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Edge-Coloring Technique to Analyze Elementary Trapping
Sets of Spatially-Coupled LDPC Convolutional Codes

Mohammad-Reza Sadeghi and Farzane Amirzade

Abstract— In this letter, for the first time, an edge-coloring tech-
nique is proposed to characterize a certain elementary trapping
set (ETS) and to obtain sufficient conditions to avoid small ETSs
from occurrence in the Tanner graph of SC-LDPC convolutional
codes. This technique is applicable to all protograph-based LDPC
codes with different girths whose protographs are single-edge,
that is, the entries of their base matrices are 0, 1. To fur-
ther demonstrate the effectiveness of our proposed technique,
we apply it to Time-Invariant SC-LDPC-CCs with girths 6 and
8 and column weights up to 5.

Index Terms— SC-LDPC convolutional codes, girth, tanner
graph, elementary trapping set, edge coloring.

I. INTRODUCTION

AMONG different features influencing the performance of
an LDPC code we can point out small cycles, the girth,

g, and graphical structures like trapping sets (TS) in the Tanner
graph (TG) of the code. The TG of spatially-coupled LDPC
codes or LDPC convolutional codes, which are constructed
by coupling together a series of uncoupled TGs into a single
coupled chain, do not contain a number of such graphical
features which are broken in the coupling process.

Although the coupling process causes the removal of some
TSs, it cannot guarantee the elimination of all TSs with small
sizes. A technique to avoid harmful TSs with small sizes is
increasing the girth. Recently, many researchers have focused
on constructing spatially-coupled LDPC convolutional codes
(SC-LDPC-CCs), in two categories single-edge and multiple-
edge, with the lowest constraint length and free of short cycles
and there are useful results regarding the lower bounds on the
syndrome former memory order of SC-LDPC-CCs with girth
up to 12, [1]–[4].

Since codewords of weight a are just (a, 0) TSs, remov-
ing subgraphs of an (a, 0) TS up to a certain size results
in a code free of low-weight codewords and consequently
with a good minimum distance. Khatami et al. proposed
an algorithm to find all low-weight codewords of a quasi-
cyclic LDPC code with a certain column weight and girth
[5]. More recently, a new approach to design SC-LDPC-CCs
free of low-weight codewords was provided by Battaglioni
et al. [6]. In that approach, column-weight-2 submatrices
of the parity-check matrix are associated to cycles of the
TG and avoiding some of those cycles results in removing

Manuscript received September 14, 2019; revised October 23, 2019 and
December 1, 2019; accepted December 23, 2019. Date of publication
December 27, 2019; date of current version April 9, 2020. The associate
editor coordinating the review of this letter and approving it for publication
was M. Baldi. (Corresponding author: Mohammad-Reza Sadeghi.)

The authors are with the Department of Mathematics and Computer Sci-
ence, Amirkabir University of Technology, Tehran 15875-4413, Iran (e-mail:
msadeghi@aut.ac.ir; famirzade@gmail.com).

Digital Object Identifier 10.1109/LCOMM.2019.2962671

low-weight codewords. Nguyen et al. [7] proposed the PEG
algorithm to construct (m, n)-regular LDPC codes free of
some small TSs and Diouf et al. [8] presented an improved
PEG algorithm which results in a (3, n)-regular LDPC code
with girth 8 whose TG is free of (5, 3) TSs and contains a
minimum number of (6, 4) TSs.

All algorithms mentioned above are search-based and are
implemented on the parity-check matrix of a code. In this
letter, by taking a graph theoretical approach, we propose
a method named as edge-coloring technique (ECT) to char-
acterize and avoid elementary TSs (ETSs) in the TG [9].
Obtaining a necessary and sufficient condition to remove
ETSs from the TG is difficult specially when the ETS has a
complex structure. The ECT contributes to explicitly determine
sufficient conditions for an exponent matrix to avoid any ETS
from occurrence in the TG. We show that this technique
is applicable to all protograph-based LDPC codes whose
protographs are single-edge. We apply our technique to Time-
Invariant (TI)-SC-LDPC-CCs with girths 6, 8 and column
weights 3 to 5.

