of
the developed ARENA®-based simulation model is
shown in Figure 6. The other two interfaces are
similar to the interface, as shown in Figure 6.

6. Experimentation results and analysis

In the different scenarios considered, Monitoring
Coverage Rate (MCR) of each monitoring levels is
varied between 0.6 and 0.9, this is used to reflect
the minimum and maximum acceptable detective,
diagnostic, and predictive ability of the monitor-
ing tools. Since in practice, MCR is never 100%,
we exclude MCR value of 1 in the analysis of the
results. In the case of prognostic-enabled CBM
monitoring level, there are six MCR variables
(two condition monitoring tools, two diagnostics
tools, and two prognostics tools) to give an indi-
cation of the effectiveness of the monitoring tools,
each having values uniformly varying between 0.6
and 0.9. For the diagnostics-enabled CBM moni-
toring level, there are four MCR variables (two
condition monitoring tools, and two diagnostics
tools), and two MCR variables (two condition
monitoring tools) for the classic CBM monitoring
level. These MCR’s captures the two critical com-
ponents of the airplanes highlighted in the
description of the case study.

6.1. Monitoring levels under fixed resources,
increased resources, and decreased resources

The monitoring levels investigated were compared
under fixed (As-Is), increased (50% increment), and
decreased (50% decrement) number of required spare
parts, reorder level, and maintenance engineers using
the performance metrics of overall operational avail-
ability, and overall total cost. Therefore, different
scenarios corresponding to different MCR value
with a step change of 0.1 of one MCR variable at a
time were used to define the number of simulations
to be run. Based on this method, a total number of 16
simulations were required for the classic CBM mon-
itoring level, a total number of 52 simulations for the
diagnostics-enabled CBM monitoring level, and a
total number of 76 simulations for the diagnostics-
enabled CBM monitoring level. Since it will be very
difficult to explore all the possibilities of the MCR
variables manually, optimisation has been included in
Section 6.3 in order to select the optimum combina-
tions of MCR variables and maintenance resources.
The first 4 scenarios in each monitoring level corre-
spond to identical step increment of the MCR vari-
ables (with values from 0.6 to 0.9, and a step
increment of 0.1). To evaluate all the scenarios, a
separate application within ARENA® called Process
Analyzer (PAN) was used. PAN enables multiple
scenarios to be run using the different values for
input controls, while a set of output controls

Figure 6. Developed excel interface for prognostics-enabled CBM simulation and analysis.
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(operational availability, and overall total cost) of
each scenario are evaluated after each run, and used
to compare the best scenario among all the results.

The effect of MCR on A0 under classic CBM
monitoring level is shown in Figure 7, while the
results obtained using the metric of the overall
total cost is shown in Figure 8. Figure 9 shows
the comparison of the different resources and
monitoring effectiveness on diagnostic-enabled
CBM monitoring level using the performance
metric of operational availability. In terms of the
overall total cost under diagnostic-enabled CBM
monitoring level, Figure 10 indicates that increas-
ing resources has a noticeable effect in the reduc-
tion of the overall total cost as compared to fixed
and decreased resources scenarios. The effect of
MCR on A0 under prognostic-enabled CBM mon-
itoring level is shown in Figure 11, while the
corresponding result obtained using the metric of
the overall total cost is shown in Figure 12.

The trend of the results indicate that the scenario
under increased maintenance resources generally
improves the performance metrics of overall A0, and of

overall total cost as compared to scenarios under fixed
resources, and decreased resources across the different
types of monitoring levels. However, superior perfor-
mance is observed with prognostics-enabled CBMmon-
itoring level as compared to other monitoring levels. In
addition, the results obtained using the metric of overall
total cost indicates that the integration of prognostics
information have a noticeable effect in the reduction of
overall total cost within the manufacturing system. The
reason for this phenomenon can be attributed to the
integration of prognostics, which minimises unused
component useful life, thus ensuring that the useful life
of the components are almost used to the full before
maintenance. Also, since the ordering system under
prognostics-enabled CBM is condition-based (based on
RUL information) as discussed in Section 3.3, the number
of spares parts ordered are reduced. As a result of all these
factors, the overall total cost is reduced as less frequent
preventive maintenance and corrective maintenance are
carried out under prognostics-enabled CBMpolicy when
compared to classic CBM and diagnostics-enabled CBM,
and the reduction of spare parts cost brought about by
spares ordering policy which is based on PHM
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information. In addition, as indicated in Table 2, the cost
of performing each maintenance action (preventive and
corrective maintenance) for each failure mode is a fixed
cost. Hence, in this research work, the maintenance cost
will be constant irrespective of themaintenance engineers
hired. In future research work, this assumption can be
relaxed to allow for the inclusion of the cost of adding
additional manpower to the number of maintenance
engineer. Hence, the reduction of overall total cost is
mainly as a result of the reduction in the number of
maintenance task carried out, and the reduction in the
number of spares ordered due to the RUL information
provided by the prognostics system.

