Probabilistic Scheduling PERT

Program Evaluation and Review Technique

Farnaz Sadeghpour
Associate Professor
University of Calgary
Department of Civil Engineering
Project Management Center of Excellence

PERT

Program Evaluation and Review Tec inique

Activity / Project Duration Estim ation Deterministic: Probabilistic:

Assumes project conditions remain unc hanged
Not always realistic

- PERT: Program Evaluation and Review Technique
- Developed by US Navy 1957
- Polaris nuclear submarine project
- Enables incorporating uncertainty into schedule not knowing precise details and durations

Answers questions like:

What is:

- The probability that the project will finish in 61 days?
- The probability that the project will finish in 58 days?
- The probability that the project will take longer than 63 days?
- The probability that the project will finish at least 4 days earlier than expected?
- The completion date to finish with a 95% confidence level?

PERT - Introduction

- Incorporates uncertainty
- Assuming variability in activity durations
- Three estimates of duration for each activity:

1. Most optimistic duration: t_{a}
2. Most pessimistic duration: t_{b}
3. Most likely duration: $\quad t_{m}$

Expected duration

$$
\mathrm{t}_{\mathrm{e}}=\left(\mathrm{t}_{\mathrm{a}}+4 \mathrm{t}_{\mathrm{m}}+\mathrm{t}_{\mathrm{b}}\right) / 6
$$

- Why? Loosely based on statistical calculations
\rightarrow Normal Distribution

Normal Distribution

Normal Distribution: also "Gaussian distribution"
A family of Continuous Probability Distribution

$$
X \sim N\left(\mu, \sigma^{2}\right)
$$

real-valued random variable X is normally distributed with mean μ and variance σ^{2}

Probability Density Function for a continuous variable

Density: relative frequency of variables
Represented by a continuous curve

Also called bell curve \rightarrow
shape of graph of PDF

Reminders!

Standard deviation:

$$
\text { SD }=\sigma=\frac{\sqrt{\sum\left(X_{i}-\overline{X_{i}}\right)^{2}}}{n}
$$

Variance:

$$
\sigma^{2}=\int(x-\mu)^{2} f
$$

Median
X_{0} is median if $f\left(x_{0}\right)=0.5$

Mode

$$
f\left(x_{m}\right)=\max _{x} f(x)
$$

Characterization

$X \sim N\left(\mu, \sigma^{2}\right)$

Defined by two parameters: location \& scale

Properties of PDF:
>symmetry about its mean μ
$>$ mode \& median $=$ mean μ
$>$ inflection points \rightarrow One SD from μ

Probability Calculation

Area under curve = sum of expected frequencies

Not for probability of an exact value e.g. probability of $\mathrm{x}=2$

Estimate probability between 2 limits e.g. probability falling between $2 \& 2.2$

Standard Normal Distribution (Z)

Z Table: area under the standard normal probability density curve to the left of z

2	. 00	- OI	-02	. 03	. 04	-05	.06	
- 0	. 5000	. 5040	. 5080	$\cdot 5120$. 5160	$\cdot 5199$	$\cdot 5239$	$\varphi_{\mu, \sigma^{2}}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
$\cdot \mathrm{I}$	-5398	. 5438	. 5478	. 5517	. 5557	- 5596	. 5636	
$\cdot 2$	$\cdot 5793$.5832	. 5871	. 5910	. 5948	. 5987	. 6026	
$\cdot 3$.6179	. 6217	. 6255	- 6293	. 6331	. 6368	. 6406	
$\cdot 4$	- 6554	-6591	-6628	-6664	. 6700	. 6736	-6772	
$\cdot 5$	-6915	. 6950	. 6985	-7019	$\cdot 7054$	$\cdot 7088$.7123	
$\cdot 6$	$\cdot 7257$	$\cdot 7291$.7324	$\cdot 7357$	$\cdot 7389$	$\cdot 7422$	-7454	
$\cdot 7$	-7580	-76II	$\cdot 7642$	$\cdot 7673$	$\cdot 7703$	-7734	$\cdot 7764$	
- 8	$\cdot 788 \mathrm{I}$.7910	-7939	$\cdot 7967$	$\cdot 7995$. 8023	.805I	
. 9	.8159	.8186	. 8212	. 8238	. 8264	. 8289	. 8315	
I. 0	. 8413	. 8438	.846I	. 8485	. 8508	.8531	. 8554	
I.I	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	
I-2	- 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	
I-3	-90320	-90490	'90658	-90824	-90988	-91149	.91309	
1.4	-91924	$\cdot 92073$	-92220	-92364	-92507	-92647	.92785	
I. 5	-93319	-93448	-93574	-93699	'93822	'93943	-94062	
I. 6	'94520	. 94630	-94738	.94845	-94950	'95053	. 95154	
$\begin{array}{r}1.7 \\ \text { - } \\ \hline\end{array}$	-95543	-95637	-95728	-95818	. 95907	-95994	-96080	
I.8	$\cdot 96407$	-96485	-96562	-96638	-96712	-96784	-96856	
1.9	-97128	'97193	'97257	-97320	'9738r	.9744	. 97500	

