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In machine learning, two approaches outperform traditional algorithms: ensemble learning and deep
learning. The former refers to methods that integrate multiple base models in the same framework to
obtain a stronger model that outperforms them. The success of an ensemble method depends on several
factors, including how the baseline models are trained and how they are combined. In the literature, there
are common approaches to building an ensemble model successfully applied in several domains. On the
other hand, deep learning-based models have improved the predictive accuracy of machine learning
across a wide range of domains. Despite the diversity of deep learning architectures and their ability
to deal with complex problems and the ability to extract features automatically, the main challenge in
deep learning is that it requires a lot of expertise and experience to tune the optimal hyper-
parameters, which makes it a tedious and time-consuming task. Numerous recent research efforts have
been made to approach ensemble learning to deep learning to overcome this challenge. Most of these
efforts focus on simple ensemble methods that have some limitations. Hence, this review paper provides
comprehensive reviews of the various strategies for ensemble learning, especially in the case of deep
learning. Also, it explains in detail the various features or factors that influence the success of ensemble
methods. In addition, it presents and accurately categorized several research efforts that used ensemble
learning in a wide range of domains.
� 2023 Published by Elsevier B.V. on behalf of King Saud University. This is anopen access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In a world full of diverse and varied data sources. Machine
learning has become one of the most important and dominant
branches of artificial intelligence methods, which is applied in
many fields. There are many different learning algorithms and
methods. Each method’s pitfalls and drawbacks are measured in
terms of several factors, including performance and scalability.
Based on a lot of research in machine learning, two methods dom-
inate learning algorithms; namely deep learning (Deng et al., 2014)
and ensemble learning (Polikar, 2012; Sagi and Rokach, 2018;
Rokach, 2019). The deep learning techniques can scale and handle
complex problems and offer an automatic feature extraction from
unstructured data(Kamilaris and Prenafeta-Boldú, 2018). Also,
deep learning methods contain several types of network architec-
tures for different tasks, such as feeding forward neural networks
(Bebis and Georgiopoulos, 1994), convolutional neural networks
(Collobert and Weston, 2008), recurrent neural networks (Yu
et al., 2019). Many others (Ain et al., 2017). However, the training
process of deep learning models requires a massive effort, and tun-
ing the optimal hyper-parameters requires expertise and extensive
trial, which is a tedious and time-consuming task. Also, training
more complex deep neural network increases the chance of
overfitting.

Ensemble Learning, on the other hand, refers to a learning
methodology that combines several baseline models to build a big-
ger single yet more powerful model than its constituents (Kumar
et al., 2021). Also, ensemble learning can reduce the risk of overfit-
ting thanks to the diversity of baseline models. Ensemble learning
was successfully applied in various fields and domains and outper-
forms single models (Anwar et al., 2014; Shahzad and Lavesson,
2013; Prusa et al., 2015; Ekbal and Saha, 2011). There are several
ensemble techniques varied in terms of how different baseline
models are trained and combined. The most widely used ensemble
techniques include averaging, bagging, random forest, stacking,
and boosting. In the literature, there are many reviews about
ensemble learning methods, and techniques (Krawczyk et al.,
2017; Sagi and Rokach, 2018; Dong et al., 2020). Traditional
ensemble learning is based on integrating traditional machine
learning models and applying them in different fields (Tsai et al.,
2011; Abellán and Mantas, 2014; Catal et al., 2015; Da Silva
et al., 2014; Aburomman and Reaz, 2016). However, these efforts
were limited to simple single models. In recent years, numerous
attempts have been made to approach ensemble learning to deep
learning (Haralabopoulos et al., 2020; Tasci et al., 2021; Alharbi
et al., 2021; Ortiz et al., 2016; Can Malli et al., 2016; Xu et al.,
2016). However, most of these attempts are articulated using the
average voting method of baseline deep learning models. However,
the ensemble process using average voting methods is biased
towards weak baseline learners and is not a smart strategy for
combing the baseline learners. Despite several strategies of com-
bining baseline learners that can be applied to ensemble deep
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learning, these strategies have some limitations in terms of gener-
alization, difficulties in training, and other issues (Tasci et al.,
2021).In the literature, some review efforts have introduced the
concept of deep ensemble learning(Dong et al., 2020; Sagi and
Rokach, 2018). This effort, however, is restricted to the application
of ensemble in particular domains with reviews on traditional
ensemble approaches.

To this end, this paper tries to comprehensively review the dif-
ferent strategies for applying ensemble deep learning. It also pre-
sents several aspects that influence the success of ensemble
methods, such as the type of utilized baseline learning models,
the data samples techniques used in training, the diversity of
employing different baseline classifiers, and the fusion methods
of the baseline deep models. Additionally, it discusses the benefits
and drawbacks are each strategy.

The contributions of this paper are highlighted as the following.
First, we provide quantitative analytics insight into ensemble
learning. Second, we introduce the fundamental concepts and gen-
eral architecture of ensemble learning, strategies for generating
diversity among the base classifiers, and the factors impacting
any ensemble method. Additionally, we present the structure of
each of the several ensemble methods and the advantages, disad-
vantages, and general classifications for each method. Moreover,
we discuss the different strategies of ensemble deep learning mod-
els. Finally, we comprehensively survey numerous research efforts
that used ensemble learning in various applications.

The remainder of this manuscript is organized as the following:
Section 2 introduces quantitative analytics for research discussions
on ensemble learning and deep learning techniques indexed in
‘‘Scopus.” Section 3 introduces a comprehensive overview of the
foundations of ensemble learning and the factors that influence
any ensemble method. Section 4 provides an overview of various
methods in ensemble learning and explains the general strategies
of ensemble based on deep learning models. Section 5 discusses
several criteria for evaluating different ensemble learning meth-
ods. Section 6 reviews several applications of ensemble learning
in different domains. Finally, Section 7 concludes this paper and
gives directions for future trends.
2. Trends of ensemble learning

Due to the strength and effectiveness of the ensemble learning
system to improve the predictive performance of models. Ensem-
ble learning has become an important research trend in recent
years, which has led to an increase in the number of research used
for ensemble learning in several domains of applications. Hence,
this section presents this important trend in one of the most pow-
erful databases, ‘‘Scopus”. To show the extent to which the articles
indexed published for ensemble learning increased each year and
the different applied fields of ensemble learning from 2014 to
2021. The search query in this database is ‘‘Ensemble Learning”
and ‘‘Ensemble Deep Learning.” These were searched in the article
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titles, abstract, and keywords. Fig. 1 shows the number of articles
published for the search term ‘‘Ensemble Learning” each year in
the abovementioned period. The figure shows that the number of
articles found using this term was estimated at 25,262, indicating
an increase in the ensemble learning trend over several years. In
addition, Fig. 2 shows the number of articles that discussed the
search term ‘‘Ensemble Learning” in all fields. From the figure, it
can be noted that the field of computer sciences has the highest
Fig. 1. The trends of search term ‘‘Ensemble Learning

Fig. 2. The different fields of search term ‘‘Ensemble Lear
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estimated number of articles mentioned, estimated as 16,782 doc-
uments. Fig. 3 shows the number of articles published for the
search term ‘‘Ensemble Deep Learning” each year in the abovemen-
tioned period. The figure shows that the number of articles found
using this term was estimated as 6,173, indicating increased inter-
est from researchers in this trend. Also, Fig. 4 shows the number of
articles that discussed the search term ‘‘Ensemble Deep Learning in
all fields. From the figure, it can be noted that the field of computer
” in ‘‘Scopus” from 2014 to 2021 (Scopus, 2023).

ning” in ‘‘Scopus” from 2014 to 2021 (Scopus, 2023).



Fig. 3. The trends of search term ‘‘Ensemble Deep Learning” in ‘‘Scopus” from 2014 to 2021 (Scopus, 2023).