In the sequel, Section II presents some basic definitions.
In Section III, we show the TGs of single-edge fully-connected
TI-SC-LDPC-CCs are free of some specific ETSs. Section IV
presents the ECT to characterize ETSs in the TG. In Section V,
we consider sufficient conditions to have (m, n)-regular TI-
SC-LDPC-CCs with girths 6 and 8 whose TGs are free of
some small ETSs. In Section VI, we summarize our results.

II. PRELIMINARIES

A TI-SC-LDPC-CC with an m × n binary base matrix
W and a syndrome former memory order mh can be
associated to an m × n exponent matrix B = [bij ], where
bij ∈ {0, 1, . . . , mh} or bij = (∞). For each integer
t ∈ {0, 1, . . . , mh} we construct an m × n binary matrix
Ht in which Ht

(i,j) = 1 if bij = t otherwise Ht
(i,j) = 0.

Assuming the matrices His are syndrome former matrices
we have the binary matrix H as the parity-check matrix of
a single-edge TI-SC-LDPC-CC. A 2k-cycle in the TG of a
TI-SC-LDPC-CC is associated to the following sum,

k−1�
i=0

± ��bmini − bmini+1

�� = 0, (1)

where nk = n0, mi �= mi+1, ni �= ni+1 and
bmini is the (mi, ni)-th entry of B [10]. Assuming���bminj − bminj′

��� = δi,jj′ , in Equation (1) +δi,jj′ (−δi,jj′ ) is
assigned to a transition from a variable-node to another one
along the same check-node to the right, in which nj < nj′

(to the left, in which nj > nj′ ). Similar equation to consider

1558-2558 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Wollongong. Downloaded on May 30,2020 at 22:20:56 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7676-4168
https://orcid.org/0000-0002-8665-7921


712 IEEE COMMUNICATIONS LETTERS, VOL. 24, NO. 4, APRIL 2020

2k-cycles is given in [2], where pluses (minuses) are allocated
to a transition from a check-node to another one along the
same variable-node with a downward (upward) direction.

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0 0 0
. . .

H1 H0 0
. . .

H2 H1 H0
. . .

... H2 H1
. . .

Hmh

... H2
. . .

0 Hmh

...
. . .

0 0 Hmh

. . .
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Definition 1: An (a, b) trapping set (TS) is a set of a
variable-nodes in the TG which induce a subgraph of the
TG with exactly b check-nodes of odd degrees and an arbi-
trary number of even degree check-nodes. An (a, b) TS is
elementary (ETS) if all check-nodes are of degree 1 or 2.

Definition 2: Two TSs T1 and T2 are isomorphic if there
is a bijection f between the nodes of T1 and nodes of T2

such that any two nodes v, c of T1 are adjacent if and only if
f(v), f(c) are adjacent in T2.

Definition 3: For a graph G corresponding to an ETS,
a variable node (VN) graph is constructed by removing all
degree-1 check-nodes, defining variable-nodes of G as its
vertices and degree-2 check-nodes connecting the variable-
nodes in G as its edges.

III. RELATION BETWEEN THE EXISTENCE OF ETSS

AND EDGE COLORING OF VN GRAPHS

In this section, benefiting from an important topic in graph
theory, the edge coloring and its well-known results such as
Vizing’s theorem [11], we characterize an ETS in the TG of
a TI-SC-LDPC-CC whose exponent matrix is B.

Definition 4: An edge coloring of a graph G is an assign-
ment of colors (labels) to the edges of the graph so that
no two adjacent edges have the same color (label). The
minimum required number of colors for the edges of a
given graph is chromatic index of the graph which is denoted
by X �(G), or simply X �, which indicates the graph has
a X �-edge-coloring.

Theorem 1: [11] If Δ(G) is the maximum degree of a
graph G , then Δ(G) ≤ X � ≤ Δ(G) + 1.

Proposition 1: Given a TI-SC-LDPC-CC with an m × n
exponent matrix B. The necessary condition for the TG to
contain an ETS is that its corresponding VN graph has an
m-edge-coloring.

Proof: Suppose the TG of a TI-SC-LDPC-CC with an
m × n exponent matrix B contains the ETS. The maximum
degree of its VN graph is at most m. Without loss of generality,
suppose the maximum degree of the VN graph is equal to m.
According to Vizing’s Theorem, the chromatic index of the
VN graph is m or m + 1. Assume (by contradiction) that
the VN graph has no m-edge-coloring. Therefore, according

to Definition 4, coloring the edges of the VN graph with m
labels results in at least two adjacent edges with the same
color.