© F. Sadeghpour

Standard Normal Distribution (Z)

Unit Normal Distribution:

$$
\begin{aligned}
& \mathrm{N}(0,1) \\
& \text { mean } \mu=0 \quad \text { SD } \sigma=1 \quad \rightarrow \text { Z tables }
\end{aligned}
$$

Probability Density Function
© F. Sadeghpour

Standard Normal Distribution (Z)

Z Table: area under the standard normal probability density curve to the left of z

© F. Sadeghpour

2	. 00	Or	$\Phi(z)==_{-\infty}^{z} \phi(t) d t$			for ($-\infty<2 \leq 0)$. 08	-09
			. 02	. 03	. 04	. 05	-06	. 07		
- 0	-5000	-4960	$\cdot 4920$	-4880	-4840	-480r	-4761	-4721	-468I	-4641
$-\mathrm{r}$	-4602	-4562	-4522	-4483	-4443	-4404	-4364	-4325	-4286	$\cdot 4247$
- $\cdot 2$	-4207	-4168	-4129	-4090	-4052	-4013	-3974	-3936	-3897	-3859
- 3	-3821	$\cdot 3783$	-3745	-3707	-3669	-3632	-3594	-3557	-3520	$\cdot 3483$
- 4	$\cdot 3446$	-3409	-3372	-3336	-3300	-3264	-3228	-3192	-3156	-3121
- 5	-3085	-3050	-3015	-298I	-2946	-2912	-2877	-2843	-2810	-2776
- 6	-2743	-2709	-2676	- 2643	-26II	-2578	-2546	-2514	-2483	-2451
-7	- 2420	-2389	-2358	-2327	-2297	-2266	-2236	-2206	-2177	-2148
- 8	-2119	-2090	-206I	-2033	-2005	-1977	-1949	-1922	-1894	-1867
- 9	-184I	-1814	-1788	-1762	-1736	-17II	-1685	-1660	-1635	-16II
-r.0	-1587	-1562	- 1539	-1515	. 1492	-1469	-1446	-1423	-140I	-1379
-IF	-1357	-1335	-1314	-1292	-127I	-125I	-1230	- 1210	- 1190	-1170
-1.2	-1151	-1131	-III2	-1093	-1075	-1056	-1038	- 1020	-1003	-09853
-1.3	.09680	-09510	-09342	.09176	-09012	.08851	-08691	-08534	.08379	. 08226
-1.4	.08076	-07927	-07780	. 07636	-07493	-07353	.07215	.07078	.06944	.068II
-1.5	-0668x	.06552	-06426	.06301	.06178	. 06057	-05938	-05821	-05705	-05592
-1.6	-05480	. 05370	. 05262	-05155	. 05050	. 04947	. 04846	. 04746	. 04648	. 04551
-1.7	-04457	. 04363	-04272	-04182	-04093	. 04006	-03920	-03836	. 03754	-03673
-1.8	-03593	-03515	-03438	-03362	-03288	-03216	-03144	-03074	-03005	-02938
- 1.9	-02872	-02807	-02743	- 02680	-02619	-02559	- 02500	-02442	-02385	-02330
-2.0	-02275	. 02222	. 02169	. 02118	. 02068	. 02018	-01970	- 01923	.01876	.0183r
-2.I	.01786	-01743	-01700	-01659	-01618	-01578	-01539	-01500	. 01463	. 01426
-2.2	-01390	-01355	-01321	. 01287	-01255	-01222	-origr	- I 160	-01130	- OI Ior
-2.3	-01072	-01044	. 01017	- $0^{2} 9903$	$\cdot^{-} 0^{2} 9642$. $0^{2} 9387$. $0^{2} 9137$	${ }^{\circ} 0^{2} 8894$	- $0^{2} 8656$	$\cdot^{2} 88424$
-2.4	- $0^{2} 8198$. $0^{2} 7976$. $0^{2} 7760$	- $0^{2} 7549$	$\cdot^{-2} 7344$	$\cdot^{2} 7143$	- $0^{2} 6947$	$\cdot^{\circ} 26756$. $0^{2} 6569$.$^{2} 6387$
-2.5	- $0^{2} 6210$. $0^{2} 6037$	$\cdot^{\circ} 0^{2} 5868$.$^{2} 5703$	$\cdot^{2} 5543$	- $0^{2} 5386$.$^{\circ} 0^{2} 234$.$^{2} 5085$	${ }^{\circ} 0^{2} 4940$	$\cdot^{-2} 4799$
-2.6	- $0^{2} 466 \mathrm{I}$. $0^{2} 4527$	$\cdot^{2} 4396$	${ }^{-} 0^{2} 4269$.$^{2} 4145$	$\cdot^{2} 24025$	- $0^{2} 3907$	$\mathrm{o}^{2} 3793$	- $0^{2} 368 \mathrm{I}$	$\cdot^{2} 3573$
-2.7	- $0^{2} 3467$. $0^{2} 3364$	${ }^{-} \mathrm{o}^{2} 3264$. $0^{2} 3167$.$^{2} 3072$	- $0^{2} 2980$	- $0^{2} 2890$.$^{2} 2803$	- $0^{2} 2718$	$\cdot^{-2} 2635$
-2.8	- $0^{2} 2555$	- $0^{2} 2477$	${ }^{0} 0^{2} 2401$	- $0^{2} 2327$	${ }^{-} 0^{2} 2256$	$\cdot^{-2} 2186$	$\cdot^{2} 21118$	$\cdot^{2} 2052$. $0^{2} 1988$	$\cdot^{-2} 1926$
