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ABSTRACT 
 
 
This article identifies sources of exergy losses in a vortex tube working with air by using a recently developed 
thermodynamic model and a reference experiment from the literature. Exergetic efficiency considering transiting 
exergy is used as the efficiency metrics in this work. When both the cold and hot outlets are useful, the exergetic 
efficiency reaches its maximum value for a cold mass fraction equal to 0.7. Interestingly, up to 45% of the inlet 
exergy is lost downstream of the vortex tube under this condition because of pressure losses in the cold tube and 
through measuring instruments. These losses do not contribute to the energy separation mechanism. Inside the 
vortex tube, the exergy irreversibly is mainly caused by the dissipation of kinetic exergy. 
 
The thermodynamic model is also used to identify the working conditions, which maximize the vortex tube 
efficiency. The efficiency is always at its maximum value when the inlet Mach number is equal to one. The 
optimum value of the cold outlet diameter, the mass fraction and the cold outlet axial Mach number changes 
depending on whether thermal exergy from both outlets can be used or not. Increasing the cold outlet pressure 
increases the exergetic efficiency as well as changing the optimal condition for all variables except the inlet Mach 
number. At the end, the optimal vortex tube is twice as efficient as the reference vortex tube. 
 
Finally, the model is employed to identify the best vortex tubes’ arrangement to maximize the exergetic efficiency 
for an open cycle with a fixed inlet pressure of six bar. This analysis demonstrates that the best arrangement is a 
cascade of vortex tubes, where a vortex tube unit with the maximum efficiency is placed first. Two other vortex 
tubes are two other vortex tubes are placed to recover waste pressure on the cold and hot streams from the first unit. 
 

1. INTRODUCTION 
 
Vortex tubes generate a cold stream and a hot stream from a gas at neutral temperature. In a counterflow vortex 
tube, often called a Ranque-Hilsch vortex tube, a gas at neutral temperature is injected tangentially to generate a 
strong swirling flow. As shown in Figure 1, the gas is removed from two outlets: one on the axis near the injection 
point and one at the periphery at the other end of the tube.  
 
Vortex tubes are cheap, reliable and they often used air as the working gas. In a recent review, Zhang and Guo 
(2018) listed all the many current and prospective applications of vortex tubes. However, their use is limited by their 
low efficiency. The authors attributed it to a lack of knowledge about the working mechanism inside the tube. 
 
Xue et al. (2010) reviewed the energy transfer mechanism proposed since the invention of the vortex tube in the 
1930’s. They regrouped these explanations in six categories: pressure gradient, acoustic streaming, viscosity and 
turbulence, secondary circulation and static temperature gradient. However, none of them reaches a widespread 
acceptance because all these theories failed to predict the vortex tube performance (Lagrandeur et al. 2019a). 
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Figure 1: Illustration of the flow process in a vortex tube according the energy separation process used in the 
thermodynamic model. Figure adapted from Lagrandeur et al. (2020) 
 
Recently, Lagrandeur et al. (2019b) described the flow process inside a vortex tube and used this description to 
create a thermodynamic model to predict the cold outlet temperature of vortex tubes. The flow process describe by 
this model used six steps (illustrated in Figure 1): 

1. Gas is introduced at a given total inlet pressure (P0in) and total inlet temperature (T0in). 
2. The gas accelerates in inlet nozzles to reach near sonic conditions. During the process, part of its thermal 

energy is converted into kinetic energy. The gas cools then down.  
3. The gas swirls down the tube along the wall and part of it goes back to the middle of the tube towards the 

cold outlet. The flow is similar to a counterflow heat exchanger with flow in the center transferring energy 
to the flow at the periphery. The gas coming back to the entrance is then cooled at the same static 
temperature as the inlet, but with less kinetic energy because the rotation is slower near the axis. 

4. The gas coming back from the tube is mixed with the Bödewadt boundary layer along the inlet plane, 
which has the same total temperature as the inlet. 

5. Gas slows down as it goes down the cold tube, converting its kinetic energy to thermal energy. 
6.  Part of the gas goes out through the hot outlet with the energy removed from the cold stream. 

 
The model reached a good qualitative and quantitative agreement when compared with the experimental data of 
Camiré (1995) and Skye et al. (2006) when friction losses are included in the model. This model includes most of 
the significant parameters identified by an artificial neural network (ANN) model (Lagrandeur et al. 2019b) with the 
exception of the vortex tube length. It is used to optimize the geometry and the working conditions of a single vortex 
tube in this article. 
 
