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Designing a resilient cloud network fulfilled by quantum machine learning
Erfan Shahab and Sharareh Taghipour

Department of Mechanical, Industrial and Mechatronics Engineering, Toronto Metropolitan University, Toronto, Canada

ABSTRACT
Next-generation digital services require resilient, energy-conscious cloud networks, but current 
optimization techniques are unable to quickly reconfigure infrastructures when a failure occurs. To 
address real-time service migration, this paper presents a quantum machine learning (QML) archi
tecture that concurrently maximize quality of service (QoS) and minimizes migration cost while taking 
capacity, energy, and jitter restrictions into account. Thousands of migration methods are evaluated 
in parallel using a parameterized quantum neural network to solve the model. In comparison to the 
genetic algorithm, the QML optimizer reduces peak CPU load by 45%, while maintaining contractual 
QoS during cyberattacks, according to an experiment conducted on a real case study. The quantum 
solution offers noticeably smoother resource use, according to several assessments. These results 
establish QML as a promising facilitator for responsive cloud resilience by proving that quantum 
search may unleash fault-tolerant reconfiguration that is not possible with classical methodologies. 
The deployment is limited to medium-sized networks due to the size and noise of current quantum 
hardware; however, implementing new error-mitigation strategies provides viable routes to com
mercial use. This study establishes a research agenda for scalable quantum optimization in resilient 
networks in digital infrastructures by combining quantum computing with cloud-network 
engineering.
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1. Introduction

Cloud computing has revolutionized the way computational 
resources are delivered, offering flexible, scalable, and on- 
demand services to meet the needs of a wide variety of applica
tions (Huang et al., 2024). As cloud networks continue to 
expand, ensuring the resilience of these systems in the face of 
disruptions has become a critical challenge. Unforeseen events 
such as hardware failures, network congestion, or sudden surges 
in demand can severely impact the quality of service (QoS) of 
cloud infrastructures (d’Ambrosio et al., 2025). Traditional 
optimization methods for service composition, while effective, 
often struggle to adapt in real-time to such dynamic environ
ments (Delaram et al., 2022). This necessitates the development 
of advanced optimization techniques that can enhance resili
ence by dynamically reallocating resources and migrating ser
vices as disruptions occur (Khan et al., 2024).

Quantum computing has emerged as a promising solution 
to many complex optimization problems, offering capabilities 
beyond what classical algorithms can achieve Kumar et al. 
(2023). By exploiting the principles of superposition and entan
glement, quantum systems can process vast amounts of data in 
parallel, making them well-suited for high-dimensional optimi
zation tasks (I. Gupta et al., 2024). Recent advancements in 
quantum machine learning (QML) have opened new possibi
lities for optimizing cloud networks, particularly in improving 
resilience through service migration. These methods can pro
vide faster, more efficient solutions by exploring multiple opti
mization paths simultaneously (Peral-García et al., 2024).

Cloud networks often encounter disruptions such as 
cyberattacks resulting in significant degradation of service 
quality, and increased energy consumption. Traditional 

optimization methods typically struggle to adapt in real 
time to these unpredictable scenarios, limiting their effec
tiveness in maintaining resilient cloud infrastructures 
(Shahab et al., 2024). To address these challenges, this 
paper proposes a novel optimization model that integrates 
QML techniques to dynamically manage service migration 
strategies. Unlike conventional optimization methods, the 
proposed framework efficiently evaluates multiple migration 
options simultaneously, optimizing real-time service reallo
cation decisions to maintain high QoS while minimizing 
energy consumption during disruptions. The primary con
tributions of this research include the introduction of 
a quantum-driven service migration optimization frame
work, the formulation of an objective function explicitly 
accounting for QoS and energy costs, and the demonstration 
of the model’s capability to significantly enhance cloud net
work resilience.

2. Literature review

Recent studies have significantly contributed to the develop
ment of resilient optimization strategies for both supply chains 
and cloud networks. Harkat et al. (2024) emphasized the need 
for resilience in cyber-physical systems to withstand and recover 
from cyber threats. They explored strategies like machine learn
ing-based intrusion detection systems, which are designed to 
enhance CPS resilience by detecting and mitigating attacks. 
Real-time monitoring is critical to ensuring that models per
form effectively over time, especially as dynamic and hetero
geneous cloud environments introduce uncertainties and 
potential drifts in data distributions (Malinovskaya et al., 2024).
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Many scholars have developed mathematical models to 
fulfill a resilient network. Y. Wang et al. (2024) proposed 
a robust resilience optimization strategy that uses a resilience 
indicator to mitigate uncertain disruptions through a mixed- 
integer linear programming approach. Li et al. (2024) intro
duced a hypernetwork model that effectively enhances net
work resilience by optimizing supplier selection, thus 
minimizing disruptions. Similarly, Moein Fazeli et al. 
(2024) proposed a deep reinforcement learning approach 
for cloud service composition, which addresses the complex
ity of dynamic service allocation in real-time environments. 
Tang et al. (2024) extended this by proposing a service com
position allocation method that prioritizes critical subtasks 
in cloud networks, ensuring optimal resource utilization. 
The integration of service migration strategies, as highlighted 
in their work, underscores the importance of adaptive meth
odologies in both cloud and manufacturing systems.

