
1

An Energy-Efficient Dynamic Scheduling Method
of Deadline-Constrained Workflows in a Cloud

Environment
Guisheng Fan, Xingpeng Chen, Zengpeng Li, Huiqun Yu, Yingxue Zhang

Abstract—With the rapid development of cloud applications,
the computing requests of cloud data centers have increased
significantly, consuming a lot of energy, making cloud data
centers unsustainable, which is very unfavorable from both the
cloud provider’s point of view and the environmental point of
view. Therefore, it is crucial to minimize energy consumption
and improve resource utilization while ensuring user service
quality constraints. In this paper, we propose a hybrid work-
flow scheduling algorithm (Online Hybrid Dynamic Scheduling,
OHDS), which aims to minimize the energy consumption of tasks
and maximize service resource utilization while satisfying the
sub-deadline and data dependency constraints of workflow tasks.
Firstly, the data dependencies between workflow tasks are con-
sidered for multi-task merging, and sub-deadline constraints are
assigned to workflow tasks based on task priority. Secondly, based
on the independent nature of the tasks of different workflows, a
hybrid scheduling of multiple workflows is performed to reduce
service idle time. Then, the workflow task scheduling priority and
its sub-deadlines are dynamically adjusted, and the service status
is sensed by the CPU utilization of the service, and the workload
on the overloaded/underloaded service is balanced by dynamic
migration of virtual machines. Finally, the OHDS method is
compared with three existing scheduling methods to verify its
better performance in terms of scheduling energy consumption,
scheduling success rate and service resource utilization.

Index Terms—Task scheduling, deadline, energy consumption,
resource utilization, cloud

I. INTRODUCTION

W ITH the rapid growth of cloud computing, cloud ser-
vice providers continue to increase the size and number

of services in cloud data centers, which also leads to large
clusters of services that inevitably consume large amounts of
power. Increasing energy costs and high energy consumption
are in stark contrast to low cloud resource utilization, which
is forcing cloud providers to continuously improve energy
efficiency. Statistically, the average cloud service resource uti-
lization is only 15% [1], while idle service resources dissipate
more than 60% of their peak capacity [2]. Therefore, there are
three reasons for the low service resource utilization: firstly,
a workflow task cannot fully use a service resource, resulting
in an idle service resource. Secondly, the data dependency
between workflow tasks in cloud data centers inevitably leads
to a large number of idle gaps in service resources, further

Guisheng Fan, Xingpeng Chen, Zengpeng Li, Huiqun Yu, and Yingxue
Zhang are with the Department of Computer Science and Engineering,
East China University of Science and Technology, Shanghai 200237, China
(e-mail: gsfan@ecust.edu.cn. chxp2020@163.com. lizengpeng@126.com.
yhq@ecust.edu.cn. 15154057373@163.com).

(Corresponding author: Guisheng Fan, Zengpeng Li, Huiqun Yu)

reducing the utilization of service resources. Finally, peak
workloads for cloud services are often several times the normal
load, so over-provisioning of resources during off-peak hours
is also inevitable.

Many researches often ignore that a single workflow task
cannot fully use the host resources, and directly assign a
single task and occupy a host, resulting in a serious decline
in the utilization of host resources, and can not make good
use of idle time slots of host resources. When multiple
users compete for cloud hosting resources at the same time,
workflow requests randomly arrive at the cloud hosting center
under unpredictable conditions, and most research work tends
to focus on one workflow request without considering the
fairness among users. With the application of virtualization
technology in cloud data centers, virtualization technology
supports dividing a cloud host resource into several indepen-
dent units (virtual machines) to perform multiple tasks at the
same time, and dynamically migrates virtual machines to close
host with low resource utilization. Considering that there is
no data dependency between tasks of different workflows, the
cross-execution of multi-workflow tasks makes better use of
idle time slots of host resources, so as to improve resource
utilization and reduce host energy consumption. Therefore,
based on the independent characteristics of multi-workflow
tasks, this paper uses multiple workflow hybrid scheduling
to achieve host resource utilization, dynamically adjusts the
scheduling priority and sub-deadline of workflow tasks to
better meet time constraints, and migrates virtual machines
on underloaded hosts to reduce power consumption.

In this work, we propose a hybrid workflow scheduling al-
gorithm (OHDS) composed of two phases of task preprocess-
ing and task scheduling to minimize the energy consumption
of tasks and maximize service resource utilization. The main
work of this paper is as follows:

(1) In the task preprocessing phase, we firstly combine
multiple associated workflow tasks into a single task to reduce
the data transmission overhead caused by the execution of
associated tasks on different services during the task schedul-
ing process. Secondly, we prioritize tasks by their latest start
time and assign the initial sub-deadlines to tasks. Finally, a
scheduling queue is generated based on task priorities for
scheduling.

(2) In the task scheduling phase, we use workflow hybrid
scheduling to reduce the idle time of virtual machines. We
dynamically adjusted the unassigned tasks’ direct subtask
priority and subdeadlines with current scheduling information.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3228402

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2

Furthermore, we migrate VMs on underloaded services to
reduce service energy loss.

(3) In the experiments, this paper compares the OHDS
method with existing methods (ESFS, REC-MCDM, and
REEWS) using three datasets. The results show that the OHDS
method has better performance in reducing execution energy
consumption and improving resource utilization.

The rest of this paper is organized as follows: Section II
reviews related work on workflow scheduling. Section III
presents a model for the energy consumption optimization
problem of workflow scheduling that satisfies time constraints.
Section IV presents the optimization method. Section V is the
experimental results and comparison. Section VI is the work
summary and future work directions.

II. RELATED WORK

The huge energy consumption of cloud data centers not only
has a negative impact on the environment, but also leads to
increased operating costs, so it cannot be ignored. In the past
few years, many researchers have done a lot of researches
on the problem of energy consumption optimization in cloud
environment, and proposed many scheduling algorithms.

Safari et al. [3] proposed an energy consumption-aware
scheduling algorithm based on dynamic voltage frequency
scaling (DVFS) technology, which reduces the frequency
of executing tasks by adjusting the voltage of the host,
aiming to minimize the execution energy consumption and
improve resource utilization while ensuring the task sub-
deadline constraints. Choudhary et al. [4] proposed a power-
aware virtual machine placement algorithm, which uses task
clustering technology to combine tasks with short execution
time and long execution time to reduce the number of tasks,
thereby making the system scheduling costs are minimized
and incorporating DVFS technology to reduce energy con-
sumption. Stavrinides et al. [5] proposed a task scheduling
strategy that considers energy consumption, cost, and Quality
of Service (QoS) awareness. Tasks are sorted based on the
earliest deadline priority strategy to generate a scheduling
queue, and through dynamic voltage and frequency scaling
techniques, as well as approximate computing. In order to save
energy consumption and fill the task scheduling gap. Bhuiyan
et al. [6] proposed an energy-aware scheduling algorithm to
schedule multiple directed acyclic graph (DAG) tasks with
deadline constraints on a multi-core platform. In order to
further reduce energy consumption, the processors between
tasks can be shared, light Loaded processors are turned off, and
processors that meet the conditions are merged. Li et al. [7]
proposed a cost- and energy-consumption-aware scheduling
algorithm CEAS, which aims to minimize execution cost and
reduce energy consumption under the premise of satisfying
workflow time constraints. The algorithm uses task merging to
reduce execution cost. And reuses idle virtual machines based
on idle time recycling strategy to further reduce work energy
consumption. Yuan et al. [8] proposes a simulated-annealing-
based bees algorithm to provide fine-grained resource alloca-
tion and scheduling for tasks of heterogeneous applications.
The algorithm aims to minimize energy costs, but it does not

consider the problem of dependencies between tasks under
workflow applications. Pietri et al. [9] adjusted the frequency
for a given task to reduce the overall energy consumption
while satisfying the deadline of tasks. The authors did not
consider migrating virtual machines to reduce the static energy
consumption of the hosts. Bugingo et al. [10] selected an
appropriate CPU frequency for each VM to reduce energy
costs. However, the authors ignored the DVFS technology
that allows dynamic adjust CPU frequency. Garg et al. [11]
proposed a reliability and energy efficient workflow scheduling
algorithm (REEWS) which considers energy consumption and
the application’s reliability.

