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Abstract

In this Letter, homotopy perturbation method (HPM), which does not need small parameters in the equations, is compared with the perturbation
and numerical methods in the heat transfer field. The perturbation method depends on small parameter assumption, and the obtained results, in
most cases, end up with a non-physical result, the numerical method leads to inaccurate results when the equation is intensively dependent on
time, while He’s homotopy perturbation method (HPM) overcomes completely the above shortcomings, revealing that the HPM is very convenient
and effective. Comparing different methods shows that, when the effect of the nonlinear term is negligible, homotopy perturbation method and the
common perturbation method have got nearly the same answers but when the nonlinear term in the heat equation is more effective, there will be a
considerable difference between the results. As the homotopy perturbation method does not need a small parameter, the answer will be nearer to
the exact solution and also to the numerical one.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Most of engineering problems, especially some heat transfer
equations are nonlinear, therefore some of them are solved us-
ing numerical solution and some are solved using the analytic
perturbation method.

In the numerical method, stability and convergence should
be considered, so as to avoid divergent or inappropriate results.
In the analytical perturbation method, we should exert the small
parameter in the equation. Finding the small parameter and ex-
erting it into the equation are therefore the problems with this
method.

Perturbation method is one of the well-known methods to
solve the nonlinear equations which was studied by a large
number of researchers such as Bellman [1], Cole [2], and
O’Malley [24]. Actually, these scientists had paid more atten-
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tion to the mathematical aspects of the subject which included
a loss of physical verification. This loss in the physical veri-
fication of the subject was recovered by Nayfeh [23] and Van
Dyke [25].

Since there are some limitations with the common pertur-
bation method, and also because the basis of the common per-
turbation method was upon the existence of a small parame-
ter, developing the method for different usage is very difficult.
Therefore, many different new methods have recently intro-
duced some ways to eliminate the small parameter such as
artificial parameter method introduced by Liu [22], the varia-
tional iteration method by He [6–8,11,13,20], and others. One
of the semi-exact methods is the homotopy perturbation method
[9,10,12,14–17].

In this Letter, the basic idea of the HPM is introduced and
then its application in some heat transfer equations is studied.
The nonlinear equation of conduction heat transfer with the
variable physical properties are solved through the two meth-
ods: homotopy perturbation method and the common perturba-
tion method, and compare with the exact solution is also made.

http://www.elsevier.com/locate/pla
mailto:ddg_davood@yahoo.com
mailto:mirgang@nit.ac.ir
http://dx.doi.org/10.1016/j.physleta.2006.02.056


338 D.D. Ganji / Physics Letters A 355 (2006) 337–341
In addition, the heat radiation and conduction equations of a fin
in the steady state and in the free space are solved using the
two mentioned methods and compared with each other and also
with the numerical solution.

2. Basic idea of homotopy perturbation method

In this Letter, we apply the homotopy perturbation method
[9,10,12,14–17] to the discussed problem. To illustrate the basic
ideas of the new method, we consider the following nonlinear
differential equation,

(1)A(u) − f (r) = 0, r ∈ Ω,

with boundary conditions

(2)B(u, ∂u/∂n) = 0, r ∈ Γ,

where A is a general differential operator, B is a boundary oper-
ator, f (r) is a known analytic function, and Γ is the boundary
of the domain Ω .

The operator A can be generally divided into two parts L

and N , where L is linear, whereas N is nonlinear. Therefore,
Eq. (1) can be rewritten as follows:

(3)L(u) + N(u) − f (r) = 0.

In case the nonlinear equation (1) has no “small parameter”, we
can construct the following homotopy,

H(v,p) = L(v) − L(u0) + pL(u0) + p
[
N(v) − f (r)

]
(4)= 0,

where p is called homotopy parameter.
According to the homotopy perturbation method, the ap-

proximation solution of Eq. (4) can be expressed as a series
of the power of p, i.e.,

(5)u = lim
p→1

v = v0 + v1 + v2 + · · · ,
when, Eq. (4) correspond to Eq. (1), and Eq. (5) becomes the
approximate solution of Eq. (1). Some interesting results have
been attained using this method [3–5,18,19,21].

3. Applications

3.1. Cooling of a lumped system with variable specific heat
(the first case)

Consider the cooling of a lumped system [26]. Let the sys-
tem have volume V , surface area A, density ρ, specific heat c

and initial temperature Ti . At time t = 0, the system is exposed
to a convective environment at temperature Ta with convective
heat transfer coefficient h. Assume that the specific heat c is a
linear function temperature of the form:

(6)c = ca

[
1 + β(T − Ta)

]
,

where ca is the specific heat, at temperature Ta and β is a con-
stant. The cooling equation and the initial condition are:

(7)ρV c
dT + hA(T − Ta) = 0, T (0) = Ti,

dt
introducing Eq. (6) and using the dimensionless parameters:

(8)θ = T − Ta

Ti − Ta

, τ = t

ρV ca/(hA)
, ε = β(T − Ta),

transforms Eq. (7) to:

(9)(1 + εθ)
dθ

dτ
+ θ = 0, θ(0) = 1.