Every vertex (edge) of a VN graph corresponds to a column
(row) of B. The degree of each vertex in a VN graph
determines the number of rows of B which are involved in an
ETS. Each edge between two variable-nodes is colored by that
row index of B corresponding to the check-node connecting
those variable-nodes. To clarify this type of edge-coloring,
we replace each 1-component in Hi with row indices of B,
that is, for each Hi we replace the 1s of the j-th row by j, for
j = 1, 2, . . . , m. We denote the obtained matrices by H �

i . If the
VN graph has no m-edge-coloring, then there is a variable-
node which is connected to two edges with the same color t.
According to the above replacements in all His, those two
adjacent edges with the same color show the existence of
two H �

i1
and H �

i2
both contain t in their t-th row. So, the

t-th row of B contains two values i1 and i2 occurring in the
same column. Hence, there is an entry like [i1, i2] in the t-th
row of B which corresponds to a multiple-edge protograph.
This contradicts the fact that B is associated to single-edge
protographs.

We can use a similar approach of Proposition 1 for any
single-edge protograph-based LDPC code such as QC-LDPC
codes with lifting degree N . Thus, using a generalization
of Proposition 1, Corollaries 1, 2, 3 can be applied to any
protograph-based LDPC code with an all-one base matrix.
In order to prove them we also need some definitions and
well-known results in graph theory as well as some results
about ETSs in [12].

Definition 5: A complete graph is a graph in which every
pair of distinct vertices is connected by a unique edge.
A complete graph on n vertices is denoted by Kn.

Corollary 1: A fully-connected (2�, n)-regular TI-SC-
LDPC-CC with girth 6 contains no (2� + 1, 0) ETS.

Proof: A complete graph on 2� + 1 vertices has
X � = 2� + 1 [11]. A K2�+1 is equivalent to the VN graph
of a (2� + 1, 0) ETS with girth 6. Since it has no 2�-edge-
coloring, Proposition 1 proves the TG of a fully-connected
TI-SC-LDPC-CC with column weight 2� and girth 6 contains
no (2� + 1, 0) ETS.

Lemma 1: [12] An (a, b) ETS and its VN graph in an
LDPC code with column weight m satisfy the followings. (i)
If b

a < 1, then the VN graph has at least one vertex of degree
m. (ii) If b

a < 1, then 4-cycle free TGs contain no (a, b)
ETSs with a ≤ m. (iii) If the VN graph contains |E| edges,
then b = am − 2|E|. (iv) If a is even, then b is also an even
number. (v) If a is odd, then parameters m and b both are
even or odd.

Definition 6: An independent edge set of a graph G is a
subset of the edges such that no two edges in the subset share
a vertex of G . An independent edge set with the maximum
cardinality is a maximum independent edge set whose cardi-
nality is denoted by α�(G).

Theorem 2: [13] Suppose E(G) is the set of edges in a
graph G . If |E(G)| > α�(G)Δ(G), then X � = Δ(G) + 1.

Corollary 2: A girth-6 fully-connected TI-SC-LDPC-CC
contains no (a, 1) ETSs.
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Proof: We prove this corollary in two steps. First, we sup-
pose m = 2�. Lemma 1 part (iii) concludes that if the
TG contains an (a, 1) ETS, then the number of edges of its
VN graph satisfies in 1 = a(2�) − 2|E| which is impossible.

Second, suppose the column weight is m = 2� + 1. If a =
2k, then according to Lemma 1 part (iv), b cannot be an
odd number. Hence, a (2� + 1, n)-regular TI-SC-LDPC-CC
with girth 6 contains no (2k, 1) ETSs. Now, let a = 2k + 1.
Lemma 1 part (iii) implies that the number of edges of the
VN graph of an (a, 1) ETS in a (2� + 1, n)-regular TI-SC-
LDPC-CC satisfies in 1 = a(2�+1)−2|E| which gives |E| =
(2�+1)a−1

2 . We denote this VN graph by G . Since a = 2k + 1
is an odd number, the maximum number of independent edges
of the VN graph is α�(G) ≤ a−1

2 . Moreover, according to
Lemma 1 part (i), the VN graph of the (a, 1) ETS has the
maximum degree Δ(G) = 2� + 1. So, we have: |E| =
(2�+1)a−1

2 > (2� + 1)a−1
2 ≥ (2� + 1)α�(G) = α�(G)Δ(G).