Fig. 4. The different fields of search term ‘‘Ensemble Deep Learning” in ‘‘Scopus” from 2014 to 2021(Scopus, 2023).
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sciences has the highest estimated number of articles mentioned,
estimated at 4520 documents.

According to the above statistical information, it is clear that
research in ensemble learning and ensemble deep learning is
growing faster each year due to its ability to improve prediction
performance. According to estimates, the largest number of articles
using ‘‘Ensemble Learning” and ‘‘Ensemble Deep Learning” in 2021
was estimated at 7160 and 2340 documents, respectively. In addi-
tion, ensemble learning and deep ensemble learning have been
applied in several fields, especially computer science, with the
760
highest utilization rate of ensemble learning and deep ensemble
learning of 30% and 35.1%, respectively.
3. Foundations of ensemble learning

The general framework of any ensemble learning system is to
use an aggregation function G to combine a set h of baseline clas-
sifiers, c1; c2; . . . ; ch, towards predicting a single output. Given a
dataset of size n and features of dimension
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m;D ¼ fðxi; yiÞg;1 6 i 6 n; xi 2 Rm, the predication of the output
based on this ensemble method is given by Eq. 1.

yi ¼ /ðxiÞ ¼ Gðc1; c2; . . . ; ckÞ ð1Þ
Fig. 5 illustrates the general abstract framework of ensemble

learning. All ensembles are made up of a collection of baseline clas-
sifiers (classifiers ensemble) that have been trained on input data
that produce predictions that are combined to produce an aggre-
gate prediction (Lakshminarayanan et al., 2017). Ensemble strate-
gies differ on how to select the baseline classifiers that are
trained. Two strategies generate diversity among the base classi-
fiers based on their nature, either homogeneous or heterogeneous
ensembles as shown in Fig. 6 (Seijo-Pardo et al., 2017). Homoge-
neous ensemble (da Conceição et al., 2015) consists of baseline
classifiers of the same type, with each classifier based on different
data. The feature selection method in this strategy is the same for
different training data. The main difficulty in homogeneous form is
the generation of diversity from the same learning algorithm.
Whereas heterogeneous ensembles consist of different numbers
of baseline classifiers, (da Conceição et al., 2016), as each classifier
Fig. 5. General Framework of Ensemble.

Fig. 6. General framework of homogene
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is based on the same data. In heterogeneous classifiers, the feature
selection method is different for the same training data. Finally,
homogeneous ensemble methods are more appealing to research-
ers since they are easier to understand and apply. Also, it is less
costly to build homogeneous ensembles than heterogeneous ones
(Hosni et al., 2019).

Generally, any ensemble framework can be viewed and defined
using three characteristics that affect its performance. The first one
is the dependency on the trained baseline models, whether they
are sequential or parallel. The second characteristic is the fusion
methods, which involve choosing a suitable process for combining
outputs of the baseline classifiers using different weight voting or
meta-learning method. The third characteristic is the heterogene-
ity of the involved baseline classifiers, whether homogeneous or
heterogeneous. Table 1 summarizes the characteristics of the pop-
ular ensemble methods. In what follows, those characteristics will
be discussed in detail.
3.1. Data sampling

The selection of a data sampling method is one of the most
important factors affecting the performance of the ensemble sys-
tem. In the ensemble system, we need diversity in the data sam-
pling decisions of the baseline classifiers. There are two
strategies of the sampling methods from the training dataset in
the ensemble system: the independent datasets strategy and the
ous and heterogeneous ensemble.

Table 1
Categorization of ensemble methods.

Method Dependent Fusion method Heterogeneity

Bagging Parallel Weight Voting Homogenous
Random Forest Parallel Weight Voting Homogenous
Boosting Sequential Weight Voting Homogenous
AdaBoost Sequential Weight Voting Homogenous
Gradient Boosting Sequential Weight Voting Homogenous
Extreme Gradient

Boosting
Sequential Weight Voting Homogenous

Stacking Parallel Meta Learning Heterogeneous
Hybrid Ensemble Both Both Heter/Homogeneous
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A. Mohammed and R. Kora Journal of King Saud University – Computer and Information Sciences 35 (2023) 757–774
dependent datasets strategy (Sagi and Rokach, 2018). In indepen-
dent datasets strategy, (Ge et al., 2020), are those subsets that
are not dependent on each other. By contrast, independent data-
sets strategy (Hassan et al., 2013) are subsets dependent on each
other. The main advantage of using an independent datasets strat-
egy is that its sub-data set is not affected by the performance of
other sub-datasets, in contrast to using a dependent datasets strat-
egy, where its sub-data set is affected by the results of the previous
sub-data set. The difficulty of the data sampling method in both
strategies is determining the optimal size of each data sample
and the maximum number of samples. In addition, determining
the appropriate strategy for data samples according to different
ensemble methods(Lu and Van Roy, 2017).

3.2. Training baseline classifiers

The diversity of the baseline classifiers is the second influential
factor in the ensemble system. At the core of any ensemble-based
system are two techniques for training individual ensemble mem-
bers: the sequential ensemble technique and the parallel ensemble
technique (Huang et al., 2016). In sequential ensemble technique
(Sultana et al., 2020), different learners learn sequentially because
of data dependency. Thus, the errors made by the first model are
sequentially corrected by the second model as shown in Fig. 7.
So, the main advantage of sequential methods is to exploit the
dependence between the base learners (Saeed et al., 2022).
Whereas in parallel ensemble technique (Tang et al., 2020), base
learners are generated simultaneously, as there is no data depen-
dency. So, each data in the base learner is generated independently
as shown in Fig. 8. This technique’s basic advantage is exploiting
the independence between base learners. Thus, the errors made
by one model differ from those found in another independent
model, allowing the ensemble model to calculate the average out
the errors (Valle et al., 2010).

3.3. Fusion method

Output fusion refers to integrating the outputs of the baseline
classifiers into a single output. There are two methods of fusion,
the voting method, and the meta-learning method. We will explain
Fig. 7. General framework o
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in each method how to implement in integrating the outputs of
baseline classifiers, their advantages, and the difficulty of applying
them, as well as select the appropriate fusion method for each of
the ensemble methods. The fusion methods can be used with inde-
pendent or dependent data samples and can also be used with par-
allel or sequential baseline classifiers.

3.3.1. Voting method
Voting methods are generally used in classification or regres-

sion problems to improve predictive performance. In addition, vot-
ing methods are the appropriate integrating method for bagging
and boosting methods. The first fusion method is a voting ensem-
ble, which includes three methods: max voting, averaging voting,
and weighted average voting. We will discuss in each voting
method the nature of implementation and the advantages and
drawbacks of implementation it.