3.1.1. Homotopy method
We can construct the homotopy v(r,p) :Ω × [0,1] → R

which satisfies(
dθ(τ)

dτ
+ θ(τ )

)
−

(
dy0(τ )

dτ
+ y0(τ )

)

(10)+ p

(
dy0(τ )

dτ
+ y0(τ )

)
+ p

[
εθ(τ )

dθ(τ )

dτ

]
= 0.

With initial approximation y0 = e−τ , suppose the solution of
Eq. (9) has the form:

(11)θ = Y0 + pY1 + p2Y2 + · · · .
Then, substituting Eq. (11) into Eq. (10), and equating the terms
with identical powers of p,

(12)p0: dY0(τ )

dτ
− dy0(τ )

dτ
− y0(τ ) + Y0(τ ) = 0,

p1: Y1(τ ) + y0(τ )

(13)+ εY0(τ )
dY0(τ )

dτ
+ dY1(τ )

dτ
+ dy0(τ )

dτ
= 0,

p2: dY2(τ )

dτ
+ εY0(τ )

dY1(τ )

dτ

(14)+ Y2(τ ) + εY1(τ )
dY0(τ )

dτ
= 0,

with solving Eqs. (12)–(14),

(15)Y0 = e−τ , Y0(0) = 1,

(16)Y1 = ε
(
e−τ − e−2τ

)
, Y1(0) = 0,

(17)Y2 = ε2
(

0.5e−τ − 2e−2τ + 3

2
e−3τ

)
, Y2(0) = 0,

according to Eq. (11) and the assumption p = 1, we get:

θ = e−τ + ε
(
e−τ − e−2τ

)

(18)+ ε2
(

1

2
e−τ − 2e−2τ + 3

2
e−3τ

)
.

3.1.2. Perturbation method
For very small ε, let us assume a regular perturbation expan-

sion and calculate the first three terms [23], thus we assume:

(19)θ = θ0 + εθ1 + ε2θ2 + · · · .
Substituting Eq. (19) into Eq. (9) and collecting terms with
powers of ε as 0,1,2, . . . gives:

dθ0

dτ
+ θ0 + ε

(
dθ1

dτ
+ θ1 + θ0

dθ0

dτ

)

(20)+ ε2
(

dθ2 + θ2 + θ1
dθ0 + θ0

dθ1
)

= 0.

dτ dτ dτ
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Fig. 1. Comparison of the three different methods for the first case in ε = 0.65.

Equating coefficients of each power of ε on both sides of
Eq. (20) gives:

(21)ε0: dθ0

dτ
+ θ0 = 0, θ0(0) = 1,

(22)ε1: dθ1

dτ
+ θ1 + θ0

dθ0

dτ
= 0, θ1(0) = 0,

(23)ε2: dθ2

dτ
+ θ2 + θ1

dθ0

dτ
+ θ0

dθ1

dτ
= 0, θ2(τ = 0) = 0.

The solutions of Eqs. (21), (22) and (23) are:

θ0 = e−τ , θ1 = e−τ − e−2τ ,

(24)θ2 = e−τ − 2e−2τ + 3

2
e−3τ .

The three-term expansion in Eq. (19) now becomes:

(25)θ = e−τ + ε
(
e−τ − e−2τ

) + ε2
(

e−τ − 2e−2τ + 3

2
e−3τ

)
.

3.1.3. Exact solution
By separating the variables in Eq. (9) and carrying out the

integration, the exact solution can be obtained as

dθ

θ dτ
+ ε

θ dθ

θ dτ
+ θ

θ
= 0

⇒
∫

dθ

θ
+

∫
ε dθ +

∫
dτ =

∫
0dτ

⇒ ln θ + εθ + τ = c
θ(0)=1→ c = ε

(26)∴ ln θ + ε(θ − 1) + τ = 0.

As you can see in ε = 0, this two diagrams are identical and in
ε = 0.03 and also ε = 0.09 the homotopy has a high accuracy.

The results of the three methods are illustrated in Figs. 1, 2,
3 and 4 for the first case.