-2.9	- $0^{2} 1866$. $0^{2} 1807$	$\cdot^{2} 1750$.$^{2} 1695$. $0^{2} 1641$	- $0^{2} 1589$. $0^{2} 1538$	- $0^{2} 1489$.2 I 441	$\cdot^{2} 1395$
-3.0	- $0^{2} 1350$	- $0^{2} 1306$	$\cdot^{-2} 1264$	$\cdot^{-2} 1223$.$^{2} 1183$.$^{2} 1144$	$\cdot^{-2} 1107$	${ }^{-2} 1070$	- $0^{2} 1035$	$\cdot^{2} \mathrm{I}$ IOOI
-3.1	- $0^{3} 9676$	$\cdot^{\circ}{ }^{3} 9354$	$\cdot^{3} 9043$	$\cdot^{0} 8740$	$\cdot^{0} 0^{3} 8447$	$\cdot^{\circ} 0^{3} 8164$	${ }^{-} 0^{3} 7888$	$\cdot^{3} 7622$.$^{3} 7364$	$\cdot^{3} 7114$
-3.2	- $0^{3} 6871$	- $0^{3} 6637$.$^{0} 6410$.036190	.$^{0} 5976$	- $0^{3} 5770$	- $0^{3} 5571$	${ }^{\cdot} 0^{3} 5377$	- $0^{3} 5190$.$^{3} 5009$
-3.3	.$^{0} 4834$	${ }^{\cdot} 0^{3} 4665$	${ }^{\cdot} 0^{3} 4501$.$^{3} 4342$.034189	.$^{0} 304 \mathrm{~L}$. $0^{3} 3897$	${ }^{\cdot} 0^{3} 3758$	- $0^{3} 3624$	$\cdot^{3} 3495$
-3.4	${ }^{-}{ }^{3} 3369$.$^{3} 3248$. $0^{3} 3131$. $0^{3} 3018$. $0^{3} 2909$	- $0^{3} 2803$	- $0^{3} 2701$	${ }^{-3} 2602$. $0^{3} 2507$	$0^{3} 2415$
-3.5	$\cdot{ }^{3} 2326$	${ }^{-3} 2241$	$\cdot^{0} 2158$	$\cdot 0^{3} 2078$	$\cdot^{03} 2001$	$\cdot^{03} 1926$.$^{3} 1854$	${ }^{-03} 1785$	$\cdot^{03} 1718$	$\cdot^{0} 1653$
-3.6	$\cdot{ }^{3} 1591$	$\cdot^{3} 1531$	$\cdot 0^{3} 1473$	$\cdot^{3} 1417$.$^{3} 1363$	$0^{0} 1311$.$^{3} 1261$	$\cdot^{3} 1213$	\cdot^{3} I 166	$\cdot^{3} \mathrm{I} 121$
-3.7.	$\cdot^{-3} 1078$.$^{0}{ }^{3} 1036$	${ }^{-0} 04961$. 049574	. 049201	$\cdot 048842$. 048496	. 048162	.$^{4} 7841$	${ }^{-}{ }^{4} 7532$
-3.8	$\cdot^{+}{ }^{4} 7235$.$^{0} 46948$. 046673	. 046407	${ }^{-0} 46152$	-045906	.045669	.045442	. 045223	${ }^{-} 45012$
-3.9	$\cdot{ }^{4} 48 \mathrm{ro}$.044615	${ }^{-0} 44427$.$^{04} 4247$. $0^{4} 4074$	- 043908	.$^{+4} 3747$.043594	. 043446	${ }^{-}+3304$
-4.0	. 043167	$\cdot{ }^{0} 43036$	-042910	${ }^{-0} 42789$	-042673	- 042561	${ }^{0} 042454$	${ }^{-} 0^{4} 2351$. 042252	${ }^{-} 0^{4} 2157$
-4.1	- ${ }^{4} 2066$	${ }^{0} 41978$	-041894	$\cdot{ }^{0} 41814$	-041737	-041662	-041591	${ }^{-} 0^{4} 1523$	- 041458	${ }^{-1} 1395$
-4.2	. 041335	${ }^{-1} 1278$	${ }^{0} 041222$	${ }^{-} 0^{4} 1168$	-041118	- 041069	${ }^{-1} 1022$	-059774	-059345	-0 08934
-4.3	- $0^{5} 8540$	-058163	-057801	.$^{5} 7455$	${ }^{-05} 7124$	- 056807	- ${ }^{5} 6503$	-0 $0^{5} 6212$. 055934	-05 5668
-4.4	-05 5413	.$^{5} 5169$	-054935	-0s 4712	- $0^{5} 4498$. 054294	.054098	. 053911	.053732	-05 ${ }^{5} 561$
-4.5	-05 3398	. $0^{5} 324 \mathrm{I}$	-05 3092	- 052949	.052813	- $0^{5} 2682$	- $0^{5} 2558$. $0^{5} 2439$	-05 2325	-05 2216
-4.6	-05 2112	- $0^{5} 2013$	-05 1919	- 051828	- $0^{5} 1742$	- $0^{5} 1660$	- $0^{5} 158 \mathrm{I}$	- 051506	-0 ${ }^{5} 1434$	${ }^{0} \mathrm{~S} 1366$
-4.7	- 051301	- ${ }^{5} 1239$	-05 1179	- $0^{5} 1123$.05 1069	- 051017	- $0^{6} 9680$	$\cdot^{6} 9211$. 068765	.$^{6} 8339$
-4.8	- $0^{6} 7933$	- $0^{6} 7547$	-067178	- 066827	. $0^{6} 6492$. $0^{6} 6173$. $0^{6} 5869$	- ${ }^{6} 55880$. $0^{6} 5304$	- $0^{6} 5042$
-4.9	. $0^{6} 4792$	- $0^{6} 4554$	- $0^{6} 4327$	$\cdot 0^{6} 4111$. $0^{6} 3906$	- $0^{6} 37 \mathrm{II}$. $0^{6} 3525$. $0^{6} 3348$.063179	. $0^{6} 3019$