From |E| > α�(G)Δ(G) and Theorem 2 we conclude
that the VN graph of the (a, 1) ETS has X � = Δ(G) +
1. Hence, the VN graph of a (2k + 1, 1) ETS has no
(2� + 1)-edge-coloring and Proposition 1 implies that the TG
of a TI-SC-LDPC-CC with g = 6 and m = 2� + 1 contains
no (2k + 1, 1) ETSs.

Corollary 3: A fully-connected TI-SC-LDPC-CC of col-
umn weight 2�, l > 1, contains no (2� + 1, 2) ETSs.

Proof: We prove this corollary in two steps. First, suppose
the girth of the TG is 6. The VN graph of a (2�+1, 2) ETS in
LDPC codes with m = 2� and g = 6 is obtained by removing
an edge from K2�+1. We denote this VN graph by G . Since
g = 6 and the VN graph has triangle, |E(G)| = �(2�+1)−1,
Δ(G) = 2� and α�(G) = 2. Therefore, for each � ≥ 2
we have |E(G)| > α�(G)Δ(G) and Theorem 2 shows that
X � = 2� + 1. Thus, from Proposition 1 we conclude that
a (2�, n)-regular TI-SC-LDPC-CC with girth 6 contains no
(2�+1, 2) ETS. Second, suppose the girth is 8. In LDPC codes
with m = 2� and g = 8 the parameters of (a, b) ETSs with
b
a < 1 fulfill the inequalities a ≥ 4�− 1 and b ≥ 2�2− 1 [12].
Thus, a (2�, n)-regular TI-SC-LDPC-CC with g = 8 contains
no (2� + 1, 2) ETSs. Similarly, it is proved for codes with
g ≥ 10 [12].

IV. EDGE-COLORING TECHNIQUE TO REMOVE ETSS

Suppose a single-edge protograph-based LDPC code with
an m × n exponent matrix B contains an (a, b) ETS. So,
its VN graph has an m-edge-coloring with colors 1, . . . , m,
the row indices of B. In this section, in order to avoid
the occurrence of such ETS in the TG we propose an
edge-coloring technique (ECT) by proceeding the following
steps.

Step 1: We obtain all non-isomorphic ETSs and their
corresponding VN graphs.

Step 2: We try on different ways to color the edges of each
VN graph.

Step 3: We look for k-cycles with the same edge coloring
in all VN graphs colored in step 2.

If the colors of the edges of a k-cycle in the VN graph
are i1, . . . , ik ∈ {1, . . . , m}, then there is a 2k-cycle obtained

from the rows i1, . . . , ik of B. If by applying all coloring
methods to all VN graphs, in the second step, we end up with
k-cycles with edge colors i1, . . . , ik in colored VN graphs,
in the third step, then avoiding 2k-cycles obtained from the
rows i1, . . . , ik of B results in an (m + 1)-edge-coloring for
each VN graph. Thus, Proposition 1 and its generalized form
give a protograph-based LDPC code free of the desired (a, b)
ETS.

Hereafter, a 2k-cycle obtained from k rows i1, . . . , ik of
an exponent matrix B is denoted by 2k-cycle{i1,...,ik}. For
example, a 6-cycle obtained from three rows i, j, k of B
is denoted by 6-cycle{i,j,k}. In addition, each 4-cycle in
a VN graph corresponds to an 8-cycle in the TG. Hence,
8-cycles obtained from two rows i, j and 8-cycles obtained
from three rows i, j, k of B, where i is used twice in
the 8-cycle, are denoted by 8-cycle{i,j} and 8-cycle{i,j,i,k},
respectively.

The following Lemma is provided to clarify how to use the
edge-coloring technique.

Lemma 2: A sufficient condition to remove (6, 4) ETSs
from a fully-connected TI-SC-LDPC-CC with g = 6 and
m = 5 is to avoid 6-cycle{1,2,3}, 6-cycle{1,2,4} and 6-
cycle{2,3,4}.