Saraswathi et al. [13] proposed an energy-aware schedul-
ing algorithm EAWSTM based on task migration. Workflow
tasks are independent of each other, and the optimal virtual
machine is allocated to tasks according to power efficiency.
After the tasks are merged, the tasks will be migrated to
other optimal virtual machines for execution to save energy.
Geng et al. [14] proposed a scheduling algorithm based
on task repetition and task grouping in order to minimize
workflow execution time, reduce energy consumption, and
reduce execution cost. To reduce the data transfer overhead
between tasks, the workflow tasks are divided into multiple
groups, and combine multiple task groups to take advantage
of idle time between tasks in a single task group to improve
processor resource utilization. Garg et al. [15] proposed a
workflow scheduling algorithm (ERES) that minimizes energy
consumption, maximizes resource utilization, and minimizes
workflow makespan under task deadlines and dependency
constraints. Scheduling workflow tasks to virtual machines
and dynamically deploy/undeploy virtual machines based on
the needs of workflow tasks. This algorithm is based on a
dual-threshold strategy for sensing the status of servers and
balancing workloads on overloaded/underloaded servers by
live migrating VMs. Mohammadzadeh et al. [16] based on
the Antlion Optimization (ALO) algorithm and the Grasshop-
per Optimization Algorithm (GOA), a hybrid algorithm is
proposed for multi-objective solving scheduling problems.
The proposed algorithm improves the search performance by
making a greedy strategy, using random numbers in a green
cloud environment according to chaos theory, which aims to
minimize the makespan, cost of performing tasks, energy con-
sumption and increase throughput. Ahmad et al. [17] proposed
an energy-efficient workflow scheduling algorithm that reduces
energy consumption under user-specified budget constraints,
this algorithm introduces a flexible mechanism to save energy
consumption that incorporates energy and cost factor factors
to fairly distribute the available budget for workflow tasks.

Based on the intelligent droplet algorithm and genetic algo-
rithm, Kalra et al. [18] proposed a hybrid method for energy-
aware scheduling of deadline-constrained workflows, which
provides users with a non-dominated solution. In particular, it
focuses on multiple goals of reducing program length, execu-
tion costs, and energy usage within user-specified deadlines.
Toussi et al. [19] presented the DQWS workflow schedul-
ing algorithm, which uses the divide-and-conquer method
to minimize costs while satisfying the deadline constraint.
Medara et al. [20] proposed an energy-efficient and reliability-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3228402

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

3

aware workflow task scheduling (EERS) algorithm in cloud
environments, which aims to maximize energy savings and
improve system reliability. First, the algorithm preserves task
dependencies through a task-level calculation algorithm. Sec-
ond, the communication cost is reduced by the task clustering
algorithm, thereby reducing the energy consumption. Then,
each task is assigned a sub-deadline through a sub-goal
time distribution algorithm. Finally, through the cluster-VM
mapping algorithm, the energy consumption is minimized and
the system reliability is improved. Zhang et al. [21] proposed
a mission-critical remapping algorithm (RMREC), which aims
to reduce energy consumption. The algorithm is divided into
two stages: In the first stage, the adjustable cost budget and
the spare cost is determined according to the cost budget,
the critical task path and the adjustable budget factor, and all
workflow tasks are allocated to the virtual machine with the
lowest energy consumption. In the second stage, key tasks are
remapped according to the spares obtained in the first stage
to reduce the energy consumption caused by task migration.
Garg et al. [22] proposed a new scheduling algorithm that op-
timizes the reliability and energy consumption of applications
and guarantees user-specified QoS constraints. The proposed
algorithm works in four stages: task priority calculation, task
clustering, deadline assignment, and assignment of clusters
to processing elements with appropriate frequencies. Antolak
et al. [23] presented a balancing heuristic for static task
scheduling in a multi-verified time-based system architecture,
with the main objective of minimising the energy consumed
by the system without missing deadlines. Walia et al. [24]
proposed a new Hybrid Scheduling Algorithm (HS) which
is based on Genetic Algorithm (GA) and Flower Pollination
Based Algorithm (FPA) for cloud environment to reduce task
execution time, improve resource utilization and minimize
energy consumption. Li et al. [25] proposed energy-aware task
scheduling with deep reinforcement learning (DRL), a high-
precision energy consumption model based on the real dataset
SPECpower designed to facilitate environmental simulation, a
partitioning-based heterogeneous resource proximal policy op-
timisation task scheduling algorithm based on real production
situations, and autoencoders for processing high-dimensional
spaces to accelerate DRL convergence. Bi et al. [26] proposes
a dynamic hybrid metaheuristic algorithm based on simu-
lated annealing and particle swarm optimization, which can
guarantee the quality of service while minimizing the energy
cost. The work packs applications with complementary multi-
resource allocation requirements to improve performance and
maximize profit, but they ignore migrating virtual machines to
underload hosts to improve resource utilization further.

Considering the heterogeneous nature of cloud data center
resources, Chen et al. [27] proposed an energy-efficient job
scheduling algorithm that considers task dependencies in a
cloud environment. The algorithm models energy consumption
based on the frequency and number of cores of a virtual
machine’s CPU, and its main task is to divide each job into
multiple tasks in a reasonable manner and schedule the tasks to
the appropriate virtual machine to reduce energy consumption.
Considering system response time and reliability, Hu et al. [28]
propose an efficient heuristic algorithm aimed at solving the

energy consumption optimisation problem for parallel work-
flows. The workflow execution time is first minimized while
satisfying reliability constraints, and energy consumption is
reduced by means of DVFS techniques and shutting down inef-
ficient processors. The scheduling order of different workflow
tasks affects the scheduling performance differently. Wang et
al. [29] combine particle swarm optimisation and idle time
slot awareness rules to propose a cloud workflow scheduling
method that aims to minimize costs and improve resource
utilization under workflow deadline constraints. Considering
the endpoint communication contention when executing work-
flows, Wu et al. [30] propose a new usage scheduling model
that introduces an awareness of communication contention
during workflow scheduling to minimize workflow makespan.
Efficient methods for scheduling cloud workflows are much
needed. Wu et al. [31] propose a multi-objective evolutionary
list scheduling (MOELS) algorithm that embeds classical
list scheduling into a powerful multi-objective evolutionary
algorithm (MOEA) designed to optimise the time horizon and
economic cost of workflow scheduling. Different users often
have different quality of service requirements. Li et al. [32]
propose a Multi-swarm Co-evolution-based Hybrid Intelligent
Optimization (MCHO) algorithm that minimizes the total
makespan and cost while meeting the deadline constraints for
each workflow.

In this work, we consider workflow scheduling with
deadline-constrained and aim to reduce energy consumption
while ensuring service quality constraints. We sense the ser-
vice state by the CPU utilization of the service and balance
the workload of services by dynamic migration of virtual
machines to improve resource utilization.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first discuss the models related to cloud
workflow scheduling, mainly including the system model, task
model and energy consumption model, and the parameters
used in the models and their descriptions are summarised in
Table 1. And the task scheduling problem is then formulated
based on the dependencies between tasks.

