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Abstract—This paper presents a sum-of-squares (SOS) ap-
proach to polynomial fuzzy observer designs for three classes
of polynomial fuzzy systems. The proposed SOS-based frame-
work provides a number of innovations and improvements over
the existing linear matrix inequality (LMI)-based approaches to
Takagi–Sugeno (T–S) fuzzy controller and observer designs. First,
we briefly summarize previous results with respect to a polyno-
mial fuzzy system that is a more general representation of the
well-known T–S fuzzy system. Next, we propose polynomial fuzzy
observers to estimate states in three classes of polynomial fuzzy
systems and derive SOS conditions to design polynomial fuzzy
controllers and observers. A remarkable feature of the SOS design
conditions for the first two classes (Classes I and II) is that they
realize the so-called separation principle, i.e., the polynomial fuzzy
controller and observer for each class can be separately designed
without lack of guaranteeing the stability of the overall control
system in addition to converging state-estimation error (via the
observer) to zero. Although, for the last class (Class III), the sepa-
ration principle does not hold, we propose an algorithm to design
polynomial fuzzy controller and observer satisfying the stability
of the overall control system in addition to converging state-esti-
mation error (via the observer) to zero. All the design conditions
in the proposed approach can be represented in terms of SOS and
are symbolically and numerically solved via the recently developed
SOSTOOLS and a semidefinite-program solver, respectively. To
illustrate the validity and applicability of the proposed approach,
three design examples are provided. The examples demonstrate
the advantages of the SOS-based approaches for the existing LMI
approaches to T–S fuzzy observer designs.

Index Terms—Polynomial fuzzy observer, polynomial fuzzy sys-
tem, separation principle, stability, sum of squares (SOS).

I. INTRODUCTION

THE TAKAGI–SUGENO (T–S) fuzzy-model-based con-
trol methodology [1], [2] has received a great deal of at-

tention after linear matrix inequality (LMI)-based designs have
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been discussed in [3] and [4]. The fuzzy-model-based control
methodology provides a natural, simple, and effective design
approach to complement other nonlinear control techniques
(e.g., [5]) that require special and rather involved knowledge.

Recently, the authors have first presented a sum-of-squares
(SOS) approach [6]–[11] to polynomial fuzzy control system
designs. This is a completely different approach from the
existing LMI approaches [2], [12]–[27]. Our SOS approach
[6]–[11] provided more extensive results for the existing LMI
approaches to T–S fuzzy model and control. However, to the
best of our knowledge, there exists no literature on SOS-based
observer designs for polynomial fuzzy systems.

This paper presents SOS-based observer designs to estimate
the states of polynomial fuzzy systems. The proposed SOS-
based framework for polynomial fuzzy systems provides a
number of innovations and improvements over the existing
LMI approaches to T–S fuzzy-observer-based control, e.g., [2],
[12], and [13]. First, it is known that nonlinear systems with
polynomial terms cannot be generally converted to globally
exact T–S fuzzy models. Only local or semiglobal T–S fuzzy
models can be constructed for such nonlinear systems [2]. Thus,
resulting control design conditions guarantee global stabiliza-
tion and global state-estimation convergence only for local or
semiglobal models but not always guarantee global stabilization
and global state-estimation convergence for original nonlinear
systems. On the other hand, it is possible to convert even
nonlinear systems with polynomial terms to globally exact
polynomial fuzzy models. Hence, all the conditions derived
here guarantee global stabilization and global state-estimation
convergence for original nonlinear systems that are perfectly
equivalent to polynomial fuzzy models. Second, even if local
or semiglobal T–S fuzzy models are permitted to be used in
practical sense, variables in polynomial terms appear in premise
(part) variables of T–S fuzzy models. In polynomial fuzzy
models, variables in polynomial terms do not appear in their
premise parts and remain in system polynomial matrices Ai

and Bi in consequent parts of polynomial fuzzy models. The
difference is quite large from fuzzy observer design points of
view. In general, fuzzy observer designs are not permitted to
have premise variables depending on the states to be estimated.
Therefore, T–S fuzzy observer designs cannot be generally ap-
plied to nonlinear systems with polynomial terms. Conversely,
the polynomial fuzzy observer designs proposed in this paper
can be applied to even such systems. We will see these facts in
the design examples later.

This paper presents three types of SOS-based observer de-
signs according to three classes of polynomial fuzzy systems.

1083-4419/$31.00 © 2012 IEEE
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First, we present an observer-based design for the polynomial
fuzzy systems with the polynomial matrices Ai and Bi being
independent of the states x to be estimated (shortly name it
as Class I). Second, we discuss an observer-based design for a
wider class of polynomial fuzzy systems with the polynomial
matrices Ai that are permitted to be dependent of the states
x to be estimated (shortly name it as Class II). It should be
emphasized that this paper realizes the so-called separation
design for both of the classes. This paper also presents a
polynomial fuzzy observer design for a more complicated class
of polynomial fuzzy systems, i.e., the polynomial fuzzy systems
with the polynomial matrices Ai and Bi that are permitted
to be dependent of the states x to be estimated (shortly name
it as Class III). All the design conditions discussed here are
represented in terms of SOS.

It is well known that stability conditions for the T–S fuzzy
system reduce to LMIs, e.g., [2]. Hence, the stability conditions
can be solved numerically and efficiently by interior point
algorithms, e.g., by LMI solvers. On the other hand, some
kinds of control design conditions [6]–[11] for polynomial
fuzzy systems reduce to SOS problems. Clearly, the problems
are never directly solved by LMI solvers and can be solved
via the SOSTOOLS [28] and a semidefinite-program (SDP)
solver. Thus, SOS can be regarded as an extensive represen-
tation of LMIs. The computational method used in this paper
relies on the SOS decomposition of multivariate polynomials.
A multivariate polynomial f(x(t)) (where x(t) ∈ Rn) is an
SOS if there exist polynomials f1(x(t)), . . . , fk(x(t)) such
that f(x(t)) =

∑k
i=1 f2

i (x(t)). It is clear that f(x(t)) being
an SOS naturally implies f(x(t)) ≥ 0 for all x(t) ∈ Rn. For
more details of SOS, see [28].

The rest of this paper is organized as follows. Section II
recalls a polynomial fuzzy system defined in [6]–[11].
Sections III–V discuss SOS-based polynomial fuzzy controller
and observer designs for Classes I, II, and III, respectively. In
addition, each section entails a design example to demonstrate
the viability of our SOS design approach.