Example: $\Phi(-3.57)=\cdot 0^{3} 1785=0.0001785$.

Pay attention to the legend

z	. 00	- 01	. 02	. 03	. 04	-05	.06	. 07	. 08	-09
-	. 5000	$\cdot 5040$	$\cdot 5080$. 5120	. 5160	-5199	$\cdot 5239$	- 5279	-5319	-5359
- 1	-5398	. 5438	. 5478	-5517	-5557	- 5596	. 5636	. 5675	. 5714	. 5753
$\cdot 2$	-5793	-5832	. 5871	-5910	-5948	- 5987	-6026	. 6064	.6103	.6141
$\cdot 3$. 6179	. 6217	. 6255	-6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
4	-6554	.6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
$\cdot 5$. 6915	-6950	. 6985	-7019	$\cdot 7054$. 7088	$\cdot 7123$	$\cdot 7157$	-7190	-7224
$\cdot 6$	$\cdot 7257$.7291	. 7324	-7357	$\cdot 7389$	$\cdot 7422$	-7454	$\cdot 7486$	-7517	7549
$\cdot 7$.7580	.76II	-7642	. 7673	. 7703	.7734	.7764	.7794	.7823	.7852
. 8	$\cdot 788 \mathrm{I}$.7910	$\cdot 7939$	$\cdot 7967$	-7995	. 8023	. 8051	. 8078	. 8106	.8133
$\cdot 9$	-8159		. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
I.O	. 8413	. 8438	.846r	. 8485	. 8508	.853I	. 8554	. 8577	. 8599	.8621
I. 1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	.8810	. 8830
1.2	-8849	. 8869	. 8888	. 8907	-8925	- 8944	-8962	. 8980	-8997	. 90147
1.3	- 90320	. 90490	'90658	-90824	-90988	-91149	-91309	-91466	-9162I	. 91774
1.4	-91924	'92073	'92220	-92364	'92507	-92647	. 92785	-92922	-93056	-93189
1.5	-93319	-93448	'93574	-93699	'93822	-93943	. 94062	-94179	-94295	- 94408
1.6	. 94520	. 94630	. 947738	. 94845	. 94950	. 95053	. 95154	. 95254	. 95352	. 95449
1.7 18	-95543	. 95637	-95728	-95818	-95907	. 95994	-96080	-96164	-96246	-96327
1.8	-96407	-96485	-96562	. 96638	-96712	. 96784	-96856	-96926	-96995	'97062
1.9	-97128	'97193	-97257	-97320	'9738r	-9744	-97500	-97558	. 97615	-97670
2.0	-97725	-97778	.97831	. 97882	'97932	. 97982	-98030	-98077	-98124	-98169
2.I	. 98214	. 98257	. 98300	. 98341	. 98382	. 98422	9846r	. 98500	. 98537	-98574
2.2	-98610	-98645	-98679	. 98713	- 98745	- 98778	-98809	. 98840	-98870	-98899
$2 \cdot 3$	-98928	. 98956	-98983	-9 9^{20097}	-9 $9^{2} 0358$	-9 $9^{2} 0613$	$\cdot 9^{2} 0863$	$\cdot 9^{2} 1106$	$\cdot 9^{2} 1344$	$\cdot 9^{2} 1576$
$2 \cdot 4$	-92 $9^{2} 802$. $9^{2} 2024$	${ }^{9} 22240$.$^{2} 2451$	$\cdot 9^{2} 2656$	-922857	-923053	. $9^{2} 3244$. $9^{2} 3431$	${ }^{9} 23613$
$2 \cdot 5$	-923790	- $9^{2} 3963$	$\cdot 9^{2} 4132$.$^{2} 4297$	- $9^{2} 4457$	-924614	$9^{2} 4766$. $9^{2} 4915$	$9^{2} 5060$	$\cdot^{2} 5201$
2.6	-925339	.$^{2} 5473$.$^{2} 5604$. $9^{2} 5731$	$9^{2} 5855$	- $9^{2} 5975$.$^{2} 6093$	- $9^{2} 6207$.$^{2} 6319$	$9^{2} 6427$
2.7	-926533	$\cdot^{2} 96636$	$\cdot{ }^{2} 6736$.$^{2} 6833$	${ }^{-9} 9^{2} 928$	$\cdot^{2} 7020$	$\cdot^{2} 7110$.$^{2} 7197$	$\cdot^{2} 7282$	$9^{2} 7365$
2.8	.$^{2} 7445$.$^{2} 7523$	$\cdot^{-9} 7599$.$^{2} 7673$	$\cdot^{2} 7744$	-9 $9^{2} 7814$	$\cdot^{2} 7882$. $9^{2} 7948$.$^{2} 8012$	$\cdot^{9} 88074$
2.9	-928134	. $9^{2} 8193$	$\cdot 9^{28250}$	$\cdot 9^{2} 8305$	$\cdot 9^{28359}$	-9284II	$9^{2} 8462$. $9^{2} 8511$.$^{2} 8559$	$\cdot^{2} 8605$