A. System Model

The cloud data centers are composed of a large number of
heterogeneous computing resources, namely H = {h1, h2,...,
hn}, where n represents the number of hosts. For the host
hk can be represented by a tuple, that is, hk = < mk, sck,
nk, Pmax

k , fmax
k , VMk >, where mk represents the host

memory size, sck represents the storage capacity of the host,
nk represents the network bandwidth, Pmax

k represents the
maximum power of the service, fmax

k represents the maximum
available frequency of the service, the host hk can deploy
multiple virtual machines, that is, VMk = {vmk,1, vmk,2,...,
vmk,m}. For a virtual machine vmk,l can be represented by a
tuple vmk,l = < fkk,l, mkk,l, skk,l >, where fkk,l represents
the CPU frequency of the virtual machine, mkk,l represents the
memory size of the virtual machine, and skk,l represents the
storage capacity of the virtual machine. Based on virtualization
technology, all resources on a host can be shared by multiple

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3228402

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4

TABLE I
LIST OF SYMBOL

Abbreviation Definition
hk host resources
mk host memory size
sck host storage size
nk host network bandwidth
Pmax
k maximum host power

fmax
k maximum host frequency
vmk,l virtual machines deployed on the host
fkk,l virtual machine CPU frequency
mkk,l virtual machine memory size
skk,l virtual machine storage capacity size
RT (vmk,l) virtual machine ready time
tij workflow task
stij workflow task start time
ftij workflow task end time
ttip,j workflow task data transfer time
STvm virtual machine start time
STh host start time
twi

j workflow task computation load
etij workflow task execution time
trip,s transfer load between workflow tasks
Pk host execution power
rk host static power
ytk host enable status
EC(vmk,l) virtual machine energy consumption size
EC(sk) host energy consumption size
EC cloud data center power consumption

virtual machines, and these virtual machines can be migrated
between different hosts. In this way, the virtual machine on
the underloaded host is migrated and the host is shut down, so
as to improve resource utilization and reduce idle resources.

B. Task Model

Considering the host and virtual machine startup time, the
start time, execution time, data transfer time, and workflow
execution time of task tij in workflow wi are defined as
follows:

(1) Task start time. In different cases, the start time stij of
the task tij executed in the virtual machine vmk,l is defined
as follows:

If task tij and its parent task tip are scheduled to execute on
a virtual machine on the same host,

stij = RT (vmk,l) (1)

among them, RT (vmk,l) represents the virtual machine vmk,l

ready execution time, which is the execution completion time
for a virtual machine to process an existing task.

If task tij and its parent task tip are scheduled to execute on
virtual machines on different hosts,

stij = max(ftpi + ttpp,j , RT (vmk,l)) (2)

If a new virtual machine is deployed on the host where the
parent task tip is located to execute the task tij ,

stij = max(ftpi) + STvm (3)

among them, STvm indicates the startup time of the virtual
machine.

If a new virtual machine is deployed on a different host
than the parent task tip to execute task tij ,

stij = max(ftpi) + STvm + ttpp,j (4)

If deploying new hosts and new virtual machines to perform
task tij ,

stij = max(ftpi) + STh + STvm + ttpp,j (5)

where STh indicates the startup time of the host. Therefore,
the end time of task tij can be defined as ftij = stij + etij .

(2) Task execution time. Different virtual machines have
different processing capabilities and the execution time of the
task mainly depends on the performance of the assigned virtual
machine. The execution time of the task tij scheduled on the
virtual machine vmk,l in the host hk is defined as follows:

etij =
twi

j

fkk,l
(6)

where twi
j indicates the computation load of task tij .

(3) Data transfer time. If the parent task tip and the child
task tis are scheduled to be executed on virtual machines of
different hosts, data transfer time overhead will occur, and
the transfer time between different virtual machines on the
same host will be ignored. The data transfer time is defined
as follows:

ttip,s =

trip,s
nk

If tip and tis on different hosts

0 otherwise
(7)

among them, trip,s represents the data transmission load be-
tween task tip and task tis, and nk represents the network
bandwidth of the host where task tip is located.

(4) Workflow execution time. The execution time of work-
flow wi depends on the maximum end time in its workflow
tasks and the workflow arrival time, which is defined as
follows:

ET (wi) = max(ftij)− subT imei (8)

among them, subT imei indicates the arrival time of workflow
wi.

C. Energy Model

The energy consumption of a host hk in the time period T
can be expressed as ECk = Pk ∗ T , where Pk represents the
power of the host hk. The following equations for mainframe
power and energy consumption are referenced from [33].

Knowing that the maximum power of the host hk is Pmax
k ,

the static power ratio is rk, and the maximum CPU frequency
is fmax

k , then the power of the host hk can be formalized as:

Pk = rk ∗ Pmax
k ∗ ytk +

(1− rk) ∗ Pmax
k

(fmax
k)3

∗ (fk)3 (9)

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3228402

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5

among them, ytk indicates whether host hk is enabled at time
t, and fk is the CPU frequency of host hk at time t. Among
them, ytk and fk change with time, and the rest are constants.
The power of the host hk at time t can be converted into the
power generated by the virtual machine vmk,l deployed on
the host hk with a frequency of fk at time t.

The start time ST (vmk,l) and end time FT (vmk,l) of the
virtual machine vmk,l can be defined as:

ST (vmk,l) = min(stij)− STvm (10)

FT (vmk,l) = max(ftij) (11)

Therefore, the energy consumption generated by the virtual
machine vmk,l during the use phase can be defined as:

EC(vmk,l) =
(1− rk) ∗ Pmax

k

(fmax
k)3

∗ (fk)3

∗ (FT (vmk,l)− ST (vmk,l))

(12)

For the host hk, the start time ST (hk), the end time
FT (hk), and the usage time UT (hk) can be defined as:

ST (hk) = min(ST (vmk,l))− STh (13)

FT (hk) = max(FT (vmk,l)) (14)

UT (hk) = FT (hk)− ST (hk) (15)

Therefore, the energy consumption generated by the host
hk during the usage phase can be defined as:

EC(hk) = rk ∗ Pmax
k ∗ UT (hk) +

|VMk|∑
l=1

EC(vmk,l) (16)

To sum up, the total energy consumption of the hosts in the
cloud can be defined as:

EC =

n∑
k=1

EC(hk) (17)

D. Problem Formulation

As we all know, task scheduling is an NP-Complete prob-
lem. This paper aims to minimize execution energy consump-
tion and maximize resource utilization under the premise of
satisfying workflow time constraints. Therefore, the energy
consumption optimization problem can be formally described
as the following formula:

Min

n∑
k=1

EC(hk) (18)

In addition to energy consumption, this paper aims to
maximize the resource utilization of the host, so the utiliza-
tion of frequency when executing tasks is also an important
optimization indicator:

Max(

m∑
i=1

|Ti|∑
j=1

cpui
j ∗ etij)/

n∑
k=1

fmax
k ∗ wtk (19)

among them, m represents the number of workflows in W ,
|Ti| represents the number of workflow tasks, cpui

j represents
the execution frequency of workflow tasks, etij represents the

execution time of workflow tasks, and n represents the number
of cloud hosts, wtk indicates the running time of the host.