To justify the need for optimisation for optimal
parameters settings, the black dotted circle in
Figure 10 under diagnostics-enabled CBM moni-
toring level indicates that the lowest overall total
cost was obtained in scenario 43, while the highest
overall A0 was obtained in scenario 4 in Figure 9.
Hence, the above illustration indicate that there
are still more possible combinations that could be
further explored with the use of optimisation to
intelligently search for an optimum combination
of maintenance resources and monitoring effec-
tiveness that minimises the selected objective
function.
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6.2. Comparison of all the CBM monitoring levels

In this section, comparison is made among the consid-
ered monitoring levels implemented in this research
work (prognostics-enabled CBM, diagnostics-enabled
CBM, and classic CBM monitoring levels) based on
the performance metrics of overall A0, and the overall
total cost. In order to ensure a fair comparison, only the
results from the first 4 scenarios, corresponding to the
uniform increment of 0.1 (from 0.6 to 0.9) across all the
MCR variables for each monitoring level are used. The
best result (highest value of the overall A0, and lowest
value of overall total cost) are shown in bold for each
level of maintenance resource, and different MCR vari-
ables. The comparison as tabulated in Table 3 showed

that the added value of PHM information in CBM
policy is highly significant. It resulted in consistent
improvement of A0 across all different monitoring
and resource levels for prognostics-enabled CBMmon-
itoring level. However, the benefit of PHM information
in the reduction of the overall total cost is dependent on
the prognostic tool achieving sufficiently high MCR
value.

6.3. Optimisation of monitoring levels

As discussed in Section 6.1 and illustrated by the
black dotted circle line in Figure 10, it is quite diffi-
cult to explore all the feasible dimensional space, and
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choose the best combinations of the decision vari-
ables (MCR, and maintenance resources) using PAN
to minimise the selected objective function. Hence,
the need for optimisation. In this research work, the
minimisation of the overall total cost is selected as the
objective function, subject to the requirement that the
overall A0 should be greater than or equal to 80%.
The optimisation was carried out using OptQuest®
package in ARENA®. OptQuest® uses a combination
of heuristics, such as tabu search, scatter search, and
neural network to intelligently search for an optimum
solution (Kelton, 2010). The following are the nota-
tions used in the optimisation model: j is the number
of component in the system, g is the number of air-
line base in the system, and AD

O is the minimum
acceptable value of A0 in the manufacturing system.

The sets in thismodule are as follows:G is the set of all
airline bases, and g � G. J is the set of all components that
are beingmonitored, and j � J. Decision variables related
to the optimisation problem are: MCRjg is a discrete
variable that denotes the MCR of component j in airline
base g with a discrete step size of 0.1, Rjg is a discrete
variable that denotes the re-order level of component j in
airline base gwith a discrete step size of 1, Sjg is a discrete
variable that denotes the order quantity for spare parts of
component j in airline base gwith a discrete step size of 1,
Mg is a discrete variable that denotes the number of
maintenance engineer in airline base g with a discrete
step size of 1, and xML

jg denotes the type of monitoring

level selected (ML � {0,1,2}, where 0 denotes CBMmon-
itoring level, 1 denotes diagnostics-enabled CBM mon-
itoring level, and 2 denotes prognostics-enabled CBM
monitoring).

The optimisation problem can be mathematically
represented as:

Minimize Overall Total Cost (7)

Subject to MCRjgmin � MCRjg xML
jg

� �

� MCRjgmax "j � J;"g � G

(8)

Rjgmin � Rjg � Rjgmax "j � J;"g � G (9)

Sjgmin � Sjg � Sjgmax "j � J;"g � G (10)

Mgmin � Mg � Mgmax "g � G (11)

A0 � AD
O (12)

Equation (7) is the objective function, which is a
simulation model output that minimises the overall
total cost of the airline case study operation, which
includes: (i) cost of CBPM, (ii) cost of corrective
maintenance, and (iii) cost of spares. Equations (8–
11) are constraints on the decision variables or input
controls, which represents the boundary for the
decision variables; namely MCR (minimum value
of 0.6, and maximum value of 0.9), reorder level
(minimum value of 0, and maximum value of 2),
order quantity of spare parts (minimum value cor-
responding to 50% decrement, and maximum value
corresponding to 50% increment of the spare capa-
city distribution as shown in Table 2), and main-
tenance engineer (minimum value of 1, and
maximum value of 3), respectively. Equation (12)
defines the constraints on the simulation model out-
put of A0 (AD

O ¼ 0:8). As indicated in the case study
description, the number of parameters for the com-
ponents and the base stations were set to two and
four respectively. Table 4 presents the overall total
cost reduction, as well as the optimal parameter
values of maintenance resources obtained for each
monitoring level. From the data presented in
Table 4, we can see that prognostics-enabled CBM
monitoring level achieved the best overall total cost
reduction as compared to other monitoring levels.