3.0	-9 9^{28650}	- $9^{2} 8694$	$\cdot 9^{2} 8736$	$\cdot 9^{2} 8777$	$9^{2} 88817$	-928856	$9^{2} 8893$. $9^{2} 8930$	- $9^{2} 8965$	- $9^{2} 8999$
$3 \cdot 1$	-930324	$9^{3} 0646$	$\cdot^{9} 0957$.$^{3} 1260$	$9^{3} 1553$.$^{3} 1836$	$9^{3} 2112$. $9^{3} 2378$	$9^{3} 2636$	$\cdot^{9} 2886$
$3 \cdot 2$	-933129	.$^{9} 3363$	$\cdot 9^{3} 3590$	-93810	$\cdot 9^{3} 4024$	- $9^{3} 4230$.$^{3} 4429$.$^{3} 9^{3} 4623$.$^{3} 4810$.$^{3} 4991$
$3 \cdot 3$.$^{3} 5166$	$\cdot 9^{3} 5335$	$\cdot 9^{3} 5499$	-935658	$\cdot 9^{3} 58 \mathrm{II}$	-935959	$\cdot 9^{3} 6103$	$\cdot 9^{3} 6242$	$\cdot 9^{3} 6376$.$^{3} 6505$
$3 \cdot 4$	-9 $9^{3} 6631$	${ }^{9} 9^{3} 6752$	-936869	- $9^{3} 6982$	${ }^{\cdot} 9^{3} 7091$	-937197	$\cdot 9^{3} 7299$	$\cdot 9^{3} 7398$	$\cdot^{9} 7493$	$9^{3} 7585$
$3 \cdot 5$	$9^{3} 7674$	${ }^{9} 9^{3} 7759$	$\cdot 9^{3} 7842$. $9^{3} 7922$	- $9^{3} 7999$	-938074	.$^{9} 8146$.$^{9} 8215$.$^{9} 88282$	
3.6	-938409	.$^{3} 8469$	$\cdot^{9} 8527$	$\cdot 9^{3} 8583$	$\cdot 9^{3} 8637$	-938689	$9^{3} 8739$. $9^{3} 8787$.$^{3} 8834$	$9^{3} 8879$
3.7	-938922	.$^{9} 8964$	$\cdot{ }^{4} 40039$. 940426	$\cdot 9^{4} 0799$	-941158	. $9^{4} 1504$. $9^{4} 1838$	$\cdot{ }^{+} \times 2159$	${ }^{9} 24468$
$3 \cdot 8$	-942765	.943052	$\cdot{ }^{4} 3327$	${ }^{-9} 43593$	-943848	-944094	$\cdot{ }^{4} 4331$	$\cdot{ }^{4} 45588$	$\cdot 94777$.	$\cdot{ }^{+} 44988$
3.9	-945190	.945385	$\cdot{ }^{+4} 5573$	$\cdot{ }^{4} 5753$	$\cdot 9^{4} 5926$	$\cdot 9^{4} 6092$	$\cdot 9^{4} 6253$	$\cdot{ }^{4} 46406$	$\cdot 9^{4} 6554$	$\cdot 9^{46696}$
4.0	$\cdot 9^{46833}$. 946964	-947090	. $9^{4} 7211$	${ }^{-9} 7327$.947439	$\cdot 9^{4} 7546$. 947649	-947748	$\cdot 9^{4} 7843$
4.I	-947934	${ }^{9} 98022$	-948106	-948186	.$^{4} 8263$	- 948338	$\cdot{ }^{9} 48409$	${ }^{9} 948477$	$\cdot{ }^{4} 88542$	$\cdot 9^{4} 8605$
$4 \cdot 2$	$\cdot{ }^{9} 48665$	${ }^{-9} 88723$	$\cdot 9^{4} 8778$	$\cdot{ }^{4} 88832$	$\cdot 9^{48882}$	-948931	${ }^{9} 9^{48978}$	-950226	-9 $9^{5} 0655$	$9^{5} 1066$
$4 \cdot 3$	-9 $9^{5} 1460$.95 1837	-952199	$\cdot 9^{5} 2545$	'9 $9^{5} 2876$	-9'3193	-953497	-9 $9^{5} 3788$	-9 $9^{5} 4066$	-954332
$4 \cdot 4$	-954587	.95483I	-955065	-95 5288	-95502	-955706	-9 5902	$\cdot 9^{56089}$	-9 $9^{5} 668$	-956439
4.5	-956602	-9 $9^{5} 759$	-956908	. $9^{5} 7051$	$9^{5} 7187$	-957318	- $9^{5} 7442$.95 ${ }^{5} 7561$.957675	.$^{5} 7784$
4.6	-957888	.$^{5} 7987$	$9^{5} 8081$.958172	-9 ${ }^{5} 8258$	-9 ${ }^{5} 8340$	-9 9^{5419}	-958494	-9.$^{5} 8566$.$^{5} 8634$
4.7	-9 9^{5699}	.$^{9} 8781$	-9 9^{5821}	$\cdot .^{5} 8877$	-9 $9^{5} 8931$	$-9^{5} 8983$	-960320	- $9^{6} 0789$	- $9^{6} 1235$	$\cdot^{6} 1661$
$4 \cdot 8$	- $9^{6} 2067$. $9^{6} 2453$	-962822	. $9^{6} 3173$	-9 $9^{6} 3508$.963827	-964131	. $9^{6} 4420$. $9^{6} 4696$. $9^{6} 4958$
4.9	$\cdot 9^{6} 5208$. $9^{6} 5446$	$\cdot 9^{6} 5673$	$\cdot 9^{6} 5889$	$\cdot 9^{66094}$.966289	. $9^{6} 6475$.966652	.96821	$\cdot 9^{6} 698 \mathrm{r}$