(1) Decision variables
xi
j,(k,l) represents the mapping relationship between task tij

and virtual machine vmk,l. xi
j,(k,l) is 1 if task tij is scheduled

to execute to virtual machine vmk,l in host hk, and it is 0
otherwise.

xi
j,(k,l) =

{
1 If tij executes on vmk,l

0 otherwise
(20)

(2) Task dependency constraints
The dependencies between workflow tasks are constrained

as follows:
ReadyT ime ≤ stis,(q,h) (21)

The parent and child tasks can be divided into five cases:
parent and child tasks on the same host, parent and child tasks
not on the same host, parent and child tasks on the same host
and need to deploy a new virtual machine, parent and child
tasks not on the same host and need to deploy a new virtual
machine, and need to deploy a new host and virtual machine.
ReadyT ime is the readiness time of the task tip in the above
five cases, and stis,(q,h) the start time of tip’s child task tis on
virtual machine vmq,h.

(3) Deadline constraints
When all tasks in the workflow wi are scheduled to be

completed, the completion time of the workflow wi is the
maximum end time of the workflow task, that is:

fti = max
tij∈Ti

{
ftij,(k,l)

}
(22)

where ftij,(k,l) is the end time of the task tij on virtual machine
vmk,l.

Let di be the deadline of the workflow wi. The workflow
deadline constraints are as follows:

fti ≤ di,∀wi ∈ D (23)

(4) Host resource constraints
Cloud hosts include resources such as CPU and memory.

Based on virtualization technology, all resources of a host can
be shared by several virtual machines. Therefore, the following
constraints need to be met in the allocation of host resources:

fmax
k −

|VMk|∑
l=1

fkk,l ≥ 0,∀hk ∈ H (24)

mk −
|VMk|∑
l=1

mkk,l ≥ 0,∀hk ∈ H (25)

IV. HYBRID SCHEDULING METHOD

The workflow scheduling approach proposed in this chapter
is divided into two main phases.

(1) Task pre-processing phase. Firstly, multiple associated
workflow tasks are combined into a single task to reduce the
data transfer overhead incurred by associated tasks executing
on different services during task scheduling. Secondly, each
workflow task is assigned a scheduling priority by the earliest

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3228402

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6

Fig. 1. The workflow scheduling architecture.

completion time of the task and an initial sub deadline is
assigned to the workflow task based on the latest completion
time of the task. Finally, a task queue is generated based on
the scheduling priority to wait for resource allocation.

(2) Task scheduling phase. Workflow hybrid scheduling is
used to reduce the idle time of VMs; for scheduled tasks, their
direct sub-task priorities and the sub deadlines of subsequent
unassigned tasks are dynamically adjusted by the current
scheduling information; for each enabled service, the VMs on
the underloaded service are dynamically migrated to reduce
the service energy loss.

The proposed workflow scheduling architecture based on
the above two phases is shown in Fig. 1. The scheduling
architecture of the cloud data center is divided into three
layers: the user layer, the scheduling layer and the resource
layer. The user layer sends service requests to the application,
and the scheduling layer processes the user requests based
on the resource layer, i.e. the scheduling layer is the bridge
between the user layer and the resource layer in the whole
architecture. The resource layer in the cloud differs from
traditional systems in that it consists of a service layer and
a virtual machine layer. In addition, the available virtual
machines in the virtual machine layer can be dynamically
increased or decreased depending on the resources available
for the service to which they belong.

The scheduling layer consists of five main components.
(1) A workflow processor processes workflows and merges

directly and uniquely associated workflow parent and child
tasks into a single task to reduce the data transfer overhead
incurred when associated tasks are dispatched to different
virtual machines during the scheduling process.

(2) The task pool stores all tasks awaiting scheduling that
have been processed by the workflow processor.

(3) The task processor assigns sub deadlines to each work-
flow task and calculates the task priority to generate a task

Algorithm 1 Task-merging (WF)
Input: Workflow wi consisting of n tasks.
Output: Workflow w

′

i after task merging is completed
1: Generate task queue Queue through entry task tientry
2: for each task tip in Queue do
3: if tip has only one child tis then
4: if tis has only one parent tip then
5: Update the computation load twi

s of task tis to
twi

p + twi
s

6: Update the immediate parent task set pred(tis) of
task tis

7: Update the child task set succ(tip) of the immediate
parent task of task tip

8: end if
9: end if

10: Remove tip from Queue
11: end for

scheduling queue.
(4) The scheduling monitor generates workflow task VM-

services mappings and dynamically adjusts workflow task
priorities and subdeadlines based on scheduling information.

(5) The resource manager dynamically migrates VMs based
on the resource utilization of the cloud service.

A. Task Merging

In order to reduce the data transmission overhead caused
by the execution of associated tasks between different hosts
during the workflow scheduling process, multiple associated
workflow tasks are combined into a single task. This not
only reduces the cost of data transmission between associated
tasks, but also reduces the time overhead incurred when
cyclically monitoring scheduling information. The workflow
task merging conditions are as follows: task tip is the direct

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3228402

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

7

Algorithm 2 Priority-Adjustment(task)
Input: currently scheduled task tij
Output: task scheduling sequence Queue
1: listchild = a collection of direct child tasks of task tij ;
2: queueunsched = unscheduled task queue after task tij
3: for each task tiu in queueunsched do
4: if listchild contains task tiu then
5: Add the task tiu to the listprior;
6: end if
7: end for
8: collectionprior = listprior the collection of scheduling

sequences;
9: for each sequence qprior in collectionprior do

10: if the sequence qprior satisfies the task’s child deadlines
and dependencies then

11: Calculate the energy consumption of the current
scheduling sequence qprior;

12: end if
13: Choose a sequence qprior with the least energy con-

sumption;
14: end for
15: Use the sequence qprior to update the task scheduling

sequence Queue;
16: return Queue;

parent task of task tis, when task tip has the only direct child
task tis, and task tis has the only direct parent task tip, Task tip
and task tis are combined into task tip+s. When task tip and task
tis are assigned to different hosts for execution, data transfer
costs will be incurred, and task merging will avoid this cost.
Algorithm 1 specifies the specific steps of task merging.

B. Task Priority Assignment

Task pre-processing stage. The earliest end time of a work-
flow task is ranked as the initial priority of the task to generate
the scheduling queue, where the average processing power of
the virtual machine is used to calculate the execution time
of the workflow task, taking into account the data transfer
between tasks. Thus the earliest end time of a task, eft(tij),
is defined as follows.

eft(tij) =

{
etij , if tij is an entry task
etij +max

{
eft(tip) + ttip,j

}
, otherwise

(26)
among them, etij represents the execution time of task tij , ttip,j
represents the data transmission time between task tij and the
parent task, pred(tij) is the immediate parent task set of task
tij . Therefore, the earliest start time of task tij can be defined
as est(tij) = eft(tij)− etij .

Task scheduling phase. Dynamically adjusting the schedul-
ing priority of workflow tasks. Based on the current scheduling
task, the set of its direct subtasks is obtained, and the direct
subtasks in the order of the current scheduling queue are
selected for priority adjustment based on the priority order
of the current scheduling task, and the dynamic priority
adjustment pseudo-code is shown in Algorithm 2.

Algorithm 3 Sub-Deadline-Initialization(WF)
Input: workflow wi consisting of n tasks.
Output: workflow w

′

i after task sub-deadline initialization
completes

1: Build a task list based on the workflow topology listp;
2: for each task tij in listp do
3: Use formula (4-5) to calculate the earliest end time

eft(tij) of task tij ;
4: end for
5: Build a task list based on the workflow inverse topology

structure listq;
6: for each task tij in listq do
7: Use formula (4-6) to calculate the latest end time

lft(tij) of task tij ;
8: Use formula (4-7) to calculate the sub-deadline ddij of

task tij ;
9: end for

10: return workflow w
′

i;

C. Task Deadline Distribution

As with task priority allocation, task deadlines are allocated
in two stages.