In this paper, to save space, we employ the following short
notations with respect to matrix representation:

L{M} =MT + M ,
E1 = diag[ε11 ε12 · · · ε1s]

E2i(x) = diag [ε2i1(x) ε2i2(x) · · · ε2is(x)]

where M is an arbitrary square matrix. ε1k (k = 1, 2, . . . , s)
has positive values, and ε2ik(x) (i = 1, 2, . . . , r; k = 1, 2,
. . . , s) represents nonnegative polynomials such that ε2ik(x) >
0 for x �= 0. ε1k and ε2ik(x) (E1 and E2i(x)) will be used as
slack variables (matrices) to keep positivity of SOS conditions
derived in this paper. s is the matrix size of E1 and E2i(x) that
are assumed to have appropriate dimensions. r is the number of
fuzzy model rules.

II. T–S FUZZY MODEL AND POLYNOMIAL FUZZY MODEL

In this section, we recall the T–S fuzzy model. The T–S fuzzy
model is described by fuzzy IF–THEN rules which represent
local linear input–output relations of a nonlinear system. The
main feature of this model is to express the local dynamics of

each fuzzy implication (rule) by a linear system model. The
overall fuzzy model of the system is achieved by fuzzy blending
of the linear system models.

Consider the following nonlinear system:

ẋ(t) = f (x(t),u(t)) (1)

where f is a smooth nonlinear function such that f(0, 0) =
0. x(t) = [x1(t) x2(t) · · · xn(t)]T is the state vector, and
u(t) = [u1(t) u2(t) · · · um(t)]T is the input vector. Based on
the sector nonlinearity concept [2], we can exactly represent
(1) with the following T–S fuzzy model (globally or at least
semiglobally):

Model Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then ẋ(t) = Aix(t) + Biu(t), i = 1, 2, . . . , r (2)

where zj(t)(j = 1, 2, . . . , p) is the premise variable. The mem-
bership function associated with the ith model rule and the
jth premise variable component is denoted by Mij . r denotes
the number of model rules. Note that zj(t) is assumed to be
independent of the states x to be estimated. In other words, each
zj(t) is a measurable time-varying quantity that may be states,
measurable external variables, and/or time. The defuzzification
process of the model (2) can be represented as

ẋ(t) =

r∑
i=1

wi (z(t)) {Aix(t) + Biu(t)}
r∑

i=1

wi (z(t))

=
r∑

i=1

hi (z(t)) {Aix(t) + Biu(t)} (3)

where

z(t) = [z1(t) · · · zp(t)]

wi (z(t)) =
p∏

j=1

Mij (zj(t)) .

It should be noted from the properties of membership functions
that the following relations hold:

r∑
i=1

wi (z(t)) > 0, wi (z(t)) ≥ 0; i = 1, 2, . . . , r

Hence

hi (z(t)) =
wi (z(t))

r∑
i=1

wi (z(t))
≥ 0

r∑
i=1

hi (z(t)) = 1.

In [6] and [9], we proposed a new type of fuzzy model
with polynomial model consequence, i.e., a fuzzy model whose
consequent parts are represented by polynomials. Using the
sector nonlinearity concept [2], we exactly represent (1) with
the following polynomial fuzzy model (4). The main difference
between the T–S fuzzy model [29] and the polynomial fuzzy
model is the consequent part representation. The following
fuzzy model has a polynomial model consequence.
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Model Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then ẋ(t) = Ai (x(t)) x(t) + Bi (x(t)) u(t) (4)

where i = 1, 2, . . . , r. r denotes the number of model rules.
Ai(x(t)) ∈ Rn×n and Bi(x(t)) ∈ Rn×m are polynomial ma-
trices in x(t). Therefore, Ai(x(t))x(t) + Bi(x(t))u(t) is a
polynomial vector. Thus, the polynomial fuzzy model (4) has
a polynomial in each consequent part.

The defuzzification process of the model (4) can be repre-
sented as

ẋ(t) =
r∑

i=1

hi(z(t)) {Ai(x(t)) x(t)+Bi (x(t)) u(t)} . (5)

Thus, the overall fuzzy model is achieved by fuzzy blending of
the polynomial system models.

Remark 1: The polynomial fuzzy model is an extension of
the T–S fuzzy model. Hence, the SOS conditions derived in
this paper may be regarded as an extension of the previous LMI
conditions for the T–S fuzzy model. However, it will be seen
through the design examples in this paper that the polynomial
fuzzy models are exact global models for the original nonlinear
systems, although the T–S fuzzy models are not global models
for the original nonlinear systems. In addition, the previous T–S
fuzzy observer technique does not work completely for both of
Classes II and III due to a premise variable restriction. For more
details, we will mention it again in the design examples later.

As will be mentioned later, it is in general difficult to
separately design a polynomial controller and a polynomial
observer for (5) since Ai(x(t)) and Bi(x(t)) are dependent
on the states x(t) to be estimated. Hence, as a first step, we
introduce the following representation of polynomial fuzzy
systems:

ẋ(t)=
r∑

i=1

hi (z(t)){Ai (ρA(t)) x(t)+Bi (ρB(t)) u(t)} (6)

where (6) reduces to (5) when ρA(t) = ρB(t) = x(t). In this
paper, we discuss three types of polynomial-observer-based
control according to three classes of polynomial fuzzy sys-
tems.

1) Class I: ρA(t) = ζ(t), and ρB(t) = ζ(t).
2) Class II: ρA(t) = x(t), and ρB(t) = ζ(t).
3) Class III: ρA(t) = ρB(t) = x(t).
ζ(t) is a measurable time-varying vector that may be mea-

surable external variables, outputs, and/or time. In other words,
ζ(t) is assumed to be independent of the states x(t) to be
estimated. As we can see, Class III is the most complicated
class.

From now, to lighten the notation, we will drop the notation
with respect to time t. For instance, we will employ x and
x̂ instead of x(t) and x̂(t), respectively, where x̂(t) denotes
the state estimated by a polynomial fuzzy observer, as will be
discussed later. Thus, we drop the notation with respect to time
t, but it should be kept in mind that x and x̂ means x(t) and
x̂(t), respectively.

Next, we define the outputs for the polynomial fuzzy
model as

y =
r∑

i=1

hi(z)Cix (7)

where y ∈ R
q is the output.

III. POLYNOMIAL CONTROLLER AND

OBSERVER DESIGN (CLASS I)

Consider the following polynomial fuzzy system. The system
matrices Ai and Bi depend on the vector ζ⎧⎪⎪⎨

⎪⎪⎩
ẋ =

r∑
i=1

hi(z) {Ai(ζ)x + Bi(ζ)u}

y =
r∑

i=1

hi(z)Cix
(8)

where y ∈ R
q denotes the output.