Standard Normal Distribution (Z)

area to the left of $z: \quad P(Z \leq z) \rightarrow$ directly from table
Probability of being smaller than 1.36
0.91309
area to the right of $z: \quad P(Z>z) \rightarrow$ subtracted from 1
Probability of being larger than 1.36

area between two values of $z: P(a \leq Z \leq b)$
\rightarrow subtract $\mathrm{P}(\mathrm{Z} \leq \mathrm{a})$ from $\mathrm{P}(\mathrm{Z} \leq \mathrm{b})$
Probability of $-1.20 \leq Z \leq 1.36$

$$
0.9131-0.1151=0.7980
$$

Standardization (Coding)

What about normal distributions that are not Standard (z)?

If \mathbf{Z} is normal then $\mathbf{X}=\mathbf{a} \mathbf{Z} \mathbf{~} \mathbf{b}$ is normal

$$
Z=\frac{X-b}{a}
$$

Any $\mathbf{X} \sim \mathbf{N}\left(\boldsymbol{\mu}, \boldsymbol{\sigma}^{\mathbf{2}}\right) \quad \rightarrow \quad$ transformed to \mathbf{Z}

Standardization (Coding)

The duration of a project has a normal distribution with mean of 65 days and SD of 5 days.

What is the probability that the project will finish between 55 \&
72.5 days?

$$
\begin{aligned}
& P(55<X<72.5)= \\
& P\left(\frac{55-65}{5}<Z<\frac{72.5-65}{5}\right)= \\
& P(-2<Z<1.5)= \\
& 0.93319-0.02275=0.91044
\end{aligned}
$$

PERT

- Three estimates of duration for each activity: 1. Most optimistic duration: t_{a}

2. Most pessimistic duration: t_{b}
3. Most likely duration: $\quad t_{m}$

Expected duration

$$
\mathrm{t}_{\mathrm{e}}=\left(\mathrm{t}_{\mathrm{a}}+4 \mathrm{t}_{\mathrm{m}}+\mathrm{t}_{\mathrm{b}}\right) / 6
$$