Another way to improve the efficiency is to combine multiple vortex tubes in cascades. Dincer (2011) and Dincer et 
al. (2011) demonstrated that using vortex tubes in hot cascade configuration increases the temperature difference 
between both outlets and the exergetic efficiency compared to a single vortex tube. Attala et al. (2017) compared the 
cold cascade, the hot cascade and parallel vortex tubes and found that the cold cascade increases the cold outlet 
temperature drop and the cooling COP (coefficient of performance), but reduce the heating COP and the hot outlet 
temperature rise. Shmroukh et al. (2019) compared the parallel, the cold cascade and the hot cascade arrangements 
on a seawater desalination system and found that the system using the hot cascade can treat more water over a 3-
hour period. Finally, Majidi et al. (2018) used a modified version of the model of Ahlborn et al. (1994) to simulate 
vortex tube cascades. However, this model is inconsistent with the treatment of kinetic energy and compressibility 
(Gao, 2005). Authors believed this model would fail for the high pressures considered in  the present paper. 
 
This paper will present the optimization of a single vortex tube and vortex tubes cascades using the thermodynamic 
model previously developed. The exergy efficiency considering exergy in transit (Brodyansky et al., 1994; Sorin 
and Khennich, 2018) is selected as the performance metric. The exergetic efficiency of a single tube is analyzed, and 
sources of exergy losses at each step are identified. Finally, the optimal vortex tube cascade is proposed. 
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2. RESULTS 

 
2.1 Exergetic Efficiency Definition 
The common definition of exergetic efficiency (Grassmann efficiency) is just the ratio of the total outlet exergy to 
the total inlet exergy. However, this definition includes in the numerator and the denominator exergy that goes 
through the system without any change. For example, in the vortex tube, leftover pressure could increase the 
efficiency artificially. 
 
To solve this problem, Brodyansky et al. (1994) removed the transiting exergy from the numerator and the 
denominator. For a vortex tube, the efficiency is calculated using:  
 

(1 )
,

(1 )

in c in h
c T c T

vt in c in h
c P c P

e e

e e

 
 

 

 

   


   
 (1) 

where vt is the exergetic efficiency considering the transiting exergy, c is the cold mass fraction, in x
Te   is the 

thermal exergy generated between the inlet and the cold outlet (c) or the hot outlet (h) and in x
Pe  is the mechanical 

exergy consumed between the inlet and the specified outlet. These terms are calculated using: 
 

   0 0 0 0 ,in c
T c in ref p c ine T T T C T T        (2) 

   0 0 0 0 ,in h
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 0ln ,in c
P in ce R P P   (4) 
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with T0 the total temperature, Tref the reference temperature, P0, the total pressure, P the mean static pressure, R the 
specific perfect gas constant and Cp the specific heat at constant pressure. If the vortex tube is replaced in a system, 
mechanical exergy consumption upstream and downstream of the vortex tube can be calculated in a similar way. 
Details about their calculation are given in Lagrandeur et al. (2020) along with the calculations of T0h and mean 
outlet static pressure. Calculation of T0c is done using the thermodynamic model. 
 
2.2 Exergy Transformation in Vortex tube 
The thermodynamic model separates the energy transfer process in the vortex tube in multiple steps. As a 
consequence, it is possible to evaluate how exergy is transformed or consumed in the vortex tube. Table 1 presents 
the specific exergy at each step presented in Figure 1 for a reference case at c=0.63 and P0in=3.08 bar. These 
conditions correspond to the maximum energy separation from the experimental data of Camiré (1995). Exergy 
generated and consumed at other experimental conditions can be found in Lagrandeur et al. (2020). The exergy flow 
is also illustrated on the Grassmann diagram of Figure 2. 

 
Table 1: Specific exergy (kJ kg-1) at different steps of the energy separation process inside the vortex tube.  

# STEP TOTAL MECH. THER. KIN. 
1 Stagnation 95.1 95.1 0 0 
2 Acceleration with friction 90.3 59.8 1.5 29.0 
3 Cold flow to center 35.0 29.3 1.5 4.2 
4 Mixing with the boundary layer 34.7 29.3 1.2 4.2 
5 Cold outlet 30.1 29.3 0.8 0 
6 Hot outlet 44.8 42.6 2.2 0 

 
One could observe that the thermal exergy generated is small compared to the available mechanical exergy. 
However, one could observe too that only 37% of the available exergy is consumed by the energy separation 
process. In fact, a large share of the inlet mechanical exergy is lost through pressure drops outside of the vortex tube 
in the inlet nozzles or downstream of both outlets (leftover pressure). Since air in this experiment is going to the 
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atmosphere, any leftover mechanical exergy is lost. As a consequence, minimizing pressure drops upstream or 
downstream of the vortex tube would improve greatly its efficiency. 
 