1. Max Voting: The first and most popular voting method is the
max voting (Kim et al., 2003) often, often known as majority
voting or hard voting. The idea of max voting involves collecting
predictions for each class label and predicting the class label
with the most votes as shown in function (2). For example,
f sequential ensemble.
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assuming we combine three classifiers, C1, C2, and C3, that
assign the following classifications to a training sample:
[0,0,1] becomes y� =mode [0,0,1]=0. We would categorize the
sample as ‘‘class 0”. Max voting is often used in the bagging
method. Another type of max voting is soft voting. Soft voting
involves collecting predicted probabilities for each class label
and predicting the class label with the largest probability as
shown in function (3). Max voting is distinguished from soft
voting in that once we know the prediction for any of the base-
line classifiers, we do not need to store any other information
about the probability distributions of the predictions. On the
other hand, soft voting needs to store and use all the distribu-
tion values, making it more computationally and costly for stor-
age. However, in soft voting, we can use various methods to
calculate the prediction, such as calculating maximum or aver-
age probability values (Delgado, 2022). In general, the max vot-
ing method has the advantages of being simple to understand
and the simplest method of voting. The drawbacks of the max
voting method include the computational expense of using sev-
eral baseline models. Additionally, max voting is useless when
the baseline classifiers predictions are the same results and
may not fit all problems (Nti et al., 2020).
y� ¼ mod½C1ðxÞ;C2ðxÞ; ::;CnðxÞ� ð2Þ
Where y� a predict the class label via majority (plurality) voting
of each classifier Cn.

y� ¼ argmax
i

Xn

j¼1

wjPij ð3Þ

Where wj is the weight that can be assigned to the jth classifier.
2. Averaging Voting: The second voting method is the averaging

voting (Montgomery et al., 2012). The idea of averaging voting
is that predictions are extracted from multiple models, and an
average of the predictions is used to make the final prediction.
Average prediction is calculated using the arithmetic mean,
which is the sum of the predictions divided by the total predic-
tions made as shown in function (4). For instance, suppose the
ensemble of classifiers contained three members: C1(x)=
[0.9,0.1], C2(x)=[0.2,0.8], and C3(x)=[0.6,0.4]. The mean predic-
tion would be as follows: to calculate the class 0 y�0 [0.9 + 0.2
+ 0.6/3] = 0.566. And to calculate the class 1 y�1 [0.1 + 0.8 + 0.4
/3] = 0.433, would yield a prediction y� ¼ 0. The average voting
method has the advantage of being the strongest from the point
of view of predictive power. In addition, it is more accurate in
performance than majority voting and reduces overfitting. Also,
the average voting is a natural competitor to the max voting for
bagging method. The drawbacks of the average voting method
include being computationally more expensive than the max
voting method, as it requires averaging the prediction results
of all the baseline models. One limitation of the averaging vot-
ing method is that it assumes that all baseline models in the
ensemble are equally effective. However, it is not the case as
some models may be better than others (Hopkinson et al.,
2020).
y� ¼ argmax
i

1
n

Xm

j¼1

wij ð4Þ

where wij is the probability of the ith class label of the jth

classifier.
3. A weighted Average Voting: The third method of voting is the

weighted average voting, which is a slightly modified version of
averaging voting (Latif-Shabgahi, 2004). The idea of weighted
average voting is different weights given to the baseline learn-
ers, indicating the importance of each model in prediction. By
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multiplying each prediction by the weight of the classifiers to
produce a weighted sum and then dividing the result by the
sum of the weights of the classifier, these weights may be used
to calculate the weighted average for each class 0 or class 1 as
shown in function (5). For instance, suppose the ensemble of
classifiers contained three members: C1(x)=[97.2,2.8], C2(x)=
[100.0,0], and C3(x)=[95.8,4.2]. It has constant weights for
ensemble members [0.84, 0.87, 0.75]. To calculate the class 0
y�0 = ((97.2 * 0.84) + (100.0 * 0.87) + (95.8 * 0.75))/ (0.84 + 0.8
7 + 0.75) =97.763. And to calculate the class 1 y�1 = ((2.8 *
0.84) + (0 * 0.87) + (4.2 * 0.75))/ (0.84 + 0.87 + 0.75) =2.235,
would yield a prediction y� ¼ 0. The weighted average voting
method is more accurate than the simple average-voting
method. The challenge in using a weighted average ensemble
is choosing each member’s relative weighting. Also, the compu-
tation is more expensive than the average voting method, as it
requires calculating the weighted average of the prediction
results of all the baseline models, which makes it of little appli-
cation (Khan et al., 2020).
y� ¼

Xm

j¼1

wjxi

Xm

j¼1

wj

ð5Þ

where w weighted average, m is a number of terms to be aver-
aged, weights applied to x values wj, and data values to be aver-
aged xj.

3.3.2. Meta learning method
The second fusion method is meta-learning (Soares et al., 2004),

also known as ‘‘learning to learn”, which is the process of learning
from learners. The term ‘‘meta-learning” covers learning based on
previous experience with other tasks. Therefore, it is used to
improve the performance and results of a learning algorithm by
changing some aspects of the learning algorithm based on experi-
ment results. The meta-learning method differs from traditional
machine-learning models in that it involves more than one learn-
ing stage where the individual inducer outputs serve as an input
to the meta-learner that generates the final output (Kuruvayil
and Palaniswamy, 2021).

Over the past five years, interest in meta-learning has increased,
especially after 2017. With the increased use of advanced machine
learning algorithms, the difficulties of training these learning algo-
rithms have led to an increased interest in meta-learning. Machine
learning algorithms have many challenges, such as the high oper-
ational costs due to many experiments during the training phase,
which takes a long time to find the best model that achieves the
best performance for a certain dataset. Meta-learning helps to
meet these challenges by improving learning algorithms and find-
ing learning algorithms that perform better (Kuruvayil and
Palaniswamy, 2022). In addition, the benefits of meta-learning
include speeding up learning processes by reducing the number
of experiments required, helping learning algorithms better adapt
to changing conditions, and optimizing hyperparameters to
achieve optimal results. Moreover, this method provides an oppor-
tunity to tackle many challenges of deep learning, including data
size, computational complexities, and generalization. The chal-
lenge in meta-learning is to learn from experience in a systematic,
data-driven manner (Hospedales et al., 2021). There are many
meta-learning methods, the most common of which is stacking
(Haghighi and Omranpour, 2021). To implement the meta-
learning, there are several challenges represented in defining an
appropriate meta-learning approach and the computation time
complexity, whether through a large amount of available dataset
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or through multiple baseline models or multiple levels of meta-
learning (Monteiro et al., 2021).

4. Ensemble methods

This section presents two aspects. The first aspect includes the
structure of the most popular ensemble learning methods and lists
each method’s benefits, drawbacks, and implementation chal-
lenges separately. The second aspect presents the idea of deep
ensemble learning and the advantages of its application compared
to traditional ensemble learning. It also discusses the deep learning
challenges that ensemble deep learning overcomes them. More-
over, it introduces the different strategies for applying ensemble
deep learning and the advantages of each strategy with an expla-
nation of the factors that can affect its performance.

4.1. Common ensemble methods

Three popular ensemble learning methods can be used to
improve the machine learning process: bagging, boosting, and
stacking. We will discuss the nature of each method’s work and
its characteristics regarding the nature of data generation, the nat-
ure of training of baseline classifiers, and the appropriate fusion
methods. In addition, the benefits, drawbacks, and implementation
challenges of each method will be covered.

4.1.1. Bagging
The bagging method (Breiman, 1996), also known as bootstrap

aggregating, is a completely data-specific algorithm. It refers to
creating multiple small subsets of data from the actual dataset.
The goal of bagging is to create more diverse predictive models
by adjusting a stochastic distribution of the training datasets,
where small changes in the training data set will lead to significant
changes in the model predictions. Bagging is shorthand for the
combination of bootstrapping and aggregating. In bootstrapping,
the training of the ensemble models on bootstrap replicates the
training dataset. In aggregation, the final result is achieved by
majority voting of the model’s predictions performed to determine
the final prediction. Bagging offers the advantage of reducing vari-
ance, thus eliminating overfitting. It also performs well on high-
dimensional data. The drawback of bagging is that it is computa-
tionally expensive and has high bias, and it also leads to a loss of
interpretability of a model (Bühlmann and Yu, 2002). Random For-
ests (RF) algorithm (Breiman, 2001) is a good example of bagging.
There are several challenges to implementing the bagging method:
determining the optimal number of base learners and subsets and
the maximum number of bootstrap samples per subset. In addi-
tion, the determine of fusion method of integrating the outputs
of the base classifiers from various voting methods. In summary,
the bagging method uses parallel ensemble techniques where
baseline learners are generated simultaneously, as there is no data
dependency and the fusion methods depend on different voting
methods. The function of bagging is shown as follows (6):

f ðxÞ ¼ 1
B

XB

B¼1

f bðxÞ ð6Þ

where f bðxÞ weak learners, 1
B generates bootstrapping sets.