We design a polynomial fuzzy observer to estimate the states
of (8)⎧⎪⎪⎨
⎪⎪⎩

˙̂x =
r∑

i=1

hi(z) {Ai(ζ)x̂ + Bi(ζ)u + Li(ζ)(y − ŷ)}

ŷ =
r∑

i=1

hi(z)Cix̂
(9)

where x̂ ∈ R
n is the sate vector estimated by the fuzzy ob-

server and ŷ ∈ R
q is estimated output calculated from ŷ =∑r

i=1 hi(z)Cix̂.
To stabilize the system (8) and (9), we design a polynomial

fuzzy controller with the state feedback estimated by the poly-
nomial fuzzy observer

u = −
r∑

i=1

hi(z)F i(ζ)x̂. (10)

Theorem 1 provides SOS conditions to separately design
the polynomial fuzzy controller (10) and the polynomial fuzzy
observer (9).

Theorem 1: If there exist positive definite matrices X1 ∈
R

n×n and X2 ∈ R
n×n and polynomial matrices M i(ζ) ∈

R
p×n and N i(ζ) ∈ R

n×q such that the following conditions
are satisfied, the polynomial fuzzy controller (10) stabilizes the
system (8), and the estimation error via the polynomial observer
(9) tends to zero:

vT
1 (X1 − E1)v1 is SOS (11)

vT
2 (X2 − E2)v2 is SOS (12)

− vT
3 (L{Ai(ζ)X1 − Bi(ζ)M i(ζ)} + E3i(ζ)) v3

is SOS (13)

− vT
4 (L{X2Ai(ζ) − N i(ζ)Ci} + E4i(ζ)) v4

is SOS (14)

− vT
5 (L{Ai(ζ)X1 − Bi(ζ)M j(ζ)}

+L{Aj(ζ)X1 − Bj(ζ)M i(ζ)}) v5 is SOS (15)

− vT
6 (L{X2Ai(ζ) − N i(ζ)Cj}

+L{X2Aj(ζ) − N j(ζ)Ci}) v6 is SOS (16)
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where v1, v2, v3, v4, v5, and v6 ∈ R
n denote the vec-

tors that are independent of x, x̂, and ζ. From the solu-
tions X1 and M i(ζ), we obtain polynomial feedback gains
F i(ζ) as F i(ζ) = M i(ζ)X−1

1 . From the solutions X2 and
N i(ζ), we obtain polynomial observer gains Li(ζ) as Li(ζ) =
X−1

2 N i(ζ) as well.
Proof: We define the estimation error vector e as e = x −

x̂. Then, the error dynamics can be described as

ė =
r∑

i=1

r∑
j=1

hi(z)hj(z) {Ai(ζ) − Li(ζ)Cj} e.

Next, using the augmented vector xv = [x̂T eT]
T

, the aug-
mented system consisting of the system, the polynomial fuzzy
controller, and the observer can be represented as

ẋv =
r∑

i=1

r∑
j=1

hi(z)hj(z)Gij(ζ)xv

=
r∑

i=1

h2
i (z)Gii(ζ)xv

+
r∑

i=1

r∑
i<j

hi(z)hj(z) (Gij(ζ) + Gji(ζ)) xv (17)

where

Gij(ζ) =
[

G11ij
(ζ) G12ij

(ζ)
0 G22ij

(ζ)

]

G11ij
(ζ) =Ai(ζ) − Bi(ζ)F j(ζ)

G12ij
(ζ) =Li(ζ)Cj

G22ij
(ζ) =Ai(ζ) − Li(ζ)Cj .

Next, consider a candidate Lyapunov function

V (xv) = xT
v X̃xv (18)

where

X̃ =
[

αX−1
1 0

0 X2

]
. (19)

α has a positive value, and X−1
1 ∈ R

n×n and X2 ∈ R
n×n are

positive definite matrices. Note that V (xv) > 0 at xv �= 0. It is
clear from the Lyapunov theory that the overall control system
(17) is stable if it is proved that V̇ (xv) < 0 at xv �= 0.

The time derivative of V (xv) along the trajectory of the
system is obtained as

V̇ (xv) =
r∑

i=1

r∑
j=1

hi(z)hj(z)xT
v L

{
X̃Gij(ζ)

}
xv

=
r∑

i=1

h2
i (z)xT

v L
{

X̃Gii(ζ)
}

xv

+
r∑

i=1

r∑
i<j

hi(z)hj(z)

× xT
v L

{
X̃ (Gij(ζ) + Gji(ζ))

}
xv.

If the following conditions are satisfied, V̇ (xv) < 0 at xv �= 0:

L
{

X̃Gii(ζ)
}

< 0 (20)

L
{

X̃ (Gij(ζ) + Gji(ζ))
}
≤ 0, i < j ≤ r. (21)

(20) can be rewritten as

L
{

X̃Gii(ζ)
}

=
[

αΩ11ii
(ζ) αΩ12ii

(ζ)
αΩT

12ii
(ζ) Ω22ii

(ζ)

]
< 0 (22)

where

Ω11ii
(ζ) =L

{
X−1

1 G11ii
(ζ)

}
Ω12ii

(ζ) = X−1
1 G12ii

(ζ)

Ω22ii
(ζ) =L{X2G22ii

(ζ)} .

From the Schur complement, (22) can be converted into

Ω22ii
(ζ) < 0 (23)

Ω11ii
(ζ) − αΩ12ii

(ζ) (Ω22ii
(ζ))−1 ΩT

12ii
(ζ) < 0. (24)

From (23) and (24), we have

Ω11ii
(ζ) < αΩ12ii

(ζ) (Ω22ii
(ζ))−1 ΩT

12ii
(ζ) ≤ 0.

Hence, if the following conditions hold, then (20) is satisfied:

L
{
X−1

1 (Ai(ζ) − Bi(ζ)F i(ζ))
}

< 0 (25)

L{X2 (Ai(ζ) − Li(ζ)Ci)} < 0. (26)

Multiplying both sides of (25) by X1 and defining a new vari-
able M i(ζ) = F i(ζ)X1, we obtain the following conditions:

L{Ai(ζ)X1 − Bi(ζ)M i(ζ)} < 0. (27)

Defining another new variable N i(ζ) = X2Li(ζ), (26) can be
described as

L{X2Ai(ζ) − N i(ζ)Ci} < 0. (28)

In the same way as above, (21) can be also represented as

L{Ai(ζ)X1 − Bi(ζ)M j(ζ)

+ Aj(ζ)X1 − Bj(ζ)M i(ζ)} ≤ 0 (29)

L{X2Ai(ζ) − N i(ζ)Cj

+ X2Aj(ζ) − N j(ζ)Ci} ≤ 0 (30)

for i < j ≤ r. It is clear from the inequality conditions
(27)–(30) that V̇ (xv) < 0 at xv �= 0 if the SOS conditions
(11)–(16) hold. �

Remark 2: The conditions (11), (13), and (15) are for SOS
conditions of polynomial fuzzy controller design. The condi-
tions (12), (14), and (16) are for SOS conditions of polynomial
fuzzy observer design. Thus, Theorem 1 provides SOS design
conditions to separately design polynomial fuzzy controllers
and observers.
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Remark 3: If Ai(ζ), Bi(ζ), Li(ζ), and F i(ζ) reduce
to constant matrices in (8)–(10), they reduce to the ordinary
T–S fuzzy model and the T–S fuzzy controller and observer,
respectively. In addition, Theorem 1 reduces to the existing LMI
design conditions, e.g., [13], for the T–S fuzzy controller and
observer. Hence, Theorem 1 provides more general results.