Inside the vortex tube, another source of losses is by kinetic exergy destruction. Almost half of the exergy consumed 
between step 2 and both outlets is from kinetic exergy destruction. Part of it is unavoidable because the tangential 
velocity gradient is used to generate the temperature difference (between steps 2 and 3). However, part of the kinetic 
exergy going downstream in the tube (steps 2 to 6) or going out of the cold outlet (steps 4 to 5) may be converted to 
mechanical exergy using diffuser. This mechanism may explain the best performance obtained with conical vortex 
tube (Yilmaz et al., 2009) or with a vortex tube equipped with a diffuser in the cold tube (Farzaneh-Gord and Sadi, 
2014). Another alternative is the double-circuit vortex tube (Rafiee and Sadeghiazad, 2017). In this case, an 
additional flow appears on the axis at the hot end. This flow is cooled down at the same temperature as the rest, but 
it does not consume tangential kinetic exergy in the process. 

 
Figure 2: Grassmann diagram of the exergy flow in the vortex tube at each step illustrated in Figure 1 and 
detailed in Table 1. Figure adapted from Lagrandeur et al. (2020). 
 
2.3 Parametric Optimization of the Single Vortex Tube 
The thermodynamic model is used to optimize four operational and geometrical parameters of the vortex tube: 

 Inlet Mach number (Main) ranging from 0.5 to 1; 
 c ranging from 0.1 to 0.9; 
 Ratio of cold outlet radius to vortex tube radius (rc/rvt) ranging from 0.1 to 0.7; 
 the axial Mach number in the cold outlet Mazc, ranging from 0.05 to 0.7. 

 
For each of these parameters, eleven different values are tested for two different mean cold outlet pressures: 1 bar 
and 3 bar. The inlet temperature is set to 295 K for all cases. In addition to the global exergetic efficiency defined in 
Equation (1), some other performance metrics are investigated: lowest T0c, highest specific cooling power (qc) and 
exergetic efficiency calculated using Equation (1), but with only the cold part or the hot part of the numerator (c 
and h). Results of these calculations are presented in Tables 2 and 3. 
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Table 2: Optimum working conditions of the vortex tube for a mean cold outlet pressure of 1 bar 
 Main c rc/rvt Maz T0c  

(K) 
T0h 
(K) 

Ph  
(bar) 

Qc   
(kJ/kg) 

c 
(%) 

h 

(%) 
vt 

(%) 
MIN T0C 1 0.26 0.34 0.18 254.6 309.2 1.27 10.6 0.8 0.3 1.1 
MAX QC 1 0.66 0.52 0.31 261.0 361.0 1.57 22.6 1.5 2.4 3.9 
MAX C 1 0.58 0.46 0.25 257.2 347.2 1.80 22.1 1.8 2.0 3.8 
MAX H 1 0.74 0.64 0.25 265.2 379.8 1.66 22.2 1.4 3.0 4.4 
MAX VT 1 0.74 0.64 0.25 265.2 379.8 1.66 22.2 1.4 3.0 4.4 
 

Table 3: Optimum working conditions of the vortex tube for a mean cold outlet pressure of 3 bar 
 Main c rc/rvt Maz T0c  

(K) 
T0h 
(K) 

Ph 
(bar) 

Qc (kJ/kg) c 
(%) 

h 

(%) 
vt 

(%) 
MIN T0C 1 0.42 0.28 0.18 252.7 325.6 3.96 17.9 1.5 0.9 2.4 
MAX QC 1 0.74 0.4 0.25 259.8 395.1 5.19 26.2 1.8 3.8 5.6 
MAX C 1 0.58 0.28 0.25 254.2 351.4 5.40 23.9 2.01 2.3 4.3 
MAX H 0.95 0.82 0.52 0.18 269.2 412.4 5.12 21.3 1.1 3.9 5.0 
MAX VT 1 0.74 0.46 0.18 260.0 394.7 5.15 26.1 1.8 3.8 5.6 

 
The first observation from these two tables is that performance increases for all metrics when the cold outlet 
pressure increases. This is quite interesting since the effect of the cold outlet pressure has not been studied 
experimentally or numerically yet. Another observation is that the optimal parameters differ widely depending on 
the objective and on the outlet pressure. Higher cold outlet pressure promotes a smaller cold outlet radius and higher 
values of c. For Maz, having a higher cold outlet pressure reduces the optimal axial Mach number. With a higher air 
density at the outlet with a higher pressure, it may indicate a possible optimal mass flow rate through the cold outlet.  
 
