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The two-machine scheduling problem 
 
 

̶ A set of 𝑛 parts needs to be processed in a 
workstation that has two parallel machines. 
 
 
̶ The first machine is newer and faster than the second 
machine. However, since a single machine does not provide 
enough capacity, the older and slower machine is still in use. 
 
 
̶ Each part 𝑖 ∈ {1, ... , 𝑛} has a certain width 𝑤𝑖 and 

requires a processing time 𝑝𝑖𝑘 when handled by 
machine 𝑘 ∈ {1,2}. 



3 
 

The two-machine scheduling problem 
 
 

̶To be able to process a part, the setting of the machine 
must be adjusted corresponding to the part’s width. 
 
̶The time required to adjust the machine setting is proportional 
to the difference in width between the consecutive parts. 
 
̶ A schedule needs to be found that allocates each part to 
one of the machines and that sequences the parts for 
each machine such that the makespan to finish all the 
parts is minimized. 
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Two-machine scheduling: example 
 

̶ Input: 4 parts 
𝑤1 = 200mm, 𝑝11 = 100s, 𝑝12 = 150s. 

𝑤2 = 250mm, 𝑝21 = 120s, 𝑝22 = 180s. 

𝑤3 = 180mm, 𝑝31 = 110s, 𝑝32 = 140s. 

𝑤4 = 240mm, 𝑝41 = 140s, 𝑝42 = 180s. 

Machine 1 initially set at 𝑤01 = 270mm, machine 2 at 𝑤02 = 
250mm. 
Machine adjustment rate: 𝑎1 = 𝑎2 = 1 mm/s 

  

 

̶  Possible solution: 

Machine 1: first part 2, then part 4 ➔ 290s 

Machine 2: first part 1, then part 3 ➔ 360s 

Overall makespan: 360s 
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Class ‘Instance’ 
 

Data: 
̶ Part data: list of (w, p1, p2) tuples 
̶ Machine data: list of (w0, a) tuples 
 
 
Functions: 
̶ setup(m, i, j): return the time required for machine m to adjust 
from part i to part j 
 
 
You can define additional data structures and functions as much 
as you need, just make sure the code is efficient and elegant. 
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Class ‘Solution’ 
 

Data: 

̶  Representation of a solution 
 
Functions: 
̶  eval(): evaluation function to check feasibility of a solution and 
  calculate its makespan 
 
 
You can define additional data structures and functions as 
much as you need, just make sure the code is efficient and 
elegant. 
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Exact solution methods 
 
 

Solution methods to be implemented: 
 

-enumerate(): 
brute-force method – enumerate all possible solutions 
 
-LP_model(): 
Write a mathematical model and solve using a MIP solver (e.g., 
Gurobi) 
 
-DP(): 
dynamic programming – define the problem recursively and solve 
with DP 
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Heuristic solution methods 
 

-Greedy construction heuristics: 
   - Build a solution by inserting parts into the schedule one 
     by one. 
 
 
 
 
-Implement (at least) three versions of a greedy construction 
heuristic, i.e., using three different selection rules for choosing the 
next part to be inserted. 
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Heuristic solution methods 
Local-search improvement heuristics: 
 

   -Improve a solution by making a local change to it. 

 

   -By making a small, ‘local’ change, any given solution can be changed into a different, 

    so-called ‘neighbor’ solution 

 

   - A local-search heuristic evaluates neighbors of the current solution and ‘jumps’ to a 

    neighbor if that leads to an improvement. 

 

   -Local-search finishes when no more improvements are found. Then the current  

    solution is optimal in its neighborhood 

 

- Implement (at least) three local-search improvement heuristics, i.e.,   

define three neighborhoods. 
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Heuristic solution methods 
Local-search neighborhoods: 
 
̶ move(): 
  - take a part out of the solution and reinsert it in a different position 

̶ swap(): 
  -swap the position of two parts in the solution 
 

̶ Come up with at least one other local-search operators. 
 
̶ Local-search can be implemented as ‘first-accept’ or ‘best-accept’: 
    -First-accept immediately jumps to the first improving neighbor you 
      encounter 
    -Best-accept checks all the neighbors and jumps to the best neighbor 
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Performance evaluation 
 
 

̶  Evaluate the solution quality and runtime by running 
your exact methods and heuristics on a large set of 
randomly generated instances with varying sizes. 