Remark 4: Currently, SOS programs (SOSPs) are solved
by reformulating them as SDPs, which, in turn, are solved effi-
ciently, e.g., using interior point methods. Several commercial,
as well as noncommercial, software packages are available for
solving SDPs. While the conversion from SOSPs to SDPs can
be manually performed for small-size instances or tailored for
specific problem classes, such a conversion can be quite cum-
bersome to perform in general. It is therefore desirable to have a
computational aid that automatically performs this conversion
for general SOSPs. This is exactly where SOSTOOLS comes
to play. SOSTOOLS automates the conversion from SOSP to
SDP, called the SDP solver, and converts the SDP solution back
to the solution of the original SOSP. At present, it uses other
free MATLAB add-ons such as SeDuMi [30] or SDPT3 [31]
as the SDP solver. It should be noted that we can numerically
find the SOS variables (matrices) X1, X2, M i(ζ), and N i(ζ)
satisfying the SOS conditions in Theorem 1 via SeDuMi in
addition to SOSTOOLS because Theorem 1 provides the SOS
conditions that are convex with respect to the SOS variables
(matrices) X1, X2, M i(ζ), and N i(ζ). If nonconvex terms
exist in SOS conditions, they cannot be numerically solved
in general even via SOSTOOLS and SeDuMi. All the SOS
conditions derived in this paper are convex with respect to SOS
variables. Thus, our SOS-based designs proposed in this paper
become numerically feasible problems. For more details of how
to solve the SDPs using SeDuMi, see [28] and [30].

Remark 5: To obtain more reliable solutions for SOS
conditions, we perform the following double checking through-
out this paper. We first carefully check whether the command
“sossolve” finds a solution without any error messages, i.e.,
pinf = 0, dinf = 0, and numerr = 0, or not. If any error
messages exist, we judge it as “infeasible.” After getting the
feasible solutions using the command “sossolve,” the “find-
sos” command is employed to check the feasibility of SOS
conditions by substituting solutions into SOS conditions. We
also carefully check whether the command “findsos” provides a
feasibility solution or not. If the command “findsos” returns an
infeasible result, we also judge it as “infeasible.” This double
checking is important to have reliable solutions in the use of
SOSTOOLS [28] and SeDuMi [30].

Remark 6: The conditions ε1k > 0, ε2k > 0, ε3ik(ζ) >
0, and ε4ik(ζ) > 0 for ζ �= 0 can be accommodated by SOS
optimization in a similar way as in [32].

A) Design Example I: Consider the following nonlinear
system:

{
ẋ1 = 0.1x3

1 − x2 + u
ẋ2 = sin x1 − x2

1x2
(31)

This system has polynomial terms 0.1x3
1 and x2

1x2. To obtain
a T–S fuzzy model using the well-known sector nonlinearity
[2], we need to assume the range of x1, i.e., x1 ∈ [−d d],

Fig. 1. System behavior without input.

where d has a positive value. For x1 outside the range, i.e.,
x1 < −d or x1 > d, the T–S fuzzy model dynamics never agree
with the original system dynamics. Thus, the T–S fuzzy model
constructed for (31) is a local model. This means that the T–S
fuzzy model stabilization and state-estimation convergence are
not guaranteed for x1 outside the range. Conversely, the poly-
nomial fuzzy model constructed in this example can exactly and
globally represent the dynamics of the original system.

Assume that x1 is measurable and y = x1. Fig. 1 shows the
behavior of this system without input. It can be seen that the
system is unstable.

2) Existing LMI Design Approach Based on T–S Fuzzy Sys-
tems: The existing LMI design approach for T–S fuzzy models
can be applied only to Class I. First, we construct the following
T–S fuzzy model for the nonlinear dynamics using the sector
nonlinearity idea [2]:⎧⎪⎪⎨

⎪⎪⎩
ẋ =

r∑
i=1

hi(z) {Aix + Biu}

y =
r∑

i=1

hi(z)Cix
(32)

where

A1 =
[

0.1d2 −1
1 −d2

]
A2 =

[
0.1d2 −1
−0.217 −d2

]

A3 =
[

0 −1
1 0

]
A4 =

[
0 −1

−0.217 0

]

B1 = B2 = B3 = B4 =
[

1
0

]

C1 = C2 = C3 = C4 = [ 1 0 ]

h1(z) =
x2

1

d2

sinx1 + 0.217x1

1.217x1

h2(z) =
x2

1

d2

x1 − sinx1

1.217x1

h3(z) =
d2 − x2

1

d2

sin x1 + 0.217x1

1.217x1

h4(z) =
d2 − x2

1

d2

x1 − sin x1

1.217x1
.
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As mentioned just before, to obtain the T–S fuzzy model, we
need to assume the modeling range of x1, i.e., −d < x1 < d,
where d > 0, since the original nonlinear system has polyno-
mial terms. This means that the constructed fuzzy model is a
semiglobal model even if we select a larger value of d. We can
see in Section III-A2 that the polynomial fuzzy model becomes
a global model that is equivalent to the nonlinear dynamics of
(31) for any x1. This is an advantage point using the polynomial
fuzzy model and our SOS-based designs. In addition, it should
be noted that the existing LMI design approach for T–S fuzzy
models cannot be applied to more complicated classes, i.e.,
Classes II and III.

The LMI design conditions [2], [13] based on T–S fuzzy
systems are derived as

P 1,P 2 > 0 (33)
P 1A

T
i − MT

1iB
T
i + AiP 1 − BiM1i < 0 (34)

AT
i P 2 − CT

i NT
2i + P 2Ai − N2iCi < 0 (35)

P 1A
T
i − MT

1jB
T
i + AiP 1 − BiM1j+P 1A

T
j

−MT
1iB

T
j + AjP 1 − BjM1i < 0, i < j (36)

AT
i P 2 − CT

j NT
2i + P 2Ai − N2iCj+AT

j P 2

−CT
i NT

2j + P 2Aj − N2jCi < 0, i < j. (37)

For all the ranges from a smaller d (d = 10−3) to a larger
d (d = 109), the LMI conditions (33)–(37) are infeasible. This
means that the T–S fuzzy controller and observer for the non-
linear system cannot be designed using the existing approach.
Conversely, we will see in Section III-A2 that the SOS design
approach based on the polynomial fuzzy systems realizes that
the polynomial fuzzy controller stabilizes the system and the
estimation error via the polynomial fuzzy observer tends to
zero.