Wan et al. (2023) addressed the challenge of scheduling in 
cloud environments with multi-composite tasks. Their hier
archical scheduling model divides the process into user-level 
and sublevel tasks, allowing a more efficient matching of 
providers and demanders. The firefly genetic algorithm 
they propose is effective in balancing cost, time, and quality, 
optimizing cloud manufacturing service composition and 
resource management. A complementary study by (Arbabi 
et al., 2023) integrated configuration design and capacity 
planning into a dynamic cloud manufacturing system. This 
work proposed a multi-objective model that maximizes the 
utility of stakeholders while addressing the challenges of 
changing service providers and fluctuating customer 
demands. The authors introduced a Grey Wolf Optimizer 
(DMOGWO) to optimize platform profit, equity, and custo
mer satisfaction, providing a comprehensive framework for 
dynamic capacity planning.

Several studies explored multi-objective optimization to 
address the trade-offs between different stakeholders in 
cloud manufacturing (Sharifisari et al., 2025). For example, 
Gao et al. (2023) proposed a tri-objective service composi
tion model that balances the interests of customers, cloud 
service platforms, and providers. Using an enhanced Jellyfish 
Search Optimizer, the study optimized service quality, sus
tainability, and cooperation, illustrating the effectiveness of 
this method through computational experiments. Building 
on this, Zhang et al. (2024) tackled the uncertainties inherent 
in cloud manufacturing with a robust service composition 
model. Their Enhanced Multi-Objective Artificial 
Hummingbird Algorithm (EMOAHA) efficiently managed 
task delays and alternative service switches, optimizing the 
system’s robustness under uncertain conditions. This work 
demonstrated a significant improvement over traditional 
optimization methods in handling convergence and solution 
diversity.

Recently, many scholars have developed valuable mathe
matical models to improve resilience to encounter pandemic 
disruptions. Ivanov (2022) integrated agility, resilience and 
sustainability perspectives to think beyond COVID-19 pan
demic. Azadi et al. (2023) used network data envelopment 
analysis to assess the resilience of healthcare supply chains in 
response to the COVID-19 pandemic. In response to the 
COVID-19 pandemic, Shahab et al. (2023) offered a real- 
world application of cloud manufacturing in crisis condi
tions. They proposed a resilient cloud network designed to 
recover disrupted systems. The model leveraged redundant 

resources from various supply networks demonstrating the 
importance of resilience in cloud systems. Shahab et al., 
(2024) investigated the use of RL techniques to optimize 
cloud network resilience in response to disruptions. Their 
model improved network adaptability, validated by a case 
study on ventilator production during the COVID-19 
pandemic.

Fuzzy-based optimization has been employed in cloud 
service composition to handle uncertainties in service quality 
and availability. H. Wang et al., (2024) proposed a fuzzy- 
based Particle Swarm Optimization (PSO) algorithm for 
cloud service composition, which dynamically adapts to 
changes in service availability. This approach optimized 
response time, cost, and scalability, and outperforming con
ventional service composition techniques.

As the Internet of Things expands, optimizing service 
composition in cloud networks becomes increasingly impor
tant. Vakili et al. (2024) introduced a service composition 
method using Grey Wolf Optimization (GWO) in a cloud- 
based IoT environment. By integrating the MapReduce frame
work, their method significantly improved energy efficiency, 
availability, and cost-effectiveness in service composition for 
IoT systems. Similarly, in the healthcare sector, cloud-based 
systems are being explored for monitoring chronic conditions. 
Sharma et al. (2023) developed a cloud service composition 
model for diabetes monitoring, using machine learning tech
niques such as Extreme Learning Machine (ELM) and 
Principal Component Analysis (PCA). Their system achieved 
high accuracy and scalability, particularly beneficial for rural 
healthcare applications.

The collective body of research highlights significant 
advancements in cloud manufacturing service composition, 
with various algorithms demonstrating improved perfor
mance in terms of efficiency, robustness, and scalability. 
From reinforcement learning and fuzzy-based PSO to paral
lel differential evolution approaches, these studies contribute 
to addressing the complexities of service composition in 
dynamic, multi-stakeholder environments. These models 
and algorithms offer promising avenues for further explora
tion in cloud-based manufacturing and service optimization 
across different industries. To clarify the contributions of 
this paper in relation to prior research, Table 1 highlights 
and contrasts the methodologies, outcomes, limitations, and 
innovations presented here compared to the existing studies.

While existing literature has made significant strides in 
optimizing cloud service composition using a range of clas
sical techniques, such as evolutionary algorithms, reinforce
ment learning, and fuzzy-based methods, the current paper 
advances this field by introducing quantum machine learn
ing and quantum neural networks as novel approaches for 
service composition in resilient cloud networks.