Task preprocessing stage. This paper calculates the latest
end time of a task, lst(tij), based on the earliest completion
time of the workflow task and considers the data transfer delay
between tasks, which is defined as follows:

lft(tij) =

{
eft(etiexit), if tij is an export task
max

{
lft(tis) + etis − ttij,s

}
, otherwise

(27)
among them, succ(tij) represents the direct subtask set of
task tij , and the latest start time of task tij can be defined as
lst(tij) = lft(tij) − etij . Therefore, it is possible to calculate
its child deadlines for workflow tasks in reverse topological
order starting from the exit task, and the deadline ddij for each
task is defined as follows:

ddij =
lft(tij)

eft(etiexit)
∗ deadlinei (28)

The relevant pseudocode is shown in Algorithm 3:
Task scheduling stage. After the current task has been

scheduled, it is adjusted for unscheduled tasks based on their
initialized subdeadlines. Unlike the initialized sub-deadlines
in the task pre-processing phase, the execution time and data
transfer time of scheduled tasks are calculated according to
their actual allocated services and virtual machines.

D. Task Scheduling

The main process of workflow task scheduling is shown
in Algorithm 4. First, based on the dependencies between
workflow tasks, multiple tasks are merged into a single task,
and task priorities and sub-deadlines are initialized; then based
on task priorities, task queues are initialized. Finally, perform
scheduling based on the task queue, perform task migration
based on the resource utilization of the currently used host
before task scheduling, and dynamically adjust the priority and

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3228402

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8

Algorithm 4 Task-Scheduling(WF)
Input: workflow wi consisting of n tasks.
Output: task resource mapping < Resource,Allocation >
1: while new workflow wi arrives do
2: Task-Merging(wi);
3: for each task tij in wi do
4: Use formula (26) to calculate the earliest end time

eft(tij) of task tij ;
5: end for
6: Task sub-deadline initialization → Sub-Deadline-

Initialization(wi);
7: for each task tij in scheduling queue queues do
8: Task migration →Task-Migration(Resource);
9: {sk, vmk,l} = Cheapest-Energy-Consumption(tij);

10: Update the start time stij,(k,l) of task tij and end time
ftij,(k,l);

11: if collection listalloc is not empty then
12: tip = the latest scheduled task assigned by the

virtual machine vmk,l;
13: for task tjc in candidate queue queuec do
14: if task tjc satisfies dependency constraints and

max{ftip,(k,l), st
j
c,(k,l)} + etjc,(k,l) ≤ stij,(k,l)

then
15: Update the start time stjc,(k,l) of task tjc and

end time ftjc,(k,l);
16: end if
17: end for
18: end if
19: Adjust the priority of direct subtasks → Priority-

Adjustment(tij);
20: Adjust the sub-deadline of unscheduled tasks → Sub-

Deadline-Initialization(wi);
21: end for
22: Update scheduling queue queues and candidate queue

queuec;
23: end while
24: return < Resource,Allocation >;

sub-deadline of unscheduled tasks according to the scheduling
information after task scheduling.

It is worth noting that for a single workflow, due to the data
dependencies between different tasks, during the execution
of the workflow, the virtual machine has a large number of
idle time periods, resulting in idle waste of host resources.
However, there is no data dependency restriction between
different workflow tasks, so different workflows are executed
in the same virtual machine in an appropriate order, and the
idle time period of the virtual machine will be reduced or even
eliminated.

Assuming that there are tasks tip and tis in the workflow
wi that are executed on the virtual machine vmk,l, the end
time of task tip is less than the start time of task tis, that is,
ftip,(k,l) < stis,(k,l). There is a workflow wj , and the start time
of its task tjh executed on the virtual machine vmk,l is less
than the start time of the task tis, that is, stjh,(k,l) < stis,(k,l).
If max{ftip,(k,l), st

j
h,(k,l)} + etjh,(k,l) ≤ stis,(k,l), that is, the

Algorithm 5 Cheapest-Energy-Consumption(task)
Input: currently scheduled task tij
Output: hosts and virtual machines {sk,vmk,l} assigned to

task tij
1: listvm = the set of virtual machines in the used resource

pool;
2: for virtual machine vmk,l in listvm do
3: Select {hk, vmk,l} with the smallest energy consump-

tion for task tij ;
4: end for
5: lists = the set of hosts in the used resource pool;
6: for virtual machine vmk,l in virtual machine type list do
7: if ftip,l ≤ ddij then
8: for each host hk in lists do
9: Select {hk, vmk,l} with the least energy consump-

tion for task tij ;
10: end for
11: for host hk in host type list do
12: Select {hk, vmk,l} with the least energy consump-

tion for task tij ;
13: end for
14: end if
15: end for
16: if {sk, vmk,l} is empty then
17: for virtual machine vmk,l in listvm do
18: Select {hk, vmk,l} with the smallest execution end

time of task tij ;
19: end for
20: for virtual machine vmk,l in virtual machine type list

do
21: if task tij executes in the virtual machine vml with

the minimum end time then
22: for each host hk in lists do
23: Select {hk, vmk,l} with the least energy con-

sumption of task tij ;
24: end for
25: for each host hk in host type list do
26: Select {hk, vmk,l} with the least energy con-

sumption of task tij ;
27: end for
28: end if
29: end for
30: end if
31: return {sk, vmk,l};

end time of task tjh after task tip is less than or equal to
the start time of task tis, then task tjh is allocated to the
virtual machine vmk,l and executed after task tip is completed,
which effectively reduces the idle time between task tip and
task tis. Therefore, in the workflow scheduling process, this
paper adopts the multi-workflow hybrid scheduling method,
which aims to reduce the idle time of virtual machines,
improve the utilization of host resources, and reduce the
energy consumption of scheduling.

In the multi-workflow hybrid scheduling process, when a
new workflow arrives, its tasks are preprocessed and stored

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3228402

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

9

in the task pool. The task pool is divided into two parts: the
scheduling queue queues and the candidate queue queuec.
The unscheduled tasks of the currently scheduled workflow
are stored in the scheduling queue, and the unscheduled tasks
that arrive later in the workflow are stored in the candidate
queue, that is, the scheduling queue task is the main scheduling
object, and the candidate queue is mainly used to fill the idle
time of the virtual machine. When scheduling a scheduling
queue task, first update the used service resources and make
a VM migration decision based on its resource utilization, see
Algorithm 6 for the related process; then select a service and
VM with the lowest energy consumption for the current task,
see Algorithm 5 for the related process; finally update the
service resources and task information. When the scheduling
queue task scheduling is completed, first determine whether
the idle time of the virtual machine allocated by the scheduling
task satisfies the task filling constraint, and if it does, select
a suitable task from the candidate queue for idle time filling,
and update the task resource mapping result. After each round
of task scheduling is completed, the direct sub-task priority
of the current task and the sub-deadlines of all unscheduled
tasks are adjusted based on the scheduling information. When
all tasks in the scheduling queue have been scheduled, the
first arriving workflow is selected from the candidate queue,
its tasks are stored in the scheduling queue and the candidate
queue is updated, and the above scheduling steps are repeated
until all workflow tasks are scheduled.

Algorithm 5 aims to select the resource map with the least
energy consumption to execute for the current task. First, by
selecting the used host and virtual machine, selecting the used
host and creating a new virtual machine, and creating a new
host and virtual machine, select the host and virtual machine
that satisfy the task sub-deadline constraints and execute the
least energy consumption. Secondly, if a suitable host and
virtual machine are not obtained, the host and virtual machine
with the smallest task end time are selected according to the
above three methods, and if the end time is the same, the
selection is made according to the energy consumption of task
execution. Finally, update the host and virtual machine status
and return.