3) SOS Design Approach Based on Polynomial Fuzzy Sys-
tems: The dynamics of the nonlinear system (31) can be ex-
actly represented as the polynomial fuzzy system (8), where
r = 2, z = ζ = y

A1(ζ) =
[

0.1y2 −1
1 −y2

]
A2(ζ) =

[
0.1y2 −1

−0.2172 −y2

]

B1(ζ) = B2(ζ) =
[

1
0

]
C1 = C2 = [ 1 0 ]

h1(z) =
sin y + 0.2172y

1.2172y
h2(z) =

y − sin y

1.2172y
.

By solving the SOS conditions in Theorem 1, we have X1, X2,
M i(ζ), and N i(ζ), where the orders of M i(ζ) and N i(ζ) are
two. e−10 and e−2 mean 10−10 and 10−2, respectively

X1 =
[

0.61825 −0.5326e−10

−0.5326e−10 0.42137

]

X2 =
[

0.68214 0.27426
0.27426 0.46738

]

M1(ζ)=[ 0.14778+0.41613y2 0.19687−0.53405e−2y2 ]
M2(ζ)=[ 0.44549+0.41613y2 −0.55566−0.53404e−2y2 ]

N1(ζ)=
[

0.61756 + 0.42283y2

−0.20621 − 0.21828y2

]

N2(ζ)=
[

0.30425 + 0.42283y2

−0.72299 − 0.21828y2

]
.

Fig. 2. Control and estimation results.

Fig. 3. Control trajectory for same initial states as in Fig. 1.

From the solutions X1, X2, M i(ζ), and N i(ζ), the poly-
nomial feedback gains F i(ζ) and observer gains Li(ζ) are
given as

F 1(ζ)=[ 0.23903+0.67308y2 0.46721−0.12674e−1y2 ]

F 2(ζ)=[ 0.72057+0.67308y2 −1.31870−0.12674e−1y2 ]

L1(ζ)=
[

1.41704 + 1.05701y2

−1.27273 − 1.08729y2

]

L2(ζ)=[ 1.39773 + 1.05701y2 −2.36709 − 1.08729y2 ] .

Fig. 2 shows the control and estimation results by the designed
polynomial fuzzy controller and observer with their gains
F i(ζ) and Li(ζ), where the initial states are x(0) = [5 5] and
x̂(0) = [−5 − 5]. Fig. 3 shows the phase plot of the control
results for the same initial states as in Fig. 1. It can be seen from
these figures that the polynomial fuzzy controller stabilizes the
system and the estimation error via the polynomial observer
tends to zero.

IV. POLYNOMIAL CONTROLLER AND

OBSERVER DESIGN (CLASS II)

In Section III, we discussed an observer design for the
polynomial fuzzy system (8) with Ai(ζ) and Bi(ζ) matrices.
This section presents a more complicated class, i.e., Ai depends
on the state x instead of the vector ζ. Although the separation
design for Class II is difficult, we derive SOS conditions to
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achieve it in this section. The reason will be mentioned in
Remark 7. Consider the following polynomial fuzzy system:⎧⎪⎪⎨

⎪⎪⎩
ẋ =

r∑
i=1

hi(z) {Ai(x)x + Bi(ζ)u}

y =
r∑

i=1

hi(z)Cix.
(38)

We design a polynomial fuzzy observer to estimate the states
of (38)⎧⎪⎪⎨

⎪⎪⎩
˙̂x=

r∑
i=1

hi(z) {Ai(x̂)x̂+Bi(ζ)u + Li(x̂)(y−ŷ)}

ŷ=
r∑

i=1

hi(z)Cix̂.
(39)

To stabilize the system, we design a polynomial fuzzy con-
troller with the state feedback estimated by the polynomial
observer

u = −
r∑

i=1

hi(z)F i(x̂)x̂. (40)

The difference between (40) and (10) is that (40) has the
polynomial feedback gains in x̂ instead of those in ζ in (10).
Theorem 2 provides SOS conditions to separately design the
polynomial fuzzy controller (40) and the polynomial fuzzy
observer (39).

Theorem 2: If there exist positive definite matrices X1 ∈
R

n×n and X2 ∈ R
n×n and polynomial matrices M i(x̂) ∈

R
p×n and N i(x̂) ∈ R

n×q satisfying the following conditions,
the polynomial fuzzy controller (40) stabilizes the system (38)
and the estimation error via the polynomial fuzzy observer (39)
tends to zero

vT
1 (X1 − E1)v1 is SOS (41)

vT
2 (X2 − E2)v2 is SOS (42)

− vT
3 (L{Ai(x̂)X1 − Bi(ζ)M i(x̂)}

+E3i(ζ, x̂)) v3 is SOS (43)

− vT
4

(
L

{
X2Āi(x, x̂) − N i(x̂)Ci

}
+E4i(x, x̂)) v4 is SOS (44)

− vT
5 (L{Ai(x̂)X1 − Bi(ζ)M j(x̂)}

+L{Aj(x̂)X1 − Bj(ζ)M i(x̂)}) v5

is SOS, i < j ≤ r (45)

− vT
6

(
L

{
X2Āi(x, x̂) − N i(x̂)Cj

}
+L

{
X2Āj(x, x̂) − N j(x̂)Ci

})
v6

is SOS, i < j ≤ r (46)

where Āi(x, x̂)e=Ai(x)x−Ai(x̂)x̂. v1,v2,v3,v4,v5,v6∈
R

n denote the vectors that are independent of x, x̂, and ζ. From
the solutions X1 and M i(x̂), we obtain polynomial feedback
gains F i(x̂) as F i(x̂) = M i(x̂)X−1

1 . From the solutions X2

and N i(x̂), we obtain polynomial observer gains Li(x̂) as
Li(x̂) = X−1

2 N i(x̂) as well.

Proof: Consider the estimation error e = x − x̂ by the
observer. Then, the error system with respect to e can be
represented as

ė =
r∑

i=1

r∑
j=1

hi(z)hj(z) {Ai(x)x − Ai(x̂)x̂ − Li(x̂)Cje}

=
r∑

i=1

r∑
j=1

hi(z)hj(z)
{
Āi(x, x̂) − Li(x̂)Cj

}
e

where Ā(x, x̂)e = A(x)x − A(x̂)x̂. The augmented system

with the augmented vector xv = [x̂T eT]
T

is given as

ẋv =
r∑

i=1

r∑
j=1

hi(z)hj(z)

×
{

Ai(x̂) − Bi(ζ)F j(x̂) Li(x̂)Cj

0 Āi(x, x̂) − Li(x̂)Cj

]
xv

=
r∑

i=1

h2
i (z)Gii(x, ζ, x̂)xv

+
r∑

i=1

r∑
i<j

hi(z)hj(z) (Gij(x, ζ, x̂)+Gji(x, ζ, x̂)) xv (47)

where

Gij(x, ζ, x̂) =
{

G11ij
(ζ, x̂) G12ij

(x̂)
0 G22ij

(x, x̂)

]

G11ij
(ζ, x̂) =Ai(x̂) − Bi(ζ)F j(x̂)

G12ij
(x̂) =Li(x̂)Cj

G22ij
(x, x̂) = Āi(x, x̂) − Li(x̂)Cj .