4.1.2. Boosting
Boosting method was first presented by Freund and Schapire in

the year 1997 (Freund et al., 1996), and is a sequential process
where each subsequent model attempts to correct the errors of
the previous model. Boosting consists of sequentially multiple
weak learners in a very adaptive way, whereby each model in
the sequence is fitted, giving more importance to observations in
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the dataset that the previous models in the sequences badly han-
dled. Boosting, like bagging, can be used for regression and classi-
fication problems. Boost algorithms include three types, namely,
Adaptive Boosting (AdaBoost) (Freund et al., 2003), Stochastic Gra-
dient Boosting (SGB) (Friedman, 2001), and Extreme Gradient
Boosting (XGB), also known as XGBoost(Friedman et al., 2000).
Several studies have applied various types of boosting. For exam-
ple, the AdaBoost algorithm is implemented in Sun et al. (2016)
for noise detection and in Asbai and Amrouche (2017) for speech
feature extraction. The XGB algorithm is implemented in
Haumahu et al. (2021) for Fake news classification. The SGB algo-
rithm is implemented in Shin (2019) for early prediction of safety
accidents at construction sites. Boosting provides ease of interpre-
tation of the model and helps reduce variance and bias in a
machine learning ensemble. The drawback of boosting is that each
classifier must fix the errors in the predecessors. To implement
boosting, several challenges are represented by the difficulty of
scaling sequential training in boosting. It is computationally costly
and more vulnerable to overfitting when increasing the number of
iterations. Finally, it can be noted that boosting algorithms can be
slower to train when compared to bagging because a large number
of parameters can also affect the behavior of the model. In sum-
mary, the boosting method uses sequential ensemble techniques
where different learners learn sequentially, as there is data depen-
dency and the fusion methods depend on different voting methods.
The function of boosting is shown as follows (7):

f ðxÞ ¼
X

t

athtðxÞ ð7Þ

where creates a strong classifier f ðxÞ from several weak classifiers
htðxÞ. This is done by building a model from the training data, then
creating a second model that attempts to correct the errors from the
first model at .

4.1.3. Stacking
Stacking method (Smyth and Wolpert, 1997), also known as

Stacked Generalization, is a model ensembling technique used to
combine information from multiple predictive models to generate
a new model (meta-model). The architecture of a stacking model
involves two or more base models, referred to as a level-0 model,
and a meta-model that combines the predictions of the base mod-
els, referred to as a level-1 model. In level 0 models (base models),
models fit on the training data and whose predictions are com-
piled. However, in the level 1 model (meta-model), the model
learns how to combine the base models’ predictions best. The out-
puts from the base models used as input to the meta-model may be
probability values, or class labels in the case of classification (Ma
et al., 2018). The stacking method typically performs better than
all trained models. For instance, a stacking ensemble learning sys-
temwas proposed by Divina et al. (2018) to forecast electric energy
usage in Spain and Qiu et al. (2014) to forecast electric energy
usage in Australia. Stacking has the benefit of a deeper comprehen-
sion of the data, making it more precise and effective. Overfitting is
a major issue with model stacking because there are so many pre-
dictors that all predict the same target that is merged. In addition,
multi-level stacking is costly to data (as lots of data needed to be
trained) and time-consuming (as each layer adds multiple models)
(Xiong et al., 2021). Xiong et al. (2021). To implement stacking,
several challenges are represented by identifying the appropriate
number of baseline models and the baseline models that can be
relied upon to generate better predictions from datasets when
designing a stacking ensemble from scratch. Also, the difficulty of
interpreting the final model and the computation time complexity
are added when the amount of available data grows exponentially.
A highly complex model would take months to run. Finally, the
problem of multi-label classification raises many issues, such as
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overfitting and the curse of dimensionality, from the high dimen-
sionality of the data (Chatzimparmpas et al., 2020). In summary,
the stacking method uses parallel ensemble techniques where
baseline learners are generated simultaneously, as there is no data
dependency and the fusion methods depend on the meta-learning
method. The function of stacking is shown as follows (8):

f sðxÞ ¼
Xn

i¼1

aif iðxÞ ð8Þ

A formal stacking concept: Here, we make predictions from sev-
eral models ðm1;m2;m3:::;mnÞ to build a new model, where the
new model is used to make predictions on the test dataset. Stack-
ing seeks to increase the predictive power of a model. The basic
idea of stacking is to ‘‘stack” the predictions of
ðm1;m2;m3:::;mnÞ by a linear combination of weights
aj; :::; ði ¼ 1;2; :::;nÞ.

4.2. Ensemble deep learning

In recent years, deep learning or deep neural learning has led to
a series of achievements in various tasks(Arel et al., 2010). Deep
learning architectures have shown great success in almost all chal-
lenges related to machine learning across different areas, such as
NLP (Mohammed and Kora, 2019; Elnagar et al., 2020), computer
vision (Haque et al., 2020; Brunetti et al., 2018), speech recognition
(Jaouedi et al., 2020; Noda et al., 2015). Machine translation (Popel
et al., 2020; Popel et al., 2020). Deep neural network models are
nonlinear methods that learn through a stochastic training algo-
rithm. This means that it is highly flexible, able to learn the com-
plex relationships between variables and approximate any
mapping function. The downside to this flexibility is that the mod-
els need a higher variance. The high variance of the deep model can
be addressed by ensemble deep learning approach opportunities
by training multiple deep models for the problem and combining
their predictions. Hence, ensemble deep learning methods refer
to training several baseline deep models and combining some rules
to make predictions. Ensemble deep learning aims to effectively
combine the major benefits of several deep learning models with
Fig. 9. Different cases of en
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those of an ensemble learning system (Mohammed and Kora,
2021). Despite the power of ensemble deep learning system meth-
ods in improving prediction performance, most of the ensemble
deep learning literature focuses on only applying a majority of vot-
ing algorithms to enhance the performance due to its simplicity.

Ensemble learning based on deep learning models is more diffi-
cult than ensemble learning based on traditional classifiers due to
deep neural networks containing millions to billions of hyper-
parameters that need a lot of time and space to train multiple base
deep learners. Thus, hyper-parameters are challenges in the appli-
cation of ensemble deep learning techniques. Ensemble learning
strategies are formed in the context of manipulating the data level
or the baseline model level. In manipulation at the level of data, by
sampling data or cross-validation data (re-sampling) to create new
training sets to train different base learners. In manipulation at the
level of basic models, deep learning is distinguished by more
diverse strategies than traditional or machine learning, which is
the possibility of reducing the number of hyper-parameters used
in the ensemble base deep models by selecting the same model
and changing the hyper-parameters (Saleh et al., 2022). Fig. 9
shows four strategies through which deep learning can be con-
ducted based on the ensemble represented by: (A) Applying many
different basic models using the same data. (B) Applying different
structures of the same basic model using the same data. (C) Apply-
ing many different basic models using many different data sam-
ples. (D) Applying different structures of the same basic model
using many different data samples. Comparing these strategies
shows that strategy A and strategy C are compatible with deep
learning models and traditional learning techniques. Whereas
strategy B and strategy D only apply to deep learning models and
cannot be used with traditional learning techniques, making the
ensemble deep learning strategies diverse. In addition, strategy B
and strategy D enable ensemble deep learning to reduce the
hyper-parameters of the baseline deep models by different struc-
tures of the same basic model by altering some of the hyper-
parameters values. In addition to these strategies, the strength of
the ensemble deep learning system depends on the ensemble sys-
tem design, from identifying the most effective deep learning mod-
els to address the problem and determining the appropriate
semble deep learning.
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number of baseline deep learning models, such as three or more
and also determining the optimal ratio for data splitting such as
(80–20 or 70–30 or 60–40). Moreover, we consider factors that
may affect the deep ensemble system, such as defining the nature
of data generation, training deep baseline models, and deciding the
most appropriate fusion method of combining outputs of the base-
line classifiers, as previously mentioned. These three factors affect
the general framework of the ensemble system.

