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Abstract— Hybrid ac/dc networks are a key technology for
sustainable electrical power systems, due to the increasing
number of converter-based distributed energy resources such
as solar or wind. In this article, we consider the design of
control schemes for hybrid ac/dc networks, focusing especially
on the control of the interlinking converters (ILCs). We present
two control schemes: first for decentralized primary control
and second a distributed controller to achieve secondary control
objectives as well. In the primary case, the stability of the
controlled system is proven in a general hybrid ac/dc network,
which may include asynchronous ac subsystems. Furthermore,
it is demonstrated that power sharing across the ac/dc network
is significantly improved compared to previously proposed dual-
droop control. The proposed scheme for secondary control
guarantees the convergence of the ac system frequencies and the
average dc voltage of each dc subsystem to their nominal values.
An optimal power allocation is also achieved at steady state. The
applicability and effectiveness of the proposed algorithms are
verified by advanced simulations on a test hybrid ac/dc network
in Simscape Power Systems.

Index Terms— AC/DC grids, distributed control, frequency
control, voltage control.

I. INTRODUCTION

A. Motivation

IN VIEW of the increasing number of converter-interfaced
energy sources such as solar or wind generation, hybrid

ac/dc networks are a key technology for sustainable electrical
power systems. The hybrid ac/dc network allows the easy
integration of such renewable energy sources and can combine
the advantages of both dc grids and ac grids into one power
network, which operates with high efficiency. Direct current
grids have several advantages [2] over traditional ac systems:
lower power losses, largely due to the absence of reactive
power, higher power transfer capability, and dc grids can also
facilitate the connection of asynchronous ac grids. However,
ac technology is well established and is more suitable for some
applications. Therefore, it is advantageous to combine ac and
dc networks via interlinking voltage source converters (VSCs)
to form a hybrid ac/dc network [3].
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Hybrid ac/dc networks present new challenges in terms
of frequency and voltage control [4]. In particular, an open
problem [5] is the control of the interlinking converter (ILC),
where the aim is to guarantee stability while ensuring that
the frequency and voltages are appropriately regulated. This
is a challenging problem since the ILC operation simultane-
ously affects the ac frequency and the dc voltage. Moreover,
a prescribed allocation is desired in many cases such that eco-
nomic optimality is achieved among generating units. Further-
more, distributed techniques for generation control are desir-
able due to the increasing penetration of renewable sources
of generation, which significantly increases the number of
active elements in power grids, making traditional centralized
approaches impractical and costly.

B. Related Work

Numerous controllers for either ac or dc networks or micro-
grids alone have been proposed recently, e.g., from simple
droop-based strategies to sliding mode control for dc networks
in [6], distributed consensus for dc networks in [7] and
[8], and model predictive control in [9]. For ac microgrids,
the literature is even more extensive, as surveyed in [10] for
example. However, we focus on the control of hybrid ac/dc
network, which presents new challenges as control actions
on either the ac or dc sides affect the entire network. it is
also more difficult to achieve optimality of power allocation
between ac and dc sources.

Both primary and secondary control strategies are required
for ac/dc networks. In comparison to the literature on ac net-
works or dc networks, a relatively few control approaches for
ac/dc networks have been proposed, especially for secondary
control. Such control schemes are implemented via the ac/dc
sources in conjunction with the ILC and must regulate the
ac frequency, dc voltage, and power allocations. We briefly
review the primary and secondary control schemes in the
literature for the ILC.

Droop control schemes are decentralized, intuitive, and easy
to implement. AC frequency droop is ubiquitous, whereas dc
voltage droop controllers are prevalent in the literature as well.
The dc-bus voltage dynamics are comparable to traditional ac
frequency/real power control, in which an excess of active
power increases the voltage and vice versa. Hence, an obvious
way to control the ILC is a dual-droop scheme combining the
two characteristics in one controller. The dc voltage droop
stabilizes the dc grid and the dc system participates in the
frequency regulation of the connected ac grids via the ILC
[11]. However, the two droop schemes interact with each other
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in a way that degrades their performance, as noticed in [12].
A strategy using the ILC power to improve performance is
presented in [13], although the coupling between the ac and
dc grids still introduces some inaccuracy.

Another approach for the control of the ILCs was presented
in [3], [16], and [17], where the per-unit values of the ac
frequency and dc voltage are synchronized by controlling the
power transfers through the ILC with a proportional-integral
(PI) controller. This allows the ILC to relate the ac frequencies
and dc voltages to each other, and the power allocation is then
determined by the droop coefficients of the ac and dc sources.
This approach is effective although the slower integral term
makes the use of inertia through the ILC difficult to achieve.

A similar strategy has also been proposed for secondary
control, where the aim is to restore the frequencies and
voltages to their nominal value and to share power equitably
between sources in the ac and dc subsystems [4]. A distributed
consensus approach was proposed in [14], where again, the ac
frequency and dc voltage are synchronized by PI control of
the ILC. This approach is effective for ac/dc networks with
only one ILC bus connection. However, in the case of dc
subsystems with multiple interconnections at different buses,
regulating the local voltage deviations to zero via the ILC is
not optimal because this affects the power transfer capability
through such a dc subsystem. In [18], a distributed controller
for sharing frequency reserves of asynchronous ac systems
via HVdc was designed. However, the dc voltage dynamics
were not modeled. Andreasson et al. [19] designed distributed
controllers for distributed frequency control of asynchronous
ac systems connected through an multi-terminal direct current
(MTDC) grid.

C. Contribution

In view of the current literature, there is a need for new
control schemes that can be rigorously proven to be stable in
any ac/dc network topology, can achieve an appropriate steady-
state power allocation without the use of communication, and
can make use of the dc system(s) and ILC(s) to provide inertia
for the ac system(s) and vice versa [20].