For the inlet Mach number, with one exception, the optimal value is always at the maximum sonic value. In 
consequence, the stronger the velocity gradient between the center and the periphery, the higher the temperature 
separation. Supersonic shock wave has not been investigated yet. It could improve the performance if sudden 
expansion and shock wave do not affect the shape of the vortex. 
 
Finally, optimal values identified for T0c and qc for an outlet to the atmosphere are in accordance with values from 
the literature as summarized in Lagrandeur et al. (2019b). For the exergetic efficiency, one comparison is with the 
experimental data of Camiré (1995). The exergetic efficiency of the vortex tube obtained with the optimization 
process is almost twice the maximum value obtained from the experiment. It highlights the potential of this 
technique to significantly increase the efficiency of vortex tubes. 
 
2.4 Optimal Vortex Tubes Combination at a Fixed Inlet Pressure 
As a final step, the thermodynamic model is used to identify the best vortex tube combination for a fixed inlet 
pressure of 6 bar, typical of industrial compress air systems, and a mean outlet pressure of 1 atm. The performance 
metric considered in this section is the exergetic efficiency when both outlets are considered useful. However, 
leftover pressure is wasted in this case and multiple vortex tubes could generate thermal exergy. As consequence, a 
new exergy efficiency definition is proposed: 

1 2

,
vt vt
T T

cas
in

e e

e
   

  (6) 

with cas the exergetic efficiency of the cascade, ein the total mechanical exergy available at the inlet of the first 
vortex tube and eT

vt the total thermal exergy generated in each vortex tube. 
 
According to the thermodynamic model, Main and P0in are related by this equation (Lagrandeur et al., 2019b): 

 / 1
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2 2
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with  the specific heat ratio of the gas. Because this equation is implicit for the Mach number but not for the inlet 
pressure, different Mach numbers are tested and cases with P0in over 6 bar are discarded. 
Additionally, with a pressure ratio P0in/Pc equal to 6, Mach number is always greater than one. It is then necessary to 
reduce this pressure ratio by reducing the inlet pressure or by increasing the cold outlet pressure. To identify the 
most favorable condition between these two possibilities, different cold outlet pressures are tested in this analysis. 
The best single vortex tube (SVT) is detailed in Table 4. As illustrated, it is preferable to raise the cold outlet 
pressure than to reduce the inlet pressure to maximize the efficiency of a single vortex tube fed by excessive 
pressure. These results confirm the beneficial impact of a higher cold outlet pressure highlighted in the previous 
section. 
 

Table 4: Optimal vortex tubes combinations with a fixed inlet pressure of 6 bar 
 Main c rc/rvt Maz T0c 

(K) 
T0h 
(K) 

P0in 
(bar) 

cP     

(bar) 

Ph  
(bar) 

vt 

(%) 
cas  

(%) 

SVT 1 0.74 0.52 0.25 262 388 5.9 1.7 2.8 5.0 3.1 
CC 0.65 0.74 0.58 0.12 249 299 1.7 1.0 1.3 2.4 3.6 

HC1 0.9 0.66 0.52 0.25 350 461 2.8 1.0 1.6 3.6 3.6 
HC2 0.6 0.74 0.52 0.18 442 515 1.6 1.0 1.2 1.9 3.6 

 
From the SVT results, one may observe that there is pressure available for a second vortex tube at both inlets. To get 
the optimal performance, it is better to maximize the efficiency of the first vortex tube (Lagrandeur et al., 2020). 
Consequently, the SVT is used to feed another vortex tube in the cold cascade (CC) and hot cascade (HC) 
configurations. 
 
There is more pressure available on the hot side than on the cold side of the first vortex tube. vt is then higher for 
HC1 than for CC. However, because of the high cold mass fraction in SVT, the impact of both cascades remains the 
same on cas. If both cascades are combined, cas = 4.0. 
 
At the hot outlet of HC1, there is still a significant pressure available at the hot outlet. It is possible to install another 
vortex tube in a hot cascade arrangement. However, because only 8.9% of the inlet flow is sent to the last tube, the 
effect on cas is negligible. 
 
2.4 Combining Vortex Tubes with an Ejector 
The cold cascade configuration is interesting to maximize the generation of cold thermal exergy. However, there is 
less pressure available on the cold side than on the hot side. To maximize the efficiency of the second vortex tube, it 
is proposed to use an ejector to increase the pressure of the cold stream using the higher pressure of the hot stream.  
 