5. Evaluating ensembles

With the emergence of ensemble learning approaches, lots of
research has been conducted to evaluate the methods of ensemble
(Hashino et al., 2007; Zhang et al., 2016; Das and Sengur, 2010;
Hosni et al., 2019). The evaluation is crucial to determining the
effectiveness of a certain ensemble method. There are several cri-
teria for evaluation ensemble, including predictive performance.
Other criteria, such as the computational complexity or the com-
prehensibility of the generated ensemble, can also be important.
In the following, we summarize the different evaluation criteria
of ensemble learning.

5.1. Predictive performance

Predictive performance metrics have always been the primary
criterion for choosing the performance of classifiers. Also, predic-
tive performance measures are considered objective and quantifi-
able, so they are often used to benchmark machine learning
algorithms practically. The first step to applying predictive perfor-
mance is to use a suitable dataset. The holdout technique is a typ-
ical approach for measuring predictive performance where the
given dataset is randomly divided into two subsets: training and
test sets. Other versions of the holdout method might be utilized.
It is normal procedure to resample data, which means dividing it
into training and test sets in different ways. Two common resam-
pling methods include random subsampling, and n-fold cross-
validation (Dai, 2013).

There are commonmeasures for evaluating an ensemble model.
Accuracy is one of the popular and simplest metrics, which as
defined in Eq. 9:

Accuracy ¼ number of true predictions
total number of prediction

ð9Þ

In some cases, accuracy is insufficient and can be deceptive in
evaluating an ensemble model with imbalanced class distributions.
In the latter scenario, other measures can be used as alternative
measures, such as Recall, Precision, Specificity, and F-Measure
(Kadam et al., 2019).

Recall, also known as sensitivity, measures the ensemble
model’s capability to identify positive samples, which as defined
in Eq. 10:

Recall ¼ true positive
positive ð10Þ

where true positive denotes the number of true positive observa-
tions and positive denotes the number of positive observations.

Another well-known performance metric is precision. It quanti-
fies how many instances classified as positive are actually positive.
Formally,the precision equation is defined as 11:

Precision ¼ true positive
true positive þ false positive ð11Þ

Likewise, specificity measures how well the model identifies
negative samples. The equation is defined as 12:
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Specificity ¼ true negative
negative ð12Þ

where true negative denotes the number of true negative observa-
tions and negative denotes the number of negative observations.

There is commonly a trade-off between precision and recall
metrics. Attempting to enhance one measure often results in the
fall of the second. Thus, F-Measure quantifies this trade-off by cal-
culating the harmonic mean of both precision and recall. More
specifically, this measure is defined in Eq. 13:

F �Measure ¼ 2 x Precision x Recall
Precision þ Recall

ð13Þ
5.2. Computational complexity

The computational complexity of the ensemble approach is an
additional essential aspect to consider. Generally, the computa-
tional cost refers to the amount of CPU time required by each
ensemble model. The computational cost is distributed on two
complexity metrics: The computational cost of training and creat-
ing the ensemble model and the computational cost of predicting a
new instance: The computational cost of the prediction is rela-
tively small compared to the computation cost of the training
ensemble. Thus, this metric should be addressed. In terms of mem-
ory, a smaller ensemble model needs less memory to keep its com-
ponents. Furthermore, smaller ensembles perform faster
prediction.

5.3. Other criteria

In addition to computational complexity and prediction accu-
racy, other considerations may be made when selecting the best
ensemble method. These criteria include Interpretability, Scalabil-
ity, usability, and robustness of the ensemble model. Interpretabil-
ity (Carvalho et al., 2019) refers to the ability of a user to
understand the ensemble outcomes. However, interpretability is
typically a subjective metric. One of the many quantitative metrics
and indicators that can help us evaluate this criterion is the com-
pactness metric. Compactness in the ensemble can be evaluated
using the number of classifiers involved and the complexity of each
classifier.

On the other hand, scalability refers to the capacity of the
ensemble approach to construct a classification model given large
amounts of data. Independent ensemble methods are considered
more scalable than dependent methods, as the classifier involved
in the ensemble approach can be trained in parallel. Usability is
another metric that assesses the user’s preference for comprehend-
ing how to adjust the ensemble models they employ. Broadly
speaking, a good ensemble method should contain a comprehen-
sive set of control parameters that can be easily adjusted.

6. Application domains

This section highlights applications of ensemble learning across
different domains, using either traditional or deep learning as
baseline classifiers. In general, we briefly summarize the baseline
classifiers applied, the ensemble techniques used, and the domain
used in their experiments.

6.1. Applications of traditional ensemble learning

This part discusses applications of traditional ensemble learning
in various domains, including image classification, natural lan-
guage processing (NLP), and others. Table 2 summarizes some
works that presented ensemble learning methods in machine



Table 2
Applications of ensemble learning in machine learning approach.