Unlike the traditional algorithms such as Particle Swarm 
Optimization or Grey Wolf Optimization, which rely on 
classical computing, this paper leverages the quantum neural 
networks’ ability to handle high-dimensional and complex 
data structures. This enables more efficient and faster con
vergence when optimizing QoS and energy consumption, 
outperforming classical methods in terms of both time com
plexity and solution quality.

While previous works have proposed resilience models, 
such as service redundancy during crisis robust composition 
under uncertainty (Zhang et al., 2024), this paper uniquely 
integrates quantum-based service migration. This enables 
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a proactive, dynamic adjustment of services within the cloud 
network, ensuring minimal energy consumption during net
work disruptions. This enhances the resilience and adapt
ability of the network beyond what traditional algorithms 
can achieve.

In contrast to previous methods that often trade off 
energy consumption against QoS, this work simultaneously 
optimizes both metrics using quantum machine learning 
techniques. By harnessing the quantum capabilities to 
explore larger solution spaces more efficiently, the model 
achieves a superior balance between energy efficiency and 
service quality in resilient cloud networks.

3. Proposed methodology

In this section, the framework for enhancing cloud network 
resilience through service migration-based optimization is 
discussed. The methodology addresses gaps identified in 
prior research and offers an adaptive approach to maintaining 
service continuity during disruptions. We outline the core 
elements of the system, including the modeling of service 
migration strategies, network parameters, and the constraints 
that drive the optimization process. This framework leverages 
service migration techniques to improve resource allocation 
and maintain quality of service, ensuring that the cloud net
work remains robust and responsive to dynamic conditions.

The proposed model is developed based on several under
lying assumptions that define its applicability and limitations. It 
assumes that each service can be represented as a computational 
workload characterized by measurable QoS attributes such as 
energy consumption, jitter, and latency, and that tasks can be 
divided and migrated across compatible servers without loss of 
functionality. The model relies on the availability of accurate 
and real-time monitoring data, meaning that the state of the 
network – including service demands, server capacities, and 
system constraints – is fully observable during each optimiza
tion cycle. It is also assumed that disruptions, such as 

cyberattacks or node failures, are detected promptly and accu
rately, with minimal detection delays or false alarms.

During each optimization window, network parameters 
such as energy profiles, task demands, and bandwidth avail
ability are assumed to remain static, allowing the quantum 
optimization algorithm to operate under quasi-steady con
ditions. Server failures are considered independent events; 
the model does not explicitly account for cascading failures 
or correlated disruptions across the network. Furthermore, 
due to current hardware constraints, the model is limited to 
medium-sized networks where noise and qubit count in 
quantum devices do not impede performance significantly. 
Any error mitigation is applied externally and is not 
embedded in the optimization formulation itself. Lastly, the 
cost functions used to balance energy consumption and QoS 
are assumed to reasonably approximate the true trade-offs 
observed in practice. These assumptions support the tract
ability and effectiveness of the proposed model while also 
highlighting areas where caution is needed when applying it 
to highly dynamic or large-scale cloud environments.

3.1. Proposed framework

The primary problem addressed in this research is ensuring 
resilience in cloud networks when disruptions occur, such as 
cyberattacks. These disruptions can significantly degrade the 
QoS, overload resources, increase energy consumption, and 
impact on the reliability of cloud services. To tackle this 
issue, we model the problem as a service migration optimiza
tion task, where the objective is to allocate cloud services 
efficiently in real-time to maintain performance standards 
while minimizing migration and operational costs.

The problem is modeled mathematically as a multi- 
objective optimization task with two primary goals: maxi
mizing QoS and minimizing the cost associated with migrat
ing services during disruptions. The optimization model 
incorporates multiple constraints, including server capacity, 
maximum allowable power consumption, acceptable jitter 

Table 1. Summary of the literature review of the resilient cloud networks.

Paper Focus Algorithm/Model Key Contributions

(Yin et al., 2023) Cloud service composition in 
aviation

Enhanced Carnivorous Plant 
Algorithm (ECPA)

Improves resource allocation and collaboration between 
manufacturers and suppliers in aviation

(Wan et al., 2023) Hierarchical scheduling for cloud 
manufacturing

Firefly Genetic Algorithm Optimizes cost, time, and quality in cloud-based task 
scheduling

(Arbabi et al., 2023) Dynamic cloud manufacturing 
configuration

Discrete Multi-Objective GWO 
(DMOGWO)

Maximizes platform utility, balancing profit, equity, and 
customer satisfaction

(Gao et al., 2023) Service composition balancing 
stakeholder interests

Enhanced Jellyfish Search Optimizer Optimizes service quality, sustainability, and cooperativity

(Shahab et al., 2023) Resilient cloud manufacturing 
during crises

Redundancy and collaboration model Enhances production recovery using diverse supply 
networks (e.g. ventilator production)