E. Task Migration

The integration of host resources in cloud data centers
is an NP-hard problem. This paper dynamically migrates
workflow tasks to target hosts and virtual machines based on
virtualization technology to improve host CPU utilization, and
shuts down idle hosts to save host resources and reduce energy
consumption.

Taking the host CPU utilization as the main decision-
making factor, calculate the currently used CPU utilization
of each host and the overall average CPU utilization, and
divide the currently used host resources into normal hosts and
underloaded hosts. Under the premise of resource constraints,
migrating workflow tasks assigned to underloaded hosts to nor-
mal hosts and virtual machines and shutting down underloaded
hosts, so as to improve the CPU utilization of the normal host

Algorithm 6 Task-Migration(Resource)
Input: the currently used host resource Resource
Output: host resource after resource adjustment Resource

′

1: lists = set of used hosts;
2: for each host hk in lists do
3: Use formula (29) to calculate the CPU resource utiliza-

tion of host hk;
4: end for
5: Use formula (30) to calculate the overall average CPU

resource utilization;
6: listu = used underload host collection;
7: listn = set of used normal hosts;
8: for each host hu in listu do
9: listvm = the set of virtual machines in host hk;

10: for each virtual machine vmk,l in listvm do
11: for each host hn in listn do
12: if the available frequency of host hn is greater than

or equal to the frequency of virtual machine vmk,l

then
13: Migrate the virtual machine vmk,l to the host

hn after the current task is executed;
14: end if
15: end for
16: end for
17: Shut down the host hu;
18: end for
19: return Resource

′
;

and reduce the idleness of the resources of the underloaded
host. Host CPU utilization is defined as follows:

RUk =

∑|VMk|
l=1 fkk,l

fmax
k

(29)

among them, fkk,l is the CPU frequency of the virtual
machine vmk,l, and fmax

k is the maximum CPU frequency
of the host hk, so the average CPU resource utilization is
defined as follows:

avgRU =

∑n
k=1 RUk

n
(30)

It is worth noting that VM migration decisions are made
before new tasks are scheduled. Traverse the virtual machine
list of the underload host to make migration decisions. Before
the virtual machine is migrated, it needs to complete its
assigned tasks and then migrate to the new host. When the
migration of all the virtual machines of the underload host is
completed, it needs to be timely off to avoid its static energy
consumption.The task migration decision is made based on
the above CPU resource utilization, and the specific process
is shown in Algorithm 6.

The algorithm time complexity analysis is based on a
workflow consisting of n tasks. The OHDS algorithm whose
maximum dependency of workflow tasks is n(n − 1)/2, so
the time complexity of the deadline assignment phase is
O(n2), the time complexity of task sorting based on priority
is O(nlogn). And the upper limit of the number of candidate
VMs in the task scheduling phase is n + v, where v is the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3228402

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10

Fig. 2. The structure of scientific workflows.

set of VM type set, and the time complexity of traversing
the candidate VMs during task round-robin scheduling is
O(n(n + v)). The time complexity of the task scheduling
phase is O(n3(n + s)) considering task subdeadlines and
scheduling priority adjustment, and the need to perform VM
migration operations before new tasks are scheduled. Thus the
complexity of the OHDS algorithm time is O(n3(n+ s)).

V. EVALUATION

In this paper, the proposed OHDS method is compared
experimentally with the ESFS algorithm, the REC-MCDM
algorithm and the REEWS algorithm. The main principles and
steps of the other three scheduling methods are shown below.

(1) Energy-aware Stepwise Frequency Scaling (ESFS). The
ESFS algorithm [9] references the HEFT algorithm to con-
struct task priorities based on the critical path length of each
workflow task to the egress task. Running at the maximum
host frequency to assign each task the host with the earliest
completion time. The execution frequency of each task is then
gradually adjusted, aiming to reduce the energy consumption
of the hosts as much as possible while satisfying the workflow
deadline constraint.

(2) Runtime-Energy-Cost Multi Criteria Decision Making
(REC-MCDM). The REC-MCDM algorithm [10] constructs
an initial task resource mapping based on the HEFT algorithm
through the maximum VM frequency. The execution time and
energy consumption of each VM with different processing
power are then calculated and the highest performing VM
frequency is returned for each task by weighted comparison.

(3) Reliability and Energy Efficient Workflow Scheduling
(REEWS). The REEWS algorithm [11] is mainly applied to
priority-constrained applications in the cloud and consists of
four main phases. Firstly, task priority is calculated based
on workflow topology ordering; secondly, workflow tasks are
divided into different task clusters to minimize the communi-
cation cost between tasks; then QoS constraints are assigned
based on user-defined workflow deadlines; and finally, virtual
machines of appropriate frequency are assigned to task clusters
to minimize energy consumption, etc.

Even though the algorithm in [19] is recently proposed, it
tackles a different optimization problem, that is, minimizing
the execution cost subject to the deadline constraint for a single

workflow. By contrast, the identified problem of this paper
aims to minimize energy consumption and maximize resource
utilization while satisfying the deadline constraints for mul-
tiple workflows. Additionally, the algorithm in [19] always
selects the cheapest computing resources while meeting the
deadline, neglecting the optimization of energy consumption
and resource utilization. Considering the root difference in
problem definition between them, the algorithm in [19] cannot
be applied directly for comparison.

A. Experimental Settings

Three widely used workflows (i.e. CyberShake, Epigenome
and SIPHT), each with different data and computational char-
acteristics, have been chosen for this paper. (a) The Cyber-
Shake workflow is used by the Southern California Earthquake
Center to characterize the severity of earthquakes in an area
by generating earthquake distribution maps. The workflow
is characterized as data-intensive and has a high demand
on service memory and CPU resources. (b) The Epigenome
workflow is used to automate various genomic testing opera-
tions and its workflow is characterized as CPU-intensive. (c)
The SIPHT workflow is used to automate searches of the
National Center for Biotechnology Information database for
sRNA-encoding genes. Its workflow is characterised as CPU-
intensive. Detailed information on the above workflows can be
found and studied in the literature [12]. These three workflows
cover all the basic features (one-to-one, one-to-many, many-
to-one and many-to-many), with 50, 200, 400 and 600 task
sizes selected for each workflow respectively.

In addition, 10 types of real service hosts are selected to
simulate service clusters in the cloud data center and an upper
limit of 1000 resources is assumed for each service, where
the main parameters of the 10 services are shown in Table
2. Five types of virtual machine templates are used in the
experiments in this paper, with the CPU frequency requirement
of the templates ranging from 200 to 1000 in steps of 200.
The average network bandwidth between the different services
is 1.0Gpbs and the energy consumption for transferring 1GB
of data is 2.3W. The start-up time and shutdown time of the
hosts and virtual machines are 96.9s and 30.0s respectively.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3228402

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

11

TABLE II
HOST CONFIGURATION PARAMETERS

Name RAM Max Fre Static EC Max EC
PowerEdge R630 64 2.3 51.2 287
Fujitsu TX2560 64 2.3 40.0 264
RH2288H V2 48 2.4 68.7 137
Altos R380 F2 24 2.2 71.5 316

PowerEdge R720 24 2.2 52.7 250
Gateway GT350 12 3.0 79.5 264
IBM x3650 M3 16 3.0 56.1 218
Acer R380 F1 16 2.4 88.1 197

Xserce3,1 18 2.9 173 334
Proliabr DL160 16 2.5 148 233

B. Metrics

Each scheduling algorithm has a scheduling solution that
does not meet the workflow deadline, so the scheduling
success rate is used to represent how well each scheduling
algorithm meets the deadline constraint. Considering that
longer idle time of a service will lead to an increase in overall
static energy consumption, the energy loss of the service is
further illustrated by comparing the deployment of virtual
machines on enabled services.