Studies Baseline Classifiers Fusion Method Domain

Shipp and Kuncheva (2002) NB Voting Medical Image
Stamatatos and Widmer (2002) SVM Voting Music Recognition
Cho and Won (2003) SVM,KNN Voting Medical Image
Wilson et al. (2006) DT Boosting English Sentiment
Tsutsumi et al. (2007) SVM, ME Stacking English Sentiment
Abbasi et al. (2008b) SVM Boosting Arabic Sentiment
Li et al. (2010) SVM, LR Voting English Sentiment
Lu and Tsou (2010) NB, ME, SVM Stacking Chinese Sentiment
Xia et al. (2011) NB, ME, SVM Stacking English Sentiment
Ekbal and Saha (2011) SVM, NB, ME Voting Named Entity Recognition
Li et al. (2012) SVM, KNN Stacking Chinese Sentiment
Su et al. (2012) ME, SVM Voting, Stacking Chinese Sentiment
Hassan et al. (2013) SVM Boosting English Sentiment
Rodriguez-Penagos et al. (2013) SVM Voting English Sentiment
Clark and Wicentwoski (2013) NB Voting English Sentiment
Anifowose et al. (2013) RF Bagging Petroleum Reservoir
Shahzad and Lavesson (2013) NB, DT, KNN Voting Malware Detection
Wang et al. (2013) SVM Voting Image Classification
Cortes et al. (2014) DT AdaBoost Medical Image
Kuznetsov et al. (2014) DT, LR AdaBoost Medical Image
Fersini et al. (2014) ME, SVM, NB Voting,Bagging English Sentiment
Wang et al. (2014) SVM, KNN, DT, ME, NB Bagging, Boosting English Sentiment
Da Silva et al. (2014) SVM, RF,LR Voting English Sentiment
Anwar et al. (2014) KNN, DT, RF, LR Bagging Medical Image
Bharathidason and Venkataeswaran (2014) RF Voting, Bagging Medical Image
Zareapoor and Shamsolmoali (2015) NB, KNN, SVM Bagging Credit Card Fraud Detection
Kanakaraj and Guddeti (2015) NB, SVM Bagging, Boosting English Sentiment
Prusa et al. (2015) KNN, SVM, LR Bagging, Boosting English Sentiment
Bashir et al. (2015) SVM, LR Voting, Bagging Medical Image
Bashir et al. (2015) SVM, DT Voting Medical Image
Mishra and Mishra (2015) NB Voting Medical Image
Kang et al. (2015) SVM Bagging, Boosting Medical Image
Xia et al. (2016) SVM, LR Voting English Sentiment
Perikos and Hatzilygeroudis (2016) NB, ME Bagging English Sentiment
Fersini et al. (2016) NB, DT, SVM Voting English Sentiment
Onan et al. (2016) BLR,NB,LDA,LR, SVM Stacking, AdaBoost,Bagging English Sentiment
Araque et al. (2017) NB, ME,SVM Voting English Sentiment
Dedhia and Ramteke (2017) NB, SVM, ME Adaboost English Sentiment
Oussous et al. (2018) MNB, SVM, ME Voting, Stacking Moroccan Dialect Sentiment
Saleena et al (2018) SVM, RF,NB, LR Voting English Sentiment
Sharma et al. (2018) SVM Bagging English Sentiment
Fouad et al. (2018) SVM,NB,LR Voting English Sentiment
Kulkarni et al. (2018) SVM,NB,RF Voting Text Classification
Livieris et al. (2019) KNN, DT Voting,Bagging Medical Image
Chen et al. (2019) FLDA Bagging Groundwater Potential Analysis
Erdoğan and Namlı (2019) SVM Voting, Stacking A living environment Analysis
Seker and Ocak (2019) RF, LR, Linear R Bagging Roadheaders Performance Analysis
Alrehili and Albalawi (2019) NB, SVM Voting, Bagging,Boosting English Sentiment
Pasupulety et al. (2019) SVM, RF Stacking India’s Sentiment
Cai et al. (2020) SVM, LR Voting Chloride Concentration Analysis
Saeed et al. (2022) SVM, NB, LR, DT, KNN Voting, Stacking Arabic Sentiment
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learning in different fields. In the image classification domain, the
researchers in Wang et al. (2013) applied voting based on SVM for
image retrieval using COREL images database (Liu et al., 2011). In
particular, in medical image classification, the researchers in
Cortes et al. (2014) suggested boosting based on deep decision tree
(DT) for image classification using several breast cancer datasets.
The researchers in Kuznetsov et al. (2014) used AdaBoost based
on DT for multi-class classification using 8 UCI datasets
(Fernández-Delgado et al., 2014). The researchers in Livieris et al.
(2019) applied voting and bagging based on kNN and DT to classify
lung abnormalities from chest X-rays using three benchmark data-
sets (Kermany et al., 2018). The researchers in Anwar et al. (2014)
proposed bagging based on many classifiers (KNN, DT, RF, and LR)
using seven datasets from various diseases (such as Cancer, Dia-
betes, Heart disease, Sonar, etc.). The researchers in
Bharathidason and Venkataeswaran (2014) applied voting and
bagging based on RF using heart disease dataset (Makhtar et al.,
2012). The researchers in Shipp and Kuncheva (2002) proposed
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voting based on NB using Breast Cancer dataset (Antoniou et al.,
2000). The researchers in Mishra and Mishra (2015) applied
voting-based NB using six medical image benchmark datasets
(Leukemia, Breast cancer, Lung cancer, Hepatitis, Lymphoma, and
Embryonal tumors). The researchers in Cho and Won (2003)
applied voting based on SVM and KNN using three Leukemia can-
cer datasets. In Bashir et al. (2015) applied voting and bagging
based on SVM and LR using five heart disease datasets. That same
year, Bashir et al. (2015) applied voting based on SVM and DT using
breast cancer diagnosis datasets. The researchers in Kang et al.
(2015) proposed two ensemble methods (bagging and boosting)
based on SVMs for the treatment of patients’ diabetes using dataset
(Li and Maguire, 2010).

In addition, in the NLP domain for the English language, the
authors in Wang et al. (2014) used two popular ensemble methods
(Bagging, Boosting) based on five base learners (NB, ME, DT, KNN,
SVM) by ten public sentiment analysis datasets. The authors in Xia
et al. (2011) used stacking based on three algorithms, namely NB,
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ME, and SVM, by five datasets. The authors in Li et al. (2010), Xia
et al. (2016) applied a voting method based on both LR and SVM
using reviews extracted from Amazon.com.(Rushdi-Saleh et al.,
2011). The authors in Araque et al. (2017) applied voting methods
based on different machine classifiers (NB, ME, and SVM) by even
public datasets from movie reviews. The authors in Alrehili and
Albalawi (2019) suggested three ensemble methods (voting, bag-
ging, and boosting) based on NB and SVM using English customer
reviews datasets (Alrehili and Albalawi, 2019). The authors in
Saleena et al (2018) applied voting based on different baseline clas-
sifiers (SVM, RF, NB, and LR) by several English tweets datasets. The
authors in Dedhia and Ramteke (2017) used Adaboost based on
three classifiers (NB, SVM, and ME) using several English tweets
datasets. The authors in Perikos and Hatzilygeroudis (2016)
applied bagging based on NB and ME using different English news
portals datasets. The authors in Fersini et al. (2016) used voting
based on NB, DT, and SVM by English Movie Reviews datasets
(Chen et al., 2012). The authors in Onan et al. (2016) proposed
three ensemble methods (bagging, AdaBoost, and stacking) based
on five classifiers (BLR, NB, LDA, LR, and SVM) using nine public
English sentiment analysis datasets from different domains
(Whitehead and Yaeger, 2009). The authors in Kanakaraj and
Guddeti (2015) suggested bagging and boosting based on both
NB and SVM using English movie review (Pang and Lee, 2005).
The authors in Fersini et al. (2014) proposed voting and bagging
based on different baseline classifiers (ME, SVM, and NB) by several
English movie and product reviews datasets (Täckström and
McDonald, 2011; Pang and Lee, 2005. The authors in Prusa et al.
(2015) applied KNN, SVM, and LR based on both bagging and
boosting using English sentiment140 corpus (Go et al., 2009). The
authors in Wilson et al. (2006) introduced boosting based on a
DT classifier by English MPQA Corpus (Wiebe et al., 2005). The
authors in Tsutsumi et al. (2007) applied stacking based on two
classifiers (SVM and ME) using the English movie review dataset
(Pang and Lee, 2005). The authors in Hassan et al. (2013) proposed
boosting based on SVM using three English product review forum
datasets (Abbasi et al., 2010; and Abbasi et al., 2008a. The authors
in Fouad et al. (2018) compared the performance of a voting
method based on three classifiers (SVM, NB, and LR) using several
English tweets datasets. The authors in Rodriguez-Penagos et al.
(2013) introduced voting based on SVM by English SemEval 2013
dataset (Dzikovska et al., 2013). The authors in Clark and
Wicentwoski (2013) suggested voting based on NB using the Eng-
lish SemEval-2013 dataset (Nakov et al., 2016). The authors in Da
Silva et al. (2014) applied voting-based four baseline classifiers
(SVM, RF, and LR) using several English tweets datasets. But, in
multiclass sentiment classification, (Sharma et al., 2018) proposed
a bagging based on SVM using several English movie review data-
sets. In contrast, in the Arabic language, the authors in Saeed et al.
(2022) applied both voting and stacking for spam detection based
on five baseline classifiers (SVM, NB, LR, DT, KNN) using two data-
sets from Opinion Spam Corpus (Li et al., 2011). Besides, in the dif-
ferent dialects, the authors in Su et al. (2012) applied both voting
and stacking based on two algorithms (ME and SVM) using two
datasets for three domains of Chinese reviews (book, hotel, and
notebook). The authors in Li et al. (2012) suggested stacking based
on SVM and KNN using several Chinese food review datasets. The
authors in Lu and Tsou (2010) applied stacking based on three clas-
sifiers NB, ME, and SVM, using the Chinese dataset (Seki et al.,
2008). The authors in Pasupulety et al. (2019) introduced stacking
based on two baseline classifiers (SVM and RF) for predicting stock
prices of companies using India’s National Stock Exchange (NSE)
datasets (Kumar and Misra, 2018). The authors in Oussous et al.
(2018) proposed voting and stacking based on three baseline clas-
sifiers (MNB, SVM, and ME) using the Moroccan tweets dataset
(Tratz et al., 2013). The authors in Ekbal and Saha (2011) suggested
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voting based on diverse classification methods such as SVM, ME,
and RF for named entity recognition using three Indian languages
(Bengali, Hindi, and Telugu) by using Bengali news corpus (Ekbal
and Bandyopadhyay, 2008). The authors in Abbasi et al. (2008b)
proposed a boosting based on SVM using several middle eastern
web forums.