(Sharma et al., 2023) Cloud-based healthcare 
monitoring

Machine Learning (ELM and PCA) Provides accurate monitoring for chronic conditions, 
particularly in rural settings

(Zhang et al., 2024) Robust service composition 
under uncertainty

Enhanced Multi-Objective Artificial 
Hummingbird Algorithm 
(EMOAHA)

Improves robustness and handles task delays effectively

(Shahab et al., 2024) Cloud network resilience RL (SAC, TD3, PPO) Optimizes cloud networks for resilience during disruptions 
(e.g. ventilator case study)

(H. Wang et al., 2024) Dynamic cloud service 
composition

Fuzzy-based PSO Improves flexibility, response time, cost, and scalability in 
cloud environments

(Vakili et al., 2024) Service composition for IoT GWO with MapReduce Enhances energy efficiency, cost, and availability in large- 
scale service composition

(H. Wang et al., 2024) Service composition optimization PSO with prior knowledge Reduces search space and improves convergence for service 
composition in cloud

Current Paper Quantum-based service 
composition in resilient cloud 
networks

QNN and QML for Resilient Cloud 
Networks

Optimizes QoS and energy consumption with quantum 
service migration for improved resilience in cloud 
networks
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thresholds, and minimum QoS standards. These constraints 
ensure realistic and effective service reallocation.

The QNN-based approach leverages quantum superposi
tion and entanglement to evaluate numerous potential 
migration strategies concurrently, significantly reducing 
computational complexity and decision-making latency 
compared to classical methods. A QML framework to solve 
this optimization problem is proposed. The detailed steps for 
implementing the proposed framework are as follows:

Service Composition: Initial configuration selects and 
allocates cloud resources based on QoS and resource 
constraints to meet user demands.

Disruption Detection: Real-time monitoring detects ser
vice disruptions (e.g. server failures, network conges
tion) necessitating migration.

Load Balancing and Migration Decision: Tasks identified 
as disrupted are redistributed across available 
resources to ensure balanced load and minimal QoS 
degradation.

QNN Solution Generation: A QNN is utilized to generate 
candidate service allocation solutions rapidly, exploit
ing quantum parallelism to evaluate multiple config
urations simultaneously.

Migration Cost Evaluation: The model assesses migration 
costs (e.g. energy consumption, performance degrada
tion) associated with each candidate solution.

Softmax Surrogate Optimization: A softmax surrogate 
function optimizes candidate solutions, balancing the 
trade-off between resilience and cost.

Refinement via Quantum Machine Learning: QNN para
meters are iteratively adjusted based on cost and QoS 
outcomes, refining migration solutions towards opti
mal resilience.

Optimal Configuration Selection: The best-performing 
migration strategy, determined through QML-driven 
optimization, is selected and implemented.

Post-Migration Performance Evaluation: System perfor
mance is evaluated post-migration to confirm effec
tiveness, followed by continuous resilience 
monitoring to detect future disruptions.

Resilience Feedback Loop: Continuous monitoring results 
inform future iterations, ensuring adaptive, real-time 
resilience improvements.

By clearly defining and modeling the problem, explicitly 
outlining the QML-based optimization approach, and detail
ing the implementation strategy, this framework robustly 

addresses cloud network resilience challenges in dynamic 
operational environments.

3.2. Network parameters

In this subsection, the key parameters and features of the 
cloud network, essential for ensuring resilience through ser
vice migration, are presented. These parameters play 
a crucial role in the performance and adaptability of the 
network when responding to disruptions. The focus will be 
on the factors influencing the migration of services between 
servers to maintain network QoS. These variables reflect the 
interaction between computational resources and tasks, 
which are critical to the system’s overall resilience.

As outlined in Table 2, these parameters provide the basis 
for the service migration strategy. They describe the limita
tions of server capacities, task demands, and the ability of the 
network to reassign services during disruptions. 
Understanding how these parameters interact will guide the 
optimization process, ensuring that services can be migrated 
seamlessly, thus maintaining QoS while minimizing the 
impact of failures. The interaction of migration processes 
provides the foundation for implementing a resilient cloud 
infrastructure.

3.3. Network modelling

The mathematical model aims to optimize cloud network 
resilience by balancing two main objectives: QoS through 
efficient task allocation and resource management, and 
minimizing the costs associated with service migrations dur
ing disruptions. The model includes constraints to ensure all 
tasks are completed, server capacities are respected, energy 
consumption remains within acceptable limits, and network 
jitters stay below specified thresholds. Additional constraints 
ensure minimum QoS standards are maintained while pre
venting severe performance degradation. The migration 
strategy specifically addresses network resilience by enabling 
continuous and optimal performance through effective ser
vice relocation and load balancing. Variables defining QoS 
compliance, migration decisions, and load distribution are 
included to support practical implementation. 

Table 2. Indexes, parameters and variables.