In this article, we present new VSC control schemes for the
ILCs in hybrid ac/dc networks. Inspired by the controller pro-
posed in [21], where linking the dc voltage to the ac frequency
was found to provide desirable stability and performance
properties in ac networks, we show the successful application
of similar ideas to general hybrid ac/dc networks for both
primary and secondary controls. The proposed schemes have
advantages over previous proposals, including the existence
of rigorous stability guarantees in general network topologies,
improved power sharing, and the ability of the proposed
controllers to use the energy stored in the dc capacitance
as the “inertia” for the emulation of synchronous machines.
In particular, our decentralized control approach, by making
use of the energy stored in dc-side capacitance, achieves an
improved steady-state power allocation and primary frequency
regulation compared to schemes that directly control the power
transfer. We also propose a scheme for distributed secondary
frequency and voltage control, which regulates the frequency

TABLE I

NOTATION IN SYSTEM MODEL

and the weighted average voltages of dc subgrids to prescribed
nominal values at steady state and also leads to an optimal
power sharing. Moreover, we show that virtual capacitance in
the controller can be used to further improve performance.

For clarity, we summarize the main contributions of this
article as follows.

1) We propose a decentralized VSC controller inspired by
[21] for general hybrid ac/dc networks. For this setting,
we provide stability guarantees and sufficient conditions
for an optimal steady-state power allocation.

2) We propose a novel distributed approach for the con-
trol of ILCs and generation sources for secondary fre-
quency and voltage regulation, which guarantees the
convergence of both the ac system frequencies and the
weighted average dc voltage of each dc subsystem to
their nominal values. A prescribed power sharing is also
achieved. We also show that virtual capacitance in the
controller can be used to adjust the voltage deviations
and improve performance.

3) We perform realistic simulations with advanced con-
verter and generator models in a suitable test system,
verifying the performance of our control strategies and
comparing them to the traditional dual-droop controller.

D. Article Structure

This article is organized as follows. Section II presents
the network model and formulates the control problem. Our
main results are given in Section III, including the proposed
decentralized primary controller in Section III-A and the
distributed controller in Section III-B. The performance of the
two controllers is illustrated via case studies in Section IV and
compared with traditional controllers. Finally, conclusions are
presented in Section V. The proofs of all the results presented
can be found in the Appendix.

II. PROBLEM FORMULATION

A. Network Model

We consider a general hybrid ac/dc network with the set
of buses denoted by N = (1, 2, . . . , |N |) and the set of
transmission lines by E = (1, 2, . . . , |E |). The network is
composed of multiple ac and dc subsystems. We denote the
set of subsystems by K = (1, 2, . . . , |K |) and we also have
N = (∪i Ndc

i ) ∪ (∪ j Nac
j ), where Nac

i and Ndc
j denote the
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Fig. 1. ILC connection diagram.

collection of buses belonging to the ac subsystem i ∈ K and
dc subsystem j ∈ K , respectively. Each subsystem is assumed
to be connected and it is connected to the rest of the network
only via ILCs,1 as shown in Fig. 1. Each ac subsystem i is
described by the connected graph (Nac

i , Eac
i ) with arbitrary

direction, and each dc subsystem j by the connected graph
(Ndc

j , Edc
j ) with arbitrary direction.2 For each bus j ∈ N ,

we use i : i → j and k : j → k to denote the predecessors
and successors of bus j , respectively. For convenience, we also
define the set of all ac buses Nac = ∪i Nac

i and all dc buses
Ndc = ∪ j Ndc

j such that Nac∪Ndc = N ; likewise, we define the
set of all ac edges Eac = ∪i Eac

i and all dc edges Edc = ∪ j Edc
j .

Connections between ac and dc buses are facilitated by the
ILCs, the set of which is denoted by X = (1, 2, . . . , |X |). The
ILC buses are denoted by Xac

j ∈ Nac and Xdc
j ∈ Ndc for the ac

and dc buses, respectively, to which the ILC j is connected.
The set of ac buses to which a converter is connected is
denoted by Xac = (Xac

1 , . . . , Xac|X |) ⊂ Nac. Similarly, the set
of dc buses to which a converter is connected is denoted by
Xdc = (Xdc

1 , . . . , Xdc|X |) ⊂ Ndc.
Assumption 1: We make the following assumptions regard-

ing the network.
1) Voltage magnitudes are 1 p.u. for all buses j ∈ Nac.
2) Lines (i, j) ∈ Eac are lossless and are characterized by

their constant reactances Xij > 0.
3) Reactive power does not affect either bus voltage

angles or the frequency and is thus ignored.
4) The ac system(s) are three-phase balanced.
5) Bus voltages are close to 1 p.u. for all j ∈ Ndc, such

that currents and powers are approximately equivalent
in a per-unit system.

6) Lines (i, j) ∈ Edc are characterized by their conductance
Gij = 1/Rij , where Rij is the line resistance. The line
losses are small and may be neglected.

Remark 1: Assumption 1 may be explained as follows.
1) Assumption 1-1)–4): These are well-known assumptions

for ac transmission systems which are used in much of
the literature. These assumptions allow us to model the
active power transfer through a line (i, j) as pi j = Bij

sin ηi j , where Bij = 3X−1
i j > 0.

2) Assumption 1-5) and 6): These are typical assumptions
in dc networks [19], making use of the fact that in
practice, the dc grid voltage will typically be regulated

1Note that this is without loss of generality since the connection of two
collections of ac buses (or dc buses, respectively) may simply be considered
as one larger subsystem.

2The results presented in this article are unaffected by the choice of
direction.

very close to the nominal and that line losses are gener-
ally small. In particular, although the percentage change
in dc voltage differences between buses can be large
(and thus cannot be ignored), the percentage change in
individual dc voltages is small (also demonstrated in our
simulations in Section IV with the proposed controller).3

We also consider the modeling of the ILCs, as shown in Fig. 1.
The ac-side bus of the ILC has no inertia of its own; however,
power imbalances in the ac subsystem lead to a power transfer
through the converter. Note also that this power transfer will
affect the dc-side voltage of the converter. For each bus j ∈
Xac ∪ Xdc, we define the power transfer pX

j as the power
leaving the bus through the ILC. Hence, for a converter bus j ∈
Xac, the power transfer pX

j is the ac-to-dc transfer, whereas
for a converter bus j ∈ Xdc, the power transfer pX

j is the
dc-to-ac transfer. We assume that such power transfers are
instantaneous and lossless, and hence, for an ILC x , we have
pX

Xdc
x

= −pX
Xac

x
.