Variance

$$
\sigma^{2}=\left[\left(t_{b}-t_{a}\right) / 6\right]^{2}
$$

$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7{ }^{4} \rightarrow 4 \rightarrow 9$					
Most Probable				$t_{e}=\left(t_{a}+4 t_{m}+t_{b}\right) / 6$	
Optimis		Pessimistic $\sigma^{2}=\left[\left(t_{b}-t_{a}\right) / 6\right]^{2}$			
Activity	t_{a}	t_{m}	t_{b}	Mean $\mu\left(\mathrm{t}_{\mathrm{e}}\right)$	Variance $\boldsymbol{\sigma}^{2}$
1	1	3	5		
2	3	6	9		
3	10	13	19		
4	3	9	12		
5	1	3	8		
6	8	9	16		
7	4	7	13		
8	3	6	9		
9	1	3	8		
Sum					

© F. Sadeghpour

Central Limit Theorem

x_{1} to x_{n} :random variables with normal distributions
t_{1} to t_{n} : mean of durations $\quad v_{1}$ to v_{n} :variances
If $\quad X=x_{1}+x_{2}+\ldots+x_{n}$
Then $T_{x}=t_{1}+t_{2}+\ldots+t_{n}$
$\mathrm{v}_{\mathrm{x}}=\mathrm{v}_{1}+\mathrm{v}_{2}+\ldots+\mathrm{v}_{\mathrm{n}}$
In other words:
The mean of the sum is the sum of means
The variance of the sum is the sum of the variances

Also:

The distribution of the sum of distributions will be normal;
regardless of the shape of each distribution

Central Limit Theorem

X rectangular distribution $R(0,1)$
\bar{X} is the mean of random sample of n values Shape of \bar{X} for different n's:

CLT

If X random variable, has a mean \& variance, then
for sufficiently large $\mathbf{n}>30$
$\overline{\mathbf{X}}$ has approximately
a Normal Distribution

Changes in $\mathbf{s}^{2} \& S^{2}$ with increasing \mathbf{N}

PERT

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{e}}=\left(\mathrm{t}_{\mathrm{a}}+4 \mathrm{t}_{\mathrm{m}}+\mathrm{t}_{\mathrm{b}}\right) / 6 \\
& \sigma^{2}=\left[\left(\mathrm{t}_{\mathrm{b}}-\mathrm{t}_{\mathrm{a}}\right) / 6\right]^{2}
\end{aligned}
$$

Activity	$\mathbf{t}_{\mathbf{a}}$	$\mathbf{t}_{\mathbf{m}}$	$\mathbf{t}_{\mathbf{b}}$	Mean $\boldsymbol{\mu}\left(\mathrm{t}_{\mathrm{e}}\right)$	${\text { Variance } \sigma^{2}}^{\mathbf{1}}$
$\mathbf{1}$	3	5	3	0.44	
$\mathbf{2}$	3	6	9	6	1.00
$\mathbf{3}$	10	13	19	13.5	2.25
$\mathbf{4}$	3	9	12	8.5	2.25
$\mathbf{5}$	1	3	8	3.5	1.36
$\mathbf{6}$	8	9	16	10	1.77
$\mathbf{7}$	4	7	13	7.5	2.25
$\mathbf{8}$	3	6	9	6	1.00
$\mathbf{9}$	1	3	8	3.5	1.36
Sum			$\mathbf{6 1 . 5}$	$\mathbf{1 3 . 6 9}$	

© F. Sadeghpour

Activity	$\mathbf{t}_{\mathbf{a}}$	$\mathbf{t}_{\mathbf{m}}$	$\mathbf{t}_{\mathbf{b}}$	Mean $\boldsymbol{\mu}\left(\mathrm{t}_{\mathrm{e}}\right)$	Variance σ^{2}
$\mathbf{1}$	1	3	5	3	0.44
$\mathbf{2}$	3	6	9	6	1.00
$\mathbf{3}$	10	13	19	13.5	2.25
$\mathbf{4}$	3	9	12	8.5	2.25
$\mathbf{5}$	1	3	8	3.5	1.36
$\mathbf{6}$	8	9	16	10	1.23
$\mathbf{7}$	4	7	13	7.5	2.25
$\mathbf{8}$	3	6	9	6	1.00
$\mathbf{9}$	1	3	8	3.5	1.36
Sum			$\mathbf{6 1 . 5}$	$\mathbf{1 3 . 1 4}$	

PERT - Example

$$
\frac{t_{e}=61.5 \text { days } ; \quad \sigma^{2}=13.14 \text { days } ; \quad \sigma=3.5 \text { days }}{Z=(X-\text { Mean }) / \sigma \quad \rightarrow \quad Z \text {-Table to determine } P}
$$

a) The probability that the project will finish before $\mathbf{6 1 . 5}$ days.

b) The probability that the project will finish before end of day 58.

PERT - Example

$$
\mathrm{t}_{\mathrm{e}}=61.5 \text { days } ; \sigma^{2}=13.14 \text { days } ; \quad \sigma=3.5 \text { days }
$$

$$
Z=(X-\text { Mean }) / \sigma \quad \rightarrow \quad Z \text {-Table to determine } \%
$$

c) The probability that the project will finish more than 2.8 days late.

d) The probability that the project will finish at least 4.2 days early.

e) Completion date to finish with at least a 95% confidence level.