Now, consider a candidate of Lyapunov function

V (xv) = xT
v X̃xv (48)

where

X̃ =
[

αX−1
1 0

0 X2

]
. (49)

α has a positive value, and X−1
1 ∈ R

n×n and X2 ∈ R
n×n are

positive definite matrices. Note that V (xv) > 0 at xv �= 0. It is
clear from the Lyapunov theory that the overall control system
(47) is stable if it is proved that V̇ (xv) < 0 at xv �= 0.

The time derivative of V (xv) along the trajectory of the
system is obtained as

V̇ (xv) =
r∑

i=1

r∑
j=1

hi(z)hj(z)xT
v L

{
X̃Gij(x, ζ, x̂)

}
xv

=
r∑

i=1

h2
i (z)xT

v L
{

X̃Gii(x, ζ, x̂)
}

xv

+
r∑

i=1

r∑
i<j

hi(z)hj(z)

× xT
v L

{
X̃ (Gij(x, ζ, x̂) + Gji(x, ζ, x̂))

}
xv.
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If the following conditions are satisfied, V̇ (xv) < 0 at xv �= 0:

L
{

X̃Gii(x, ζ, x̂)
}

<0 (50)

L
{

X̃ (Gij(x, ζ, x̂)+Gji(x, ζ, x̂))
}
≤0, i<j≤r. (51)

As well as in Theorem 1, (50) can be separately rewritten as

L
{
X−1

1 (Ai(x̂) − Bi(ζ)F i(x̂))
}

< 0 (52)
L

{
X2

(
Āi(x, x̂) − Li(x̂)Ci

)}
< 0. (53)

Multiplying both sides of (52) by X1 and defining a new vari-
able M i(x̂) = F i(x̂)X1, we obtain the following conditions:

L{Ai(x̂)X1 − Bi(ζ)M i(x̂)} < 0. (54)

Defining another new variable N i(x̂) = X2Li(x̂), the in-
equality (53) can be described as

L
{
X2Āi(x, x̂) − N i(x̂)Ci

}
< 0. (55)

In the same way as before, (51) can be also represented as

L{Ai(x̂)X1 − Bi(ζ)M j(x̂)}
+ L{Aj(x̂)X1 − Bj(ζ)M i(x̂)} ≤ 0 (56)
L

{
X2Āi(x, x̂) − N i(x̂)Cj

}
+ L

{
X2Āj(x, x̂) − N j(x̂)Ci

}
≤ 0 (57)

for i < j ≤ r. It is clear from the inequality conditions
(54)–(57) that V̇ (xv) < 0 at xv �= 0 if the SOS conditions
(41)–(46) hold. �

Remark 7: As we can see, Theorems 1 and 2 show that
the so-called separation principle is realized, i.e., the fuzzy
polynomial controller and observer can be separately designed
without lack of guaranteeing the stability of the overall control
system in addition to converging state-estimation error (via
the observer) to zero. This is a very important point in our
fuzzy polynomial controller and observer design. In particu-
lar, in Theorem 2, a key feature of realizing the separation
design is that, by introducing the transformation Ā(x, x̂)e =
A(x)x − A(x̂)x̂, the (2, 1) element in Gij(x, ζ, x̂) becomes
zero element (matrix). This transformation idea leads to the
successful separation design.

A. Design Example II

Consider the following nonlinear system, where x1 is mea-
surable and y = x1:{

ẋ1 = sinx1 − 0.3x2 +
(
x2

1 + 1
)
u

ẋ2 = −1.5x1 − 2x2 − x3
2.

(58)

This system has polynomial terms (x2
1 + 1)u and x3

2. To
obtain a T–S fuzzy model, we need to assume the ranges of x1

and x2. Thus, as well as in Example I, the T–S fuzzy model is a
local model. This means that the T–S fuzzy model stabilization
and state-estimation convergence are not guaranteed for x1 and
x2 outside the ranges. The polynomial fuzzy model constructed
in this example can exactly and globally represent the dynamics
of the original system. Even if a local or semiglobal T–S fuzzy
model is permitted to be used in practical sense, the premise
variable vector z contains x2 to be estimated. Hence, the
previous LMI conditions mentioned in Section III-A1 cannot
be applied to the nonlinear system. On the other hand, the
premise variable vector z in the polynomial fuzzy model does
not contain x2, and x2 appears in polynomial system matrices
Ai in consequent parts of the polynomial fuzzy models. Since
the Class II design permits one to have unmeasurable states
in Ai matrices, it is possible to design a polynomial fuzzy
observer in this example.

The dynamics of the nonlinear system can be exactly rep-
resented as the polynomial fuzzy system (38), where r = 2,
z = ζ = y

A1(x) =
[

1 −0.3x2

−1.5 −2 − x2
2

]

A2(x) =
[
−0.2172 −0.3x2

−1.5 −2 − x2
2

]

B1(ζ) =B2(ζ) =
[

y2 + 1
0

]
C1 = C2 = [1 0]

h1(z) =
sin y + 0.2172y

1.2172y
h2(z) =

y − sin y

1.2172y
.

In this example, note that

Ā1(x, x̂)e=A1(x)x − A1(x̂)x̂

=
[

1 −0.3(x2 + x̂2)
−1.5 −2 − x2

2 − x2x̂2 − x̂2
2

][
e1

e2

]
(59)

Ā2(x, x̂)e=A2(x)x − A2(x̂)x̂

=
[
−0.2172 −0.3(x2 + x̂2)
−1.5 −2 − x2

2 − x2x̂2 − x̂2
2

][
e1

e2

]
. (60)

By solving the SOS conditions in Theorem 2, we obtain the
polynomial feedback and observer gains (shown at the bottom
of the page), where the orders of M i(x̂) and N i(x̂) are two.
Fig. 4 shows the control and estimation results by the designed
polynomial fuzzy controller and observer, where the initial
states are x(0) = [1 1] and x̂(0) = [0 0]. It can be seen that
the designed controller stabilizes the nonlinear system, and
the estimation error via the polynomial fuzzy observer tends
to zero.