Given these assumptions and definitions, the hybrid ac/dc
network dynamics are

η̇i j = ωi − ω j , (i, j) ∈ Eac (1a)

M j ω̇ j = pG
j − pL

j +
∑

i:i→ j

pi j −
∑

k: j→k

p jk − D j ω j

j ∈ Nac \ Xac (1b)

0 = pG
j − pL

j +
∑

i:i→ j

pi j −
∑

k: j→k

p jk − pX
j , j ∈ Xac

(1c)

C j V̇ j = pG
j − pL

j +
∑

i:i→ j

pi j −
∑

k: j→k

p jk − pX
j , j ∈ Ndc

(1d)

pi j =
{

Bij sin ηi j , j ∈ Nac

Gij (Vi − Vj ), j ∈ Ndc,
(i, j) ∈ E . (1e)

We now write the system dynamics in matrix form. The
vector of angle differences is η = [ηi j ](i, j )∈Eac and the vector
of ac frequency deviations from its nominal value (50 or
60 Hz) is denoted by ω = [ω j ] j∈Nac , while the vector of
dc voltage deviations from their nominal value is denoted by
V = [Vj ] j∈Ndc . M is the diagonal matrix of the generator
inertias M j , j ∈ Nac \ Xac, while the damping coefficients
are D = diag([D j ] j∈Nac\Xac ). The frequencies at the corre-
sponding ac buses are denoted by ωG = [ω j ] j∈Nac\Xac , and
the vector of frequencies at the converter buses is ωX =
[ω j ] j∈Xac . The diagonal matrix of the dc-bus capacitances
is C = diag([C j ] j∈Ndc). The vector of generator powers is
denoted by pG = [pG

j ] j∈N , the vector of load powers by
pL = [pL

j ] j∈N . We also use the notation pX
j = 0 for buses

without converters, i.e., j ∈ N \ (Xac ∪ Xdc) and denote the
vector of converter powers by pX = [pX

j ] j∈N . Similarly, at the
converter buses j ∈ Xac, we use the notation pG

j = 0. The
power transfer vector is defined by pF = [pF

j ] j∈N , where

3In networks where Assumption 1-5) is not applicable, the dc network flows
may be represented by currents instead of power. The proof of stability in
Theorem 1 would then require a passivity condition from the input voltage
to output current at each dc bus, along with a similar condition on the ILC
equations.
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each pF
j = ∑

i:i→ j pi j − ∑
k: j→k p jk . The matrix A is the

incidence matrix of the graph (Nac, Eac). The system equations
are thus

η̇ = AT ω = AT
[
ωG

ωX

]
(2a)⎡

⎣Mω̇G

0
CV̇

⎤
⎦ = pG − pL − pX+pF −

⎡
⎣DωG

0
0

⎤
⎦ . (2b)

1) Equilibrium Conditions: An equilibrium of the system
in (2) is defined by the following conditions:

0 = AT ω = AT
[
ωG

ωX

]
(3a)

0 = pG − pL − pX+pF −
⎡
⎣DωG

0
0

⎤
⎦ . (3b)

We assume that there exists4 some equilibrium point of (2),
and denote such an equilibrium by (η∗, ωG∗, V ∗). Individual
equilibrium values are also denoted by the superscript asterisk,
e.g., η∗

i j , ωG∗
i , and V ∗

j .
Assumption 2: |η∗

i j | < (π/2) for all (i, j) ∈ Eac.
This assumption is often referred to as a security constraint

and is common in the literature for power grid stability
analysis.

B. Control Objectives

The control objectives are as follows.
1) Solutions must converge to an equilibrium point.
2) For primary control, ac frequencies and dc voltages

should not deviate too far from their nominal values,
i.e., limt→∞ |ω j (t)| < eω for all buses j ∈ Nac and
limt→∞ |Vj (t)| < eV for all buses j ∈ Ndc for some
appropriate scalars eV and eω.

3) AC frequencies and a weighted average of the dc
voltages should converge to their nominal values for
secondary control.

4) Power sharing between all sources should be optimal.
The last objective may be stated more formally by consid-

ering the minimization of a quadratic cost function [22]

min
pG

CG = 1

2
(pG)T QpG (4a)

s.t.: 1T pG = 1T pL + 1T

⎡
⎣DωG

0
0

⎤
⎦ (4b)

pG
j = 0, j ∈ Xac (4c)

where Q is a positive-definite diagonal matrix containing the
cost coefficients for each energy resource, 1 is the vector
of ones with appropriate dimension, and 0 is the vector of
zeros with appropriate dimension. Note that constraint (4b)
is a requirement for power balance at equilibrium, i.e., that
the total generation and demand are equal, whereas (4c)
suggests that the generation at converter ac buses is zero,
which holds by definition (note that pG

j appears in (1c) only
for convenience in presentation). To proceed further, we define

4Existence of equilibria in ac systems is beyond the scope of this article
and has been considered in, e.g., [23].

the diagonal matrix Q̃ such that Q̃ii = Q−1
ii , i ∈ N/Xac and

Q̃ii = 0, i ∈ Xac. With slight abuse of terminology, we shall
refer to Q̃ as the inverse cost matrix.