Proof: The VN graph of a (6, 4) ETS contains 6 vertices
of degree at least 3, 13 edges and the maximum degree 5. The
VN graphs of two non-isomorphic (6, 4) ETSs, shown in Fig. 1
(a), (b), have the degree sequences d1 = {5, 5, 4, 4, 4, 4} and
d2 = {5, 5, 5, 4, 4, 3}, respectively.

We first investigate the (6, 4) ETS in Fig. 1 (a). Similar
scenario holds for the ETS in Fig. 1 (b). We call the VN graph
of (6, 4) ETS in Fig. 1 (a) as G1 . Suppose u, v are the nodes
of degree 5 and w1, w2, w3, w4 are the nodes of degree 4.
We denote the color of an edge e by c(e). For the edge
uv we have c(uv) ∈ {1, 2, 3, 4, 5}. We prove that avoiding
triangles with colors (1, 2, 3), (1, 2, 4), (2, 3, 4) yields c(uv) �∈
{1, 2, 3, 4, 5}.

In Fig. 2 (a) we illustrate a subgraph of G1 with an edge
coloring such that c(uv) = 1. In order to construct G1 ,
we have to add other edges to Fig. 2 (a). However, if we
add the edges w3w4 or w1w4, then the only color for these
edges is 1 by which we have a triple (1, 2, 3) or (1, 2, 4).
So, the only vertex which can be connected to w4 is w2. As a
result, the degree of w4 will be at most 3. Generally, regardless
of the colors we choose for the edges uwi; i ∈ {1, 2, 3, 4},
we conclude that if c(uv) = 1, then by avoiding triangles with
colors (1, 2, 3), (1, 2, 4), (2, 3, 4) we construct a graph from
Fig. 2 (a) such that the degree of each vertex w1, w2, w3, w4

is at most 3. So, extending Fig. 2 (a) to G1 is impossible. The
same condition happens when we choose c(uv) = 3, 4.

If c(uv) = 2, Fig. 2 (b), then avoiding triangles with colors
(1, 2, 3), (1, 2, 4) and (2, 3, 4) results in a vertex v with three
edges with color 5, which is impossible.

Finally, suppose c(uv) = 5, Fig. 2 (c). Since the degree of
w2 in G1 is 4, it is connected to two vertices of w1, w3, w4.
However, the mentioned restrictions result in c(w1w2) =
c(w2w3) = c(w2w4) = 5. So, connecting w2 to two vertices
of w1, w3, w4 causes two adjacent edges with the same color.
Generally, if c(uv) = 5, then for each i ∈ {1, 2, 3, 4} we
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Fig. 1. Two non-isomorphic (6, 4) ETSs in the TG of a girth-6 LDPC code
with column weight 5. Each edge corresponds to a degree-2 check node.

Fig. 2. Figures (a), (b), (c) are subgraphs of the VN graph of the (6, 4) ETS
in Fig. 1 (a) with an edge coloring such that c(uv) = 1, 2, 5, respectively.

have c(uwi) ∈ {1, 2, 3, 4} and by taking any coloring method
for these edges, we end up with two adjacent edges wiwjs,
i �= j ∈ {1, 2, 3, 4} with the same color. Consequently,
c(uv) �= 5 and extending Fig. 2 (c) to G1 is impossible.

V. FULLY-CONNECTED TI-SC-LDPC-CCS

FREE OF SMALL ETSS

The smallest size of an (a, b) ETS in the TG of a
variable-regular LDPC code with column weight m and girths
6 and 8 are m + 1 and 2m − 1, respectively, [12]. In this
section, we apply the ECT to girth-6 TI-SC-LDPC-CCs with
m = 3, 4, 5 to increase the smallest size of an (a, b) ETS,
a < b, from m + 1 to m + 2. In fact, instead of applying the
PEG algorithm in [7], we use our ECT to provide sufficient
conditions to have a TG whose smallest ETSs are (m + 2, 3)
ETSs if m is odd and (m + 2, 4) ETSs if m is even. We also
apply ECT to girth-8 TI-SC-LDPC-CCs with m = 3, 4.