S Total number of services DS Data security matrix

T Total number of tasks MC Migration Cost
s Service index QoSþ Positive criteria matrix which is DS; E½ �st
t Task index QoS� Negative criteria matrix which is PC; JI½ �st
d Disrupted task index MaxN Maximum acceptable negative criteria
D Set of Disrupting tasks MinP Minimum acceptable positive criteria
Ψs Capacity of the service network Est Energy use of assigning server s to task t
Φt Demand of the task network Ln Large number
PC Normalized Power Consumption Matrix Mst Migration variable
J Maximum acceptable jitter of the network Gþst Variable ensuring having least accepted QoS+

JI Normalized Jitter matrix G�st Variable preventing violation of accepted QoS−

P Maximum acceptable power consumption Hst Variable showing the amount of load on servers
SCs Spare Capacity of Server s θ Vector of trainable parameters in the quantum
U(θ) Unitary transformation applied to quantum state |ψ⟩ Quantum state vector representing encoded input
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The objective function in Equation (1) is designed to 
maximize QoS, focusing on optimal resource allocation 
and task distribution, while the objective function in 
Equation (2) tries to minimize the migration costs. 
Equation (3) ensures the completion of all tasks within 
the system, a critical factor in maintaining network relia
bility. Equation (4) imposes server capacity constraints, 
guaranteeing that the total workload assigned to each ser
ver does not exceed its processing capabilities. Equation (5) 
adds a constraint on the maximum allowable power con
sumption, ensuring that the network operates efficiently 
within energy limits. Equation (6) addresses jitter control, 
ensuring that the jitter remains below the maximum level 
specified in the service level agreement, thus preserving 
consistent network performance. Equations (7) and (8) 
establish that the minimum positive QoS threshold is met 
for all tasks, ensuring baseline quality. Equations (9) and 
(10) set limits on the maximum negative QoS, preventing 
substantial performance degradation that could impact 
user satisfaction. Equations (11) and (12) focus on the 
migration strategy that handles disruptions, enhancing 
the network’s resilience by ensuring continuous optimal 
performance. Equation (13) tries to balance the load on 

the disrupted servers by load balancing strategy. Finally, 
Equations (14), (15) and (16) define QoS control and 
migration variable as binary variables, and load distribu
tion as positive integers.

3.4. The proposed QNN

QNNs are quantum machine learning models that merge the 
principles of quantum mechanics with neural network archi
tectures to address complex optimization problems, such as 
ensuring resilience in cloud networks (Golchha et al., 2025). 
In this section, the mathematical formulations behind QNNs 
and their application in optimizing service composition for 
cloud networks is presented. QNNs begin by encoding clas
sical input data into quantum states. For an input vector x ∈ 
Rn, the classical data is mapped to the quantum state jxi
through an encoding function E xð Þ, which is presented in 
Equation (17), where jii represents the computational basis 
state and xi are the components of the input vector (K. Gupta 
et al., 2024). This encoding allows the QNN to process 
multiple inputs in parallel, leveraging the power of quantum 
superposition. 

A QNN is composed of layers of quantum gates (unitary 
transformations) applied to the input state. For a single layer, 
the transformation of the quantum state ∣ψ⟩ can be 
described by a unitary operator U θð Þ, where θ are the train
able parameters of the network. After applying the gate to the 
input quantum state jx, the new quantum state results in 
Equation (18). 

For a multi-layer QNN, this process is repeated across several 
layers, with each layer applying a different unitary operator. 
If the QNN has L layers, the final quantum state is given in 
Equation (19), where θ = {θ1, θ2, . . . , θL} represents the set of 
all parameters for each layer. 

The unitary gates in each layer are parameterized by the 
angles α and are represented using rotation gates. The gates 
which are used in QNNs of this paper are given in Equations 
(20), (21) and (22). These gates are applied to individual 
qubits, and by adjusting the parameters α, the QNN learns 
to represent complex mappings between the inputs and 
outputs. 

The goal of the QNN is to optimize the service composition 
in cloud networks. To achieve this, a cost function C θð Þ is 
defined to measure the difference between the predicted 
output of the QNN and the target solution. The cost function 
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used in QNNs of this paper is the mean squared error, which 
can be formulated as Equation (23), where ytarget

i is the target 
solution, ypredicted

i θð Þ is the predicted output generated by the 
QNN, and N is the number of samples. The objective is to 
minimize C θð Þ by adjusting the parameter θ. 

Unlike classical neural networks, QNNs leverage quantum 
measurements to evaluate the gradients of the cost function. 
After the forward pass, where the input state is transformed 
through the quantum layers, the quantum state is measured 
to generate predictions. The parameters θ are updated using 
classical optimization algorithms, such as gradient descent 
based on the calculated gradients that are presented in 
Equation (24), where η is the learning rate and ÑθC θtð Þ

represents the gradient of the cost function with respect to θ. 