Using the standard method of Lagrange multipliers as in
[22], and defining the vector pu = [(DωG)T 0T 0T ]T for
convenience, the solution pG∗ to the optimization problem is

pG∗ = Q̃11T

1T Q̃1
(pL + pu). (5)

III. MAIN RESULTS

A. Decentralized Primary Control

We assume power-frequency droop control for the ac gen-
erators and power–voltage droop for the dc energy resources

pG = −Q̃

[
ω

mV

]
+ pG

nom (6)

where Q̃ ≥ 0 is the inverse cost matrix of droop coefficients
and m > 0 is a constant, and as stated previously, ω and
V are the column vectors of the ac frequency and dc voltage
deviations, respectively. The nominal power generation pG

nom is
a constant reference of the droop control scheme that satisfies
(4) for a nominal aggregate load5 and with the frequencies at
their nominal value.. The second control objective (limitation
of frequencies and voltages deviations) may be satisfied by
choosing suitably large droop coefficients in Q̃. In order to
simplify the presentation here, we use proportional droop con-
trol schemes; nevertheless, this condition could be relaxed to
local input strict passivity of the dynamics of each ac generator
from input −ω j to output pG

j and each dc generator from
input −Vj to output pG

j around their respective equilibrium
values ω∗

j and V ∗
j , similar to the analysis in [24]. It should be

noted that the majority of dc networks are voltage-controlled,
i.e., each dc source regulates its output voltage (which may
be droop based on current or voltage). Such voltage-controlled
dc droop sources, along with more detailed dynamic models,
can also be incorporated in our analysis if a strict passivity
condition from the negative output power −pG

j (or current) to
the bus voltage Vj is satisfied. This allows a wide range of dc
droop control structures to be integrated [26].

We also introduce a VSC controller based on [21]. Let the
voltage angle θi at the ac-side output of an ILC x be

θi =
∫

mVj , i.e. the frequency is given by (7a)

ωi = θ̇i = mVj (7b)

where i ∈ Xac
x and j ∈ Xdc

x . This relates the ac frequency
deviation proportionally to the dc voltage deviation by a
chosen constant m > 0. Hence, (7b) necessitates that the
frequency at the ac side of the ILC is set directly by the ILC,
rather than controlling the power transfer through the ILC as
in traditional ILC control schemes. The relationship between
ac frequency and dc voltage allows to provide appropriate

5Note that pL in (1) does not need to be equal to the nominal load for
power balance to be achieved at equilibrium, i.e., power balance will hold if
an equilibrium point of (1), (6), and (7b) is reached with the power generated
determined by the deviations in frequency/voltage.
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stability and optimality properties for the network, as we will
show within this article.

We assume that the converter is lossless and that the
internal dynamics are sufficiently fast compared to the network
dynamics. In [21], the suggestion is to set m = (ωnom/V nom

dc ),
where ωnom and V nom

dc are the nominal values of the ac grid
frequency and the dc grid voltage. Since in this article ωi

and Vj are deviations from a nominal value, other values of
m are also possible. Large values of m result in smaller dc
voltage deviations and larger ac frequency deviations, and in
general, m = (ωnom/V nom

dc ) may be too large for this scheme
as frequency deviations are generally less acceptable than
voltage deviations. Instead of directly controlling the power
transfer, (7b) relates the frequency and voltage within the ac
and dc sides, respectively. Not only does this improve the
accuracy of the power sharing in the primary time frame but
also provides fast response to ac disturbances via capacitive
inertia as discussed in [21] and [22]. In this article, we take
this concept further and use the capacitive inertia of the entire
dc subsystem for frequency support and also use the inertia of
the ac system to regulate the dc voltage when appropriate.

Theorem 1 (Stability): Consider a dynamical system
described by (1) and (2) with the control scheme in (6) and
(7b), and an equilibrium point for which Assumption 2 holds.
Then, there exists an open neighborhood of this equilibrium
point such that all solutions of (1), (2), (6), and (7b) starting
in this region converge to the set of equilibrium points as
defined in (3).

Theorem 1 demonstrates the local convergence of solutions
to (1), (2), (6), and (7b) to the set of its equilibria. Note that
the result is local due to the sinusoidal power transfers in (1e)
and that it becomes global if those are linearized.

The following theorem demonstrates that when line resis-
tances become arbitrarily small, then the equilibria of the
considered system tend toward the global minimum of (4).

Theorem 2 (Power Sharing): As the dc line resistances
become arbitrarily small, the power sharing of the system
(1) and (2) with the control scheme (6) and (7b) becomes
arbitrarily close to the solution of the optimization problem
(4).
Remark 2: In a practical network, there will always be
some small dc line resistances that affect power sharing. A
fundamental tradeoff exists between voltage regulation and
power-sharing accuracy for linear droop-controlled dc grids
[27], [28], which can be adjusted by changing the magnitude
of droop gains. Nevertheless, if these line resistances are small,
the voltage deviations will also be small and the power sharing
will be close to optimal.

Remark 3 (Power Sharing in a Dual-Droop ILC Controller
Scheme): Consider the dual-droop scheme (8) often used in
the literature for primary control of the ILC

pX
i = K ω

i ωi − K V
j Vj (8)

where K ω
i and K V

j are the respective droop coefficients, and
the power transfer is directly controlled.6 It is clear that (8)

6In practice, the ILC controls the power transfer by varying its output
voltage angle until (8) is satisfied.

is unable to guarantee correct power sharing for a disturbance
at any arbitrary bus under the same assumptions. For droop-
controlled sources to contribute power in proportion to their
droop coefficients, a system-wide synchronizing variable is
required. The proposed controller (7b) achieves this by relating
the ac frequency to the dc voltages. By contrast, the dual-droop
controller (8) does not provide such a relation.

B. Distributed Control

In this section, we propose a distributed controller inspired
by [22] and [25]. The controller proposed in this section uses
communication to achieve the secondary control objectives
of exact power sharing, frequency, and voltage regulation.
It should be noted that this scheme is an alternative to that of
the communication-free scheme in Section III-A and should
therefore be used if appropriate communication is available.