3.2. The temperature distribution equation in a thick
rectangular fin radiation to free space (the second case) [26]

Now we will consider a nonlinear equation, the temperature
distribution equation in a uniformly thick rectangular fin radia-
Fig. 2. Comparison of the three different methods for the first case in ε = 0.8.

Fig. 3. Variation of θ(ε) with the ε for the first case.

Fig. 4. Comparison of the error in answer resulted by three different methods
for the first case.
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tion to free space with nonlinearity of high order [12,14]:

(27)
d2θ

dx2
− εθ4(x) = 0, θ(1) = 1,

dθ

dx
(0) = 0.

3.2.1. Homotopy method
We can create the following homotopy v(r,p) :Ω ×[0,1] →

R which satisfies:

(28)

(
d2

dx2
θ(x)

)
−

(
d2

dx2
y0(x)

)
+ p

(
d2

dx2
y0(x)

)
− pεθ4(x) = 0.

With initial approximation y0 = 1, suppose the solution of
Eq. (27) has the form:

(29)θ = Y0 + pY1 + p2Y2 + · · · .
Substituting Eq. (29) into Eq. (28), and equating the terms with
identical powers of p,

p0: −
(

d2

dx2
y0(x)

)
+

(
d2

dx2
Y0(x)

)
= 0,

(30)Y0(1) = 1,
dY0

dx
(0) = 0,

p1:
(

d2

dx2
Y1(x)

)
+

(
d2

dx2
y0(x)

)
− εY 4

0 (x) = 0,

(31)Y1(1) = 0,
dY1

dx
(0) = 0,

p2:
(

d2

dx2
Y2(x)

)
− 4ε

(
Y1(x)Y 3

0 (x)
) = 0,

(32)Y2(1) = 0,
dY2

dx
(0) = 0,

and solving differential equations (30), (31) and (32), we have:

(33)Y0 = 1,

(34)Y1 = 1

2
ε
(
x2 − 1

)
,

(35)Y2 = 1

6
ε2(x4 − 1

)
.

According to Eq. (29) and the assumption p = 1,

(36)θ = 1 + 1

2
ε
(
x2 − 1

) + 1

6
ε2(x4 − 1

)
.

3.2.2. Perturbation method
For very small ε, let us assume a regular perturbation expan-

sion and calculate the first three terms, thus we assume:

(37)θ = θ0 + εθ1 + ε2θ2 + · · · .
Substituting Eq. (37) into Eq. (27) and separating terms with
powers of ε,

(38)ε0: d2θ0

dx2
= 0, θ0(x = 1) = 1,

dθ0

dx
(x = 0) = 0,

ε1: d2θ1

dx2
− θ4

0 = 0, θ1(x = 1) = 1,

(39)
dθ1

(x = 0) = 0,

dx
ε2: d2θ2

dx2
− 4θ1θ

3
0 = 0, θ2(x = 1) = 1,

(40)
dθ2

dx
(x = 0) = 0,

the solutions of Eqs. (38)–(40) are:

(41)θ0 = 1, θ1 = x2

2
− 1

2
, θ2 = 1

6

(
x4 − 6x2 + 5

)
.

The three-term expansion in Eq. (37) now becomes:

(42)θ = 1 + ε

(
x2

2
− 1

2

)
+ ε2

(
1

6

(
x4 − 6x2 + 5

))
.

3.2.3. Numerical method
Since, Eq. (27) cannot be easily solved by the analytical

method; Eq. (27) is, therefore, solved by the numerical method
using the software MAPLE whose results are given in Table 1,
and also the consequent results of the three different methods of
perturbation, homotopy and numerical are compared in Fig. 5.
As you can see in ε = 0.7, the HPM has a high accuracy.

Considering Fig. 5, it can be specially achieved that the per-
turbation method is valid only for small parameter ε, but it
should be pointed out that the HPM is valid for all the nonlinear
equations with different parameters.

Table 1
The results of the numerical solution for the second case in ε = 0.09

x θ(x)
dθ(x)
dx

0 0.9606243 0
0.1 0.9610076 0.0076680
0.2 0.9621587 0.0153607
0.3 0.9640814 0.0231026
0.4 0.9667818 0.0309192
0.5 0.9702686 0.0388363
0.6 0.9745533 0.0468813

Fig. 5. Comparison of the three different methods for the second case in ε = 0.7.
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4. Conclusion

Considering the results, it can be said that, as the small para-
meter of ε increases perturbation method is much different with
the exact solution. This means, in high ε there will be more mal-
functionality whereas homotopy method has got a much higher
accuracy. In this research, it has been shown that the perturba-
tion method is valid only for small parameter ε, but it should be
pointed out that the HPM is valid for all the nonlinear equations
with high order of nonlinearity containing different parameters.
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