F 1(x̂) = [ 2.17028 + 0.31476e−17x̂2
2 0.35016e−5 − 0.37934e−11x̂2

2 ]
F 2(x̂) = [ 1.38495 + 0.31482e−17x̂2

2 0.34413e−5 − 0.37942e−11x̂2
2 ]

L1(y, x̂) =
[

1.75626 + 0.650097e−11x̂2
2

−1.46221 − 0.52724e−5x̂2
2

]

L2(y, x̂) =
[

0.64328 + 0.65012e−11x̂2
2

−1.41280 − 0.52725e−5x̂2
2

]
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Fig. 4. Control and estimation results.

Remark 8: Since A1(x) and A2(x) have unmeasurable x2

in this design example, the Class I SOS-based observer design
(Theorem 1) cannot be applied to this design example. The
previous LMI conditions mentioned in Section III-A1 cannot
be also applied to the nonlinear system. On the other hand,
since the Class II design (Theorem 2) permits one to have
unmeasurable states in Ai matrices, it is possible to design a
polynomial fuzzy observer in this example.

V. POLYNOMIAL CONTROLLER AND

OBSERVER DESIGN (CLASS III)

In this section, we consider a more complicated class, i.e.,
Ai(x) and Bi(x) case. Class III design deals with the polyno-
mial fuzzy system (7) and (61)

ẋ =
r∑

i=1

hi(z) {Ai(x)x + Bi(x)u} . (61)

For the system (7) and (61), we design the following polyno-
mial fuzzy observer:

˙̂x =
r∑

i=1

hi(z){Ai(x̂)x̂ + Bi(x̂)u + Li(x̂)(y − ŷ) (62)

ŷ =
r∑

i=1

hi(z)Cix̂ (63)

where Li(x̂) for all i represents the polynomial observer gain
matrices in x̂.

It is known that it is extremely difficult to separately design
polynomial fuzzy controller and observer in Class III. In fact, to
the best of our knowledge, there exist no literatures on achiev-
ing the separation design in this class of polynomial fuzzy
systems. To overcome the difficulty, we propose a practical al-
gorithm to design polynomial fuzzy controller and observer sat-
isfying the stability of the overall augmented system in addition
to converging state-estimation error (via the observer) to zero.

The algorithm mainly consists of three steps.

Step 1) By assuming that all the states are measurable, we
design the following controller:

u = −
r∑

i=1

hi(z)F i(x)x. (64)

The SOS conditions (see Theorem 3) derived in
[7] and [9] are applied to determine the polynomial
feedback gains F i(x).

Step 2) We replace the controller designed in Step 1) with

u = −
r∑

i=1

hi(z)F i(x̂)x̂ (65)

where x is replaced with x̂.
Step 3) Note that the F i(x̂) and X1 (see Theorem 3)

obtained in Step 2) are known polynomial ma-
trices in x̂ and a positive definite matrix, re-
spectively. We determine the polynomial observer
gains Li(x̂) by solving new SOS design conditions
(see Theorem 4).

We present the previous SOS conditions [7], [9] (Theorem
3) to determine the polynomial feedback gains F i(x) and
new SOS design conditions (Theorem 4) to determine the
polynomial observer gains that are newly derived in this paper.

Theorem 3 [7], [9]: The system (7) and (61) can be sta-
bilized by the controller (64) if there exist a positive definite
matrix X1 ∈ R

n×n and polynomial matrices M i(x) ∈ R
p×n

satisfying the following SOS conditions:

vT
1 (X1 − Ereg

1 ) v1 is SOS (66)

− vT
2 (L{Ai(x)X1 − Bi(x)M i(x)}

+Ereg
2i (x)) v2 is SOS (67)

− vT
3 (L{Ai(x)X1 − Bi(x)M j(x)}

+L{Aj(x)X1 − Bj(x)M i(x)}) v3

is SOS, i < j ≤ r (68)

where v1, v2, and v3 ∈ R
n denote the vectors that are inde-

pendent of x. From the solutions X1 and M i(x), the feedback
gain can be obtained as F i(x) = M i(x)X−1

1 .
Theorem 4: The system (7) and (61) can be stabilized by

the polynomial fuzzy controller (65) and the estimation error
via the polynomial fuzzy observer (62) and (63) tends to zero
if there exist a positive definite matrix X2 ∈ R

n×n and poly-
nomial matrices N i(x̂) ∈ R

n×q satisfying the following SOS
conditions, where X1 and F j(x̂) are solutions satisfying the
SOS conditions in Theorem 3 and are given (known) matrices
in Theorem 4:

xT
v

([
X−1

1 X2 0
0 X2

]
− Eobs

1

)
xv is SOS (69)

− xT
v

(
Ωii(x, x̂) + Eobs

2i (x, x̂)
)
xv is SOS (70)

− xT
v (Ωij(x, x̂) + Ωji(x, x̂)) xv is SOS, i < j ≤ r (71)

where

Ωij(x, x̂)=
[

Ω11
ij (x̂) Ω12

ij (x̂)
Ω21

ij (x, x̂) Ω22
ij (x, x̂)

]

Ω11
ij (x̂)=X−1

1 X2 (Ai(x̂)−Bi(x̂)F j(x̂))

Ω12
ij (x̂)=X−1

1 N i(x̂)Cj

Ω21
ij (x, x̂)=X2 (Ai(x)−Ai(x̂)−(Bi(x)−Bi(x̂)) F j(x̂))

Ω22
ij (x, x̂)=X2Ai(x)−N i(x̂)Cj
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xv = [x̂TeT]
T

, and e = x − x̂. From the solutions X2 and
N i(x̂), we can obtain observer gain matrices as Li(x̂) =
X−1

2 N i(x̂).
Proof: Define the estimation error via the observer as e =

x − x̂. Then, the error dynamics are represented as

ė =
r∑

i=1

r∑
j=1

hi(z)hj(z) × {(Ai(x) − Ai(x̂)

− (Bi(x) − Bi(x̂)) F j(x̂)) x̂ + (Ai(x) − Li(x̂)Cj) e} .

We obtain the following augmented system:

ẋv =
r∑

i=1

r∑
j=1

hi(z)hj(z)Gij(x, x̂)xv

where

xv = [ x̂T eT ]T

Gij(x, x̂) =
[

G11
ij (x̂) G12

ij (x̂)
G21

ij (x, x̂) G22
ij (x, x̂)

]

G11
ij (x̂) =Ai(x̂) − Bi(x̂)F j(x̂)

G12
ij (x̂) =Li(x̂)Cj

G21
ij (x, x̂) =Ai(x) − Ai(x̂) − (Bi(x) − Bi(x̂)) F j(x̂)

G22
ij (x, x̂) =Ai(x) − Li(x̂)Cj .