The concept of network emulation can be carried further
with the aid of distributed communication. Let the average dc
voltage deviation of each subsystem k be represented by the
capacitance-weighted average V̄k

V̄k =
∑

j∈Ndc
k

C j Vj . (9)

As in the second distributed MTDC controller proposed
in [25], the dc voltages within each subsystem are either
communicated within the network so as to obtain V̄k (for
small subsystems) or V̄k is obtained via an appropriately fast
distributed approach such that its dynamics can be decoupled
from the stability analysis in this article. From (9), we have

˙̄Vk =
∑

j∈Ndc
k

C j V̇ j =
∑

j∈Ndc
k

(
pG

j − pL
j − pX

j + pF
j

)
. (10)

The dc branch flows pF
j cancel out within the subsystem, and

we therefore have the following expression that resembles the
swing equation:

˙̄Vk =
∑

j∈Ndc
k

(
pG

j − pL
j − pX

j

)
. (11)

We now introduce the concept of virtual frequency deviation
ω̂, which is defined for the entire network as follows:

ω̂ j =
{

ω j , if j ∈ Nac

mV̄k, if j ∈ Ndc
k

(12)

where k is the dc subsystem to which all nodes in the associ-
ated set Ndc

k belong. We will denote the vector of average dc
subsystem voltages by V̄ . The converter that interlinks ac bus
i and the dc subsystem k is governed by

ωi = mV̄k (13)

where m > 0 is a positive coefficient. Similar to the primary
controller (7), we control the ac frequency of the ILC instead
of directly controlling the power transfer. A common approach
to achieve optimal power sharing in secondary control is
to introduce a synchronizing communicating variable ξ [22]
and update these values via distributed averaging through
an undirected connected communication graph. In particular,
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we denote this graph by (N, Ẽ), where Ẽ denotes the set of
communication links, and also denote by L the Laplacian of
(N, Ẽ), which is defined as

Li j =

⎧⎪⎨
⎪⎩

deg(i), if i = j,

−1, if (i, j) ∈ Ẽ

0, otherwise

(14)

where deg(i) denotes the degree of node i . Then, the distrib-
uted controllers for the hybrid ac/dc system are

Tξ ξ̇ = −Lξ − Q̃ω̂ (15a)

pG = Q̃ξ − Kω̂ (15b)

where Tξ denotes the diagonal matrix with positive time con-
stants, ξ is the column vector of the synchronizing variables
ξ j , Q̃ is the inverse cost coefficient matrix as before, and K
is a diagonal matrix of positive coefficients used to improve
the performance and determine power contributions from each
generator in the primary time frame. The proportional term Kω̂
is effectively a primary (droop) controller, while the slower
secondary term Q̃ξ integrates the frequency and average
voltage deviations to a steady-state value of zero and leads
also to an optimal power sharing (see Theorem 3).

One interesting feature of this controller is that the dc-bus
voltages are weighted by the associated capacitances. This is
in order to capture the dynamics of the physical energy of the
subsystem as follows from (10). A potential objection could be
that buses with low capacitance could have voltages far from
the nominal while still satisfying V̄k = 0, due to their faster
response. Nevertheless, small voltage deviations at such buses
may still be maintained in two ways. First, the steady-state
dc-bus voltages must still satisfy the power-flow equations.
This is a constraint that does not depend on capacitances
and can potentially restrict large voltage deviations (will be
dependent on the power flows and line resistances). Second,
virtual capacitance CV

j may easily be added at any dc source
bus j via a derivative term in the dc source dynamics, e.g.,

pG
j = Q̃ j jξ j − K j j ω̂ j − CV

j V̇ j .

The addition of the derivative term will not affect the steady-
state value of pG

j , allowing its optimality properties to be
retained.

Our first result, proven in the Appendix, demonstrates that
the introduction of the controller (12), (13), and (15) ensures
that the equilibria of the system (2), (12), (13), and (15)
coincide with the global minimum of the optimization problem
(4).

Theorem 3 (Power Sharing): An equilibrium of the system
(1) and (2) with the control scheme (12), (13), and (15) solves
the optimization problem (4).

The following theorem, proven in the Appendix, demon-
strates the local convergence of solutions of the dynamical
system (1) and (2) when the controller (12), (13), and (15) is
applied, to the global minimum of the optimization problem
(4). Furthermore, it guarantees that frequency returns to its
nominal value at equilibrium, i.e., ω∗ = 0, and that the average
voltage deviation in every dc subsystem is zero, i.e., V̄ ∗ = 0.

Fig. 2. Example ac/dc network 1 (mixed topology).

Fig. 3. Example ac/dc network 2 (ring topology).

Theorem 4 (Convergence to Optimality): Consider the
dynamical system described in (1) and (2) with the control
scheme (12), (13), and (15) and an equilibrium point for
which Assumption 2 is satisfied. Then, there exists an open
neighborhood of this equilibrium point such that all solutions
of (1), (2), (12), (13), and (15) starting in this region converge
to a set of equilibria that solve the optimization problem (4),
with ω∗ = 0 and V̄ ∗ = 0.

Theorem 4 demonstrates that all solutions of the considered
system locally converge to an optimal solution of (4).

Remark 4: Our proposed controller is distributed in the
sense that its implementation in a dc subgrid makes use of
voltage measurements only within that subgrid and is also
fully distributed in the ac subgrids of the network. It should
be noted that relaxing (9) to a fully distributed controller
that makes use of only local voltage measurements without
additional information transfer, while retaining the stability
and optimality properties presented, is a highly nontrivial
problem as this would distort the synchronization of the
communicating variable ξ needed for optimal power sharing.

IV. CASE STUDIES

In order to demonstrate our results, we study the perfor-
mance of our controllers in two hybrid ac/dc systems: the first
as shown in Fig. 2 and the second being the ring network
in Fig. 3. All studies are carried out in MATLAB/Simscape
Power Systems.

The parameters of the networks are given in Table II.
For simplicity, we have chosen the same parameters for
both networks and have numbered the buses such that the
parameters and description of loads and generation apply
to both networks. Varying line parameters within reasonable
bounds does not significantly affect the performance of the
controllers, except the effect on power sharing within the dc
subsystem(s) in the primary time frame, as expected [28].
The synchronous machine is 4 MVA and 13.8 kV and is
connected to the ac subsystem at bus 5 via a 4-MVA step-down
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TABLE II

HYBRID AC/DC NETWORK PARAMETERS

transformer, and there are four distributed dc generators across
the two subsystems at buses 1 and 9 (1 MW) and buses
3 and 7 (3 MW). The simulation model is more detailed and
realistic than our analytical model, and it includes the inverter
dynamics with switching [two-level pulsewidth modulation
(PWM)], line dynamics, detailed generator, turbine governor,
exciter dynamics, and realistic communication delays. The
switching of the two-level PWM converters causes the dc
ripple seen in some of the figures. More detailed parameters
of the test system are given in Table II.