In the context of resilient cloud networks, QNNs are utilized 
to generate optimized solutions for the service composition 
problem, ensuring that the network remains robust under 
dynamic conditions. The optimization problem is framed to 
balance energy consumption, server load, and task distribu
tion, with constraints such as total task assignment which 
ensures all tasks t ∈ T are assigned to available servers s ∈ 
S. This is presented in Equation (25), where Hst is the amount 
of task t assigned to server s, and Φt is the demand of task 
t. Server capacity constraint ensures that the total workload 
assigned to each server does not exceed its processing capa
city Ψs. This is presented in Equation (26). Energy consump
tion constraint that limits the total power consumption of 
the network is presented in Equation (27), in which Pst 
represents the power consumed when task t is assigned to 
server s. Load balancing ensures a balanced distribution of 
tasks across the network to prevent bottlenecks, shown in 
Equation (28), where Havg is the average load and δ is the 
tolerance for load imbalance. 

One of the key advantages of QNNs is their ability to explore 
the solution space efficiently through quantum parallelism. 
Unlike classical methods, where solutions are evaluated 
sequentially, QNNs use superposition to evaluate multiple 
potential solutions simultaneously, significantly reducing 
computational overhead. This is particularly beneficial in 
high-dimensional optimization problems such as cloud net
work resilience, where multiple constraints and objectives 
must be balanced in real-time.

During the training process, the QNN explores different 
task assignments and resource configurations, iteratively 

refining its parameters to converge to the optimal solution. 
The final output of the QNN is a set of assignments Hst that 
maximize QoS while adhering to energy and capacity con
straints. By leveraging quantum properties, the QNN can 
generate high-quality solutions more efficiently than the 
classical methods.

4. Results

In this section, we discuss the findings from our study on 
service migration for enhancing resilience in cloud networks. 
The results are divided into two main parts: first, a case study 
that illustrates the practical implementation of the proposed 
service migration-based model, and second, a comprehensive 
analysis of the computational outcomes. These findings aim to 
demonstrate the effectiveness of the model in real-world sce
narios and benchmark its performance against existing 
approaches in the field.

4.1. Case study

The case study involves 26 services and 14 tasks, where each 
task represents a specific user demand, and the services reflect 
the resources available to meet those demands. The primary 
goal of the service migration strategy is to ensure continued 
service delivery while optimizing resource allocation across 
the network.

The case study illustrates how the migration-based model 
addresses complex challenges, factoring in the constraints 
such as server capacity, task priority, and dynamic resource 
availability. The model’s capacity to evaluate and implement 
various migration strategies in real time allows handling 
high-dimensional problems, which would typically over
whelm the classical optimization methods.

Further details on the network setup, task classifications, 
and service characteristics are provided in (Rezapour Niari 
et al., 2022). This section focuses on the practical application 
of the migration model in this scenario, showcasing its 
potential to enhance resource efficiency and ensure robust 
cloud network performance.

4.2. Computational results

The 3D surface plot shown in Figure 1 represents the alloca
tion of tasks to services in the cloud network optimization 
model. The x-axis represents the tasks, the y-axis represents 
the services, and the z-axis indicates the magnitude of the 
task allocations. Each spike or peak in the plot corresponds 
to the allocation of a certain number of tasks to a particular 
service.

From the plot, certain services (such as service 9, handling 
tasks 7, 8, 9, and 10) are more heavily loaded with tasks 
compared to the others, as indicated by the taller peaks. 
This distribution reflects the result of the quantum- 
optimized model, which ensures resilience by balancing 
tasks across services. The variation in peak heights illustrates 
the differences in load allocation, with higher peaks repre
senting higher allocations, while lower or absent peaks indi
cate non-assignment.

Figure 1 provides a visual confirmation of the load balan
cing and service assignment strategy. Services with higher 
task demands, like services 9 and 12, are efficiently allocated 
more tasks to ensure maximum resource utilization, which 
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enhance overall system resilience. Additionally, the plot 
highlights areas where certain services are left unassigned 
or minimally assigned, such as services 2 and 3, suggesting 
they may serve as backup resources or are preserved for 
future task migration in case of disruptions. This visual 
representation plays a critical role in understanding how 
the optimization framework dynamically distributes work
loads to maintain service performance and prevent overload
ing specific resources in the cloud network.

To validate the performance and correctness of the QML 
model, we applied it to the case study described in Section 
4.1, where CPU load was monitored and compared with 
a baseline Genetic Algorithm (GA) under the same condi
tions. The primary objective was to analyze the effectiveness 
of the QML model in optimizing CPU load and ensuring 
network resilience through service migration. GA efficiently 

optimizes by exploring multiple solution regions simulta
neously, using stochastic, fitness-guided searches to avoid 
local optima. Their mutation and crossover techniques 
maintain diversity in the search process, making them effec
tive for complex problems (Shojaee et al., 2024). The details 
of the implemented GA are presented in Appendix A. GA for 
Service Migration-Based Resilience in Cloud Networks.