Moreover, in the diverse fields, in Stamatatos and Widmer
(2002) used a voting method based on SVM for music performer
recognition using several pianists playing datasets. In Chen et al.
(2019) applied the bagging method based on Fisher’s linear dis-
criminant function (FLDA) for potential groundwater assessment
at the Ningtiaota area in Shaanxi, China. They used using a data-
base with 66 groundwater spring locations. In Zareapoor and
Shamsolmoali (2015) suggested Bagging based on three machine
algorithms: SVM, NB, and KNN for credit card fraud predicting.
They use 100,000 records of credit card transactions dataset
(Hormozi et al., 2013). In Shahzad and Lavesson (2013) proposed
voting based on NB, DT, and KNN for malware detection using
three datasets of malicious threat (Shahzad et al., 2010). In
Anifowose et al. (2013) applied bagging RF to predict petroleum
reservoir properties using six datasets from a giant carbonate
reservoir in the Middle East and a drilling site in the Northern Mar-
ion platform of North America (Helmy et al., 2010). In Kulkarni
et al. (2018) suggested voting based on SVM, NB, and RF for a crop
recommendation system using the input soil dataset into the rec-
ommendable crop type, Kharif and Rabi. In Erdoğan and Namlı
(2019), applied voting and stacking based on SVM for a living envi-
ronment prediction. In Cai et al. (2020), voting based on SVM and
LR was applied to predict surface chloride concentration. In Seker
and Ocak (2019) proposed a bagging based on three classifiers
(RF, LR, and Linear R) to predict road headers using several
datasets.

6.2. Applications of ensemble deep learning

Ensemble learning methods in deep learning applications out-
perform traditional ensemble learning in many domains, including
image classification, natural language processing (NLP), and others.
Table 3 summarizes some works that presented ensemble learning
methods in deep learning in different fields. In the image classifica-
tion domain, in Wang et al. (2020) applied stacking method based
on multiple CNNs using CIFAR-10 dataset (Pandit and Kumar,
2020). Also, in Zhang et al. (2019) applied of stacking method
based on multiple CNNs used for Image Deblurring. They used
GoPro dataset (Marques et al., 2021) and the Video Deblurring
dataset (Wu et al., 2020). In Waltner et al. (2019) proposed boost-
ing method based on CNN used for image retrieval by the biggest
available retrieval datasets. In Chen et al. (2019) and Chen et al.
(2018) proposed the deep boosting framework by integrating the
CNN into the boosting algorithm. They used two benchmark data-
sets (Set12 and BSD68) (Thakur et al., 2019). In Can Malli et al.
(2016) suggested voting based on CNNs for apparent age estima-
tion ‘‘face detection” using IMDB-WIKI dataset (Russakovsky
et al., 2015). In Opitz et al. (2017) applied Boosting CNNs using sev-
eral image retrieval datasets(Liu et al., 2016). In Mosca and
Magoulas (2016) applied boosting CNN by using two image data-
sets; namely, MNIST (LeCun, 1998), and CIFAR-10 (Pandit and
Kumar, 2020). In Walach and Wolf (2016) proposed boosting CNNs
for object counting in images using different image datasets,
namely mall crowd counting (Chen et al., 2012). UCF 50 crowd
counting (Idrees et al., 2013), UCSD (Chan et al., 2008). In
Moghimi et al. (2016) applied boosting CNNs using several image
datasets, namely (Cars (Krause et al., 2013) and Aircrafts
(Gosselin et al., 2014)). In Yang et al. (2015) proposed boosting
CNNs for face detection using imageNet dataset (Krizhevsky
et al., 2012). In Li et al. (2015) suggested stacking based on simpli-



Table 3
Applications of ensemble learning in deep learning approach.

Studies Baseline Classifiers Fusion Method Domain

Tur et al. (2012) DCN Stacking Semantic Utterance Classification
Deng et al. (2012) DCN Stacking Spoken Language Understanding
Liu et al. (2014) DNN Boosting Facial Expression Recognition
Palangi et al. (2014) RNN Stacking Speech Recognition
Deng and Platt (2014) RNN, CNN Stacking Speech Recognition
Yang et al. (2015) CNN Boosting Face Detection
Li et al. (2015) SNNM Stacking Image Classification
Ortiz et al. (2016) DBN Voting Medical Image
Can Malli et al. (2016) CNN Voting Image Classification
Xu et al. (2016) CNN,LSTM Voting English Sentiment
Deriu et al. (2016) CNN Stacking English Sentiment
Walach and Wolf (2016) CNN Boosting Image Classification
Kumar et al. (2016) CNN Stacking Image Classification
Moghimi et al. (2016) CNN Boosting Image Classification
Han et al. (2016) CNN Boosting Facial Recognition
Liu et al. (2017) BPNN Stacking Flood Forecasting
Codella et al. (2017) CNNs, DRN Voting Medical Image
Chen et al. (2017) CNN_RNN Voting Text Classification
Opitz et al. (2017) CNN Boosting Image Retrieval
Mosca and Magoulas (2016) CNN Boosting Image Classification
Akhtyamova et al. (2017) CNN Voting English Sentiment
Araque et al. (2017) CNN,LSTM,GRU Voting, Stacking English Sentiment
Chen et al. (2018) CNN Boosting Image Denoising
Heikal et al. (2018) CNN, LSTM Voting Arabic Sentiment
Zhang et al. (2019) CNN Stacking Deblurring Image
Waltner et al. (2019) CNN Boosting Image Retrieval
Chen et al. (2019) CNN Boosting Image Denoising
Wang et al. (2019) DNN Adaboost Security Level Classification
Alshazly et al. (2019) CNN Voting Medical Image
Cha et al. (2019) CNN Voting Medical Image
Al-Omari et al. (2019) Bi_LSTM Voting Fake News
Nguyen and Le Nguyen (2019) CNN, LSTM Voting English Sentiment
Ali et al. (2020) DNN Boosting Medical Image
Guo et al. (2020) CNN,RetinaNet,Deep SVDD Voting Medical Image
Khamparia et al. (2020) CNN Voting Medical Image
Zhang et al. (2020) CNN, LSTM Boosting Computer Vision,NLP
Zhang et al. (2020) GNet, SNet Boosting, Stacking Robotic arm control ‘‘Reinforcement”
Wang et al. (2020) CNN Stacking Image Classification
Haralabopoulos et al. (2020) LSTM,GRU,CNN,RCNN,DNN Voting, Stacking English Sentiment
Mohammed and Kora (2021) 6 Models Hybrid Ensemble Multilingual Text Classification
Tasci et al. (2021) CNN Voting Medical Image
Alharbi et al. (2021) LSTM, GRU Voting Arabic Sentiment
Livieris et al. (2020) CNN Bagging, Boosting English Text
Mohammadi and Shaverizade (2021) CNN,LSTM, GRU, Bi_LSTM Stacking English Sentiment
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fied neural network module (SNNM) using four face image datasets
(Jiang et al., 2013). In Zhang et al. (2020) applied a boosting
method on CIFAR-10 dataset (Pandit and Kumar, 2020) containing
60000 colored images to train the CNN. In particular, in medical
image classification, the authors of Ali et al. (2020) applied a smart
healthcare system for heart disease prediction using ensemble
deep learning and feature fusion approaches. The proposed system
achieved an accuracy of 98.5%. The authors of Alshazly et al. (2019)
suggested voting based on CNNs for visual recognition tasks (ear
recognition) using several ear datasets.