Theorems 3, 6, 7 are based on checking 8-cycles in the
exponent matrix. To avoid 8-cycles on two rows of B all
2 × r submatrices of B with 2 ≤ r ≤ 4 have to be checked.
Equation (1) implies that if the absolute values of the right
sides of Equation (1) in two 2×2 submatrices of B are equal,
then the TG contains 8-cycles. Suppose a set A(i1,i2) consists
of absolute values of the right side of Equation (1) when
2×2 submatrices of B with row indices i1, i2 are considered.
Thus, from Equation (1) we conclude that if A(i1,i2) contains
repeated elements or A(i1,i2) ∩ A(i1,i3) �= ∅, then there exists
an 8-cycle{i1,i2} and 8-cycle{i1,i2,i1,i3}, respectively.

Theorem 3: Let B with m = 3 be an exponent matrix of a
TI-SC-LDPC-CC with g = 6 and column weight 3. Avoiding
8-cycles obtained from two rows of B yields a TG free of

(a, b) ETSs with a ≤ 5 and b < 3 in which mh ≥ n(n−1)
4 .

Proof: The smallest (a, b) ETSs, b < a, in variable-regular
LDPC codes with column weight 3 and g = 6 are (4, b)
ETSs [12]. According to the ECT, a sufficient condition to
remove (4, 0) and (4, 2) ETSs is to avoid 8-cycles obtained
from each two rows of B. Corollary 2 proves that the TG of
TI-SC-LDPC-CCs is free of (5, 1) ETSs. Hence, removing the
mentioned 8-cycles results in a TG free of (a, b) ETSs with
a ≤ 5 and b < 3. Since to avoid 8-cycles obtained from two
rows of B we only check the right side of Equation (1) in all
2 × 2 submatrices of B and the number of these submatrices
in each two rows of B is



n
2

�
we have |A(1,2)| = |A(1,3)| =

|A(2,3)| =


n
2

�
. Since they are subsets of {1, 2, . . . , 2mh},

we have 2mh ≥ 

n
2

�
. So, mh ≥ n(n−1)

4 .

Theorem 4: Let B with m = 4 be an exponent matrix of a
girth-6 TI-SC-LDPC-CC. A sufficient condition to have a TG
free of (5, b) ETSs with b < 5 and (6, b) ETSs with b ≤ 2 is
to avoid 6-cycle{1,2,3} and 6-cycle{1,2,4}.

Proof: The smallest (a, b) ETS, b < a, which satisfies
in Lemma 1 part (iii) is (5, 0) ETSs. Corollaries 1 and 3
imply that the TG of a (4, n)-regular TI-SC-LDPC-CC with
girth 6 is free of (5, 0) and (5, 2) ETSs. According to the
ECT, a sufficient condition to remove (5, 4) and (6, 2) ETSs
is to avoid 6-cycle{1,2,3} and 6-cycle{1,2,4}. Since eliminating
(5, 4) ETSs causes the removal of (6, 0) ETSs, we conclude
that avoiding the mentioned 6-cycles results in a TG free of
(5, b) ETSs with b ≤ 4 and (6, b) ETSs with b ≤ 2.

Theorem 5: The smallest (a, b) ETSs, b < a, in a
(5, n)-regular TI-SC-LDPC-CC with girth 6 and without
6-cycle{1,2,3}, 6-cycle{1,2,4} and 6-cycle{2,3,4} are (7, 3)
ETSs.

Proof: The TG of a (5, n)-regular TI-SC-LDPC-CC with
girth 6 contains (6, b) ETSs. If we connect two nonadjacent
variable-nodes of degree 4 in the VN graph of a (6, 4) ETS,
then the VN graph of a (6, 2) ETS is obtained. Similarly, a
(6, 0) ETS can be obtained from a (6, 2) ETS. Hence, the VN
graph of the (6, 4) ETS is a subgraph of the VN graphs of
(6, 2) and (6, 0) ETSs and eliminating (6, 4) ETSs results
in the removal of (6, 2) ETSs and (6, 0) ETSs. As shown
in Lemma 2, avoiding 6-cycle{1,2,3}, 6-cycle{1,2,4} and 6-
cycle{2,3,4} is sufficient to remove all (6, 4) ETSs and con-
sequently to eliminate all (6, b) ETSs with b < a. From
Corollary 2 we imply that the TG is free of (7, 1) ETSs. Thus,
removing the desired 6-cycles gives a TG whose smallest (a, b)
ETSs with b < a is (7, 3) ETSs.