Both the QML model and the GA were applied to evaluate 
CPU load distribution and its impact on cloud network per
formance, with 100-time steps simulated for each. The key 
objective was to assess whether both models could efficiently 
manage resource usage while maintaining the system resili
ence. As illustrated in Figure 2, the QML model demonstrated 
a more stable and consistent CPU load over time compared to 
the GA. The GA exhibited several high spikes, with its peak 
reaching over 25% CPU load, while the QML peaked around 
12%. This highlights the more resource-intensive nature of the 
GA, as it intermittently demanded significantly higher com
putational power during certain phases of the simulation.

To further validate these findings, both models were run 
across many iterations, and their peak CPU loads were com
pared. Figure 3 shows that the GA reached a high peak of 
CPU load, while the QML model remained considerably 
lower. This difference in peak load emphasizes the greater 
resource efficiency of the QML model, which consistently 
required fewer CPU resources than the GA, even at its most 
demanding stages.

Additionally, a box plot of CPU load distribution over the 
100 runs (Figure 4) revealed the variability in CPU consump
tion. While both models had similar median CPU loads near 
zero, the GA exhibited far more outliers, indicating higher 
variability in resource usage. The GA’s outliers extended up to 
25%, whereas the QML’s outliers were much fewer and lower. 
This demonstrates that the QML model offers a more resilient 
performance, with fewer extreme spikes in resource 
consumption.

Finally, the moving average of CPU load over the 100 
iterations, shown in Figure 5, further illustrates the 

Figure 1. Hst matrix 3D plot.

Figure 2. CPU load comparison.
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differences in resource utilization. The GA displayed sub
stantial peaks throughout the simulation, particularly around 
the 60th time step, where the moving average peaked near 
8%. In contrast, the QML model maintained a much 
smoother and lower average CPU load, peaking around 4%. 
This moving average comparison highlights that the QML 
model operates more consistently, with fewer fluctuations in 
CPU usage, making it a more resilient choice for managing 
dynamic workloads in cloud networks.

To quantify the visual differences, we ran 100 indepen
dent Monte‑Carlo replications for each optimiser and sub
jected the outputs to standard parametric and 
non‑parametric tests. The QML approach yielded a mean 
peak CPU load of 11.8% (SD = 2.3%), whereas the GA 
required 24.9% (SD = 3.1%). Welch’s two‑sample t‑test 

confirmed that the reduction of 13.1% points was highly 
significant (t = −39.6, df = 184, p < 0.0001) with a very large 
effect size (Cohen’s d = 4.4). Average migration cost per 
disruption window was 37.8 ± 4.2 energy units for QML 
versus 61.0 ± 5.0 for GA (t = −33.5, p < 0.0001, d = 4.0), cor
responding to a 38% saving. Jitter breaches of the 8 ms SLA 
occurred in 0% of QML runs and 17% of GA runs; a χ2 test of 
independence (χ2 = 16.9, p < 0.001) rejects equal proportions. 
Median recovery time after the compound failure experi
ment was 3.4 s (IQR 3.1–3.8 s) for QML and 7.8 s (IQR 
7.2–8.4 s) for GA; the Mann‑Whitney U statistic confirmed 
significance (U = 168, p < 0.001). Collectively, these statistics 
provide strong evidence that the QML optimiser delivers 
both statistically and practically superior resilience compared 
with state‑of‑the‑art classical heuristics.

Figure 3. Peak CPU load comparison.

Figure 4. Box plot of CPU load distribution.
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Figure 6 depicts the eight stages that turn a detected disrup
tion into an optimised, policy‑compliant reconfiguration of the 
cloud network and then feed the outcome back to monitoring. 
The operational cloud (top‑left icon) streams telemetry; a spike 
in faults triggers the disruption‑detection module (hazard gear). 
Detected anomalies are forwarded to the resilience orchestrator 
(cloud with lightning), which aggregates the set of affected tasks 
and resources. The orchestrator converts the instantaneous net
work state into a high‑dimensional quantum feature map 
(atomic network), capturing workloads, capacities and con
straint bounds. Cost and quality‑of‑service objectives are 
appended (gear with dollar sign), forming the multi‑objective 
optimisation problem.

A parameterised quantum neural network running on 
dedicated quantum hardware (chip icon) explores the solu
tion space in parallel and returns the Pareto‑optimal migra
tion plan. The plan is decoded into a classical deployment 
manifest (check‑list sheet) that specifies the target server for 
every migrating service. The manifest passes through 
a policy‑and‑SLA gate (double‑arrow icon); any violations 
are pruned or re‑optimised before execution. Approved 
commands are applied to the cloud infrastructure, carrying 

out live service migration and updating the monitoring layer, 
thereby closing the feedback loop and preparing the system 
for the next disturbance. Together, these steps illustrate how 
the proposed framework couples real‑time detection, quan
tum optimisation and policy enforcement to maintain resi
lient, cost‑efficient operation under dynamic conditions.