The authors of Ortiz et al. (2016) applied voting based on deep
belief networks using a large dataset from the Alzheimer’s disease
Neuroimaging Initiative (ADNI) (Hinrichs et al., 2009). The authors
of Codella et al. (2017) proposed voting based on residual networks
(DRN) and CNNs for melanoma recognition in dermoscopy images.
The voting method achieved an accuracy of 76% by using the der-
moscopic images dataset (containing 1279 images) (Mendonca
et al., 2015). The authors of Tasci et al. (2021) applied voting based
on CNNs for tuberculosis detection by two TB CXR image datasets
(Sharma et al., 2017). The voting method achieved an accuracy of
97.5% and 97.69% accuracy rates on datasets, respectively. The
authors of Cha et al. (2019) suggested voting based on nine CNNs
to classify eardrum and external auditory canal features. The vot-
ing achieved an average accuracy of 93.67% by using a large data-
769
base of 910,544 images(Locketz et al., 2016). The authors of Guo
et al. (2020) proposed a voting method for automated cervical pre-
cancer screening using 30,000 images from several datasets. The
voting method combined the assessment of three deep learning
architectures, RetinaNet, Deep SVDD, and CNN. The average accu-
racy and F-score of 91.6% and 0.89%, respectively. The authors of
Khamparia et al. (2020) applied a voting method based on CNNs
for disease prediction related to neuromuscular disorders using
two neuromuscular disorder datasets (Bakay et al., 2006).

In addition, in the NLP domain, in Mohammed and Kora (2021)
proposed a novel ensemble for multilingual text classification
using six benchmark datasets. Also, compare the performance of
the proposed and other ensemble methods. The results prove that
the proposed method outperforms the state-of-art ensemble meth-
ods. In Deng et al. (2012) suggested a stacking method based on
deep convex network (DCN) to spoken language understanding
(SLU) problems. The stacking method achieved an accuracy of
91.88% by using the ATIS dataset (consists of 5871 sentences)
(Wen et al., 2005). The authors in Xu et al. (2016) proposed a soft
voting ensemble based on CNN and LSTM using SemEval 2013
dataset (Dzikovska et al., 2013). In Chen et al. (2017) presented
voting based on the CNN_RNN model using a large documents
dataset (Lewis et al., 2004). In Akhtyamova et al. (2017) suggested
a voting method based on CNNs for predicting drug safety using
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English reviews from health forums (Karimi et al., 2015). In Araque
et al. (2017) applied both voting and stacking based on several
deep learning models, namely CNN, LSTM, and GRU, using seven
English movie review datasets. In Al-Omari et al. (2019) applied
voting based on Bi_LSTM for English fake news detection using
NLP4IF 2019 (Barrón-Cedeno et al., 2019). In Nguyen and Le
Nguyen (2019) applied voting based on CNN and LSTM using five
English datasets from movie reviews (Koh et al., 2010). In Livieris
et al. (2020) proposed CNNs based on bagging and stacking using
several English review datasets. In Haralabopoulos et al. (2020)
applied both voting and stacking based on several deep learning
models, namely LSTM, GRU, CNN, RCNN, and DNN, using two Eng-
lish tweets datasets (SemEval (Bethard et al., 2016), Toxic Com-
ment (van Aken et al., 2018)). In Mohammadi and Shaverizade
(2021) applied stacking based on four deep learning models,
namely CNN, LSTM, GRU, and BiLSTM using English review dataset
(SemEval) (Bethard et al., 2016). In Deriu et al. (2016) proposed
stacking ensemble based on CNN for English tweets classification
by using SemEval-2016 dataset (Bethard et al., 2016). In contrast,
in Heikal et al. (2018) applied voting based on the combination
of CNN and LSTM models using Arabic dataset (ASTD) (Nabil
et al., 2015). In Alharbi et al. (2021) applied a voting method based
on LSTM and GRU using five datasets from Arabic tweets.

Moreover, in the diverse fields, in Zhang et al. (2020) proposed a
system that jointly learns the grasping and the stacking policies
through the grasping for stacking network (GSNet) for enables a
robotic arm to correctly pick boxes from a table and put it on a
platform. In Wang et al. (2019) proposed an Adaboost method
based on DNN for security level classification. The dataset is the
assessment results of 100 Android terminals (including smart-
phones, smart bracelets, tablet PC) and from schools, hospitals, fac-
tories, and other environments. In Liu et al. (2014) applied boosted
deep belief network for facial expression recognition/shape
changes based on the CK + database (contains 327 expression
images) (Seyyedsalehi and Seyyedsalehi, 2014). The authors of
Deng and Platt (2014) applied the stacking method based on both
RNN and CNN for speech recognition using TIMIT dataset (Garofolo
et al., 1993). The authors of Liu et al. (2017) applied stacking based
on back propagation neural networks (BPNN) for flood forecasting.
Han et al. (2016) applied boosting CNNs for recognizing facial
action units. In Tur et al. (2012) applied a stacking method based
on deep convex networks (DCNs) to semantic utterance classifica-
tion by the dataset of utterances from the users of a spoken dialog
system. In Palangi et al. (2014) applied stacking RNN for speech
recognition systems based on TIMIT dataset (Garofolo et al., 1993).
7. Conclusion

In machine learning, reducing the bias and the variance of mod-
els is one of the key factors determining the success of the learning
process. In the literature, it has been proven that merging the out-
put of different classification algorithms might decrease the gener-
alization error without increasing the variance of the model. The
previous is the key essence of the so-called ensemble learning.
Numerous research efforts have preferred ensemble learning over
single-model learning in various domains. The main advantage of
ensemble learning is combining several individual models to
improve prediction performance and obtain a stronger model that
outperforms them. In the literature, there are several ensemble
techniques to boost classification algorithms. The main difference
between any two ensemble methods is training the baseline mod-
els and how to combine them. Several research efforts introduced
ensemble learning into deep learning models to remedy the prob-
lems appearing during the learning process of deep learning mod-
els. Usually, the main challenge of deep learning models is that
770
they need a lot of knowledge and experience to tune the optimal
hyperparameters aiming at reaching a global minimum error.
However, finding the optimal hyperparameters requires an
exhausting technique in the search space, which in turn becomes
a tedious and time-consuming task. Thus, several research efforts
have applied deep ensemble learning in many fields, and most of
these efforts are articulated around simple ensemble methods. This
paper provided a comprehensive review of the various strategies
for ensemble learning, especially in the case of deep learning.
The paper also illustrated the recent trends in ensemble learning
using quantitative analysis of several research papers. Moreover,
the paper offered various factors that influence ensemble methods’
success, including sampling the training data, training the baseline
models, and the fusion techniques of the baseline models. Also, the
papers discussed the pros and cons of each ensemble method.
Additionally, the paper extensively introduced and presented sev-
eral research efforts that used ensemble learning in a wide range of
domains and categorized these efforts into either traditional
machine or deep learning models as baseline classifiers. It is worth
noting that an ensemble of deep learning models using simple
averaging methods is not a smart choice and is very sensitive to
biased baseline models. On the other hand, Injecting diversity in
ensemble deep learning can become robust to the biased baseline
models. The diversity can be achieved by training different base-
line deep learning architectures over several data samples. The
diversity, however, is limited by the computation cost and the
availability of suitable data to be sampled.
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