A. Decentralized Primary Control

Using the controllers (6) and (7b), we show that the voltages
and frequencies converge to equilibrium values and that the
power sharing is close to the optimal values irrespective of
the location of the disturbance. The droop coefficients in Q̃
are set proportionally to the source ratings with gains of
(500 kW/(rad/s), 1 kW/V, and 3 kW/V) for the synchronous
generator, dc sources at buses 1 and 9, and dc sources at
buses 3 and 7. In Fig. 4, we show the ac frequency and
dc voltage response to the same step disturbances at time
t = 3 s and t = 23 s. The magnitude of the disturbance
at t = 3 s is 1.2 MW (nominal added demand) located at bus
3 within dc subsystem 1, while the disturbance t = 23 s is
1.2-MW reduced demand at bus 7 within dc subsystem 2.
Fig. 5 shows that the power allocation converges to values
close to proportional as required.

For comparison, we also study the same hybrid ac/dc
networks with traditional dual-droop controlled ILCs. The
droop gains for the sources (250 kW/(rad/s), 500 W/V,
and 1500 W/V) and the dual-droop scheme [50 W/V,
250 kW/(rad/s)] are chosen to achieve a reasonable power shar-
ing (hence the smaller source droop gains and the large dual-
droop gains). Note that it is impossible to achieve comparable
steady-state power sharing with our proposed scheme. The
other control parameters are then tuned to achieve the best pos-
sible performance. It is possible to improve either the transient
performance or the power-sharing optimality, and however,
both cannot be improved simultaneously. Figs. 6 and 7 show

Fig. 4. Frequency and voltage response with the decentralized primary
controller (6) and (7).

Fig. 5. Power-sharing response with the decentralized primary controller (6)
and (7).

that the voltage/frequency deviations at equilibrium as well as
the power sharing are inferior to the proposed method, with
larger deviations and suboptimal power sharing. Increasing the
droop gains decreases the voltage and frequency deviations
at steady state; however, unacceptable oscillations were noted
in simulations. Unlike with the proposed primary controller,
the topology has a strong effect on the power-sharing perfor-
mance. The dual-droop control performs considerably worse
in the first test network with three subsystems compared with
the two subsystem ring network. In general, power-sharing
performance with dual-droop control is poorer in larger and
more spread out networks with more subsystems since no
prescribed relation between the ac frequency and dc voltages
is maintained among the subsystems.

The simulations show several advantages of our proposed
primary controller. First, the power requirement of any load
change or disturbance can be effectively shared by sources
across the entire hybrid ac/dc network. In contrast, the dual-
droop scheme requires nearby sources to support most of the
power requirement, which is not only less optimal but may
also cause device ratings to be exceeded. Second, our proposed
scheme is able to use the inertia of the synchronous machine
and the capacitance of both dc subgrids to quickly contribute
to the power balancing. As shown in Fig. 5, the inertia of the
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Fig. 6. Frequency and voltage response with traditional dual-droop control
(8).

Fig. 7. Power-sharing response with traditional dual-droop control (8).

synchronous machine is used to supply the load demand in
the first few seconds. Since synchronous machines are able
to handle short-term overloads much more successfully than
power-electronic converters, this is preferable to the local dc-
side regulation of the dual-droop scheme.

B. Distributed Control

We also consider the performance of the controller (13) and
(15) on the test networks under identical conditions, using
the same droop coefficients Q̃ = K for simplicity. In the
simulation, we obtain V̄k in (12) via propagation through
the network with a communication delay of 10 ms between
the neighboring buses. Simulations where V̄k is evaluated
via consensus schemes were also carried out and a similar
performance was achieved for small communication delays
<10 ms; however, the performance deteriorated significantly
for larger communication delays. Figs. 8 and 9 show that the
distributed controller regulates the voltages and frequencies
of the hybrid ac/dc network to their nominal values while
guaranteeing optimal power sharing at steady state.

V. CONCLUSION

We have proposed a new method for the control of inter-
linking converter(s), used in conjunction with traditional droop

Fig. 8. Frequency and voltage response with the distributed secondary
controller (13) and (15).

Fig. 9. Power-sharing response with the distributed secondary controller (13)
and (15).

control to guarantee stability and accurate power sharing in a
general hybrid ac/dc network. The stability of the controlled
system was proven and it was shown that power sharing
across the ac/dc network is significantly improved compared
with dual-droop control. A secondary control scheme has
also been proposed that guarantees stability while achieving
exact optimal power sharing and that bus frequencies and
the weighted average of dc voltages return to their nominal
values at steady state. Finally, the proposed algorithms were
verified by simulation and compared with traditional dual-
droop control.

APPENDIX

The appendix includes the proofs of the results presented
in the main text. We provide first some notation that will be
used within the proofs. Given some column vector z with
length |N |, we use the subscripted vector zac to denote the
vector that includes the elements of z with indices in Nac,
i.e. zac = [z j, j∈Nac]. Likewise the subscripts zGac, zXac, zXdc,
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and zdc denote the vectors that include those entries for which
j ∈ Nac \ Xac, j ∈ Xac, j ∈ Xdc, and j ∈ Ndc, respectively.
The following relations therefore hold: zT = [zT

ac, zT
dc], zT

ac =
[zT

Gac, zT
Xac]. For convenience, we define � > 0 as the diagonal

matrix of all Bij , (i, j) ∈ Eac, and G is defined as the
conductance matrix of the dc subsystem(s), i.e., the Laplacian
weighted by the conductances Gij . Finally, summation over
all the dc subsystems is denoted by the shorthand

∑
k,dc.