Approximate Probabilities

How many SD from Mean?

$\mathrm{P}(\mu-1 \sigma<\mathbf{X}<\mu+1 \sigma) \sim 0.68$	$\sim 2 / 3$ of cases lie w/in
$\mathbf{P}(\mu-2 \sigma<\mathbf{X}<\mu+2 \sigma) \sim 0.95$	~ 95\% of cases lie w/in 2 SD
$\mathrm{P}(\mu-3 \sigma<\mathbf{X}<\mu+3 \sigma) \sim 0.99$	\sim ALL cases lie w/in 3 SD of μ

	-30	-20	-10	μ	10	20	30
Approximately:	0	2%	15%	50%	85%	98%	100%

Example:

$$
\begin{array}{lrl}
\mathrm{P}(\mu-1 \sigma<\mathrm{X}<\mu+1 \sigma) \sim 0.68 \\
\mathrm{P}(\mu-2 \sigma<\mathrm{X}<\mu+2 \sigma) \sim 0.95 \\
\mathrm{P}(\mu-3 \sigma<\mathrm{X}<\mu+3 \sigma) \sim 0.99
\end{array} \quad \begin{array}{ll}
\sim 2 / 3 \text { of cases lie w/in } & \text { 1 SD of } \mu \\
\sim 95 \% \text { of cases lie w/in } & 2 \text { SD of } \mu \\
\sim \text { ALL cases lie w/in } & \text { 3 SD of } \mu
\end{array}
$$

The duration of a certain project has a mean of 100 and SD of 15.
~ 68\% p project will finish between 85 \& 115
$\sim 95 \%$ p project will finish between 70 \& 130
$\sim 99 \%$ p project will finish between 55 \& 145
~ 2\% p project will take longer than 130
© F. Sadeghpour

PERT $1,2,3,4,5,6 \rightarrow 7 \rightarrow 8 \rightarrow 9$

$t_{e}=61.5$ days $; \quad \sigma^{2}=13$ days $; \quad \sigma=3.5$ days
What is:
a) The probability that the project will finish within 61.5 days.
b) The probability that the project will finish before day 58 .
c) The probability that the project will finish more than 3.5 days late.
d) The probability that the project will finish at least 7 days early.
e) The completion date with 95% confidence level.

PERT

Program Evaluation \& Review Technique

- Expected duration

$$
\mathrm{t}_{\mathrm{e}}=\left(\mathrm{t}_{\mathrm{a}}+4 \mathrm{t}_{\mathrm{m}}+\mathrm{t}_{\mathrm{b}}\right) / 6
$$

- Variance

$$
\sigma^{2}=\left[\left(t_{b}-t_{a}\right) / 6\right]^{2}
$$

- Standard deviation
σ
- Probability of completion with certain days $Z=(X-$ Mean $) / \sigma \quad \rightarrow \quad$ Z-Table to determine P

PERT - Notation

ADM: Activity Diagram Method commonly used for PERT

What is the probability of finishing this project within 25 days?

Floats in PERT

In PERT floats are commonly referred to as "Slack"

\rightarrow Z-Table to determine \mathbf{P}

Float (Slack) in PERT

Example: What is the probability of "C complete Start D" slack >0?

Closing Notes:

- Shortcoming of PERT:

Does not consider all scenarios
Focus on CP
e.g. subcritical paths

Monte Carlo Simulation

- A class of computational algorithms
- Rely on repeated random sampling
- Projects associated with high degree of uncertainty
\rightarrow unpredictable nature of events
- Application example: Probabilistic Scheduling

```
History: Invented in1940's - nuclear weapon projects
Manhattan Project: US, UK, Canada
\(1^{\text {st }}\) atomic bomb World War II
Named after gambling uncle!
```

© F. Sadeghpour

PERT

Program Evaluation \& Review Technique

- Expected duration

$$
\mathrm{t}_{\mathrm{e}}=\left(\mathrm{t}_{\mathrm{a}}+4 \mathrm{t}_{\mathrm{m}}+\mathrm{t}_{\mathrm{b}}\right) / 6
$$

- Variance

$$
\sigma^{2}=\left[\left(t_{b}-t_{a}\right) / 6\right]^{2}
$$

- Standard deviation σ
- Probability of completion with certain days $Z=(X-M e a n) / \sigma \rightarrow Z$-Table to determine \%

.08

운 No웅				$\begin{aligned} & \infty \text { o } \\ & 0 \text { N } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Y		Hon Ni N	$\begin{aligned} & \infty \\ & \stackrel{\circ}{j} \\ & \text { en } \end{aligned}$	$\begin{aligned} & \text { fo } \\ & \hline \end{aligned}$
F			\circ						$\begin{aligned} & \text { N} \\ & \text { w} \\ & \stackrel{y}{*} \end{aligned}$
7							Nomm		
				N or or or ọ	○	ب̣ ب̣ ب̣ ?̣	ọ	بo	
11111	11111				べ心へ11	バMツツ	Minim	11111	íli

웅