Theorem 6: Let B with m = 3 be an exponent matrix of
a girth-8 TI-SC-LDPC-CC with column weight 3. Avoiding
8-cycle{1,2}, 8-cycle{1,3} and 8-cycle{1,2,1,3} results in a TG
free of (a, b) ETSs, 5 ≤ a ≤ 8, b ≤ 3 in which mh ≥ n(n−1)

2 .
Proof: According to the ECT, (5, 3) ETSs can be avoided

from the TG by removing 8-cycle{1,2,1,3}. So, A(1,2) ∩
A(1,3) = ∅. The non-existence of (5, 3) and (7, 3) ETSs
guarantees the non-existence of (a, b) ETSs, 5 ≤ a ≤ 8 and
b ≤ 3, [7]. The roots of (7, 3) ETSs are (5, 3) and (6, 4) ETSs.
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TABLE I

AN EXPONENT MATRIX OF A (3, n)-REGULAR TI-SC-LDPC-CC
(QC-LDPC CODE) WITH GIRTH g BASED ON THEOREMS 3, 6.

Fig. 3. Comparison of performance curves between QC-LDPC codes, one
from [14] and the other constructed based on Theorem 3.

There are two non-isomorphic (6, 4) ETSs. The VN graph of
the (5, 3) ETS is a subgraph of the VN graph of one of these
two (6, 4) ETSs and eliminating the (5, 3) ETS proves that this
type of ETSs is not in the TG. As we concentrate on the edge-
coloring of the VN graph of the other (6, 4) ETS, we imply
that avoiding 8-cycle{1,2}, 8-cycle{1,3} and 8-cycle{1,2,1,3}
causes the removal of all (6, 4) ETSs which can be extended
to a (7, 3) ETS. Therefore, the sufficient condition to remove
(7, 3) ETSs is |A(1,2)| = |A(1,3)| =



n
2

�
, A(1,2) ∩ A(1,3) = ∅.

Since A(1,2) and A(1,3) are subsets of {1, 2, . . . , 2mh}, 2mh ≥
2


n
2

�
. Thus, mh ≥ n(n−1)

2 .

Theorem 7: Let B with m = 4 be an exponent matrix
of a TI-SC-LDPC-CC with g = 8 and column weight 4.
A sufficient condition to remove (7, 4) ETSs is |A(1,2)| =



n
2

�
,

A(1,2) ∩ A(1,3) = ∅ and A(1,2) ∩ A(1,4) = ∅.
Proof: Applying the ECT to (7, 4) ETSs, we conclude

that the sufficient condition to remove these ETSs is to avoid
8-cycle{1,2}, 8-cycle{1,2,1,3} and 8-cycle{1,2,1,4}.

In Table I, some exponent matrices of TI-SC-LDPC-CCs
and QC-LDPC codes with m = 3 and g = 6, 8 with minimum
mh, N satisfying Theorems 3 and 6 are provided.

We also present simulation results to show the impact of
removing ETSs. We compare the performance curves of two
(3, 6)-regular QC-LDPC codes C1, C2 with N = 31 and two
(3, 9)-regular QC-LDPC codes C3, C4 with N = 85. The
exponent matrices of C2, C4 are proposed in Table I and those
of C1, C3 are provided in [14] as the best known codes with
girth 8. Their performances decoded using the sum-product
algorithm with 50 iterations are shown in Fig. 3. As can be
seen, C1 and C2 have almost the same performances, C2

slightly outperforms C1. Moreover, C4 with g = 6 and free
of small size ETSs significantly outperforms C3 with g = 8.

VI. CONCLUSION

We presented an edge-coloring technique (ECT) to char-
acterize ETSs in the TG of protograph-based LDPC codes
whose protographs are single-edge. We applied the ECT
to TI-SC-LDPC-CCs in order to provide sufficient condi-
tions for the removal of ETSs with small size from the
TG of TI-SC-LDPC-CCs with column weights 3 to 5 and
girths 6 and 8.
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