The proposed configuration is shown in Figure 3. In this system, the hot stream is cooled to atmospheric condition in 
a heat exchanger. Pressure losses in the heat exchanger are neglected. The stream is then injected as the primary 
stream in the ejector. The cold stream of the first vortex tube is the secondary stream. Both streams mix in the 
ejector, and the pressure at the ejector outlet is higher to the pressure of the cold stream. This cold stream is then 
sent to a second vortex tube. 
 
To model the ejector, the thermodynamic model proposed by Croquer et al. (2017) is used. This model calculates 
the outlet temperature and pressure of an optimal ejector using the inlet condition of both streams. However, 
experimental data about ejectors are limited to entrainment ratio under one. As a consequence, the cold mass 
fraction of the first vortex tube must be limited to 0.5, which is not the most efficient configuration for the first 
vortex tube. 
 
When increasing the cold mass fraction of the first vortex tube, the cold outlet pressure stays constant at 1.6 bar, but 
the hot outlet pressure rises from 2.5 to 3.0 bar. Consequently, the primary pressure available to compress the cold 
stream rises. At the same time, the ejector outlet pressure reduces when the entrainment ratio goes up. Both effects 
balance in this case and the ejector outlet pressure varies between 2.0 and 2.3 bar for a cold mass fraction between 
0.15 and 0.5. The configuration with the lowest ejector outlet temperature is the most interesting. This configuration 
is obtained for a cold mass fraction of 0.5 in the first vortex tube, corresponding to an entrainment ratio of one. 
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Figure 3: Proposed cold cascade with an ejector between both tubes 

 
For the second vortex tube, the increase in performance due to higher inlet pressure does not compensate for the loss 
in performance of the first vortex tube working under its optimal cold mass fraction. This configuration generates 
less cold outlet thermal exergy than the CC configuration. However, this configuration increases the cooling power 
(qc=26.1 kJ.kg-1) when compared to the SVT (qc=24.6 kJ.kg-1) and the CC (qc=25.4 kJ.kg-1). However, it is not 
enough to justify the added complexity of the system. 
 

3. CONCLUSION 
 

The work demonstrated that it is possible to increase significantly the performance of the vortex tube by using a 
validated thermodynamic model. Advantages of using a thermodynamic model are the insight provided by a deeper 
understanding of the energy separation process and the ability to test a huge number of combinations in a short 
amount of time. 
 
Below are the main highlights of this work: 

 Exergy efficiency considering transiting exergy is used as the performance metric. 
 Exergetic efficiency is increased from 2.9% (maximum efficiency from the reference experiment) to 4.4% 

for the optimized vortex tube modeled using the thermodynamic model. The improvement is achieved by 
increasing the radius of the cold outlet and increasing the mass flow at the inlet. 

 Up to 51% of the mechanical exergy available at the inlet is consumed upstream or downstream of the 
vortex tube through pressure losses in the reference experiment. 

 Mostly kinetic exergy is consumed in the energy separation process. 
 Optimum working conditions and geometry of the vortex tube depend strongly on the chosen performance 

metric.  
 Increasing the cold outlet pressure increases the exergetic efficiency of the vortex tube (4.4% to 5.6%). 
 For a pressure fixed to 6 bar at the inlet and an outlet at the atmosphere, using vortex tubes in a hot and 

cold cascade configuration increases the exergy efficiency of the system from 3.1% to 4%. 
 Using an ejector between the first and the second vortex tubes in a cold cascade configuration did not 

improve the exergetic efficiency. 
 Future work could validate experimentally the optimal working conditions obtained from the model. 

Additionally, there is a need to further explore the effect of the cold outlet pressure on the performance of 
vortex tubes. 
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NOMENCLATURE 

 
The nomenclature should be located at the end of the text using the following format:   
Cp specific heat at constant pressure    (J.kg-1.K-1)  
Ma Mach number  (-) 
P, P , P0  static pressure, mean static pressure and total pressure (bar)   
R specific perfect gas constant  (J.kg-1.K-1) 
T, T0 static and total temperature  (K) 

Pe  mechanical exergy consumed  (kJ.kg-1) 

eT thermal exergy generation  (kJ.kg-1) 
 specific heat ratio  (-) 
 exergetic efficiency  (-) 
c cold mass fraction  (-) 
 
Subscript   
c cold outlet 
cas cascade 
h hot outlet 
in inlet 
vt vortex tube 
z axial through the cold outlet 
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