In addition to energy consumption, resource utilization is
also an important optimisation metric, so the concept of re-
source utilization is introduced, using the ratio of the frequency
of VMs required to perform workflow tasks during workflow
scheduling to the maximum frequency of enabled services to
represent current resource utilization. In summary, this paper
evaluates the effectiveness of each scheduling algorithm on
the workflow scheduling problem by comparing the energy
consumption, scheduling success rate and service resource
utilization of each algorithm.

C. Results

The performance of the four algorithms in terms of execu-
tion energy and resource utilization is evaluated by increasing
the time relaxation factor λ from 0.01 to 0.05 in steps of 0.01.

In this paper, we compare the workflow execution energy
consumption of the four algorithms with different time re-
laxation factors, and the results are shown in Fig.3. It can
be found that the workflow execution energy consumption
of the four scheduling algorithms tends to be stable overall
in the three different workflow datasets, regardless of the
variation of the time relaxation factor. In addition, the OHDS
method consumes less energy than the other three scheduling
algorithms in all three workflow experiments.

In the workflow scheduling process, the OHDS algorithm
performs multi-task merging based on the dependency re-
lationship between workflow tasks, effectively reducing the
energy consumption incurred when enabling services to wait
for task execution due to data transfer between tasks. In addi-
tion, the hybrid scheduling of multiple mutually independent
workflow tasks effectively reduces the idle time of the virtual
machine, improves execution efficiency and reduces the overall
energy consumption of the service.

The concept of scheduling success rate is introduced in
this paper to provide a more comprehensive representation
of the effectiveness of scheduling decisions. Fig.4 shows the
success rates of the task scheduling decisions for the above
four methods for three different types of workflow sets, as
a more detailed representation of the specific situation of
meeting workflow deadlines. It can be seen from Figure 4
that the OHDS method proposed in this paper maintains a
high scheduling success rate regardless of the time relaxation
factor, while the ESFS, REC-MCDM and REEWS algorithms
gradually increase their scheduling success rates as the dead-
lines are relaxed.

In this paper, the earliest and latest completion times of
workflow tasks are used as the basis for dividing the deadlines.
In the task scheduling process, the resources that meet the
task sub-deadlines are selected first, otherwise the service
resource with the lowest task completion time is selected to
meet the deadline constraint of the workflow. And when the
task scheduling is completed, the priority and sub-deadlines
of subsequent unscheduled tasks are dynamically adjusted
according to the current task resource mapping information to
assign the best scheduling order and constraints to subsequent
tasks.

In this paper, the service resource utilization in the workflow
scheduling phase is represented by the ratio of the sum of
the total required frequency of the workflow tasks and the
maximum frequency of the service activation phase during the
workflow task execution phase, as shown in Fig.5. As the time
slack factor becomes larger, the post-tasks on the same VM
have more time to wait for the predecessor tasks to complete,
eliminating the need to create more new service instances to
execute workflow tasks, effectively reducing the idle time of
the VM and improving resource utilization.

As can be seen from Fig.5, the service resource utilization
of each algorithm tends to be smooth and upward overall
among the three different types of workflows, and the OHDS
method proposed in this paper has the highest service resource
utilization regardless of the variation of the slack factor.
Considering that different workflow tasks do not interfere with
each other, the OHDS method effectively reduces the idle
time slot of enabled VMs and improves resource utilization
by mixing scheduling of multiple workflows in the scheduling
process.

Fig.6 represents the CPU utilization of the enabled services,
i.e. the deployment of VMs, during the task execution phase.
With the gradual change of the slack factor, the overall CPU
utilization of the services for the four algorithms remains
stable. The OHDS method proposed in this paper is used
to improve the CPU utilization of the enabled service by
migrating the VMs on the underloaded service, and thus the
service CPU utilization of the OHDS method outperforms the
other scheduling algorithms in all three workflow collections
of different sizes.

VI. CONCLUSION

Based on the independence between different workflow re-
quests, this paper proposes an online hybrid dynamic schedul-
ing algorithm - OHDS - to minimize workflow execution

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3228402

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

12

Fig. 3. The energy consumption of each algorithm when λ varies from 0.01 to 0.05.

Fig. 4. The scheduling success rate for each algorithm with λ varies from 0.005 to 0.05.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3228402

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

13

Fig. 5. The service resource utilization for each algorithm with λ varies from 0.01 to 0.05.

Fig. 6. The service CPU utilization for each algorithm with λ varies from 0.01 to 0.05.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3228402

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

14

energy consumption and improve service resource utilization
while satisfying workflow time constraints and inter-task data
dependency constraints. Firstly, multiple associated workflow
tasks are combined into a single task to reduce the data transfer
overhead incurred by associated tasks executing on different
services during task scheduling. Secondly, each workflow task
is assigned a scheduling priority by the earliest completion
time of the task and an initial sub deadline is assigned to the
workflow task based on the latest completion time of the task.
Finally, workflow hybrid scheduling is used to reduce the idle
time of VMs; for scheduled tasks, their direct sub-task priori-
ties and the sub deadlines of subsequent unassigned tasks are
dynamically adjusted by the current scheduling information;
for each enabled service, the VMs on the underloaded service
are dynamically migrated to reduce the service energy loss.
Based on three different types of workflow collections, the
proposed approach in this paper is experimentally compared
with three currently available scheduling algorithms, and the
OHDS approach performs better in terms of execution energy
consumption, scheduling success rate and service resource
utilization.

In subsequent research work, the task merging method in the
pre-processing phase will first be improved to suit all types of
workflows; reinforcement learning methods will be referred to
for the workflow task scheduling decision problem; and more
inter-constrained optimisation objectives will be introduced for
trade-off and comparison under the constraint of satisfying the
quality of service.

REFERENCES

[1] Li X, Garraghan P, Jiang X, et al. Holistic virtual machine scheduling in
cloud datacenters towards minimizing total energy[J]. IEEE Transactions
on Parallel and Distributed Systems, 2018, 29(6): 1317-1331.

[2] Yan H, Wang H, Li X, et al. Cost-efficient consolidating service
for aliyun’s cloud-scale computing[J]. IEEE Transactions on Services
Computing, 2019, 12(1): 117-130.

[3] Safari M, Khorsand R. Energy-aware scheduling algorithm for time-
constrained workflow tasks in DVFS-enabled cloud environment[J].
Simulation Modelling Practice and Theory, 2018, 87: 311-326.

[4] Choudhary A, Govil M C, Singh G, et al. Task clustering-based
energy-aware workflow scheduling in cloud environment[C]. //2018
IEEE 20th International Conference on High Performance Computing
and Communications; IEEE 16th International Conference on Smart
City; IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), 2018: 968-973.

[5] Stavrinides G L, Karatza H D. An energy-efficient, QoS-aware and
cost-effective scheduling approach for real-time workflow applications
in cloud computing systems utilizing DVFS and approximate computa-
tions[J]. Future Generation Computer Systems, 2019, 96: 216-226.

[6] Bhuiyan A, Guo Z, Saifullah A, et al. Energy-efficient real-time schedul-
ing of DAG tasks[J]. ACM Transactions on Embedded Computing
Systems, 2018, 17(5): 1-25.