Proof of Theorem 1: We prove our claim in Theorem 1 by
finding a suitable Lyapunov function for the system (2), (6),
and (7b). Consider the following Lyapunov candidate:

W (η, ωG , V ) = WG + WE + WV

= 1

2
(ωG − ωG∗)T M(ωG − ωG∗)

+ 1T �

∫ η

η∗
sin(φ) − sin(η∗)dφ

+ 1

2
m(V − V ∗)T C(V − V ∗). (16)

The time derivative of the first term is given by

ẆG = (ωG − ωG∗)T (
pG

Gac − pL
Gac − pX

Gac + pF
Gac − DωG)

= (ωG − ωG∗)T (
pG

Gac − pL
Gac − pX

Gac + pF
Gac − DωG)

+ (ωX − ωX∗)T (
pG

Xac − pL
Xac − pX

Xac + pF
Xac

)
noting that the second expression follows by adding the term
for the converter buses which is equal to zero by (1c). Using
the equilibrium conditions (3), noting that pX

Gac is a zero
vector, and rearranging results to:

ẆG = (ω − ω∗)T (
pG

ac − pG∗
ac

) − (ωX − ωX∗)T (
pX

Xac − pX∗
Xac

)
− (ω − ω∗)T (

pF
ac − pF∗

ac

)
− (ωG − ωG∗)T D(ωG − ωG∗). (17)

The time derivative of the second term in (16) is, again
using the equilibrium conditions (3)

ẆE = (�(sin(η) − sin(η∗)))T AT (ω − ω∗)
= (ω − ω∗)T (

pF
ac − pF∗

ac

)
thus canceling the power transfer term in (17). The time
derivative of WV is given by

ẆV = m(V − V ∗)T (
pG

dc − pG∗
dc

)−m(V − V ∗)T (
pX

dc − pX∗
dc

)
− m(V − V ∗)T G(V − V ∗). (18)

Since G is the conductance matrix of the dc graph by
definition, we have −m(V −V ∗)T G(V −V ∗) ≤ 0 since m > 0.
Furthermore, using (7b) and noting that pX

Xdc
x

= −pX
Xac

x

m(V − V ∗)T (
pX

dc − pX∗
dc

) = (ωX − ωX∗)T (
pX

Xdc − pX∗
Xdc

)
= −(ωX − ωX∗)T (

pX
Xac − pX∗

Xac

)
.

Hence, the ILC terms in (17) and (18) can be canceled out.
We also note that converter buses Xac have no frequency-
dependent generation nor any damping, and that the respective
entries of the diagonal matrix Q̃ are zeros, while all other
entries of Q̃ are positive. Therefore, we define Q̃G > 0 as the
diagonal matrix with dimension |N |−|X |, which includes only

the nonzero terms in Q̃. Putting it all together and substituting
(6)

Ẇ ≤ −
[
(ωG − ωG∗)
m(V − V ∗)

]T

Q̃G

[
(ωG − ωG∗)
m(V − V ∗)

]
− (ωG − ωG∗)T D(ωG − ωG∗) ≤ 0. (19)

Using Assumption 2, WE has a strict local minimum at
η = η∗. Likewise, WG and WV have strict global minima
at ωG∗ and V ∗, respectively. Thus, W has a strict minimum
at Z∗ = (η∗, ωG∗, V ∗). Since ωX is uniquely determined
by V , we can then choose a neighborhood of Z∗ in the
coordinates (η, ωG , V ). Equation (19) further shows that W
is a nonincreasing function of time. Hence, the connected set
T = {(η, ωG , V ) : W ≤ ε} for some sufficiently small ε > 0
is compact, forward-invariant and contains Z∗. We then apply
LaSalle’s Theorem, with W as the Lyapunov-like function,
which states that all trajectories of the system starting from
within T converge to the largest invariant set within T that
satisfies Ẇ = 0. Since both Q̃G and D are positive-definite
matrices, clearly, Ẇ = 0 implies (ωG , V ) = (ωG∗, V ∗), and
therefore, ω̇G = V̇ = 0. This in turn implies by (3) that
the converter ac-side frequencies ωX = ωX∗. Furthermore,
from the equilibrium conditions, we deduce that the frequency
in each ac subsystem synchronizes to a common value, and
hence, the angle differences η also converge to some constant
value. Therefore, by LaSalle’s theorem, we have convergence
to the set of equilibrium points as defined by (3). Finally,
choosing S such that it is open includes Z∗, and S ⊂ T
completes the proof. �

Proof of Theorem 2: From the equilibrium conditions (3),
[ωT mV T ]T is arbitrarily close to the vector of equilibrium fre-
quencies 1ω∗ as the line resistances become arbitrarily small.
This follows from the equilibrium conditions (1e) and (3),
where if the conductances Gij are arbitrarily large, the voltage
differences Vi − Vj are arbitrarily small. Therefore, to find the
power allocation when the line resistances are arbitrarily small,
we solve the equilibrium conditions

−Q̃1ω∗ + pG
nom − pL − pX + pF − pu = 0

−1T Q̃1ω∗ + 1T pG
nom − 1T (pL + pu) − 1T pX + 1T pF = 0.

Clearly, 1T pF = 0 in a lossless network and 1T pX = 0
for lossless converters. Note also that the nominal power
generation may be expressed as pG

nom = −Q̃1ζ , where ζ is a
constant. Hence, solving for 1ω∗ and substituting into (6)

1ω∗ = − 11T

1T Q̃1
(pL + pu) − 1ζ

pG = −Q̃1ω∗ − Q̃1ζ = Q̃11T

1T Q̃1
(pL + pu)

yields the solution (5) to the optimization problem (4). �
Proof of Theorem 3: This is analogous to that of Theorem 2.