Now, consider the following candidate of Lyapunov
functions:

V (xv) = xT
v X̃xv (72)

where

X̃ =
[

X−1
1 X2 0
0 X2

]
> 0. (73)

The time derivative of V (xv) along the system trajectories is

V̇ (xv)

=
r∑

i=1

r∑
j=1

hi(z)hj(z)xT
v

(
GT

ij(x, x̂)X̃ + X̃Gij(x, x̂)
)

xv.

Since xT
v Hxv = xT

v HTxv for any square matrix H , we have

V̇ (xv) = 2
r∑

i=1

r∑
j=1

hi(z)hj(z)xT
v X̃Gij(x, x̂)xv

= 2
r∑

i=1

h2
i (z)xT

v X̃Gii(x, x̂)xv

+ 2
r∑

i=1

r∑
i<j

hi(z)hj(z)

× xT
v X̃ (Gij(x, x̂) + Gji(x, x̂)) xv. (74)

V̇ (xv) < 0 at xv �= 0 if the following conditions hold:

−xT
v X̃Gii(x, x̂)xv > 0 (75)

−xT
v X̃ (Gij(x, x̂) + Gji(x, x̂)) xv ≥ 0, i < j ≤ r. (76)

By defining as N i(x̂) = X2Li(x̂), (75) can be rewritten as

−xT
v X̃Gii(x, x̂)xv = − xT

v

[
Ω11

ii (x̂) Ω12
ii (x̂)

Ω21
ii (x, x̂) Ω22

ii (x, x̂)

]
xv

= − xT
v Ωii(x, x̂)xv > 0 (77)

where

Ω11
ii (x̂)=X−1

1 X2 (Ai(x̂)−Bi(x̂)F i(x̂))

Ω12
ii (x̂)=X−1

1 N i(x̂)Ci

Ω21
ii (x, x̂)=X2 (Ai(x)−Ai(x̂)−(Bi(x)−Bi(x̂)) F i(x̂))

Ω22
ii (x, x̂)=X2Ai(x)−N i(x̂)Ci.

Also, (76) can be rewritten as

−xT
v (Ωij(x, x̂) + Ωji(x, x̂)) xv ≥ 0, i < j ≤ r (78)

where

Ω11
ij (x̂)=X−1

1 X2 (Ai(x̂)−Bi(x̂)F j(x̂))

Ω12
ij (x̂)=X−1

1 N i(x̂)Cj

Ω21
ij (x, x̂)=X2 (Ai(x)−Ai(x̂)−(Bi(x)−Bi(x̂)) F j(x̂))

Ω22
ij (x, x̂)=X2Ai(x)−N i(x̂)Cj .

Now, we arrive at the SOSPs (69)–(71). �
Clearly, the overall control system consisting of (7), (61),

(62), and (63), (65) is asymptotically and globally stable, and
the estimation error tends to zero.

Remark 9: Note that (73) is different from (19) and (49).
Equation (73) is needed to have SOS conditions with respect
to variables X2 and N i(x̂). If we use (19) or (49) instead of
(73), the derived conditions have X2, N i(x̂), and Li(x̂). In
this case, due to the constraint N i(x̂) = X2Li(x̂), they cannot
be generally solved by SOSTOOLS and SeDuMi.

A. Design Example III

Consider the following nonlinear system:
{

ẋ1 = sinx1 − 5x2 +
(
x2

2 + 5
)
u

ẋ2 = −x1 − x3
2.

(79)

This system has polynomial terms (x2
2 + 5)u and x3

2. As
well as in Examples I and II, the polynomial fuzzy model
constructed in this example can exactly and globally represent
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Fig. 5. System behavior without input.

Fig. 6. Control trajectories for the same initial states as in Fig. 5.

the dynamics of the original system, although the T–S fuzzy
model for (79) is a local model. In addition, the previous LMI
conditions in Section III-A1 cannot be applied to the nonlinear
system. Conversely, the Class III design can be applied to
designing a polynomial fuzzy observer in this example.

Assume that x1 is measurable and y = x1. Fig. 5 shows
the behavior of the nonlinear system without input for several
initial states. It is found from the figure that this system is
unstable.

The system (79) can be exactly converted into the polynomial
fuzzy system (7) and (61) using the sector nonlinearity [2],
where r = 2, z = y

A1(x) =
[

1 5
−1 −x2

2

]
A2(x) =

[
−0.2172 5

−1 −x2
2

]

B1(x) =
[

x2
2 + 5
0

]
B2(x) =

[
x2

2 + 5
0

]

C1 = C2 = [ 1 0 ]

h1(z) =
sin y + 0.2172y

1.2172y
h2(z) =

y − sin y

1.2172y
.

Fig. 6 shows control result (for the same initial states as
Fig. 5) by the polynomial fuzzy controller and observer de-
signed using Theorem 3 and Theorem 4, where the orders
of M i(x̂) and N i(x̂) are two. Fig. 7 shows the control and

Fig. 7. Control and estimation results.

estimation results starting from one of the initial states, where
x(0) = [0.3 0.3] and x̂(0) = [−0.3 − 0.3]. The polynomial
feedback and observer gains are obtained as follows:

F 1(x̂)=
[
0.29008+0.20778x̂2

2 0.63772−0.22047e−1x̂2
2

]

F 2(x̂)=
[
0.46829e−1+0.22751x̂2

2 0.64532−0.24141e−1x̂2
2

]

L1(x̂)=
[
2.65691+17.71908x̂2

2

1.08259+1.76675x̂2
2

]

L2(x̂)=
[
3.68595+18.01543x̂2

2

1.52432+1.70592x̂2
2

]
.

It can be found from the control results that the de-
signed polynomial fuzzy controller stabilizes the system and
the estimation error via the polynomial fuzzy observer tends
to zero.

Remark 10: Since A1(x), A2(x), B1(x), and B2(x) have
unmeasurable x2 in this design example, the previous SOS-
based observer designs (Classes I and II) cannot be applied to
this design example. Even if the sector nonlinearity concept
is applied to construct a T–S fuzzy model for the nonlinear
system, the premise variables z contain x2. Hence, the previous
LMI conditions mentioned in Section III-A1 cannot be applied
to the nonlinear system. On the other hand, since the Class III
design permits one to have unmeasurable states in both of Ai

and Bi matrices, it is possible to design a polynomial fuzzy
observer in this example.

VI. CONCLUSION

This paper has presented an SOS approach for three classes
of polynomial fuzzy controllers and observers. To illustrate the
validity and applicability of the proposed approach, three de-
sign examples have been provided. The examples have demon-
strated the advantages of the SOS-based approaches for the
existing LMI approaches to T–S fuzzy observer designs.

Our next subjects are to derive SOS observer design condi-
tions to realize the separation design even for Class III and to
apply our observer designs to helicopter control [11].
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