[7] Li Z, Ge J, Hu H, et al. Cost and energy aware scheduling algorithm
for scientific workflows with deadline constraint in clouds[J]. Services
Computing, IEEE Transactions on, 2018, 11(4): 713-726.

[8] Yuan H, Zhou M C, Liu Q, et al. Fine-grained resource provisioning
and task scheduling for heterogeneous applications in distributed green
clouds[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(5): 1380-
1393.

[9] Pietri I, Sakellariou R. Energy-aware workflow scheduling using fre-
quency scaling[C]. //2014 43rd International Conference on Parallel
Processing Workshops, 2014: 104-113.

[10] Bugingo E, Zhang D, Zheng W. Constrained energy-cost-aware work-
flow scheduling for cloud environment[C]. //2020 IEEE 13th Interna-
tional Conference on Cloud Computing (CLOUD), 2020: 40-42.

[11] Garg R, Mittal M, Son L H. Reliability and energy efficient workflow
scheduling in cloud environment[J]. Cluster Computing, 2019, 22(4):
1283–1297.

[12] Juve G, Chervenak A, Deelman E, et al. Characterizing and profiling
scientific workflows[J]. Future Generation Computer Systems, 2013,
29(3):682-692.

[13] Saraswathi S, Balamurugan S. Energy-aware workflow scheduling al-
gorithm for the deployment of scientific workflows in cloud[J]. Smart
Intelligent Computing and Applications, 2019, 104: 153-162.

[14] Geng X, Mao Y, Xiong M, et al. An improved task scheduling algorithm
for scientific workflow in cloud computing environment[J]. Cluster
Computing, 2019, 22(3): 7539-7548.

[15] Garg N, Singh D, Goraya M S. Energy and resource efficient workflow
scheduling in a virtualized cloud environment[J]. Cluster Comput, 2021,
24(2):767–797.

[16] Mohammadzadeh A, Masdari M, Gharehchopogh F S. Energy and
cost-aware workflow scheduling in cloud computing data centers using
a multi-objective optimization algorithm[J]. Journal of Network and
Systems Management, 2021, 29(3): 1-34.

[17] Ahmad W, Alam B, Atman A. An energy-efficient big data work-
flow scheduling algorithm under budget constraints for heteroge-
neous cloud environment[J]. The Journal of Supercomputing, 2021,
77(10):11946–11985.

[18] Kalra M, Singh S. Multi-objective energy aware scheduling of deadline
constrained workflows in clouds using hybrid approach[J]. Wireless
Personal Communications, 2021, 116(3):1743–1764.

[19] Khojasteh Toussi G, Naghibzadeh M. A divide and conquer approach
to deadline constrained cost-optimization workflow scheduling for the
cloud[J]. Cluster Computing, 2021, 24(3): 1711-1733.

[20] Medara R, Singh R S. Energy efficient and reliability aware workflow
task scheduling in cloud environment[J]. Wireless Personal Communi-
cations, 2021, 119(2):1301–1320.

[21] Zhang L, Wang L, Wen Z, et al. Minimizing energy consumption
scheduling algorithm of workflows with cost budget constraint on het-
erogeneous cloud computing systems[J]. IEEE Access, 2020, 8:205099-
205110.

[22] Garg R, Mittal M, Son L H. Reliability and energy efficient work-
flow scheduling in cloud environment[J]. Cluster Comput, 2019,
22(4):1283–1297.

[23] Antolak E, Pułka A. Energy-efficient task scheduling in design of
multithread time predictable real-time systems[J]. IEEE Access, 2021,
9:121111-121127.

[24] Walia N K, Kaur N, Alowaidi M, et al. An energy-efficient hybrid
scheduling algorithm for task scheduling in the cloud computing en-
vironments[J]. IEEE Access, 2021. 9:117325-117337.

[25] Li J, Zhang X, Wei Z, et al. Energy-aware task scheduling optimiza-
tion with deep reinforcement learning for large-scale heterogeneous
systems[J]. CCF Transactions on High Performance Computing ,2021,
3(4):383–392.

[26] Bi J, Yuan H, Tan W, et al. Application-aware dynamic fine-grained
resource provisioning in a virtualized cloud data center[J]. IEEE Trans-
actions on Automation Science and Engineering, 2015, 14(2): 1172-
1184.

[27] Chen R, Chen X, Yang C. Using a task dependency job-scheduling
method to make energy savings in a cloud computing environment[J].
The Journal of Supercomputing, 2202, 78(3): 4550–4573.

[28] Hu B, Cao Z, Zhou M. Energy-Minimized Scheduling of Real-Time Par-
allel Workflows on Heterogeneous Distributed Computing Systems[J].
IEEE Transactions on Services Computing, 2022, 15(5): 2766-2779.

[29] Wang Y, Zuo X. An Effective Cloud Workflow Scheduling Approach
Combining PSO and Idle Time Slot-Aware Rules[J]. IEEE/CAA Journal
of Automatica Sinica, 2021, 8(5):1079-1094.

[30] Wu Q, Zhou M, Wen J. Endpoint Communication Contention-Aware
Cloud Workflow Scheduling[J]. IEEE Transactions on Automation Sci-
ence and Engineering, 2022, 19(2):1137-1150.

[31] Wu Q, Zhou M, Zhu Q, et al. MOELS: Multiobjective Evolutionary List
Scheduling for Cloud Workflows[J]. IEEE Transactions on Automation
Science and Engineering, 2019, 17(1):166-176.

[32] Li H, Wang D, Zhou M, et al. Multi-Swarm Co-Evolution Based Hybrid
Intelligent Optimization for Bi-Objective Multi-Workflow Scheduling in
the Cloud[J]. IEEE Transactions on Parallel and Distributed Systems,
2022, 33(9):2183-2197.

[33] Zhu X, Yang L T, Chen H, et al. Real-time tasks oriented energy-
aware scheduling in virtualized clouds[J]. IEEE Transactions on Cloud
Computing, 2014, 2(2):168-180.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3228402

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

15

Guisheng Fan received the B.S. degree in computer
science from the Anhui University of Technology in
2003, and the M.S. and Ph.D. degrees in computer
science from the East China University of Science
and Technology in 2006 and 2009, respectively,
where he is currently a Research Assistant with the
Department of Computer Science and Engineering.
His research interests include formal methods for
complex software system, service oriented comput-
ing, and techniques for analysis of software archi-
tecture.

Xingpeng Chen is currently pursuing the M.D.
degree in computer technology with the Department
of Computer Science and Engineering, East China
University of Science and Technology. He research
interests include software engineering, cloud com-
puting, cloud workflow scheduling.

Zengpeng Li received the B.E. degree from East
China University of Science and Technology, Shang-
hai, China, in 2019, he is currently working toward
the Ph.D. degree with the Department of Computer
Science and Engineering. His current research inter-
ests include cloud computing, edge computing, and
microservices.

Huiqun Yu (Senior Member, IEEE) received the
B.S. degree in computer science from Nanjing Uni-
versity in 1989, the M.S. degree in computer sci-
ence from the East China University of Science
and Technology (ECUST) in 1992, and the Ph.D.
degree in computer science form Shanghai Jiaotong
University in 1995. He is currently a Professor of
computer science with the Department of Computer
Science and Engineering, ECUST. His research in-
terests include software engineering, high confidence
computing systems, cloud computing, and formal

methods.

Yingxue Zhang is currently pursuing the M.D.
degree in computer science and technology with the
Department of Computer Science and Engineering,
East China University of Science and Technology.
He research interests include software engineering,
cloud computing.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3228402

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