By premultiplying (15a) by 1T and noting (13) and the
synchronization of frequencies at steady state, it follows that
at equilibrium, ω̂ = 0. The latter shows from (15a) at steady
state that ξ∗ = 1ξ̄ where ξ̄ is the identical equilibrium value of
the individual values ξ j at node j . Then, from the equilibrium
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conditions (3), we have

Q̃ξ∗ − pL − pX + pF = 0 (20a)

1T Q̃ξ∗ − 1T pL − 1T pX + 1T pF = 0. (20b)

Clearly. 1T pF = 0 in a lossless network and 1T pX = 0 for
lossless converters. Hence,

1T Q̃1ξ̄ − 1T pL = 0 (21a)

ξ∗ = 1ξ̄ = 11T pL

1T Q̃1
. (21b)

Finally, substituting pG = Q̃ξ∗ from (15b) into (21b) yields
the solution to the optimization problem (4). �

Proof of Theorem 4: We use L = (1, 2, . . . , |L|) to
represent the set of nodes of the communication graph. For
convenience, we also write the decomposition of Q̃ into its
corresponding ac and dc terms as Q̃ = diag(Q̃ac, Q̃dc), where
Q̃ac and Q̃dc are diagonal matrices containing the inverse
cost coefficients for the ac and dc generators, respectively.
Likewise, we decompose K into the corresponding ac and dc
matrices as K = diag(Kac,Kdc), where Kac = {K j j : j ∈ Nac}
and Kdc = {K j j : j ∈ Ndc} are diagonal matrices of the
corresponding gains in K, appropriately ordered without loss
of generality. We consider the following candidate Lyapunov
function:

W = WG + WE + WV + Wξ (22a)

= 1

2
(ωG)T MωG + 1T �

∫ η

η∗
(sin(φ) − sin(η∗))dφ

+ 1

2
mV̄ T V̄ + 1

2
(ξ − ξ∗)T Tξ (ξ − ξ∗). (22b)

The time derivatives of WG are again adding the term from
(1c) and noting that pX

j = 0 for all buses j ∈ Nac \ Xac

ẆG = (ωG)T (
pG

Gac − pL
Gac + pF

Gac − DωG)
= (ωG)T (

pG
Gac − pL

Gac + pF
Gac − DωG)

+ (ωX )T (
pG

Xac − pL
Xac − pX

Xac + pF
Xac

)
= (ω)T Q̃ac

(
ξac − ξ∗

ac

) − (ωX )T (
pX

Xac − pX∗
Xac

)
+ ωT (

pF
ac − pF∗

ac

) − (ωG)T (D + Kac)ω
G .

The time derivatives of the other functions comprising W are

ẆE = −(�(sin(η) − sin(η∗)))T AT ω = −ωT (
pF

ac − pF∗
ac

)
ẆV = mV̄ T ˙̄V

= m
∑
k,dc

V̄k

∑
j∈Ndc

k

[(
pG

j − pG∗
j

) − (
pX

j − pX∗
j

)]

= m
∑
k,dc

V̄k

∑
j∈Ndc

k

(
Q̃ j j

(
ξ j − ξ∗

j

) − K j j V̄k
)

− mV̄ T (
pX

Xdc − pX∗
Xdc

)
Ẇξ = (ξ − ξ∗)T (−L(ξ − ξ∗) − Q̃(ω̂))

= −(ξ − ξ∗)TL(ξ − ξ∗) − (ξ − ξ∗)T Q̃ω̂

= −(ξ − ξ∗)TL(ξ − ξ∗) − ωT Q̃ac
(
ξac − ξ∗

ac

)
− m

∑
k,dc

V̄k

∑
j∈Ndc

k

Q̃ j j
(
ξ j − ξ∗

j

)

using (10) and (11) to simplify ẆV . Clearly, −(ξ −ξ∗)T L(ξ −
ξ∗) ≤ 0 from the definition of the Laplacian matrix L. We also
simplify further by canceling like terms and thus obtain

Ẇ ≤ −(ωG)T (D + Kac)ω
G − (ωX )T (

pX
Xac − pX∗

Xac

)

− m
∑
k,dc

⎛
⎜⎝V̄k

∑
j∈Ndc

k

K j j V̄k

⎞
⎟⎠−mV̄ T (

pX
Xdc − pX∗

Xdc

)
.

Noting that −m
∑

k,dc(V̄k
∑

j∈Ndc
k
K j j V̄k) ≤ 0 since K j j ≥ 0

for all j ∈ N and using (13) and pX
Xdc

x
= −pX

Xac
x

to cancel
the second and fourth terms, we finally have

Ẇ ≤ −(ωG)T (D + Kac)ω
G ≤ 0 (23)

where the damping matrix D is positive definite and can be
increased by proportional control of the ac sources via Kac.
We then apply LaSalle’s Theorem. Clearly, W is minimized
at η = η∗, ωG = 0, V̄ = 0, and ξ = ξ∗. Therefore,
we consider the set T that includes (η∗, 0, 0, ξ∗) and is defined
by {(η, ωG , V̄ , ξ) : W ≤ ε} for some positive constant ε.
Since W is non-increasing with time, T is a compact, posi-
tively invariant set for ε sufficiently small. LaSalle’s theorem
states that trajectories beginning in T converge to the largest
invariant set within T for which Ẇ = 0. We therefore
examine the equality condition of (23). Ẇ = 0 implies that
ωG = 0, which from the system dynamics (2) implies that
ωX = mV̄ = 0, V̄ = 0, and η is constant. Finally, from
(15), if ω̂ = 0, then Lξ = 0, which from the definition of
the Laplacian communication graph implies that all values
ξ j , j ∈ L converge to some network-wide constant value ξ̄
and thus ξ∗ = 1ξ̄ . Hence, the largest invariant set � within
T for which Ẇ = 0 satisfies (η, ωG , V̄ , ξ) = (η̄, 0, 0, ξ̄ ) for
constant η̄ and ξ̄ . Furthermore, pX trivially converges from
(1c). To show that within �, V takes some constant value V̂ .
Consider (1d) and (1e) and note that variables pG , pL , and
pX are constant. Then, defining V j = Vj − V̂ j , it follows that
the dynamics of V within � satisfy CV̇ = −LdcV where Ldc
is the Laplacian of the graph (Ndc, Edc), defined in analogy
to (14). It is easy to see that the only invariant set of this
linear ODE is V ∈ Im(1), where Im(1) denotes the image
of 1, which together with V̄ = 0 results to V = 0. Therefore,
by LaSalle’s theorem, the trajectories of the system starting
within T converge to the set of equilibrium points. This in
conjunction with Theorem 3 that suggests that equilibria of
(1), (2), (12), (13), and (15) are solutions to (4) completes the
proof. �
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