7. Conclusion and future work

In this paper, we have investigated the influence of
resources and monitoring effectiveness of CBM
policy based on the three critical parts of CBM,
detection, diagnosis, and prognosis using the per-
formance metrics of operational availability and

Table 3. Comparison of monitoring levels in CBM based on overall A0 and total cost.
Operational availability (%) Overall total cost (#)

Resource level Scenario
Classic
CBM

Diagnostics-enabled
CBM

Prognostics-enabled
CBM

Classic
CBM

Diagnostics-enabled
CBM

Prognostics-enabled
CBM

Fixed resources 1 79.21 80.21 83.16 221,700 220,261 227,900
2 79.60 80.83 85.47 202,014 202,279 204,375
3 80.07 81.50 87.92 182,034 182,730 181,193
4 80.61 82.35 90.40 162,510 163,218 154,101

Increased
resources

1 82.70 83.65 86.35 199,982 201,160 207,774
2 83.01 84.41 88.35 180,877 181,520 185,953
3 83.48 85.16 90.51 161,813 162,373 162,046
4 83.88 86.00 92.58 142,064 143,810 136,486

Decreased
resources

1 72.32 73.02 76.15 269,904 271,049 273,088
2 72.70 73.55 78.18 249,369 250,874 250,119
3 72.91 74.24 80.62 231,760 230,009 225,182
4 73.29 74.89 83.26 211,013 211,592 199,647
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overall total cost to quantitatively assess the tech-
nical, and economic benefits of the value of PHM
in CBM using a published case study example on a
system-wide level. Additionally, we incorporated
optimisation to find optimal parameter settings
(MCR and maintenance resources) for each mon-
itoring level. The research questions raised at the
onset of this research work is subsequently
answered based on the quantitative results obtained
from the case study.

Research Question 1: How would the influence of
resources and monitoring effectiveness affect asset
operational availability and overall total cost under
CBM policy?

Resources (spare parts and maintenance engi-
neers) and monitoring effectiveness have a notice-
able effect on both overall operational availability
and overall total cost. The performance metrics of
operational availability increases (decreases), as well
as the overall total cost decreases (increases) with
increased (decreased) resources with improved
monitoring effectiveness of the monitoring tools
across all the monitoring levels.

Research Question 2: Under which condition
could the added value of prognostic information in
CBM implementation be an advantage over clas-
sic CBM?

Without optimisation, the integration of prog-
nostic information in CBM policy results in superior
technical performance benefit. However, the eco-
nomic benefit of prognostic information can only
be realised when the monitoring effectiveness of
the prognostics tool (dependent on both diagnostics
and condition monitoring tools) attains sufficiently
high value. On the other hand, with the implemen-
tation of single-objective optimisation, the added
benefit of incorporating prognostics for cost-effec-
tive maintenance was realised as a result of optimal
maintenance resources settings. The result obtained
clearly showed that prognostic-enabled CBM mon-
itoring level achieved the best overall total cost
reduction when compared to other monitoring
levels investigated.

Future work will investigate the additional cost of
hiring more or fewer maintenance engineers as part
of the overall total cost. Also, multi-objective optimi-
sation considering both operational availability and
overall total cost performance metrics as objectives
will be investigated with the developed simulation
framework. Further analysis using multi-objective
optimisation will provide maintenance operations
decision makers more flexibility in adapting their
changing circumstances to match their business
environment.

Table 4. Comparison of optimisation results of the monitoring levels.
Monitoring level

Optimisation results Classic CBM Diagnostics-enabled CBM Prognostics-enabled CBM

Objective function
Overall total cost(#) 130,610 128,003.33 115,160

Monitoring coverage rate
Component 1 detection tool 0.9 0.8 0.8
Component 2 detection tool 0.8 0.9 0.8
Component 1 diagnostic tool – 0.9 0.7
Component 2 diagnostic tool – 0.8 0.8
Component 1 prognostic tool – – 0.9
Component 2 prognostic tool – – 0.8

Order quantity for spare parts
Qantas airways component 1 11 10 10
Qantas airways component 2 6 6 5
Qatar airways component 1 8 7 7
Qatar airways component 2 5 5 3
Korean air component 1 5 5 2
Korean air component 2 2 2 2
Singapore airlines component 1 6 5 5
Singapore airlines component 2 3 3 1

Re-order level for spare parts
Qantas airways component 1 2 2 2
Qantas airways component 2 2 2 2
Qatar airways component 1 2 1 2
Qatar airways component 2 1 1 2
Korean air component 1 2 1 1
Korean air component 2 2 2 1
Singapore airlines component 1 2 1 1
Singapore airlines component 2 2 1 1

Base maintenance engineer
Qantas airways 3 3 2
Qatar airways 3 3 2
Korean air 2 3 1
Singapore airlines 3 2 1
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