In summary, across all performance metrics, the QML 
model consistently outperformed the GA in terms of CPU 
load efficiency and stability. The QML model not only 
reduced peak CPU usage but also exhibited fewer outliers 
and more consistent performance, validating its suitability 
for optimizing resource usage in cloud networks. This 
makes the QML model a superior approach for maintain
ing system resilience while efficiently handling computa
tional resources under varying and unpredictable 
conditions.

5. Discussion

The proposed framework introduces a quantum machine learn
ing-based approach to optimize service composition in cloud 
networks, with a strong emphasis on resilience through service 

Figure 5. Moving average of CPU load.

Figure 6. Closed‑loop quantum‑enabled service‑migration controller.
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migration strategies. Unlike previous models that primarily 
focus on load balancing to maintain resilience, this work intro
duces a dual-objective model that accounts for both QoS and 
the dynamic migration of services in response to disruptions.

One of the central contributions of this research is the 
incorporation of service migration as a key factor in resili
ence. The framework leverages quantum machine learning to 
explore large, complex solution spaces, enabling the system 
to find optimal configurations that ensure not only optimal 
resource allocation but also effective service migration dur
ing disruptions. This quantum-driven exploration provides 
a significant advantage over classical methods, which often 
struggle with the combinatorial nature of real-time service 
composition and adaptation.

The results demonstrate that the proposed framework 
significantly enhances the resilience of cloud networks by 
optimizing service migration strategies. This optimization 
ensures that the system can maintain high QoS levels even 
when faced with fluctuating demands and potential service 
interruptions. Additionally, the framework’s ability to dyna
mically relocate services during disruptions improves overall 
system performance, which is critical for maintaining opera
tional stability in cloud environments.

The advantages of using quantum machine learning in this 
context are twofold. First, the quantum model’s ability to 
explore multiple configurations in parallel allows for more 
comprehensive searches of the solution space, ensuring better 
resilience through efficient migration. Second, the model’s 
probabilistic nature enables it to quickly adapt to changing 
network conditions, providing a real-time response to disrup
tions that classical algorithms may not achieve effectively.

However, implementing quantum machine learning in 
cloud networks presents certain challenges. One key limita
tion is the current state of quantum hardware, which may 
limit the scalability of the model. While our framework shows 
promising results on smaller-scale networks, larger and more 
complex infrastructures may require advancements in quan
tum computing capabilities, such as increased qubit count 
and reduced noise in quantum devices. Overcoming these 
hardware limitations will be essential for deploying quantum- 
based optimization in large-scale cloud environments.

Another challenge lies in the integration of quantum 
machine learning models into existing cloud infrastructures. 
Many cloud service providers rely heavily on classical optimi
zation techniques that are well-established and deeply 
embedded in their systems. Adopting quantum-based models 
may necessitate significant changes to both hardware and soft
ware infrastructure. However, hybrid quantum-classical mod
els could serve as an intermediary solution, enabling cloud 
providers for gradual transition to quantum systems while 
leveraging the benefits of both computational paradigms.

Beyond cloud networks, the potential applications of this 
quantum machine learning framework are vast. The flexibil
ity of the approach makes it suitable for a wide range of 
optimization problems in industries such as resource sche
duling, fault detection, and energy management. By enhan
cing system resilience in real-time, this model offers 
engineers a valuable tool for developing adaptive, fault- 
tolerant systems that can operate effectively under dynamic 
and unpredictable conditions.

This research demonstrates that quantum machine 
learning can play a pivotal role in enhancing the resilience 
of cloud networks, particularly through service migration 

strategies. While there are challenges related to hardware 
limitations and infrastructure integration, the potential 
benefits of quantum-driven optimization, especially in 
terms of real-time resilience are undeniable. This work 
lays the foundation for further exploration of quantum 
machine learning in cloud environments and provides 
a valuable framework for developing more resilient cloud 
networks in the future.

6. Conclusions

This study introduced a quantum‑machine‑learning frame
work that treats service migration as a rigorous multi‑objec
tive optimization, demonstrably improving fault tolerance 
and energy efficiency in cloud networks. Beyond the meth
odological contribution, the results carry several practical 
implications for industry and research. First, the 45% reduc
tion in peak CPU load and 38% cut in migration cost trans
late directly into lower operating expenditures for 
cloud‑service providers. These savings can be reinvested in 
redundancy or greener infrastructure, supporting both prof
itability and sustainability mandates. Second, by keeping 
quality‑of‑service within contractual thresholds during 
cyber‑attacks, the framework offers a tangible pathway to 
meeting stringent service‑level agreements in latency‑sensi
tive sectors such as autonomous mobility.

Future work should move beyond case studies to long‑run
ning field trials across heterogeneous clouds and edge clusters, 
quantify carbon‑emission reductions, and benchmark hybrid 
quantum – classical runtimes against state‑of‑the‑art machine 
learning baselines. Extending the model to co‑optimize com
pute, network bandwidth, and renewable‑energy availability 
would further broaden its applicability.
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